mirror of
https://github.com/FEX-Emu/linux.git
synced 2024-12-27 20:07:09 +00:00
bc1c116974
There's a race between shutting down one io scheduler and firing up the next, in which a new io could enter and cause the io scheduler to be invoked with bad or NULL data. To fix this, we need to maintain the queue lock for a bit longer. Unfortunately we cannot do that, since the elevator init requires to be run without the lock held. This isn't easily fixable, without also changing the mempool API. So split the initialization into two parts, and alloc-init operation and an attach operation. Then we can preallocate the io scheduler and related structures, and run the attach inside the lock after we detach the old one. This patch has survived 30 minutes of 1 second io scheduler switching with a very busy io load. Signed-off-by: Jens Axboe <axboe@suse.de> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
1860 lines
46 KiB
C
1860 lines
46 KiB
C
/*
|
|
* Anticipatory & deadline i/o scheduler.
|
|
*
|
|
* Copyright (C) 2002 Jens Axboe <axboe@suse.de>
|
|
* Nick Piggin <nickpiggin@yahoo.com.au>
|
|
*
|
|
*/
|
|
#include <linux/kernel.h>
|
|
#include <linux/fs.h>
|
|
#include <linux/blkdev.h>
|
|
#include <linux/elevator.h>
|
|
#include <linux/bio.h>
|
|
#include <linux/config.h>
|
|
#include <linux/module.h>
|
|
#include <linux/slab.h>
|
|
#include <linux/init.h>
|
|
#include <linux/compiler.h>
|
|
#include <linux/hash.h>
|
|
#include <linux/rbtree.h>
|
|
#include <linux/interrupt.h>
|
|
|
|
#define REQ_SYNC 1
|
|
#define REQ_ASYNC 0
|
|
|
|
/*
|
|
* See Documentation/block/as-iosched.txt
|
|
*/
|
|
|
|
/*
|
|
* max time before a read is submitted.
|
|
*/
|
|
#define default_read_expire (HZ / 8)
|
|
|
|
/*
|
|
* ditto for writes, these limits are not hard, even
|
|
* if the disk is capable of satisfying them.
|
|
*/
|
|
#define default_write_expire (HZ / 4)
|
|
|
|
/*
|
|
* read_batch_expire describes how long we will allow a stream of reads to
|
|
* persist before looking to see whether it is time to switch over to writes.
|
|
*/
|
|
#define default_read_batch_expire (HZ / 2)
|
|
|
|
/*
|
|
* write_batch_expire describes how long we want a stream of writes to run for.
|
|
* This is not a hard limit, but a target we set for the auto-tuning thingy.
|
|
* See, the problem is: we can send a lot of writes to disk cache / TCQ in
|
|
* a short amount of time...
|
|
*/
|
|
#define default_write_batch_expire (HZ / 8)
|
|
|
|
/*
|
|
* max time we may wait to anticipate a read (default around 6ms)
|
|
*/
|
|
#define default_antic_expire ((HZ / 150) ? HZ / 150 : 1)
|
|
|
|
/*
|
|
* Keep track of up to 20ms thinktimes. We can go as big as we like here,
|
|
* however huge values tend to interfere and not decay fast enough. A program
|
|
* might be in a non-io phase of operation. Waiting on user input for example,
|
|
* or doing a lengthy computation. A small penalty can be justified there, and
|
|
* will still catch out those processes that constantly have large thinktimes.
|
|
*/
|
|
#define MAX_THINKTIME (HZ/50UL)
|
|
|
|
/* Bits in as_io_context.state */
|
|
enum as_io_states {
|
|
AS_TASK_RUNNING=0, /* Process has not exited */
|
|
AS_TASK_IOSTARTED, /* Process has started some IO */
|
|
AS_TASK_IORUNNING, /* Process has completed some IO */
|
|
};
|
|
|
|
enum anticipation_status {
|
|
ANTIC_OFF=0, /* Not anticipating (normal operation) */
|
|
ANTIC_WAIT_REQ, /* The last read has not yet completed */
|
|
ANTIC_WAIT_NEXT, /* Currently anticipating a request vs
|
|
last read (which has completed) */
|
|
ANTIC_FINISHED, /* Anticipating but have found a candidate
|
|
* or timed out */
|
|
};
|
|
|
|
struct as_data {
|
|
/*
|
|
* run time data
|
|
*/
|
|
|
|
struct request_queue *q; /* the "owner" queue */
|
|
|
|
/*
|
|
* requests (as_rq s) are present on both sort_list and fifo_list
|
|
*/
|
|
struct rb_root sort_list[2];
|
|
struct list_head fifo_list[2];
|
|
|
|
struct as_rq *next_arq[2]; /* next in sort order */
|
|
sector_t last_sector[2]; /* last REQ_SYNC & REQ_ASYNC sectors */
|
|
struct list_head *hash; /* request hash */
|
|
|
|
unsigned long exit_prob; /* probability a task will exit while
|
|
being waited on */
|
|
unsigned long exit_no_coop; /* probablility an exited task will
|
|
not be part of a later cooperating
|
|
request */
|
|
unsigned long new_ttime_total; /* mean thinktime on new proc */
|
|
unsigned long new_ttime_mean;
|
|
u64 new_seek_total; /* mean seek on new proc */
|
|
sector_t new_seek_mean;
|
|
|
|
unsigned long current_batch_expires;
|
|
unsigned long last_check_fifo[2];
|
|
int changed_batch; /* 1: waiting for old batch to end */
|
|
int new_batch; /* 1: waiting on first read complete */
|
|
int batch_data_dir; /* current batch REQ_SYNC / REQ_ASYNC */
|
|
int write_batch_count; /* max # of reqs in a write batch */
|
|
int current_write_count; /* how many requests left this batch */
|
|
int write_batch_idled; /* has the write batch gone idle? */
|
|
mempool_t *arq_pool;
|
|
|
|
enum anticipation_status antic_status;
|
|
unsigned long antic_start; /* jiffies: when it started */
|
|
struct timer_list antic_timer; /* anticipatory scheduling timer */
|
|
struct work_struct antic_work; /* Deferred unplugging */
|
|
struct io_context *io_context; /* Identify the expected process */
|
|
int ioc_finished; /* IO associated with io_context is finished */
|
|
int nr_dispatched;
|
|
|
|
/*
|
|
* settings that change how the i/o scheduler behaves
|
|
*/
|
|
unsigned long fifo_expire[2];
|
|
unsigned long batch_expire[2];
|
|
unsigned long antic_expire;
|
|
};
|
|
|
|
#define list_entry_fifo(ptr) list_entry((ptr), struct as_rq, fifo)
|
|
|
|
/*
|
|
* per-request data.
|
|
*/
|
|
enum arq_state {
|
|
AS_RQ_NEW=0, /* New - not referenced and not on any lists */
|
|
AS_RQ_QUEUED, /* In the request queue. It belongs to the
|
|
scheduler */
|
|
AS_RQ_DISPATCHED, /* On the dispatch list. It belongs to the
|
|
driver now */
|
|
AS_RQ_PRESCHED, /* Debug poisoning for requests being used */
|
|
AS_RQ_REMOVED,
|
|
AS_RQ_MERGED,
|
|
AS_RQ_POSTSCHED, /* when they shouldn't be */
|
|
};
|
|
|
|
struct as_rq {
|
|
/*
|
|
* rbtree index, key is the starting offset
|
|
*/
|
|
struct rb_node rb_node;
|
|
sector_t rb_key;
|
|
|
|
struct request *request;
|
|
|
|
struct io_context *io_context; /* The submitting task */
|
|
|
|
/*
|
|
* request hash, key is the ending offset (for back merge lookup)
|
|
*/
|
|
struct list_head hash;
|
|
unsigned int on_hash;
|
|
|
|
/*
|
|
* expire fifo
|
|
*/
|
|
struct list_head fifo;
|
|
unsigned long expires;
|
|
|
|
unsigned int is_sync;
|
|
enum arq_state state;
|
|
};
|
|
|
|
#define RQ_DATA(rq) ((struct as_rq *) (rq)->elevator_private)
|
|
|
|
static kmem_cache_t *arq_pool;
|
|
|
|
static atomic_t ioc_count = ATOMIC_INIT(0);
|
|
static struct completion *ioc_gone;
|
|
|
|
static void as_move_to_dispatch(struct as_data *ad, struct as_rq *arq);
|
|
static void as_antic_stop(struct as_data *ad);
|
|
|
|
/*
|
|
* IO Context helper functions
|
|
*/
|
|
|
|
/* Called to deallocate the as_io_context */
|
|
static void free_as_io_context(struct as_io_context *aic)
|
|
{
|
|
kfree(aic);
|
|
if (atomic_dec_and_test(&ioc_count) && ioc_gone)
|
|
complete(ioc_gone);
|
|
}
|
|
|
|
static void as_trim(struct io_context *ioc)
|
|
{
|
|
if (ioc->aic)
|
|
free_as_io_context(ioc->aic);
|
|
ioc->aic = NULL;
|
|
}
|
|
|
|
/* Called when the task exits */
|
|
static void exit_as_io_context(struct as_io_context *aic)
|
|
{
|
|
WARN_ON(!test_bit(AS_TASK_RUNNING, &aic->state));
|
|
clear_bit(AS_TASK_RUNNING, &aic->state);
|
|
}
|
|
|
|
static struct as_io_context *alloc_as_io_context(void)
|
|
{
|
|
struct as_io_context *ret;
|
|
|
|
ret = kmalloc(sizeof(*ret), GFP_ATOMIC);
|
|
if (ret) {
|
|
ret->dtor = free_as_io_context;
|
|
ret->exit = exit_as_io_context;
|
|
ret->state = 1 << AS_TASK_RUNNING;
|
|
atomic_set(&ret->nr_queued, 0);
|
|
atomic_set(&ret->nr_dispatched, 0);
|
|
spin_lock_init(&ret->lock);
|
|
ret->ttime_total = 0;
|
|
ret->ttime_samples = 0;
|
|
ret->ttime_mean = 0;
|
|
ret->seek_total = 0;
|
|
ret->seek_samples = 0;
|
|
ret->seek_mean = 0;
|
|
atomic_inc(&ioc_count);
|
|
}
|
|
|
|
return ret;
|
|
}
|
|
|
|
/*
|
|
* If the current task has no AS IO context then create one and initialise it.
|
|
* Then take a ref on the task's io context and return it.
|
|
*/
|
|
static struct io_context *as_get_io_context(void)
|
|
{
|
|
struct io_context *ioc = get_io_context(GFP_ATOMIC);
|
|
if (ioc && !ioc->aic) {
|
|
ioc->aic = alloc_as_io_context();
|
|
if (!ioc->aic) {
|
|
put_io_context(ioc);
|
|
ioc = NULL;
|
|
}
|
|
}
|
|
return ioc;
|
|
}
|
|
|
|
static void as_put_io_context(struct as_rq *arq)
|
|
{
|
|
struct as_io_context *aic;
|
|
|
|
if (unlikely(!arq->io_context))
|
|
return;
|
|
|
|
aic = arq->io_context->aic;
|
|
|
|
if (arq->is_sync == REQ_SYNC && aic) {
|
|
spin_lock(&aic->lock);
|
|
set_bit(AS_TASK_IORUNNING, &aic->state);
|
|
aic->last_end_request = jiffies;
|
|
spin_unlock(&aic->lock);
|
|
}
|
|
|
|
put_io_context(arq->io_context);
|
|
}
|
|
|
|
/*
|
|
* the back merge hash support functions
|
|
*/
|
|
static const int as_hash_shift = 6;
|
|
#define AS_HASH_BLOCK(sec) ((sec) >> 3)
|
|
#define AS_HASH_FN(sec) (hash_long(AS_HASH_BLOCK((sec)), as_hash_shift))
|
|
#define AS_HASH_ENTRIES (1 << as_hash_shift)
|
|
#define rq_hash_key(rq) ((rq)->sector + (rq)->nr_sectors)
|
|
#define list_entry_hash(ptr) list_entry((ptr), struct as_rq, hash)
|
|
|
|
static inline void __as_del_arq_hash(struct as_rq *arq)
|
|
{
|
|
arq->on_hash = 0;
|
|
list_del_init(&arq->hash);
|
|
}
|
|
|
|
static inline void as_del_arq_hash(struct as_rq *arq)
|
|
{
|
|
if (arq->on_hash)
|
|
__as_del_arq_hash(arq);
|
|
}
|
|
|
|
static void as_add_arq_hash(struct as_data *ad, struct as_rq *arq)
|
|
{
|
|
struct request *rq = arq->request;
|
|
|
|
BUG_ON(arq->on_hash);
|
|
|
|
arq->on_hash = 1;
|
|
list_add(&arq->hash, &ad->hash[AS_HASH_FN(rq_hash_key(rq))]);
|
|
}
|
|
|
|
/*
|
|
* move hot entry to front of chain
|
|
*/
|
|
static inline void as_hot_arq_hash(struct as_data *ad, struct as_rq *arq)
|
|
{
|
|
struct request *rq = arq->request;
|
|
struct list_head *head = &ad->hash[AS_HASH_FN(rq_hash_key(rq))];
|
|
|
|
if (!arq->on_hash) {
|
|
WARN_ON(1);
|
|
return;
|
|
}
|
|
|
|
if (arq->hash.prev != head) {
|
|
list_del(&arq->hash);
|
|
list_add(&arq->hash, head);
|
|
}
|
|
}
|
|
|
|
static struct request *as_find_arq_hash(struct as_data *ad, sector_t offset)
|
|
{
|
|
struct list_head *hash_list = &ad->hash[AS_HASH_FN(offset)];
|
|
struct list_head *entry, *next = hash_list->next;
|
|
|
|
while ((entry = next) != hash_list) {
|
|
struct as_rq *arq = list_entry_hash(entry);
|
|
struct request *__rq = arq->request;
|
|
|
|
next = entry->next;
|
|
|
|
BUG_ON(!arq->on_hash);
|
|
|
|
if (!rq_mergeable(__rq)) {
|
|
as_del_arq_hash(arq);
|
|
continue;
|
|
}
|
|
|
|
if (rq_hash_key(__rq) == offset)
|
|
return __rq;
|
|
}
|
|
|
|
return NULL;
|
|
}
|
|
|
|
/*
|
|
* rb tree support functions
|
|
*/
|
|
#define RB_NONE (2)
|
|
#define RB_EMPTY(root) ((root)->rb_node == NULL)
|
|
#define ON_RB(node) ((node)->rb_color != RB_NONE)
|
|
#define RB_CLEAR(node) ((node)->rb_color = RB_NONE)
|
|
#define rb_entry_arq(node) rb_entry((node), struct as_rq, rb_node)
|
|
#define ARQ_RB_ROOT(ad, arq) (&(ad)->sort_list[(arq)->is_sync])
|
|
#define rq_rb_key(rq) (rq)->sector
|
|
|
|
/*
|
|
* as_find_first_arq finds the first (lowest sector numbered) request
|
|
* for the specified data_dir. Used to sweep back to the start of the disk
|
|
* (1-way elevator) after we process the last (highest sector) request.
|
|
*/
|
|
static struct as_rq *as_find_first_arq(struct as_data *ad, int data_dir)
|
|
{
|
|
struct rb_node *n = ad->sort_list[data_dir].rb_node;
|
|
|
|
if (n == NULL)
|
|
return NULL;
|
|
|
|
for (;;) {
|
|
if (n->rb_left == NULL)
|
|
return rb_entry_arq(n);
|
|
|
|
n = n->rb_left;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Add the request to the rb tree if it is unique. If there is an alias (an
|
|
* existing request against the same sector), which can happen when using
|
|
* direct IO, then return the alias.
|
|
*/
|
|
static struct as_rq *__as_add_arq_rb(struct as_data *ad, struct as_rq *arq)
|
|
{
|
|
struct rb_node **p = &ARQ_RB_ROOT(ad, arq)->rb_node;
|
|
struct rb_node *parent = NULL;
|
|
struct as_rq *__arq;
|
|
struct request *rq = arq->request;
|
|
|
|
arq->rb_key = rq_rb_key(rq);
|
|
|
|
while (*p) {
|
|
parent = *p;
|
|
__arq = rb_entry_arq(parent);
|
|
|
|
if (arq->rb_key < __arq->rb_key)
|
|
p = &(*p)->rb_left;
|
|
else if (arq->rb_key > __arq->rb_key)
|
|
p = &(*p)->rb_right;
|
|
else
|
|
return __arq;
|
|
}
|
|
|
|
rb_link_node(&arq->rb_node, parent, p);
|
|
rb_insert_color(&arq->rb_node, ARQ_RB_ROOT(ad, arq));
|
|
|
|
return NULL;
|
|
}
|
|
|
|
static void as_add_arq_rb(struct as_data *ad, struct as_rq *arq)
|
|
{
|
|
struct as_rq *alias;
|
|
|
|
while ((unlikely(alias = __as_add_arq_rb(ad, arq)))) {
|
|
as_move_to_dispatch(ad, alias);
|
|
as_antic_stop(ad);
|
|
}
|
|
}
|
|
|
|
static inline void as_del_arq_rb(struct as_data *ad, struct as_rq *arq)
|
|
{
|
|
if (!ON_RB(&arq->rb_node)) {
|
|
WARN_ON(1);
|
|
return;
|
|
}
|
|
|
|
rb_erase(&arq->rb_node, ARQ_RB_ROOT(ad, arq));
|
|
RB_CLEAR(&arq->rb_node);
|
|
}
|
|
|
|
static struct request *
|
|
as_find_arq_rb(struct as_data *ad, sector_t sector, int data_dir)
|
|
{
|
|
struct rb_node *n = ad->sort_list[data_dir].rb_node;
|
|
struct as_rq *arq;
|
|
|
|
while (n) {
|
|
arq = rb_entry_arq(n);
|
|
|
|
if (sector < arq->rb_key)
|
|
n = n->rb_left;
|
|
else if (sector > arq->rb_key)
|
|
n = n->rb_right;
|
|
else
|
|
return arq->request;
|
|
}
|
|
|
|
return NULL;
|
|
}
|
|
|
|
/*
|
|
* IO Scheduler proper
|
|
*/
|
|
|
|
#define MAXBACK (1024 * 1024) /*
|
|
* Maximum distance the disk will go backward
|
|
* for a request.
|
|
*/
|
|
|
|
#define BACK_PENALTY 2
|
|
|
|
/*
|
|
* as_choose_req selects the preferred one of two requests of the same data_dir
|
|
* ignoring time - eg. timeouts, which is the job of as_dispatch_request
|
|
*/
|
|
static struct as_rq *
|
|
as_choose_req(struct as_data *ad, struct as_rq *arq1, struct as_rq *arq2)
|
|
{
|
|
int data_dir;
|
|
sector_t last, s1, s2, d1, d2;
|
|
int r1_wrap=0, r2_wrap=0; /* requests are behind the disk head */
|
|
const sector_t maxback = MAXBACK;
|
|
|
|
if (arq1 == NULL || arq1 == arq2)
|
|
return arq2;
|
|
if (arq2 == NULL)
|
|
return arq1;
|
|
|
|
data_dir = arq1->is_sync;
|
|
|
|
last = ad->last_sector[data_dir];
|
|
s1 = arq1->request->sector;
|
|
s2 = arq2->request->sector;
|
|
|
|
BUG_ON(data_dir != arq2->is_sync);
|
|
|
|
/*
|
|
* Strict one way elevator _except_ in the case where we allow
|
|
* short backward seeks which are biased as twice the cost of a
|
|
* similar forward seek.
|
|
*/
|
|
if (s1 >= last)
|
|
d1 = s1 - last;
|
|
else if (s1+maxback >= last)
|
|
d1 = (last - s1)*BACK_PENALTY;
|
|
else {
|
|
r1_wrap = 1;
|
|
d1 = 0; /* shut up, gcc */
|
|
}
|
|
|
|
if (s2 >= last)
|
|
d2 = s2 - last;
|
|
else if (s2+maxback >= last)
|
|
d2 = (last - s2)*BACK_PENALTY;
|
|
else {
|
|
r2_wrap = 1;
|
|
d2 = 0;
|
|
}
|
|
|
|
/* Found required data */
|
|
if (!r1_wrap && r2_wrap)
|
|
return arq1;
|
|
else if (!r2_wrap && r1_wrap)
|
|
return arq2;
|
|
else if (r1_wrap && r2_wrap) {
|
|
/* both behind the head */
|
|
if (s1 <= s2)
|
|
return arq1;
|
|
else
|
|
return arq2;
|
|
}
|
|
|
|
/* Both requests in front of the head */
|
|
if (d1 < d2)
|
|
return arq1;
|
|
else if (d2 < d1)
|
|
return arq2;
|
|
else {
|
|
if (s1 >= s2)
|
|
return arq1;
|
|
else
|
|
return arq2;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* as_find_next_arq finds the next request after @prev in elevator order.
|
|
* this with as_choose_req form the basis for how the scheduler chooses
|
|
* what request to process next. Anticipation works on top of this.
|
|
*/
|
|
static struct as_rq *as_find_next_arq(struct as_data *ad, struct as_rq *last)
|
|
{
|
|
const int data_dir = last->is_sync;
|
|
struct as_rq *ret;
|
|
struct rb_node *rbnext = rb_next(&last->rb_node);
|
|
struct rb_node *rbprev = rb_prev(&last->rb_node);
|
|
struct as_rq *arq_next, *arq_prev;
|
|
|
|
BUG_ON(!ON_RB(&last->rb_node));
|
|
|
|
if (rbprev)
|
|
arq_prev = rb_entry_arq(rbprev);
|
|
else
|
|
arq_prev = NULL;
|
|
|
|
if (rbnext)
|
|
arq_next = rb_entry_arq(rbnext);
|
|
else {
|
|
arq_next = as_find_first_arq(ad, data_dir);
|
|
if (arq_next == last)
|
|
arq_next = NULL;
|
|
}
|
|
|
|
ret = as_choose_req(ad, arq_next, arq_prev);
|
|
|
|
return ret;
|
|
}
|
|
|
|
/*
|
|
* anticipatory scheduling functions follow
|
|
*/
|
|
|
|
/*
|
|
* as_antic_expired tells us when we have anticipated too long.
|
|
* The funny "absolute difference" math on the elapsed time is to handle
|
|
* jiffy wraps, and disks which have been idle for 0x80000000 jiffies.
|
|
*/
|
|
static int as_antic_expired(struct as_data *ad)
|
|
{
|
|
long delta_jif;
|
|
|
|
delta_jif = jiffies - ad->antic_start;
|
|
if (unlikely(delta_jif < 0))
|
|
delta_jif = -delta_jif;
|
|
if (delta_jif < ad->antic_expire)
|
|
return 0;
|
|
|
|
return 1;
|
|
}
|
|
|
|
/*
|
|
* as_antic_waitnext starts anticipating that a nice request will soon be
|
|
* submitted. See also as_antic_waitreq
|
|
*/
|
|
static void as_antic_waitnext(struct as_data *ad)
|
|
{
|
|
unsigned long timeout;
|
|
|
|
BUG_ON(ad->antic_status != ANTIC_OFF
|
|
&& ad->antic_status != ANTIC_WAIT_REQ);
|
|
|
|
timeout = ad->antic_start + ad->antic_expire;
|
|
|
|
mod_timer(&ad->antic_timer, timeout);
|
|
|
|
ad->antic_status = ANTIC_WAIT_NEXT;
|
|
}
|
|
|
|
/*
|
|
* as_antic_waitreq starts anticipating. We don't start timing the anticipation
|
|
* until the request that we're anticipating on has finished. This means we
|
|
* are timing from when the candidate process wakes up hopefully.
|
|
*/
|
|
static void as_antic_waitreq(struct as_data *ad)
|
|
{
|
|
BUG_ON(ad->antic_status == ANTIC_FINISHED);
|
|
if (ad->antic_status == ANTIC_OFF) {
|
|
if (!ad->io_context || ad->ioc_finished)
|
|
as_antic_waitnext(ad);
|
|
else
|
|
ad->antic_status = ANTIC_WAIT_REQ;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* This is called directly by the functions in this file to stop anticipation.
|
|
* We kill the timer and schedule a call to the request_fn asap.
|
|
*/
|
|
static void as_antic_stop(struct as_data *ad)
|
|
{
|
|
int status = ad->antic_status;
|
|
|
|
if (status == ANTIC_WAIT_REQ || status == ANTIC_WAIT_NEXT) {
|
|
if (status == ANTIC_WAIT_NEXT)
|
|
del_timer(&ad->antic_timer);
|
|
ad->antic_status = ANTIC_FINISHED;
|
|
/* see as_work_handler */
|
|
kblockd_schedule_work(&ad->antic_work);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* as_antic_timeout is the timer function set by as_antic_waitnext.
|
|
*/
|
|
static void as_antic_timeout(unsigned long data)
|
|
{
|
|
struct request_queue *q = (struct request_queue *)data;
|
|
struct as_data *ad = q->elevator->elevator_data;
|
|
unsigned long flags;
|
|
|
|
spin_lock_irqsave(q->queue_lock, flags);
|
|
if (ad->antic_status == ANTIC_WAIT_REQ
|
|
|| ad->antic_status == ANTIC_WAIT_NEXT) {
|
|
struct as_io_context *aic = ad->io_context->aic;
|
|
|
|
ad->antic_status = ANTIC_FINISHED;
|
|
kblockd_schedule_work(&ad->antic_work);
|
|
|
|
if (aic->ttime_samples == 0) {
|
|
/* process anticipated on has exited or timed out*/
|
|
ad->exit_prob = (7*ad->exit_prob + 256)/8;
|
|
}
|
|
if (!test_bit(AS_TASK_RUNNING, &aic->state)) {
|
|
/* process not "saved" by a cooperating request */
|
|
ad->exit_no_coop = (7*ad->exit_no_coop + 256)/8;
|
|
}
|
|
}
|
|
spin_unlock_irqrestore(q->queue_lock, flags);
|
|
}
|
|
|
|
static void as_update_thinktime(struct as_data *ad, struct as_io_context *aic,
|
|
unsigned long ttime)
|
|
{
|
|
/* fixed point: 1.0 == 1<<8 */
|
|
if (aic->ttime_samples == 0) {
|
|
ad->new_ttime_total = (7*ad->new_ttime_total + 256*ttime) / 8;
|
|
ad->new_ttime_mean = ad->new_ttime_total / 256;
|
|
|
|
ad->exit_prob = (7*ad->exit_prob)/8;
|
|
}
|
|
aic->ttime_samples = (7*aic->ttime_samples + 256) / 8;
|
|
aic->ttime_total = (7*aic->ttime_total + 256*ttime) / 8;
|
|
aic->ttime_mean = (aic->ttime_total + 128) / aic->ttime_samples;
|
|
}
|
|
|
|
static void as_update_seekdist(struct as_data *ad, struct as_io_context *aic,
|
|
sector_t sdist)
|
|
{
|
|
u64 total;
|
|
|
|
if (aic->seek_samples == 0) {
|
|
ad->new_seek_total = (7*ad->new_seek_total + 256*(u64)sdist)/8;
|
|
ad->new_seek_mean = ad->new_seek_total / 256;
|
|
}
|
|
|
|
/*
|
|
* Don't allow the seek distance to get too large from the
|
|
* odd fragment, pagein, etc
|
|
*/
|
|
if (aic->seek_samples <= 60) /* second&third seek */
|
|
sdist = min(sdist, (aic->seek_mean * 4) + 2*1024*1024);
|
|
else
|
|
sdist = min(sdist, (aic->seek_mean * 4) + 2*1024*64);
|
|
|
|
aic->seek_samples = (7*aic->seek_samples + 256) / 8;
|
|
aic->seek_total = (7*aic->seek_total + (u64)256*sdist) / 8;
|
|
total = aic->seek_total + (aic->seek_samples/2);
|
|
do_div(total, aic->seek_samples);
|
|
aic->seek_mean = (sector_t)total;
|
|
}
|
|
|
|
/*
|
|
* as_update_iohist keeps a decaying histogram of IO thinktimes, and
|
|
* updates @aic->ttime_mean based on that. It is called when a new
|
|
* request is queued.
|
|
*/
|
|
static void as_update_iohist(struct as_data *ad, struct as_io_context *aic,
|
|
struct request *rq)
|
|
{
|
|
struct as_rq *arq = RQ_DATA(rq);
|
|
int data_dir = arq->is_sync;
|
|
unsigned long thinktime = 0;
|
|
sector_t seek_dist;
|
|
|
|
if (aic == NULL)
|
|
return;
|
|
|
|
if (data_dir == REQ_SYNC) {
|
|
unsigned long in_flight = atomic_read(&aic->nr_queued)
|
|
+ atomic_read(&aic->nr_dispatched);
|
|
spin_lock(&aic->lock);
|
|
if (test_bit(AS_TASK_IORUNNING, &aic->state) ||
|
|
test_bit(AS_TASK_IOSTARTED, &aic->state)) {
|
|
/* Calculate read -> read thinktime */
|
|
if (test_bit(AS_TASK_IORUNNING, &aic->state)
|
|
&& in_flight == 0) {
|
|
thinktime = jiffies - aic->last_end_request;
|
|
thinktime = min(thinktime, MAX_THINKTIME-1);
|
|
}
|
|
as_update_thinktime(ad, aic, thinktime);
|
|
|
|
/* Calculate read -> read seek distance */
|
|
if (aic->last_request_pos < rq->sector)
|
|
seek_dist = rq->sector - aic->last_request_pos;
|
|
else
|
|
seek_dist = aic->last_request_pos - rq->sector;
|
|
as_update_seekdist(ad, aic, seek_dist);
|
|
}
|
|
aic->last_request_pos = rq->sector + rq->nr_sectors;
|
|
set_bit(AS_TASK_IOSTARTED, &aic->state);
|
|
spin_unlock(&aic->lock);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* as_close_req decides if one request is considered "close" to the
|
|
* previous one issued.
|
|
*/
|
|
static int as_close_req(struct as_data *ad, struct as_io_context *aic,
|
|
struct as_rq *arq)
|
|
{
|
|
unsigned long delay; /* milliseconds */
|
|
sector_t last = ad->last_sector[ad->batch_data_dir];
|
|
sector_t next = arq->request->sector;
|
|
sector_t delta; /* acceptable close offset (in sectors) */
|
|
sector_t s;
|
|
|
|
if (ad->antic_status == ANTIC_OFF || !ad->ioc_finished)
|
|
delay = 0;
|
|
else
|
|
delay = ((jiffies - ad->antic_start) * 1000) / HZ;
|
|
|
|
if (delay == 0)
|
|
delta = 8192;
|
|
else if (delay <= 20 && delay <= ad->antic_expire)
|
|
delta = 8192 << delay;
|
|
else
|
|
return 1;
|
|
|
|
if ((last <= next + (delta>>1)) && (next <= last + delta))
|
|
return 1;
|
|
|
|
if (last < next)
|
|
s = next - last;
|
|
else
|
|
s = last - next;
|
|
|
|
if (aic->seek_samples == 0) {
|
|
/*
|
|
* Process has just started IO. Use past statistics to
|
|
* gauge success possibility
|
|
*/
|
|
if (ad->new_seek_mean > s) {
|
|
/* this request is better than what we're expecting */
|
|
return 1;
|
|
}
|
|
|
|
} else {
|
|
if (aic->seek_mean > s) {
|
|
/* this request is better than what we're expecting */
|
|
return 1;
|
|
}
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* as_can_break_anticipation returns true if we have been anticipating this
|
|
* request.
|
|
*
|
|
* It also returns true if the process against which we are anticipating
|
|
* submits a write - that's presumably an fsync, O_SYNC write, etc. We want to
|
|
* dispatch it ASAP, because we know that application will not be submitting
|
|
* any new reads.
|
|
*
|
|
* If the task which has submitted the request has exited, break anticipation.
|
|
*
|
|
* If this task has queued some other IO, do not enter enticipation.
|
|
*/
|
|
static int as_can_break_anticipation(struct as_data *ad, struct as_rq *arq)
|
|
{
|
|
struct io_context *ioc;
|
|
struct as_io_context *aic;
|
|
|
|
ioc = ad->io_context;
|
|
BUG_ON(!ioc);
|
|
|
|
if (arq && ioc == arq->io_context) {
|
|
/* request from same process */
|
|
return 1;
|
|
}
|
|
|
|
if (ad->ioc_finished && as_antic_expired(ad)) {
|
|
/*
|
|
* In this situation status should really be FINISHED,
|
|
* however the timer hasn't had the chance to run yet.
|
|
*/
|
|
return 1;
|
|
}
|
|
|
|
aic = ioc->aic;
|
|
if (!aic)
|
|
return 0;
|
|
|
|
if (atomic_read(&aic->nr_queued) > 0) {
|
|
/* process has more requests queued */
|
|
return 1;
|
|
}
|
|
|
|
if (atomic_read(&aic->nr_dispatched) > 0) {
|
|
/* process has more requests dispatched */
|
|
return 1;
|
|
}
|
|
|
|
if (arq && arq->is_sync == REQ_SYNC && as_close_req(ad, aic, arq)) {
|
|
/*
|
|
* Found a close request that is not one of ours.
|
|
*
|
|
* This makes close requests from another process update
|
|
* our IO history. Is generally useful when there are
|
|
* two or more cooperating processes working in the same
|
|
* area.
|
|
*/
|
|
if (!test_bit(AS_TASK_RUNNING, &aic->state)) {
|
|
if (aic->ttime_samples == 0)
|
|
ad->exit_prob = (7*ad->exit_prob + 256)/8;
|
|
|
|
ad->exit_no_coop = (7*ad->exit_no_coop)/8;
|
|
}
|
|
|
|
as_update_iohist(ad, aic, arq->request);
|
|
return 1;
|
|
}
|
|
|
|
if (!test_bit(AS_TASK_RUNNING, &aic->state)) {
|
|
/* process anticipated on has exited */
|
|
if (aic->ttime_samples == 0)
|
|
ad->exit_prob = (7*ad->exit_prob + 256)/8;
|
|
|
|
if (ad->exit_no_coop > 128)
|
|
return 1;
|
|
}
|
|
|
|
if (aic->ttime_samples == 0) {
|
|
if (ad->new_ttime_mean > ad->antic_expire)
|
|
return 1;
|
|
if (ad->exit_prob * ad->exit_no_coop > 128*256)
|
|
return 1;
|
|
} else if (aic->ttime_mean > ad->antic_expire) {
|
|
/* the process thinks too much between requests */
|
|
return 1;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* as_can_anticipate indicates weather we should either run arq
|
|
* or keep anticipating a better request.
|
|
*/
|
|
static int as_can_anticipate(struct as_data *ad, struct as_rq *arq)
|
|
{
|
|
if (!ad->io_context)
|
|
/*
|
|
* Last request submitted was a write
|
|
*/
|
|
return 0;
|
|
|
|
if (ad->antic_status == ANTIC_FINISHED)
|
|
/*
|
|
* Don't restart if we have just finished. Run the next request
|
|
*/
|
|
return 0;
|
|
|
|
if (as_can_break_anticipation(ad, arq))
|
|
/*
|
|
* This request is a good candidate. Don't keep anticipating,
|
|
* run it.
|
|
*/
|
|
return 0;
|
|
|
|
/*
|
|
* OK from here, we haven't finished, and don't have a decent request!
|
|
* Status is either ANTIC_OFF so start waiting,
|
|
* ANTIC_WAIT_REQ so continue waiting for request to finish
|
|
* or ANTIC_WAIT_NEXT so continue waiting for an acceptable request.
|
|
*/
|
|
|
|
return 1;
|
|
}
|
|
|
|
/*
|
|
* as_update_arq must be called whenever a request (arq) is added to
|
|
* the sort_list. This function keeps caches up to date, and checks if the
|
|
* request might be one we are "anticipating"
|
|
*/
|
|
static void as_update_arq(struct as_data *ad, struct as_rq *arq)
|
|
{
|
|
const int data_dir = arq->is_sync;
|
|
|
|
/* keep the next_arq cache up to date */
|
|
ad->next_arq[data_dir] = as_choose_req(ad, arq, ad->next_arq[data_dir]);
|
|
|
|
/*
|
|
* have we been anticipating this request?
|
|
* or does it come from the same process as the one we are anticipating
|
|
* for?
|
|
*/
|
|
if (ad->antic_status == ANTIC_WAIT_REQ
|
|
|| ad->antic_status == ANTIC_WAIT_NEXT) {
|
|
if (as_can_break_anticipation(ad, arq))
|
|
as_antic_stop(ad);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Gathers timings and resizes the write batch automatically
|
|
*/
|
|
static void update_write_batch(struct as_data *ad)
|
|
{
|
|
unsigned long batch = ad->batch_expire[REQ_ASYNC];
|
|
long write_time;
|
|
|
|
write_time = (jiffies - ad->current_batch_expires) + batch;
|
|
if (write_time < 0)
|
|
write_time = 0;
|
|
|
|
if (write_time > batch && !ad->write_batch_idled) {
|
|
if (write_time > batch * 3)
|
|
ad->write_batch_count /= 2;
|
|
else
|
|
ad->write_batch_count--;
|
|
} else if (write_time < batch && ad->current_write_count == 0) {
|
|
if (batch > write_time * 3)
|
|
ad->write_batch_count *= 2;
|
|
else
|
|
ad->write_batch_count++;
|
|
}
|
|
|
|
if (ad->write_batch_count < 1)
|
|
ad->write_batch_count = 1;
|
|
}
|
|
|
|
/*
|
|
* as_completed_request is to be called when a request has completed and
|
|
* returned something to the requesting process, be it an error or data.
|
|
*/
|
|
static void as_completed_request(request_queue_t *q, struct request *rq)
|
|
{
|
|
struct as_data *ad = q->elevator->elevator_data;
|
|
struct as_rq *arq = RQ_DATA(rq);
|
|
|
|
WARN_ON(!list_empty(&rq->queuelist));
|
|
|
|
if (arq->state != AS_RQ_REMOVED) {
|
|
printk("arq->state %d\n", arq->state);
|
|
WARN_ON(1);
|
|
goto out;
|
|
}
|
|
|
|
if (ad->changed_batch && ad->nr_dispatched == 1) {
|
|
kblockd_schedule_work(&ad->antic_work);
|
|
ad->changed_batch = 0;
|
|
|
|
if (ad->batch_data_dir == REQ_SYNC)
|
|
ad->new_batch = 1;
|
|
}
|
|
WARN_ON(ad->nr_dispatched == 0);
|
|
ad->nr_dispatched--;
|
|
|
|
/*
|
|
* Start counting the batch from when a request of that direction is
|
|
* actually serviced. This should help devices with big TCQ windows
|
|
* and writeback caches
|
|
*/
|
|
if (ad->new_batch && ad->batch_data_dir == arq->is_sync) {
|
|
update_write_batch(ad);
|
|
ad->current_batch_expires = jiffies +
|
|
ad->batch_expire[REQ_SYNC];
|
|
ad->new_batch = 0;
|
|
}
|
|
|
|
if (ad->io_context == arq->io_context && ad->io_context) {
|
|
ad->antic_start = jiffies;
|
|
ad->ioc_finished = 1;
|
|
if (ad->antic_status == ANTIC_WAIT_REQ) {
|
|
/*
|
|
* We were waiting on this request, now anticipate
|
|
* the next one
|
|
*/
|
|
as_antic_waitnext(ad);
|
|
}
|
|
}
|
|
|
|
as_put_io_context(arq);
|
|
out:
|
|
arq->state = AS_RQ_POSTSCHED;
|
|
}
|
|
|
|
/*
|
|
* as_remove_queued_request removes a request from the pre dispatch queue
|
|
* without updating refcounts. It is expected the caller will drop the
|
|
* reference unless it replaces the request at somepart of the elevator
|
|
* (ie. the dispatch queue)
|
|
*/
|
|
static void as_remove_queued_request(request_queue_t *q, struct request *rq)
|
|
{
|
|
struct as_rq *arq = RQ_DATA(rq);
|
|
const int data_dir = arq->is_sync;
|
|
struct as_data *ad = q->elevator->elevator_data;
|
|
|
|
WARN_ON(arq->state != AS_RQ_QUEUED);
|
|
|
|
if (arq->io_context && arq->io_context->aic) {
|
|
BUG_ON(!atomic_read(&arq->io_context->aic->nr_queued));
|
|
atomic_dec(&arq->io_context->aic->nr_queued);
|
|
}
|
|
|
|
/*
|
|
* Update the "next_arq" cache if we are about to remove its
|
|
* entry
|
|
*/
|
|
if (ad->next_arq[data_dir] == arq)
|
|
ad->next_arq[data_dir] = as_find_next_arq(ad, arq);
|
|
|
|
list_del_init(&arq->fifo);
|
|
as_del_arq_hash(arq);
|
|
as_del_arq_rb(ad, arq);
|
|
}
|
|
|
|
/*
|
|
* as_fifo_expired returns 0 if there are no expired reads on the fifo,
|
|
* 1 otherwise. It is ratelimited so that we only perform the check once per
|
|
* `fifo_expire' interval. Otherwise a large number of expired requests
|
|
* would create a hopeless seekstorm.
|
|
*
|
|
* See as_antic_expired comment.
|
|
*/
|
|
static int as_fifo_expired(struct as_data *ad, int adir)
|
|
{
|
|
struct as_rq *arq;
|
|
long delta_jif;
|
|
|
|
delta_jif = jiffies - ad->last_check_fifo[adir];
|
|
if (unlikely(delta_jif < 0))
|
|
delta_jif = -delta_jif;
|
|
if (delta_jif < ad->fifo_expire[adir])
|
|
return 0;
|
|
|
|
ad->last_check_fifo[adir] = jiffies;
|
|
|
|
if (list_empty(&ad->fifo_list[adir]))
|
|
return 0;
|
|
|
|
arq = list_entry_fifo(ad->fifo_list[adir].next);
|
|
|
|
return time_after(jiffies, arq->expires);
|
|
}
|
|
|
|
/*
|
|
* as_batch_expired returns true if the current batch has expired. A batch
|
|
* is a set of reads or a set of writes.
|
|
*/
|
|
static inline int as_batch_expired(struct as_data *ad)
|
|
{
|
|
if (ad->changed_batch || ad->new_batch)
|
|
return 0;
|
|
|
|
if (ad->batch_data_dir == REQ_SYNC)
|
|
/* TODO! add a check so a complete fifo gets written? */
|
|
return time_after(jiffies, ad->current_batch_expires);
|
|
|
|
return time_after(jiffies, ad->current_batch_expires)
|
|
|| ad->current_write_count == 0;
|
|
}
|
|
|
|
/*
|
|
* move an entry to dispatch queue
|
|
*/
|
|
static void as_move_to_dispatch(struct as_data *ad, struct as_rq *arq)
|
|
{
|
|
struct request *rq = arq->request;
|
|
const int data_dir = arq->is_sync;
|
|
|
|
BUG_ON(!ON_RB(&arq->rb_node));
|
|
|
|
as_antic_stop(ad);
|
|
ad->antic_status = ANTIC_OFF;
|
|
|
|
/*
|
|
* This has to be set in order to be correctly updated by
|
|
* as_find_next_arq
|
|
*/
|
|
ad->last_sector[data_dir] = rq->sector + rq->nr_sectors;
|
|
|
|
if (data_dir == REQ_SYNC) {
|
|
/* In case we have to anticipate after this */
|
|
copy_io_context(&ad->io_context, &arq->io_context);
|
|
} else {
|
|
if (ad->io_context) {
|
|
put_io_context(ad->io_context);
|
|
ad->io_context = NULL;
|
|
}
|
|
|
|
if (ad->current_write_count != 0)
|
|
ad->current_write_count--;
|
|
}
|
|
ad->ioc_finished = 0;
|
|
|
|
ad->next_arq[data_dir] = as_find_next_arq(ad, arq);
|
|
|
|
/*
|
|
* take it off the sort and fifo list, add to dispatch queue
|
|
*/
|
|
as_remove_queued_request(ad->q, rq);
|
|
WARN_ON(arq->state != AS_RQ_QUEUED);
|
|
|
|
elv_dispatch_sort(ad->q, rq);
|
|
|
|
arq->state = AS_RQ_DISPATCHED;
|
|
if (arq->io_context && arq->io_context->aic)
|
|
atomic_inc(&arq->io_context->aic->nr_dispatched);
|
|
ad->nr_dispatched++;
|
|
}
|
|
|
|
/*
|
|
* as_dispatch_request selects the best request according to
|
|
* read/write expire, batch expire, etc, and moves it to the dispatch
|
|
* queue. Returns 1 if a request was found, 0 otherwise.
|
|
*/
|
|
static int as_dispatch_request(request_queue_t *q, int force)
|
|
{
|
|
struct as_data *ad = q->elevator->elevator_data;
|
|
struct as_rq *arq;
|
|
const int reads = !list_empty(&ad->fifo_list[REQ_SYNC]);
|
|
const int writes = !list_empty(&ad->fifo_list[REQ_ASYNC]);
|
|
|
|
if (unlikely(force)) {
|
|
/*
|
|
* Forced dispatch, accounting is useless. Reset
|
|
* accounting states and dump fifo_lists. Note that
|
|
* batch_data_dir is reset to REQ_SYNC to avoid
|
|
* screwing write batch accounting as write batch
|
|
* accounting occurs on W->R transition.
|
|
*/
|
|
int dispatched = 0;
|
|
|
|
ad->batch_data_dir = REQ_SYNC;
|
|
ad->changed_batch = 0;
|
|
ad->new_batch = 0;
|
|
|
|
while (ad->next_arq[REQ_SYNC]) {
|
|
as_move_to_dispatch(ad, ad->next_arq[REQ_SYNC]);
|
|
dispatched++;
|
|
}
|
|
ad->last_check_fifo[REQ_SYNC] = jiffies;
|
|
|
|
while (ad->next_arq[REQ_ASYNC]) {
|
|
as_move_to_dispatch(ad, ad->next_arq[REQ_ASYNC]);
|
|
dispatched++;
|
|
}
|
|
ad->last_check_fifo[REQ_ASYNC] = jiffies;
|
|
|
|
return dispatched;
|
|
}
|
|
|
|
/* Signal that the write batch was uncontended, so we can't time it */
|
|
if (ad->batch_data_dir == REQ_ASYNC && !reads) {
|
|
if (ad->current_write_count == 0 || !writes)
|
|
ad->write_batch_idled = 1;
|
|
}
|
|
|
|
if (!(reads || writes)
|
|
|| ad->antic_status == ANTIC_WAIT_REQ
|
|
|| ad->antic_status == ANTIC_WAIT_NEXT
|
|
|| ad->changed_batch)
|
|
return 0;
|
|
|
|
if (!(reads && writes && as_batch_expired(ad))) {
|
|
/*
|
|
* batch is still running or no reads or no writes
|
|
*/
|
|
arq = ad->next_arq[ad->batch_data_dir];
|
|
|
|
if (ad->batch_data_dir == REQ_SYNC && ad->antic_expire) {
|
|
if (as_fifo_expired(ad, REQ_SYNC))
|
|
goto fifo_expired;
|
|
|
|
if (as_can_anticipate(ad, arq)) {
|
|
as_antic_waitreq(ad);
|
|
return 0;
|
|
}
|
|
}
|
|
|
|
if (arq) {
|
|
/* we have a "next request" */
|
|
if (reads && !writes)
|
|
ad->current_batch_expires =
|
|
jiffies + ad->batch_expire[REQ_SYNC];
|
|
goto dispatch_request;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* at this point we are not running a batch. select the appropriate
|
|
* data direction (read / write)
|
|
*/
|
|
|
|
if (reads) {
|
|
BUG_ON(RB_EMPTY(&ad->sort_list[REQ_SYNC]));
|
|
|
|
if (writes && ad->batch_data_dir == REQ_SYNC)
|
|
/*
|
|
* Last batch was a read, switch to writes
|
|
*/
|
|
goto dispatch_writes;
|
|
|
|
if (ad->batch_data_dir == REQ_ASYNC) {
|
|
WARN_ON(ad->new_batch);
|
|
ad->changed_batch = 1;
|
|
}
|
|
ad->batch_data_dir = REQ_SYNC;
|
|
arq = list_entry_fifo(ad->fifo_list[ad->batch_data_dir].next);
|
|
ad->last_check_fifo[ad->batch_data_dir] = jiffies;
|
|
goto dispatch_request;
|
|
}
|
|
|
|
/*
|
|
* the last batch was a read
|
|
*/
|
|
|
|
if (writes) {
|
|
dispatch_writes:
|
|
BUG_ON(RB_EMPTY(&ad->sort_list[REQ_ASYNC]));
|
|
|
|
if (ad->batch_data_dir == REQ_SYNC) {
|
|
ad->changed_batch = 1;
|
|
|
|
/*
|
|
* new_batch might be 1 when the queue runs out of
|
|
* reads. A subsequent submission of a write might
|
|
* cause a change of batch before the read is finished.
|
|
*/
|
|
ad->new_batch = 0;
|
|
}
|
|
ad->batch_data_dir = REQ_ASYNC;
|
|
ad->current_write_count = ad->write_batch_count;
|
|
ad->write_batch_idled = 0;
|
|
arq = ad->next_arq[ad->batch_data_dir];
|
|
goto dispatch_request;
|
|
}
|
|
|
|
BUG();
|
|
return 0;
|
|
|
|
dispatch_request:
|
|
/*
|
|
* If a request has expired, service it.
|
|
*/
|
|
|
|
if (as_fifo_expired(ad, ad->batch_data_dir)) {
|
|
fifo_expired:
|
|
arq = list_entry_fifo(ad->fifo_list[ad->batch_data_dir].next);
|
|
BUG_ON(arq == NULL);
|
|
}
|
|
|
|
if (ad->changed_batch) {
|
|
WARN_ON(ad->new_batch);
|
|
|
|
if (ad->nr_dispatched)
|
|
return 0;
|
|
|
|
if (ad->batch_data_dir == REQ_ASYNC)
|
|
ad->current_batch_expires = jiffies +
|
|
ad->batch_expire[REQ_ASYNC];
|
|
else
|
|
ad->new_batch = 1;
|
|
|
|
ad->changed_batch = 0;
|
|
}
|
|
|
|
/*
|
|
* arq is the selected appropriate request.
|
|
*/
|
|
as_move_to_dispatch(ad, arq);
|
|
|
|
return 1;
|
|
}
|
|
|
|
/*
|
|
* add arq to rbtree and fifo
|
|
*/
|
|
static void as_add_request(request_queue_t *q, struct request *rq)
|
|
{
|
|
struct as_data *ad = q->elevator->elevator_data;
|
|
struct as_rq *arq = RQ_DATA(rq);
|
|
int data_dir;
|
|
|
|
arq->state = AS_RQ_NEW;
|
|
|
|
if (rq_data_dir(arq->request) == READ
|
|
|| current->flags&PF_SYNCWRITE)
|
|
arq->is_sync = 1;
|
|
else
|
|
arq->is_sync = 0;
|
|
data_dir = arq->is_sync;
|
|
|
|
arq->io_context = as_get_io_context();
|
|
|
|
if (arq->io_context) {
|
|
as_update_iohist(ad, arq->io_context->aic, arq->request);
|
|
atomic_inc(&arq->io_context->aic->nr_queued);
|
|
}
|
|
|
|
as_add_arq_rb(ad, arq);
|
|
if (rq_mergeable(arq->request))
|
|
as_add_arq_hash(ad, arq);
|
|
|
|
/*
|
|
* set expire time (only used for reads) and add to fifo list
|
|
*/
|
|
arq->expires = jiffies + ad->fifo_expire[data_dir];
|
|
list_add_tail(&arq->fifo, &ad->fifo_list[data_dir]);
|
|
|
|
as_update_arq(ad, arq); /* keep state machine up to date */
|
|
arq->state = AS_RQ_QUEUED;
|
|
}
|
|
|
|
static void as_activate_request(request_queue_t *q, struct request *rq)
|
|
{
|
|
struct as_rq *arq = RQ_DATA(rq);
|
|
|
|
WARN_ON(arq->state != AS_RQ_DISPATCHED);
|
|
arq->state = AS_RQ_REMOVED;
|
|
if (arq->io_context && arq->io_context->aic)
|
|
atomic_dec(&arq->io_context->aic->nr_dispatched);
|
|
}
|
|
|
|
static void as_deactivate_request(request_queue_t *q, struct request *rq)
|
|
{
|
|
struct as_rq *arq = RQ_DATA(rq);
|
|
|
|
WARN_ON(arq->state != AS_RQ_REMOVED);
|
|
arq->state = AS_RQ_DISPATCHED;
|
|
if (arq->io_context && arq->io_context->aic)
|
|
atomic_inc(&arq->io_context->aic->nr_dispatched);
|
|
}
|
|
|
|
/*
|
|
* as_queue_empty tells us if there are requests left in the device. It may
|
|
* not be the case that a driver can get the next request even if the queue
|
|
* is not empty - it is used in the block layer to check for plugging and
|
|
* merging opportunities
|
|
*/
|
|
static int as_queue_empty(request_queue_t *q)
|
|
{
|
|
struct as_data *ad = q->elevator->elevator_data;
|
|
|
|
return list_empty(&ad->fifo_list[REQ_ASYNC])
|
|
&& list_empty(&ad->fifo_list[REQ_SYNC]);
|
|
}
|
|
|
|
static struct request *as_former_request(request_queue_t *q,
|
|
struct request *rq)
|
|
{
|
|
struct as_rq *arq = RQ_DATA(rq);
|
|
struct rb_node *rbprev = rb_prev(&arq->rb_node);
|
|
struct request *ret = NULL;
|
|
|
|
if (rbprev)
|
|
ret = rb_entry_arq(rbprev)->request;
|
|
|
|
return ret;
|
|
}
|
|
|
|
static struct request *as_latter_request(request_queue_t *q,
|
|
struct request *rq)
|
|
{
|
|
struct as_rq *arq = RQ_DATA(rq);
|
|
struct rb_node *rbnext = rb_next(&arq->rb_node);
|
|
struct request *ret = NULL;
|
|
|
|
if (rbnext)
|
|
ret = rb_entry_arq(rbnext)->request;
|
|
|
|
return ret;
|
|
}
|
|
|
|
static int
|
|
as_merge(request_queue_t *q, struct request **req, struct bio *bio)
|
|
{
|
|
struct as_data *ad = q->elevator->elevator_data;
|
|
sector_t rb_key = bio->bi_sector + bio_sectors(bio);
|
|
struct request *__rq;
|
|
int ret;
|
|
|
|
/*
|
|
* see if the merge hash can satisfy a back merge
|
|
*/
|
|
__rq = as_find_arq_hash(ad, bio->bi_sector);
|
|
if (__rq) {
|
|
BUG_ON(__rq->sector + __rq->nr_sectors != bio->bi_sector);
|
|
|
|
if (elv_rq_merge_ok(__rq, bio)) {
|
|
ret = ELEVATOR_BACK_MERGE;
|
|
goto out;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* check for front merge
|
|
*/
|
|
__rq = as_find_arq_rb(ad, rb_key, bio_data_dir(bio));
|
|
if (__rq) {
|
|
BUG_ON(rb_key != rq_rb_key(__rq));
|
|
|
|
if (elv_rq_merge_ok(__rq, bio)) {
|
|
ret = ELEVATOR_FRONT_MERGE;
|
|
goto out;
|
|
}
|
|
}
|
|
|
|
return ELEVATOR_NO_MERGE;
|
|
out:
|
|
if (ret) {
|
|
if (rq_mergeable(__rq))
|
|
as_hot_arq_hash(ad, RQ_DATA(__rq));
|
|
}
|
|
*req = __rq;
|
|
return ret;
|
|
}
|
|
|
|
static void as_merged_request(request_queue_t *q, struct request *req)
|
|
{
|
|
struct as_data *ad = q->elevator->elevator_data;
|
|
struct as_rq *arq = RQ_DATA(req);
|
|
|
|
/*
|
|
* hash always needs to be repositioned, key is end sector
|
|
*/
|
|
as_del_arq_hash(arq);
|
|
as_add_arq_hash(ad, arq);
|
|
|
|
/*
|
|
* if the merge was a front merge, we need to reposition request
|
|
*/
|
|
if (rq_rb_key(req) != arq->rb_key) {
|
|
as_del_arq_rb(ad, arq);
|
|
as_add_arq_rb(ad, arq);
|
|
/*
|
|
* Note! At this stage of this and the next function, our next
|
|
* request may not be optimal - eg the request may have "grown"
|
|
* behind the disk head. We currently don't bother adjusting.
|
|
*/
|
|
}
|
|
}
|
|
|
|
static void as_merged_requests(request_queue_t *q, struct request *req,
|
|
struct request *next)
|
|
{
|
|
struct as_data *ad = q->elevator->elevator_data;
|
|
struct as_rq *arq = RQ_DATA(req);
|
|
struct as_rq *anext = RQ_DATA(next);
|
|
|
|
BUG_ON(!arq);
|
|
BUG_ON(!anext);
|
|
|
|
/*
|
|
* reposition arq (this is the merged request) in hash, and in rbtree
|
|
* in case of a front merge
|
|
*/
|
|
as_del_arq_hash(arq);
|
|
as_add_arq_hash(ad, arq);
|
|
|
|
if (rq_rb_key(req) != arq->rb_key) {
|
|
as_del_arq_rb(ad, arq);
|
|
as_add_arq_rb(ad, arq);
|
|
}
|
|
|
|
/*
|
|
* if anext expires before arq, assign its expire time to arq
|
|
* and move into anext position (anext will be deleted) in fifo
|
|
*/
|
|
if (!list_empty(&arq->fifo) && !list_empty(&anext->fifo)) {
|
|
if (time_before(anext->expires, arq->expires)) {
|
|
list_move(&arq->fifo, &anext->fifo);
|
|
arq->expires = anext->expires;
|
|
/*
|
|
* Don't copy here but swap, because when anext is
|
|
* removed below, it must contain the unused context
|
|
*/
|
|
swap_io_context(&arq->io_context, &anext->io_context);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* kill knowledge of next, this one is a goner
|
|
*/
|
|
as_remove_queued_request(q, next);
|
|
as_put_io_context(anext);
|
|
|
|
anext->state = AS_RQ_MERGED;
|
|
}
|
|
|
|
/*
|
|
* This is executed in a "deferred" process context, by kblockd. It calls the
|
|
* driver's request_fn so the driver can submit that request.
|
|
*
|
|
* IMPORTANT! This guy will reenter the elevator, so set up all queue global
|
|
* state before calling, and don't rely on any state over calls.
|
|
*
|
|
* FIXME! dispatch queue is not a queue at all!
|
|
*/
|
|
static void as_work_handler(void *data)
|
|
{
|
|
struct request_queue *q = data;
|
|
unsigned long flags;
|
|
|
|
spin_lock_irqsave(q->queue_lock, flags);
|
|
if (!as_queue_empty(q))
|
|
q->request_fn(q);
|
|
spin_unlock_irqrestore(q->queue_lock, flags);
|
|
}
|
|
|
|
static void as_put_request(request_queue_t *q, struct request *rq)
|
|
{
|
|
struct as_data *ad = q->elevator->elevator_data;
|
|
struct as_rq *arq = RQ_DATA(rq);
|
|
|
|
if (!arq) {
|
|
WARN_ON(1);
|
|
return;
|
|
}
|
|
|
|
if (unlikely(arq->state != AS_RQ_POSTSCHED &&
|
|
arq->state != AS_RQ_PRESCHED &&
|
|
arq->state != AS_RQ_MERGED)) {
|
|
printk("arq->state %d\n", arq->state);
|
|
WARN_ON(1);
|
|
}
|
|
|
|
mempool_free(arq, ad->arq_pool);
|
|
rq->elevator_private = NULL;
|
|
}
|
|
|
|
static int as_set_request(request_queue_t *q, struct request *rq,
|
|
struct bio *bio, gfp_t gfp_mask)
|
|
{
|
|
struct as_data *ad = q->elevator->elevator_data;
|
|
struct as_rq *arq = mempool_alloc(ad->arq_pool, gfp_mask);
|
|
|
|
if (arq) {
|
|
memset(arq, 0, sizeof(*arq));
|
|
RB_CLEAR(&arq->rb_node);
|
|
arq->request = rq;
|
|
arq->state = AS_RQ_PRESCHED;
|
|
arq->io_context = NULL;
|
|
INIT_LIST_HEAD(&arq->hash);
|
|
arq->on_hash = 0;
|
|
INIT_LIST_HEAD(&arq->fifo);
|
|
rq->elevator_private = arq;
|
|
return 0;
|
|
}
|
|
|
|
return 1;
|
|
}
|
|
|
|
static int as_may_queue(request_queue_t *q, int rw, struct bio *bio)
|
|
{
|
|
int ret = ELV_MQUEUE_MAY;
|
|
struct as_data *ad = q->elevator->elevator_data;
|
|
struct io_context *ioc;
|
|
if (ad->antic_status == ANTIC_WAIT_REQ ||
|
|
ad->antic_status == ANTIC_WAIT_NEXT) {
|
|
ioc = as_get_io_context();
|
|
if (ad->io_context == ioc)
|
|
ret = ELV_MQUEUE_MUST;
|
|
put_io_context(ioc);
|
|
}
|
|
|
|
return ret;
|
|
}
|
|
|
|
static void as_exit_queue(elevator_t *e)
|
|
{
|
|
struct as_data *ad = e->elevator_data;
|
|
|
|
del_timer_sync(&ad->antic_timer);
|
|
kblockd_flush();
|
|
|
|
BUG_ON(!list_empty(&ad->fifo_list[REQ_SYNC]));
|
|
BUG_ON(!list_empty(&ad->fifo_list[REQ_ASYNC]));
|
|
|
|
mempool_destroy(ad->arq_pool);
|
|
put_io_context(ad->io_context);
|
|
kfree(ad->hash);
|
|
kfree(ad);
|
|
}
|
|
|
|
/*
|
|
* initialize elevator private data (as_data), and alloc a arq for
|
|
* each request on the free lists
|
|
*/
|
|
static void *as_init_queue(request_queue_t *q, elevator_t *e)
|
|
{
|
|
struct as_data *ad;
|
|
int i;
|
|
|
|
if (!arq_pool)
|
|
return NULL;
|
|
|
|
ad = kmalloc_node(sizeof(*ad), GFP_KERNEL, q->node);
|
|
if (!ad)
|
|
return NULL;
|
|
memset(ad, 0, sizeof(*ad));
|
|
|
|
ad->q = q; /* Identify what queue the data belongs to */
|
|
|
|
ad->hash = kmalloc_node(sizeof(struct list_head)*AS_HASH_ENTRIES,
|
|
GFP_KERNEL, q->node);
|
|
if (!ad->hash) {
|
|
kfree(ad);
|
|
return NULL;
|
|
}
|
|
|
|
ad->arq_pool = mempool_create_node(BLKDEV_MIN_RQ, mempool_alloc_slab,
|
|
mempool_free_slab, arq_pool, q->node);
|
|
if (!ad->arq_pool) {
|
|
kfree(ad->hash);
|
|
kfree(ad);
|
|
return NULL;
|
|
}
|
|
|
|
/* anticipatory scheduling helpers */
|
|
ad->antic_timer.function = as_antic_timeout;
|
|
ad->antic_timer.data = (unsigned long)q;
|
|
init_timer(&ad->antic_timer);
|
|
INIT_WORK(&ad->antic_work, as_work_handler, q);
|
|
|
|
for (i = 0; i < AS_HASH_ENTRIES; i++)
|
|
INIT_LIST_HEAD(&ad->hash[i]);
|
|
|
|
INIT_LIST_HEAD(&ad->fifo_list[REQ_SYNC]);
|
|
INIT_LIST_HEAD(&ad->fifo_list[REQ_ASYNC]);
|
|
ad->sort_list[REQ_SYNC] = RB_ROOT;
|
|
ad->sort_list[REQ_ASYNC] = RB_ROOT;
|
|
ad->fifo_expire[REQ_SYNC] = default_read_expire;
|
|
ad->fifo_expire[REQ_ASYNC] = default_write_expire;
|
|
ad->antic_expire = default_antic_expire;
|
|
ad->batch_expire[REQ_SYNC] = default_read_batch_expire;
|
|
ad->batch_expire[REQ_ASYNC] = default_write_batch_expire;
|
|
|
|
ad->current_batch_expires = jiffies + ad->batch_expire[REQ_SYNC];
|
|
ad->write_batch_count = ad->batch_expire[REQ_ASYNC] / 10;
|
|
if (ad->write_batch_count < 2)
|
|
ad->write_batch_count = 2;
|
|
|
|
return ad;
|
|
}
|
|
|
|
/*
|
|
* sysfs parts below
|
|
*/
|
|
|
|
static ssize_t
|
|
as_var_show(unsigned int var, char *page)
|
|
{
|
|
return sprintf(page, "%d\n", var);
|
|
}
|
|
|
|
static ssize_t
|
|
as_var_store(unsigned long *var, const char *page, size_t count)
|
|
{
|
|
char *p = (char *) page;
|
|
|
|
*var = simple_strtoul(p, &p, 10);
|
|
return count;
|
|
}
|
|
|
|
static ssize_t est_time_show(elevator_t *e, char *page)
|
|
{
|
|
struct as_data *ad = e->elevator_data;
|
|
int pos = 0;
|
|
|
|
pos += sprintf(page+pos, "%lu %% exit probability\n",
|
|
100*ad->exit_prob/256);
|
|
pos += sprintf(page+pos, "%lu %% probability of exiting without a "
|
|
"cooperating process submitting IO\n",
|
|
100*ad->exit_no_coop/256);
|
|
pos += sprintf(page+pos, "%lu ms new thinktime\n", ad->new_ttime_mean);
|
|
pos += sprintf(page+pos, "%llu sectors new seek distance\n",
|
|
(unsigned long long)ad->new_seek_mean);
|
|
|
|
return pos;
|
|
}
|
|
|
|
#define SHOW_FUNCTION(__FUNC, __VAR) \
|
|
static ssize_t __FUNC(elevator_t *e, char *page) \
|
|
{ \
|
|
struct as_data *ad = e->elevator_data; \
|
|
return as_var_show(jiffies_to_msecs((__VAR)), (page)); \
|
|
}
|
|
SHOW_FUNCTION(as_read_expire_show, ad->fifo_expire[REQ_SYNC]);
|
|
SHOW_FUNCTION(as_write_expire_show, ad->fifo_expire[REQ_ASYNC]);
|
|
SHOW_FUNCTION(as_antic_expire_show, ad->antic_expire);
|
|
SHOW_FUNCTION(as_read_batch_expire_show, ad->batch_expire[REQ_SYNC]);
|
|
SHOW_FUNCTION(as_write_batch_expire_show, ad->batch_expire[REQ_ASYNC]);
|
|
#undef SHOW_FUNCTION
|
|
|
|
#define STORE_FUNCTION(__FUNC, __PTR, MIN, MAX) \
|
|
static ssize_t __FUNC(elevator_t *e, const char *page, size_t count) \
|
|
{ \
|
|
struct as_data *ad = e->elevator_data; \
|
|
int ret = as_var_store(__PTR, (page), count); \
|
|
if (*(__PTR) < (MIN)) \
|
|
*(__PTR) = (MIN); \
|
|
else if (*(__PTR) > (MAX)) \
|
|
*(__PTR) = (MAX); \
|
|
*(__PTR) = msecs_to_jiffies(*(__PTR)); \
|
|
return ret; \
|
|
}
|
|
STORE_FUNCTION(as_read_expire_store, &ad->fifo_expire[REQ_SYNC], 0, INT_MAX);
|
|
STORE_FUNCTION(as_write_expire_store, &ad->fifo_expire[REQ_ASYNC], 0, INT_MAX);
|
|
STORE_FUNCTION(as_antic_expire_store, &ad->antic_expire, 0, INT_MAX);
|
|
STORE_FUNCTION(as_read_batch_expire_store,
|
|
&ad->batch_expire[REQ_SYNC], 0, INT_MAX);
|
|
STORE_FUNCTION(as_write_batch_expire_store,
|
|
&ad->batch_expire[REQ_ASYNC], 0, INT_MAX);
|
|
#undef STORE_FUNCTION
|
|
|
|
#define AS_ATTR(name) \
|
|
__ATTR(name, S_IRUGO|S_IWUSR, as_##name##_show, as_##name##_store)
|
|
|
|
static struct elv_fs_entry as_attrs[] = {
|
|
__ATTR_RO(est_time),
|
|
AS_ATTR(read_expire),
|
|
AS_ATTR(write_expire),
|
|
AS_ATTR(antic_expire),
|
|
AS_ATTR(read_batch_expire),
|
|
AS_ATTR(write_batch_expire),
|
|
__ATTR_NULL
|
|
};
|
|
|
|
static struct elevator_type iosched_as = {
|
|
.ops = {
|
|
.elevator_merge_fn = as_merge,
|
|
.elevator_merged_fn = as_merged_request,
|
|
.elevator_merge_req_fn = as_merged_requests,
|
|
.elevator_dispatch_fn = as_dispatch_request,
|
|
.elevator_add_req_fn = as_add_request,
|
|
.elevator_activate_req_fn = as_activate_request,
|
|
.elevator_deactivate_req_fn = as_deactivate_request,
|
|
.elevator_queue_empty_fn = as_queue_empty,
|
|
.elevator_completed_req_fn = as_completed_request,
|
|
.elevator_former_req_fn = as_former_request,
|
|
.elevator_latter_req_fn = as_latter_request,
|
|
.elevator_set_req_fn = as_set_request,
|
|
.elevator_put_req_fn = as_put_request,
|
|
.elevator_may_queue_fn = as_may_queue,
|
|
.elevator_init_fn = as_init_queue,
|
|
.elevator_exit_fn = as_exit_queue,
|
|
.trim = as_trim,
|
|
},
|
|
|
|
.elevator_attrs = as_attrs,
|
|
.elevator_name = "anticipatory",
|
|
.elevator_owner = THIS_MODULE,
|
|
};
|
|
|
|
static int __init as_init(void)
|
|
{
|
|
int ret;
|
|
|
|
arq_pool = kmem_cache_create("as_arq", sizeof(struct as_rq),
|
|
0, 0, NULL, NULL);
|
|
if (!arq_pool)
|
|
return -ENOMEM;
|
|
|
|
ret = elv_register(&iosched_as);
|
|
if (!ret) {
|
|
/*
|
|
* don't allow AS to get unregistered, since we would have
|
|
* to browse all tasks in the system and release their
|
|
* as_io_context first
|
|
*/
|
|
__module_get(THIS_MODULE);
|
|
return 0;
|
|
}
|
|
|
|
kmem_cache_destroy(arq_pool);
|
|
return ret;
|
|
}
|
|
|
|
static void __exit as_exit(void)
|
|
{
|
|
DECLARE_COMPLETION(all_gone);
|
|
elv_unregister(&iosched_as);
|
|
ioc_gone = &all_gone;
|
|
/* ioc_gone's update must be visible before reading ioc_count */
|
|
smp_wmb();
|
|
if (atomic_read(&ioc_count))
|
|
wait_for_completion(ioc_gone);
|
|
synchronize_rcu();
|
|
kmem_cache_destroy(arq_pool);
|
|
}
|
|
|
|
module_init(as_init);
|
|
module_exit(as_exit);
|
|
|
|
MODULE_AUTHOR("Nick Piggin");
|
|
MODULE_LICENSE("GPL");
|
|
MODULE_DESCRIPTION("anticipatory IO scheduler");
|