mirror of
https://github.com/FEX-Emu/linux.git
synced 2025-01-02 07:11:12 +00:00
f212ec4b7b
This patch adds a new configuration option, which adds support for a new early_param which gets checked in arch/x86/kernel/setup_{32,64}.c:setup_arch() to decide wether OHCI-1394 FireWire controllers should be initialized and enabled for physical DMA access to allow remote debugging of early problems like issues ACPI or other subsystems which are executed very early. If the config option is not enabled, no code is changed, and if the boot paramenter is not given, no new code is executed, and independent of that, all new code is freed after boot, so the config option can be even enabled in standard, non-debug kernels. With specialized tools, it is then possible to get debugging information from machines which have no serial ports (notebooks) such as the printk buffer contents, or any data which can be referenced from global pointers, if it is stored below the 4GB limit and even memory dumps of of the physical RAM region below the 4GB limit can be taken without any cooperation from the CPU of the host, so the machine can be crashed early, it does not matter. In the extreme, even kernel debuggers can be accessed in this way. I wrote a small kgdb module and an accompanying gdb stub for FireWire which allows to gdb to talk to kgdb using remote remory reads and writes over FireWire. An version of the gdb stub fore FireWire is able to read all global data from a system which is running a a normal kernel without any kernel debugger, without any interruption or support of the system's CPU. That way, e.g. the task struct and so on can be read and even manipulated when the physical DMA access is granted. A HOWTO is included in this patch, in Documentation/debugging-via-ohci1394.txt and I've put a copy online at ftp://ftp.suse.de/private/bk/firewire/docs/debugging-via-ohci1394.txt It also has links to all the tools which are available to make use of it another copy of it is online at: ftp://ftp.suse.de/private/bk/firewire/kernel/ohci1394_dma_early-v2.diff Signed-Off-By: Bernhard Kaindl <bk@suse.de> Tested-By: Thomas Renninger <trenn@suse.de> Signed-off-by: Ingo Molnar <mingo@elte.hu> Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
1256 lines
32 KiB
C
1256 lines
32 KiB
C
/*
|
|
* Copyright (C) 1995 Linus Torvalds
|
|
*/
|
|
|
|
/*
|
|
* This file handles the architecture-dependent parts of initialization
|
|
*/
|
|
|
|
#include <linux/errno.h>
|
|
#include <linux/sched.h>
|
|
#include <linux/kernel.h>
|
|
#include <linux/mm.h>
|
|
#include <linux/stddef.h>
|
|
#include <linux/unistd.h>
|
|
#include <linux/ptrace.h>
|
|
#include <linux/slab.h>
|
|
#include <linux/user.h>
|
|
#include <linux/a.out.h>
|
|
#include <linux/screen_info.h>
|
|
#include <linux/ioport.h>
|
|
#include <linux/delay.h>
|
|
#include <linux/init.h>
|
|
#include <linux/initrd.h>
|
|
#include <linux/highmem.h>
|
|
#include <linux/bootmem.h>
|
|
#include <linux/module.h>
|
|
#include <asm/processor.h>
|
|
#include <linux/console.h>
|
|
#include <linux/seq_file.h>
|
|
#include <linux/crash_dump.h>
|
|
#include <linux/root_dev.h>
|
|
#include <linux/pci.h>
|
|
#include <linux/efi.h>
|
|
#include <linux/acpi.h>
|
|
#include <linux/kallsyms.h>
|
|
#include <linux/edd.h>
|
|
#include <linux/mmzone.h>
|
|
#include <linux/kexec.h>
|
|
#include <linux/cpufreq.h>
|
|
#include <linux/dmi.h>
|
|
#include <linux/dma-mapping.h>
|
|
#include <linux/ctype.h>
|
|
#include <linux/uaccess.h>
|
|
#include <linux/init_ohci1394_dma.h>
|
|
|
|
#include <asm/mtrr.h>
|
|
#include <asm/uaccess.h>
|
|
#include <asm/system.h>
|
|
#include <asm/vsyscall.h>
|
|
#include <asm/io.h>
|
|
#include <asm/smp.h>
|
|
#include <asm/msr.h>
|
|
#include <asm/desc.h>
|
|
#include <video/edid.h>
|
|
#include <asm/e820.h>
|
|
#include <asm/dma.h>
|
|
#include <asm/gart.h>
|
|
#include <asm/mpspec.h>
|
|
#include <asm/mmu_context.h>
|
|
#include <asm/proto.h>
|
|
#include <asm/setup.h>
|
|
#include <asm/mach_apic.h>
|
|
#include <asm/numa.h>
|
|
#include <asm/sections.h>
|
|
#include <asm/dmi.h>
|
|
#include <asm/cacheflush.h>
|
|
#include <asm/mce.h>
|
|
#include <asm/ds.h>
|
|
#include <asm/topology.h>
|
|
|
|
#ifdef CONFIG_PARAVIRT
|
|
#include <asm/paravirt.h>
|
|
#else
|
|
#define ARCH_SETUP
|
|
#endif
|
|
|
|
/*
|
|
* Machine setup..
|
|
*/
|
|
|
|
struct cpuinfo_x86 boot_cpu_data __read_mostly;
|
|
EXPORT_SYMBOL(boot_cpu_data);
|
|
|
|
__u32 cleared_cpu_caps[NCAPINTS] __cpuinitdata;
|
|
|
|
unsigned long mmu_cr4_features;
|
|
|
|
/* Boot loader ID as an integer, for the benefit of proc_dointvec */
|
|
int bootloader_type;
|
|
|
|
unsigned long saved_video_mode;
|
|
|
|
int force_mwait __cpuinitdata;
|
|
|
|
/*
|
|
* Early DMI memory
|
|
*/
|
|
int dmi_alloc_index;
|
|
char dmi_alloc_data[DMI_MAX_DATA];
|
|
|
|
/*
|
|
* Setup options
|
|
*/
|
|
struct screen_info screen_info;
|
|
EXPORT_SYMBOL(screen_info);
|
|
struct sys_desc_table_struct {
|
|
unsigned short length;
|
|
unsigned char table[0];
|
|
};
|
|
|
|
struct edid_info edid_info;
|
|
EXPORT_SYMBOL_GPL(edid_info);
|
|
|
|
extern int root_mountflags;
|
|
|
|
char __initdata command_line[COMMAND_LINE_SIZE];
|
|
|
|
struct resource standard_io_resources[] = {
|
|
{ .name = "dma1", .start = 0x00, .end = 0x1f,
|
|
.flags = IORESOURCE_BUSY | IORESOURCE_IO },
|
|
{ .name = "pic1", .start = 0x20, .end = 0x21,
|
|
.flags = IORESOURCE_BUSY | IORESOURCE_IO },
|
|
{ .name = "timer0", .start = 0x40, .end = 0x43,
|
|
.flags = IORESOURCE_BUSY | IORESOURCE_IO },
|
|
{ .name = "timer1", .start = 0x50, .end = 0x53,
|
|
.flags = IORESOURCE_BUSY | IORESOURCE_IO },
|
|
{ .name = "keyboard", .start = 0x60, .end = 0x6f,
|
|
.flags = IORESOURCE_BUSY | IORESOURCE_IO },
|
|
{ .name = "dma page reg", .start = 0x80, .end = 0x8f,
|
|
.flags = IORESOURCE_BUSY | IORESOURCE_IO },
|
|
{ .name = "pic2", .start = 0xa0, .end = 0xa1,
|
|
.flags = IORESOURCE_BUSY | IORESOURCE_IO },
|
|
{ .name = "dma2", .start = 0xc0, .end = 0xdf,
|
|
.flags = IORESOURCE_BUSY | IORESOURCE_IO },
|
|
{ .name = "fpu", .start = 0xf0, .end = 0xff,
|
|
.flags = IORESOURCE_BUSY | IORESOURCE_IO }
|
|
};
|
|
|
|
#define IORESOURCE_RAM (IORESOURCE_BUSY | IORESOURCE_MEM)
|
|
|
|
static struct resource data_resource = {
|
|
.name = "Kernel data",
|
|
.start = 0,
|
|
.end = 0,
|
|
.flags = IORESOURCE_RAM,
|
|
};
|
|
static struct resource code_resource = {
|
|
.name = "Kernel code",
|
|
.start = 0,
|
|
.end = 0,
|
|
.flags = IORESOURCE_RAM,
|
|
};
|
|
static struct resource bss_resource = {
|
|
.name = "Kernel bss",
|
|
.start = 0,
|
|
.end = 0,
|
|
.flags = IORESOURCE_RAM,
|
|
};
|
|
|
|
static void __cpuinit early_identify_cpu(struct cpuinfo_x86 *c);
|
|
|
|
#ifdef CONFIG_PROC_VMCORE
|
|
/* elfcorehdr= specifies the location of elf core header
|
|
* stored by the crashed kernel. This option will be passed
|
|
* by kexec loader to the capture kernel.
|
|
*/
|
|
static int __init setup_elfcorehdr(char *arg)
|
|
{
|
|
char *end;
|
|
if (!arg)
|
|
return -EINVAL;
|
|
elfcorehdr_addr = memparse(arg, &end);
|
|
return end > arg ? 0 : -EINVAL;
|
|
}
|
|
early_param("elfcorehdr", setup_elfcorehdr);
|
|
#endif
|
|
|
|
#ifndef CONFIG_NUMA
|
|
static void __init
|
|
contig_initmem_init(unsigned long start_pfn, unsigned long end_pfn)
|
|
{
|
|
unsigned long bootmap_size, bootmap;
|
|
|
|
bootmap_size = bootmem_bootmap_pages(end_pfn)<<PAGE_SHIFT;
|
|
bootmap = find_e820_area(0, end_pfn<<PAGE_SHIFT, bootmap_size);
|
|
if (bootmap == -1L)
|
|
panic("Cannot find bootmem map of size %ld\n", bootmap_size);
|
|
bootmap_size = init_bootmem(bootmap >> PAGE_SHIFT, end_pfn);
|
|
e820_register_active_regions(0, start_pfn, end_pfn);
|
|
free_bootmem_with_active_regions(0, end_pfn);
|
|
reserve_bootmem(bootmap, bootmap_size);
|
|
}
|
|
#endif
|
|
|
|
#if defined(CONFIG_EDD) || defined(CONFIG_EDD_MODULE)
|
|
struct edd edd;
|
|
#ifdef CONFIG_EDD_MODULE
|
|
EXPORT_SYMBOL(edd);
|
|
#endif
|
|
/**
|
|
* copy_edd() - Copy the BIOS EDD information
|
|
* from boot_params into a safe place.
|
|
*
|
|
*/
|
|
static inline void copy_edd(void)
|
|
{
|
|
memcpy(edd.mbr_signature, boot_params.edd_mbr_sig_buffer,
|
|
sizeof(edd.mbr_signature));
|
|
memcpy(edd.edd_info, boot_params.eddbuf, sizeof(edd.edd_info));
|
|
edd.mbr_signature_nr = boot_params.edd_mbr_sig_buf_entries;
|
|
edd.edd_info_nr = boot_params.eddbuf_entries;
|
|
}
|
|
#else
|
|
static inline void copy_edd(void)
|
|
{
|
|
}
|
|
#endif
|
|
|
|
#ifdef CONFIG_KEXEC
|
|
static void __init reserve_crashkernel(void)
|
|
{
|
|
unsigned long long free_mem;
|
|
unsigned long long crash_size, crash_base;
|
|
int ret;
|
|
|
|
free_mem =
|
|
((unsigned long long)max_low_pfn - min_low_pfn) << PAGE_SHIFT;
|
|
|
|
ret = parse_crashkernel(boot_command_line, free_mem,
|
|
&crash_size, &crash_base);
|
|
if (ret == 0 && crash_size) {
|
|
if (crash_base > 0) {
|
|
printk(KERN_INFO "Reserving %ldMB of memory at %ldMB "
|
|
"for crashkernel (System RAM: %ldMB)\n",
|
|
(unsigned long)(crash_size >> 20),
|
|
(unsigned long)(crash_base >> 20),
|
|
(unsigned long)(free_mem >> 20));
|
|
crashk_res.start = crash_base;
|
|
crashk_res.end = crash_base + crash_size - 1;
|
|
reserve_bootmem(crash_base, crash_size);
|
|
} else
|
|
printk(KERN_INFO "crashkernel reservation failed - "
|
|
"you have to specify a base address\n");
|
|
}
|
|
}
|
|
#else
|
|
static inline void __init reserve_crashkernel(void)
|
|
{}
|
|
#endif
|
|
|
|
/* Overridden in paravirt.c if CONFIG_PARAVIRT */
|
|
void __attribute__((weak)) __init memory_setup(void)
|
|
{
|
|
machine_specific_memory_setup();
|
|
}
|
|
|
|
/*
|
|
* setup_arch - architecture-specific boot-time initializations
|
|
*
|
|
* Note: On x86_64, fixmaps are ready for use even before this is called.
|
|
*/
|
|
void __init setup_arch(char **cmdline_p)
|
|
{
|
|
unsigned i;
|
|
|
|
printk(KERN_INFO "Command line: %s\n", boot_command_line);
|
|
|
|
ROOT_DEV = old_decode_dev(boot_params.hdr.root_dev);
|
|
screen_info = boot_params.screen_info;
|
|
edid_info = boot_params.edid_info;
|
|
saved_video_mode = boot_params.hdr.vid_mode;
|
|
bootloader_type = boot_params.hdr.type_of_loader;
|
|
|
|
#ifdef CONFIG_BLK_DEV_RAM
|
|
rd_image_start = boot_params.hdr.ram_size & RAMDISK_IMAGE_START_MASK;
|
|
rd_prompt = ((boot_params.hdr.ram_size & RAMDISK_PROMPT_FLAG) != 0);
|
|
rd_doload = ((boot_params.hdr.ram_size & RAMDISK_LOAD_FLAG) != 0);
|
|
#endif
|
|
#ifdef CONFIG_EFI
|
|
if (!strncmp((char *)&boot_params.efi_info.efi_loader_signature,
|
|
"EL64", 4))
|
|
efi_enabled = 1;
|
|
#endif
|
|
|
|
ARCH_SETUP
|
|
|
|
memory_setup();
|
|
copy_edd();
|
|
|
|
if (!boot_params.hdr.root_flags)
|
|
root_mountflags &= ~MS_RDONLY;
|
|
init_mm.start_code = (unsigned long) &_text;
|
|
init_mm.end_code = (unsigned long) &_etext;
|
|
init_mm.end_data = (unsigned long) &_edata;
|
|
init_mm.brk = (unsigned long) &_end;
|
|
|
|
code_resource.start = virt_to_phys(&_text);
|
|
code_resource.end = virt_to_phys(&_etext)-1;
|
|
data_resource.start = virt_to_phys(&_etext);
|
|
data_resource.end = virt_to_phys(&_edata)-1;
|
|
bss_resource.start = virt_to_phys(&__bss_start);
|
|
bss_resource.end = virt_to_phys(&__bss_stop)-1;
|
|
|
|
early_identify_cpu(&boot_cpu_data);
|
|
|
|
strlcpy(command_line, boot_command_line, COMMAND_LINE_SIZE);
|
|
*cmdline_p = command_line;
|
|
|
|
parse_early_param();
|
|
|
|
#ifdef CONFIG_PROVIDE_OHCI1394_DMA_INIT
|
|
if (init_ohci1394_dma_early)
|
|
init_ohci1394_dma_on_all_controllers();
|
|
#endif
|
|
|
|
finish_e820_parsing();
|
|
|
|
early_gart_iommu_check();
|
|
|
|
e820_register_active_regions(0, 0, -1UL);
|
|
/*
|
|
* partially used pages are not usable - thus
|
|
* we are rounding upwards:
|
|
*/
|
|
end_pfn = e820_end_of_ram();
|
|
/* update e820 for memory not covered by WB MTRRs */
|
|
mtrr_bp_init();
|
|
if (mtrr_trim_uncached_memory(end_pfn)) {
|
|
e820_register_active_regions(0, 0, -1UL);
|
|
end_pfn = e820_end_of_ram();
|
|
}
|
|
|
|
num_physpages = end_pfn;
|
|
|
|
check_efer();
|
|
|
|
init_memory_mapping(0, (end_pfn_map << PAGE_SHIFT));
|
|
if (efi_enabled)
|
|
efi_init();
|
|
|
|
dmi_scan_machine();
|
|
|
|
io_delay_init();
|
|
|
|
#ifdef CONFIG_SMP
|
|
/* setup to use the early static init tables during kernel startup */
|
|
x86_cpu_to_apicid_early_ptr = (void *)x86_cpu_to_apicid_init;
|
|
x86_bios_cpu_apicid_early_ptr = (void *)x86_bios_cpu_apicid_init;
|
|
#ifdef CONFIG_NUMA
|
|
x86_cpu_to_node_map_early_ptr = (void *)x86_cpu_to_node_map_init;
|
|
#endif
|
|
#endif
|
|
|
|
#ifdef CONFIG_ACPI
|
|
/*
|
|
* Initialize the ACPI boot-time table parser (gets the RSDP and SDT).
|
|
* Call this early for SRAT node setup.
|
|
*/
|
|
acpi_boot_table_init();
|
|
#endif
|
|
|
|
/* How many end-of-memory variables you have, grandma! */
|
|
max_low_pfn = end_pfn;
|
|
max_pfn = end_pfn;
|
|
high_memory = (void *)__va(end_pfn * PAGE_SIZE - 1) + 1;
|
|
|
|
/* Remove active ranges so rediscovery with NUMA-awareness happens */
|
|
remove_all_active_ranges();
|
|
|
|
#ifdef CONFIG_ACPI_NUMA
|
|
/*
|
|
* Parse SRAT to discover nodes.
|
|
*/
|
|
acpi_numa_init();
|
|
#endif
|
|
|
|
#ifdef CONFIG_NUMA
|
|
numa_initmem_init(0, end_pfn);
|
|
#else
|
|
contig_initmem_init(0, end_pfn);
|
|
#endif
|
|
|
|
early_res_to_bootmem();
|
|
|
|
#ifdef CONFIG_ACPI_SLEEP
|
|
/*
|
|
* Reserve low memory region for sleep support.
|
|
*/
|
|
acpi_reserve_bootmem();
|
|
#endif
|
|
|
|
if (efi_enabled)
|
|
efi_reserve_bootmem();
|
|
|
|
/*
|
|
* Find and reserve possible boot-time SMP configuration:
|
|
*/
|
|
find_smp_config();
|
|
#ifdef CONFIG_BLK_DEV_INITRD
|
|
if (boot_params.hdr.type_of_loader && boot_params.hdr.ramdisk_image) {
|
|
unsigned long ramdisk_image = boot_params.hdr.ramdisk_image;
|
|
unsigned long ramdisk_size = boot_params.hdr.ramdisk_size;
|
|
unsigned long ramdisk_end = ramdisk_image + ramdisk_size;
|
|
unsigned long end_of_mem = end_pfn << PAGE_SHIFT;
|
|
|
|
if (ramdisk_end <= end_of_mem) {
|
|
reserve_bootmem_generic(ramdisk_image, ramdisk_size);
|
|
initrd_start = ramdisk_image + PAGE_OFFSET;
|
|
initrd_end = initrd_start+ramdisk_size;
|
|
} else {
|
|
/* Assumes everything on node 0 */
|
|
free_bootmem(ramdisk_image, ramdisk_size);
|
|
printk(KERN_ERR "initrd extends beyond end of memory "
|
|
"(0x%08lx > 0x%08lx)\ndisabling initrd\n",
|
|
ramdisk_end, end_of_mem);
|
|
initrd_start = 0;
|
|
}
|
|
}
|
|
#endif
|
|
reserve_crashkernel();
|
|
paging_init();
|
|
map_vsyscall();
|
|
|
|
early_quirks();
|
|
|
|
#ifdef CONFIG_ACPI
|
|
/*
|
|
* Read APIC and some other early information from ACPI tables.
|
|
*/
|
|
acpi_boot_init();
|
|
#endif
|
|
|
|
init_cpu_to_node();
|
|
|
|
/*
|
|
* get boot-time SMP configuration:
|
|
*/
|
|
if (smp_found_config)
|
|
get_smp_config();
|
|
init_apic_mappings();
|
|
ioapic_init_mappings();
|
|
|
|
/*
|
|
* We trust e820 completely. No explicit ROM probing in memory.
|
|
*/
|
|
e820_reserve_resources(&code_resource, &data_resource, &bss_resource);
|
|
e820_mark_nosave_regions();
|
|
|
|
/* request I/O space for devices used on all i[345]86 PCs */
|
|
for (i = 0; i < ARRAY_SIZE(standard_io_resources); i++)
|
|
request_resource(&ioport_resource, &standard_io_resources[i]);
|
|
|
|
e820_setup_gap();
|
|
|
|
#ifdef CONFIG_VT
|
|
#if defined(CONFIG_VGA_CONSOLE)
|
|
if (!efi_enabled || (efi_mem_type(0xa0000) != EFI_CONVENTIONAL_MEMORY))
|
|
conswitchp = &vga_con;
|
|
#elif defined(CONFIG_DUMMY_CONSOLE)
|
|
conswitchp = &dummy_con;
|
|
#endif
|
|
#endif
|
|
}
|
|
|
|
static int __cpuinit get_model_name(struct cpuinfo_x86 *c)
|
|
{
|
|
unsigned int *v;
|
|
|
|
if (c->extended_cpuid_level < 0x80000004)
|
|
return 0;
|
|
|
|
v = (unsigned int *) c->x86_model_id;
|
|
cpuid(0x80000002, &v[0], &v[1], &v[2], &v[3]);
|
|
cpuid(0x80000003, &v[4], &v[5], &v[6], &v[7]);
|
|
cpuid(0x80000004, &v[8], &v[9], &v[10], &v[11]);
|
|
c->x86_model_id[48] = 0;
|
|
return 1;
|
|
}
|
|
|
|
|
|
static void __cpuinit display_cacheinfo(struct cpuinfo_x86 *c)
|
|
{
|
|
unsigned int n, dummy, eax, ebx, ecx, edx;
|
|
|
|
n = c->extended_cpuid_level;
|
|
|
|
if (n >= 0x80000005) {
|
|
cpuid(0x80000005, &dummy, &ebx, &ecx, &edx);
|
|
printk(KERN_INFO "CPU: L1 I Cache: %dK (%d bytes/line), "
|
|
"D cache %dK (%d bytes/line)\n",
|
|
edx>>24, edx&0xFF, ecx>>24, ecx&0xFF);
|
|
c->x86_cache_size = (ecx>>24) + (edx>>24);
|
|
/* On K8 L1 TLB is inclusive, so don't count it */
|
|
c->x86_tlbsize = 0;
|
|
}
|
|
|
|
if (n >= 0x80000006) {
|
|
cpuid(0x80000006, &dummy, &ebx, &ecx, &edx);
|
|
ecx = cpuid_ecx(0x80000006);
|
|
c->x86_cache_size = ecx >> 16;
|
|
c->x86_tlbsize += ((ebx >> 16) & 0xfff) + (ebx & 0xfff);
|
|
|
|
printk(KERN_INFO "CPU: L2 Cache: %dK (%d bytes/line)\n",
|
|
c->x86_cache_size, ecx & 0xFF);
|
|
}
|
|
if (n >= 0x80000008) {
|
|
cpuid(0x80000008, &eax, &dummy, &dummy, &dummy);
|
|
c->x86_virt_bits = (eax >> 8) & 0xff;
|
|
c->x86_phys_bits = eax & 0xff;
|
|
}
|
|
}
|
|
|
|
#ifdef CONFIG_NUMA
|
|
static int nearby_node(int apicid)
|
|
{
|
|
int i, node;
|
|
|
|
for (i = apicid - 1; i >= 0; i--) {
|
|
node = apicid_to_node[i];
|
|
if (node != NUMA_NO_NODE && node_online(node))
|
|
return node;
|
|
}
|
|
for (i = apicid + 1; i < MAX_LOCAL_APIC; i++) {
|
|
node = apicid_to_node[i];
|
|
if (node != NUMA_NO_NODE && node_online(node))
|
|
return node;
|
|
}
|
|
return first_node(node_online_map); /* Shouldn't happen */
|
|
}
|
|
#endif
|
|
|
|
/*
|
|
* On a AMD dual core setup the lower bits of the APIC id distingush the cores.
|
|
* Assumes number of cores is a power of two.
|
|
*/
|
|
static void __cpuinit amd_detect_cmp(struct cpuinfo_x86 *c)
|
|
{
|
|
#ifdef CONFIG_SMP
|
|
unsigned bits;
|
|
#ifdef CONFIG_NUMA
|
|
int cpu = smp_processor_id();
|
|
int node = 0;
|
|
unsigned apicid = hard_smp_processor_id();
|
|
#endif
|
|
bits = c->x86_coreid_bits;
|
|
|
|
/* Low order bits define the core id (index of core in socket) */
|
|
c->cpu_core_id = c->phys_proc_id & ((1 << bits)-1);
|
|
/* Convert the APIC ID into the socket ID */
|
|
c->phys_proc_id = phys_pkg_id(bits);
|
|
|
|
#ifdef CONFIG_NUMA
|
|
node = c->phys_proc_id;
|
|
if (apicid_to_node[apicid] != NUMA_NO_NODE)
|
|
node = apicid_to_node[apicid];
|
|
if (!node_online(node)) {
|
|
/* Two possibilities here:
|
|
- The CPU is missing memory and no node was created.
|
|
In that case try picking one from a nearby CPU
|
|
- The APIC IDs differ from the HyperTransport node IDs
|
|
which the K8 northbridge parsing fills in.
|
|
Assume they are all increased by a constant offset,
|
|
but in the same order as the HT nodeids.
|
|
If that doesn't result in a usable node fall back to the
|
|
path for the previous case. */
|
|
|
|
int ht_nodeid = apicid - (cpu_data(0).phys_proc_id << bits);
|
|
|
|
if (ht_nodeid >= 0 &&
|
|
apicid_to_node[ht_nodeid] != NUMA_NO_NODE)
|
|
node = apicid_to_node[ht_nodeid];
|
|
/* Pick a nearby node */
|
|
if (!node_online(node))
|
|
node = nearby_node(apicid);
|
|
}
|
|
numa_set_node(cpu, node);
|
|
|
|
printk(KERN_INFO "CPU %d/%x -> Node %d\n", cpu, apicid, node);
|
|
#endif
|
|
#endif
|
|
}
|
|
|
|
static void __cpuinit early_init_amd_mc(struct cpuinfo_x86 *c)
|
|
{
|
|
#ifdef CONFIG_SMP
|
|
unsigned bits, ecx;
|
|
|
|
/* Multi core CPU? */
|
|
if (c->extended_cpuid_level < 0x80000008)
|
|
return;
|
|
|
|
ecx = cpuid_ecx(0x80000008);
|
|
|
|
c->x86_max_cores = (ecx & 0xff) + 1;
|
|
|
|
/* CPU telling us the core id bits shift? */
|
|
bits = (ecx >> 12) & 0xF;
|
|
|
|
/* Otherwise recompute */
|
|
if (bits == 0) {
|
|
while ((1 << bits) < c->x86_max_cores)
|
|
bits++;
|
|
}
|
|
|
|
c->x86_coreid_bits = bits;
|
|
|
|
#endif
|
|
}
|
|
|
|
#define ENABLE_C1E_MASK 0x18000000
|
|
#define CPUID_PROCESSOR_SIGNATURE 1
|
|
#define CPUID_XFAM 0x0ff00000
|
|
#define CPUID_XFAM_K8 0x00000000
|
|
#define CPUID_XFAM_10H 0x00100000
|
|
#define CPUID_XFAM_11H 0x00200000
|
|
#define CPUID_XMOD 0x000f0000
|
|
#define CPUID_XMOD_REV_F 0x00040000
|
|
|
|
/* AMD systems with C1E don't have a working lAPIC timer. Check for that. */
|
|
static __cpuinit int amd_apic_timer_broken(void)
|
|
{
|
|
u32 lo, hi, eax = cpuid_eax(CPUID_PROCESSOR_SIGNATURE);
|
|
|
|
switch (eax & CPUID_XFAM) {
|
|
case CPUID_XFAM_K8:
|
|
if ((eax & CPUID_XMOD) < CPUID_XMOD_REV_F)
|
|
break;
|
|
case CPUID_XFAM_10H:
|
|
case CPUID_XFAM_11H:
|
|
rdmsr(MSR_K8_ENABLE_C1E, lo, hi);
|
|
if (lo & ENABLE_C1E_MASK)
|
|
return 1;
|
|
break;
|
|
default:
|
|
/* err on the side of caution */
|
|
return 1;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
static void __cpuinit early_init_amd(struct cpuinfo_x86 *c)
|
|
{
|
|
early_init_amd_mc(c);
|
|
|
|
/* c->x86_power is 8000_0007 edx. Bit 8 is constant TSC */
|
|
if (c->x86_power & (1<<8))
|
|
set_cpu_cap(c, X86_FEATURE_CONSTANT_TSC);
|
|
}
|
|
|
|
static void __cpuinit init_amd(struct cpuinfo_x86 *c)
|
|
{
|
|
unsigned level;
|
|
|
|
#ifdef CONFIG_SMP
|
|
unsigned long value;
|
|
|
|
/*
|
|
* Disable TLB flush filter by setting HWCR.FFDIS on K8
|
|
* bit 6 of msr C001_0015
|
|
*
|
|
* Errata 63 for SH-B3 steppings
|
|
* Errata 122 for all steppings (F+ have it disabled by default)
|
|
*/
|
|
if (c->x86 == 15) {
|
|
rdmsrl(MSR_K8_HWCR, value);
|
|
value |= 1 << 6;
|
|
wrmsrl(MSR_K8_HWCR, value);
|
|
}
|
|
#endif
|
|
|
|
/* Bit 31 in normal CPUID used for nonstandard 3DNow ID;
|
|
3DNow is IDd by bit 31 in extended CPUID (1*32+31) anyway */
|
|
clear_bit(0*32+31, (unsigned long *)&c->x86_capability);
|
|
|
|
/* On C+ stepping K8 rep microcode works well for copy/memset */
|
|
level = cpuid_eax(1);
|
|
if (c->x86 == 15 && ((level >= 0x0f48 && level < 0x0f50) ||
|
|
level >= 0x0f58))
|
|
set_cpu_cap(c, X86_FEATURE_REP_GOOD);
|
|
if (c->x86 == 0x10 || c->x86 == 0x11)
|
|
set_cpu_cap(c, X86_FEATURE_REP_GOOD);
|
|
|
|
/* Enable workaround for FXSAVE leak */
|
|
if (c->x86 >= 6)
|
|
set_cpu_cap(c, X86_FEATURE_FXSAVE_LEAK);
|
|
|
|
level = get_model_name(c);
|
|
if (!level) {
|
|
switch (c->x86) {
|
|
case 15:
|
|
/* Should distinguish Models here, but this is only
|
|
a fallback anyways. */
|
|
strcpy(c->x86_model_id, "Hammer");
|
|
break;
|
|
}
|
|
}
|
|
display_cacheinfo(c);
|
|
|
|
/* Multi core CPU? */
|
|
if (c->extended_cpuid_level >= 0x80000008)
|
|
amd_detect_cmp(c);
|
|
|
|
if (c->extended_cpuid_level >= 0x80000006 &&
|
|
(cpuid_edx(0x80000006) & 0xf000))
|
|
num_cache_leaves = 4;
|
|
else
|
|
num_cache_leaves = 3;
|
|
|
|
if (c->x86 == 0xf || c->x86 == 0x10 || c->x86 == 0x11)
|
|
set_cpu_cap(c, X86_FEATURE_K8);
|
|
|
|
/* MFENCE stops RDTSC speculation */
|
|
set_cpu_cap(c, X86_FEATURE_MFENCE_RDTSC);
|
|
|
|
if (amd_apic_timer_broken())
|
|
disable_apic_timer = 1;
|
|
}
|
|
|
|
void __cpuinit detect_ht(struct cpuinfo_x86 *c)
|
|
{
|
|
#ifdef CONFIG_SMP
|
|
u32 eax, ebx, ecx, edx;
|
|
int index_msb, core_bits;
|
|
|
|
cpuid(1, &eax, &ebx, &ecx, &edx);
|
|
|
|
|
|
if (!cpu_has(c, X86_FEATURE_HT))
|
|
return;
|
|
if (cpu_has(c, X86_FEATURE_CMP_LEGACY))
|
|
goto out;
|
|
|
|
smp_num_siblings = (ebx & 0xff0000) >> 16;
|
|
|
|
if (smp_num_siblings == 1) {
|
|
printk(KERN_INFO "CPU: Hyper-Threading is disabled\n");
|
|
} else if (smp_num_siblings > 1) {
|
|
|
|
if (smp_num_siblings > NR_CPUS) {
|
|
printk(KERN_WARNING "CPU: Unsupported number of "
|
|
"siblings %d", smp_num_siblings);
|
|
smp_num_siblings = 1;
|
|
return;
|
|
}
|
|
|
|
index_msb = get_count_order(smp_num_siblings);
|
|
c->phys_proc_id = phys_pkg_id(index_msb);
|
|
|
|
smp_num_siblings = smp_num_siblings / c->x86_max_cores;
|
|
|
|
index_msb = get_count_order(smp_num_siblings);
|
|
|
|
core_bits = get_count_order(c->x86_max_cores);
|
|
|
|
c->cpu_core_id = phys_pkg_id(index_msb) &
|
|
((1 << core_bits) - 1);
|
|
}
|
|
out:
|
|
if ((c->x86_max_cores * smp_num_siblings) > 1) {
|
|
printk(KERN_INFO "CPU: Physical Processor ID: %d\n",
|
|
c->phys_proc_id);
|
|
printk(KERN_INFO "CPU: Processor Core ID: %d\n",
|
|
c->cpu_core_id);
|
|
}
|
|
|
|
#endif
|
|
}
|
|
|
|
/*
|
|
* find out the number of processor cores on the die
|
|
*/
|
|
static int __cpuinit intel_num_cpu_cores(struct cpuinfo_x86 *c)
|
|
{
|
|
unsigned int eax, t;
|
|
|
|
if (c->cpuid_level < 4)
|
|
return 1;
|
|
|
|
cpuid_count(4, 0, &eax, &t, &t, &t);
|
|
|
|
if (eax & 0x1f)
|
|
return ((eax >> 26) + 1);
|
|
else
|
|
return 1;
|
|
}
|
|
|
|
static void srat_detect_node(void)
|
|
{
|
|
#ifdef CONFIG_NUMA
|
|
unsigned node;
|
|
int cpu = smp_processor_id();
|
|
int apicid = hard_smp_processor_id();
|
|
|
|
/* Don't do the funky fallback heuristics the AMD version employs
|
|
for now. */
|
|
node = apicid_to_node[apicid];
|
|
if (node == NUMA_NO_NODE)
|
|
node = first_node(node_online_map);
|
|
numa_set_node(cpu, node);
|
|
|
|
printk(KERN_INFO "CPU %d/%x -> Node %d\n", cpu, apicid, node);
|
|
#endif
|
|
}
|
|
|
|
static void __cpuinit early_init_intel(struct cpuinfo_x86 *c)
|
|
{
|
|
if ((c->x86 == 0xf && c->x86_model >= 0x03) ||
|
|
(c->x86 == 0x6 && c->x86_model >= 0x0e))
|
|
set_bit(X86_FEATURE_CONSTANT_TSC, &c->x86_capability);
|
|
}
|
|
|
|
static void __cpuinit init_intel(struct cpuinfo_x86 *c)
|
|
{
|
|
/* Cache sizes */
|
|
unsigned n;
|
|
|
|
init_intel_cacheinfo(c);
|
|
if (c->cpuid_level > 9) {
|
|
unsigned eax = cpuid_eax(10);
|
|
/* Check for version and the number of counters */
|
|
if ((eax & 0xff) && (((eax>>8) & 0xff) > 1))
|
|
set_cpu_cap(c, X86_FEATURE_ARCH_PERFMON);
|
|
}
|
|
|
|
if (cpu_has_ds) {
|
|
unsigned int l1, l2;
|
|
rdmsr(MSR_IA32_MISC_ENABLE, l1, l2);
|
|
if (!(l1 & (1<<11)))
|
|
set_cpu_cap(c, X86_FEATURE_BTS);
|
|
if (!(l1 & (1<<12)))
|
|
set_cpu_cap(c, X86_FEATURE_PEBS);
|
|
}
|
|
|
|
|
|
if (cpu_has_bts)
|
|
ds_init_intel(c);
|
|
|
|
n = c->extended_cpuid_level;
|
|
if (n >= 0x80000008) {
|
|
unsigned eax = cpuid_eax(0x80000008);
|
|
c->x86_virt_bits = (eax >> 8) & 0xff;
|
|
c->x86_phys_bits = eax & 0xff;
|
|
/* CPUID workaround for Intel 0F34 CPU */
|
|
if (c->x86_vendor == X86_VENDOR_INTEL &&
|
|
c->x86 == 0xF && c->x86_model == 0x3 &&
|
|
c->x86_mask == 0x4)
|
|
c->x86_phys_bits = 36;
|
|
}
|
|
|
|
if (c->x86 == 15)
|
|
c->x86_cache_alignment = c->x86_clflush_size * 2;
|
|
if ((c->x86 == 0xf && c->x86_model >= 0x03) ||
|
|
(c->x86 == 0x6 && c->x86_model >= 0x0e))
|
|
set_cpu_cap(c, X86_FEATURE_CONSTANT_TSC);
|
|
if (c->x86 == 6)
|
|
set_cpu_cap(c, X86_FEATURE_REP_GOOD);
|
|
set_cpu_cap(c, X86_FEATURE_LFENCE_RDTSC);
|
|
c->x86_max_cores = intel_num_cpu_cores(c);
|
|
|
|
srat_detect_node();
|
|
}
|
|
|
|
static void __cpuinit get_cpu_vendor(struct cpuinfo_x86 *c)
|
|
{
|
|
char *v = c->x86_vendor_id;
|
|
|
|
if (!strcmp(v, "AuthenticAMD"))
|
|
c->x86_vendor = X86_VENDOR_AMD;
|
|
else if (!strcmp(v, "GenuineIntel"))
|
|
c->x86_vendor = X86_VENDOR_INTEL;
|
|
else
|
|
c->x86_vendor = X86_VENDOR_UNKNOWN;
|
|
}
|
|
|
|
/* Do some early cpuid on the boot CPU to get some parameter that are
|
|
needed before check_bugs. Everything advanced is in identify_cpu
|
|
below. */
|
|
static void __cpuinit early_identify_cpu(struct cpuinfo_x86 *c)
|
|
{
|
|
u32 tfms, xlvl;
|
|
|
|
c->loops_per_jiffy = loops_per_jiffy;
|
|
c->x86_cache_size = -1;
|
|
c->x86_vendor = X86_VENDOR_UNKNOWN;
|
|
c->x86_model = c->x86_mask = 0; /* So far unknown... */
|
|
c->x86_vendor_id[0] = '\0'; /* Unset */
|
|
c->x86_model_id[0] = '\0'; /* Unset */
|
|
c->x86_clflush_size = 64;
|
|
c->x86_cache_alignment = c->x86_clflush_size;
|
|
c->x86_max_cores = 1;
|
|
c->x86_coreid_bits = 0;
|
|
c->extended_cpuid_level = 0;
|
|
memset(&c->x86_capability, 0, sizeof c->x86_capability);
|
|
|
|
/* Get vendor name */
|
|
cpuid(0x00000000, (unsigned int *)&c->cpuid_level,
|
|
(unsigned int *)&c->x86_vendor_id[0],
|
|
(unsigned int *)&c->x86_vendor_id[8],
|
|
(unsigned int *)&c->x86_vendor_id[4]);
|
|
|
|
get_cpu_vendor(c);
|
|
|
|
/* Initialize the standard set of capabilities */
|
|
/* Note that the vendor-specific code below might override */
|
|
|
|
/* Intel-defined flags: level 0x00000001 */
|
|
if (c->cpuid_level >= 0x00000001) {
|
|
__u32 misc;
|
|
cpuid(0x00000001, &tfms, &misc, &c->x86_capability[4],
|
|
&c->x86_capability[0]);
|
|
c->x86 = (tfms >> 8) & 0xf;
|
|
c->x86_model = (tfms >> 4) & 0xf;
|
|
c->x86_mask = tfms & 0xf;
|
|
if (c->x86 == 0xf)
|
|
c->x86 += (tfms >> 20) & 0xff;
|
|
if (c->x86 >= 0x6)
|
|
c->x86_model += ((tfms >> 16) & 0xF) << 4;
|
|
if (c->x86_capability[0] & (1<<19))
|
|
c->x86_clflush_size = ((misc >> 8) & 0xff) * 8;
|
|
} else {
|
|
/* Have CPUID level 0 only - unheard of */
|
|
c->x86 = 4;
|
|
}
|
|
|
|
#ifdef CONFIG_SMP
|
|
c->phys_proc_id = (cpuid_ebx(1) >> 24) & 0xff;
|
|
#endif
|
|
/* AMD-defined flags: level 0x80000001 */
|
|
xlvl = cpuid_eax(0x80000000);
|
|
c->extended_cpuid_level = xlvl;
|
|
if ((xlvl & 0xffff0000) == 0x80000000) {
|
|
if (xlvl >= 0x80000001) {
|
|
c->x86_capability[1] = cpuid_edx(0x80000001);
|
|
c->x86_capability[6] = cpuid_ecx(0x80000001);
|
|
}
|
|
if (xlvl >= 0x80000004)
|
|
get_model_name(c); /* Default name */
|
|
}
|
|
|
|
/* Transmeta-defined flags: level 0x80860001 */
|
|
xlvl = cpuid_eax(0x80860000);
|
|
if ((xlvl & 0xffff0000) == 0x80860000) {
|
|
/* Don't set x86_cpuid_level here for now to not confuse. */
|
|
if (xlvl >= 0x80860001)
|
|
c->x86_capability[2] = cpuid_edx(0x80860001);
|
|
}
|
|
|
|
c->extended_cpuid_level = cpuid_eax(0x80000000);
|
|
if (c->extended_cpuid_level >= 0x80000007)
|
|
c->x86_power = cpuid_edx(0x80000007);
|
|
|
|
switch (c->x86_vendor) {
|
|
case X86_VENDOR_AMD:
|
|
early_init_amd(c);
|
|
break;
|
|
case X86_VENDOR_INTEL:
|
|
early_init_intel(c);
|
|
break;
|
|
}
|
|
|
|
}
|
|
|
|
/*
|
|
* This does the hard work of actually picking apart the CPU stuff...
|
|
*/
|
|
void __cpuinit identify_cpu(struct cpuinfo_x86 *c)
|
|
{
|
|
int i;
|
|
|
|
early_identify_cpu(c);
|
|
|
|
init_scattered_cpuid_features(c);
|
|
|
|
c->apicid = phys_pkg_id(0);
|
|
|
|
/*
|
|
* Vendor-specific initialization. In this section we
|
|
* canonicalize the feature flags, meaning if there are
|
|
* features a certain CPU supports which CPUID doesn't
|
|
* tell us, CPUID claiming incorrect flags, or other bugs,
|
|
* we handle them here.
|
|
*
|
|
* At the end of this section, c->x86_capability better
|
|
* indicate the features this CPU genuinely supports!
|
|
*/
|
|
switch (c->x86_vendor) {
|
|
case X86_VENDOR_AMD:
|
|
init_amd(c);
|
|
break;
|
|
|
|
case X86_VENDOR_INTEL:
|
|
init_intel(c);
|
|
break;
|
|
|
|
case X86_VENDOR_UNKNOWN:
|
|
default:
|
|
display_cacheinfo(c);
|
|
break;
|
|
}
|
|
|
|
detect_ht(c);
|
|
|
|
/*
|
|
* On SMP, boot_cpu_data holds the common feature set between
|
|
* all CPUs; so make sure that we indicate which features are
|
|
* common between the CPUs. The first time this routine gets
|
|
* executed, c == &boot_cpu_data.
|
|
*/
|
|
if (c != &boot_cpu_data) {
|
|
/* AND the already accumulated flags with these */
|
|
for (i = 0; i < NCAPINTS; i++)
|
|
boot_cpu_data.x86_capability[i] &= c->x86_capability[i];
|
|
}
|
|
|
|
/* Clear all flags overriden by options */
|
|
for (i = 0; i < NCAPINTS; i++)
|
|
c->x86_capability[i] ^= cleared_cpu_caps[i];
|
|
|
|
#ifdef CONFIG_X86_MCE
|
|
mcheck_init(c);
|
|
#endif
|
|
select_idle_routine(c);
|
|
|
|
if (c != &boot_cpu_data)
|
|
mtrr_ap_init();
|
|
#ifdef CONFIG_NUMA
|
|
numa_add_cpu(smp_processor_id());
|
|
#endif
|
|
|
|
}
|
|
|
|
static __init int setup_noclflush(char *arg)
|
|
{
|
|
setup_clear_cpu_cap(X86_FEATURE_CLFLSH);
|
|
return 1;
|
|
}
|
|
__setup("noclflush", setup_noclflush);
|
|
|
|
void __cpuinit print_cpu_info(struct cpuinfo_x86 *c)
|
|
{
|
|
if (c->x86_model_id[0])
|
|
printk(KERN_INFO "%s", c->x86_model_id);
|
|
|
|
if (c->x86_mask || c->cpuid_level >= 0)
|
|
printk(KERN_CONT " stepping %02x\n", c->x86_mask);
|
|
else
|
|
printk(KERN_CONT "\n");
|
|
}
|
|
|
|
static __init int setup_disablecpuid(char *arg)
|
|
{
|
|
int bit;
|
|
if (get_option(&arg, &bit) && bit < NCAPINTS*32)
|
|
setup_clear_cpu_cap(bit);
|
|
else
|
|
return 0;
|
|
return 1;
|
|
}
|
|
__setup("clearcpuid=", setup_disablecpuid);
|
|
|
|
/*
|
|
* Get CPU information for use by the procfs.
|
|
*/
|
|
|
|
static int show_cpuinfo(struct seq_file *m, void *v)
|
|
{
|
|
struct cpuinfo_x86 *c = v;
|
|
int cpu = 0, i;
|
|
|
|
/*
|
|
* These flag bits must match the definitions in <asm/cpufeature.h>.
|
|
* NULL means this bit is undefined or reserved; either way it doesn't
|
|
* have meaning as far as Linux is concerned. Note that it's important
|
|
* to realize there is a difference between this table and CPUID -- if
|
|
* applications want to get the raw CPUID data, they should access
|
|
* /dev/cpu/<cpu_nr>/cpuid instead.
|
|
*/
|
|
static const char *const x86_cap_flags[] = {
|
|
/* Intel-defined */
|
|
"fpu", "vme", "de", "pse", "tsc", "msr", "pae", "mce",
|
|
"cx8", "apic", NULL, "sep", "mtrr", "pge", "mca", "cmov",
|
|
"pat", "pse36", "pn", "clflush", NULL, "dts", "acpi", "mmx",
|
|
"fxsr", "sse", "sse2", "ss", "ht", "tm", "ia64", "pbe",
|
|
|
|
/* AMD-defined */
|
|
NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL,
|
|
NULL, NULL, NULL, "syscall", NULL, NULL, NULL, NULL,
|
|
NULL, NULL, NULL, NULL, "nx", NULL, "mmxext", NULL,
|
|
NULL, "fxsr_opt", "pdpe1gb", "rdtscp", NULL, "lm",
|
|
"3dnowext", "3dnow",
|
|
|
|
/* Transmeta-defined */
|
|
"recovery", "longrun", NULL, "lrti", NULL, NULL, NULL, NULL,
|
|
NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL,
|
|
NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL,
|
|
NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL,
|
|
|
|
/* Other (Linux-defined) */
|
|
"cxmmx", "k6_mtrr", "cyrix_arr", "centaur_mcr",
|
|
NULL, NULL, NULL, NULL,
|
|
"constant_tsc", "up", NULL, "arch_perfmon",
|
|
"pebs", "bts", NULL, "sync_rdtsc",
|
|
"rep_good", NULL, NULL, NULL, NULL, NULL, NULL, NULL,
|
|
NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL,
|
|
|
|
/* Intel-defined (#2) */
|
|
"pni", NULL, NULL, "monitor", "ds_cpl", "vmx", "smx", "est",
|
|
"tm2", "ssse3", "cid", NULL, NULL, "cx16", "xtpr", NULL,
|
|
NULL, NULL, "dca", "sse4_1", "sse4_2", NULL, NULL, "popcnt",
|
|
NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL,
|
|
|
|
/* VIA/Cyrix/Centaur-defined */
|
|
NULL, NULL, "rng", "rng_en", NULL, NULL, "ace", "ace_en",
|
|
"ace2", "ace2_en", "phe", "phe_en", "pmm", "pmm_en", NULL, NULL,
|
|
NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL,
|
|
NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL,
|
|
|
|
/* AMD-defined (#2) */
|
|
"lahf_lm", "cmp_legacy", "svm", "extapic",
|
|
"cr8_legacy", "abm", "sse4a", "misalignsse",
|
|
"3dnowprefetch", "osvw", "ibs", "sse5",
|
|
"skinit", "wdt", NULL, NULL,
|
|
NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL,
|
|
NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL,
|
|
|
|
/* Auxiliary (Linux-defined) */
|
|
"ida", NULL, NULL, NULL, NULL, NULL, NULL, NULL,
|
|
NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL,
|
|
NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL,
|
|
NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL,
|
|
};
|
|
static const char *const x86_power_flags[] = {
|
|
"ts", /* temperature sensor */
|
|
"fid", /* frequency id control */
|
|
"vid", /* voltage id control */
|
|
"ttp", /* thermal trip */
|
|
"tm",
|
|
"stc",
|
|
"100mhzsteps",
|
|
"hwpstate",
|
|
"", /* tsc invariant mapped to constant_tsc */
|
|
/* nothing */
|
|
};
|
|
|
|
|
|
#ifdef CONFIG_SMP
|
|
cpu = c->cpu_index;
|
|
#endif
|
|
|
|
seq_printf(m, "processor\t: %u\n"
|
|
"vendor_id\t: %s\n"
|
|
"cpu family\t: %d\n"
|
|
"model\t\t: %d\n"
|
|
"model name\t: %s\n",
|
|
(unsigned)cpu,
|
|
c->x86_vendor_id[0] ? c->x86_vendor_id : "unknown",
|
|
c->x86,
|
|
(int)c->x86_model,
|
|
c->x86_model_id[0] ? c->x86_model_id : "unknown");
|
|
|
|
if (c->x86_mask || c->cpuid_level >= 0)
|
|
seq_printf(m, "stepping\t: %d\n", c->x86_mask);
|
|
else
|
|
seq_printf(m, "stepping\t: unknown\n");
|
|
|
|
if (cpu_has(c, X86_FEATURE_TSC)) {
|
|
unsigned int freq = cpufreq_quick_get((unsigned)cpu);
|
|
|
|
if (!freq)
|
|
freq = cpu_khz;
|
|
seq_printf(m, "cpu MHz\t\t: %u.%03u\n",
|
|
freq / 1000, (freq % 1000));
|
|
}
|
|
|
|
/* Cache size */
|
|
if (c->x86_cache_size >= 0)
|
|
seq_printf(m, "cache size\t: %d KB\n", c->x86_cache_size);
|
|
|
|
#ifdef CONFIG_SMP
|
|
if (smp_num_siblings * c->x86_max_cores > 1) {
|
|
seq_printf(m, "physical id\t: %d\n", c->phys_proc_id);
|
|
seq_printf(m, "siblings\t: %d\n",
|
|
cpus_weight(per_cpu(cpu_core_map, cpu)));
|
|
seq_printf(m, "core id\t\t: %d\n", c->cpu_core_id);
|
|
seq_printf(m, "cpu cores\t: %d\n", c->booted_cores);
|
|
}
|
|
#endif
|
|
|
|
seq_printf(m,
|
|
"fpu\t\t: yes\n"
|
|
"fpu_exception\t: yes\n"
|
|
"cpuid level\t: %d\n"
|
|
"wp\t\t: yes\n"
|
|
"flags\t\t:",
|
|
c->cpuid_level);
|
|
|
|
for (i = 0; i < 32*NCAPINTS; i++)
|
|
if (cpu_has(c, i) && x86_cap_flags[i] != NULL)
|
|
seq_printf(m, " %s", x86_cap_flags[i]);
|
|
|
|
seq_printf(m, "\nbogomips\t: %lu.%02lu\n",
|
|
c->loops_per_jiffy/(500000/HZ),
|
|
(c->loops_per_jiffy/(5000/HZ)) % 100);
|
|
|
|
if (c->x86_tlbsize > 0)
|
|
seq_printf(m, "TLB size\t: %d 4K pages\n", c->x86_tlbsize);
|
|
seq_printf(m, "clflush size\t: %d\n", c->x86_clflush_size);
|
|
seq_printf(m, "cache_alignment\t: %d\n", c->x86_cache_alignment);
|
|
|
|
seq_printf(m, "address sizes\t: %u bits physical, %u bits virtual\n",
|
|
c->x86_phys_bits, c->x86_virt_bits);
|
|
|
|
seq_printf(m, "power management:");
|
|
for (i = 0; i < 32; i++) {
|
|
if (c->x86_power & (1 << i)) {
|
|
if (i < ARRAY_SIZE(x86_power_flags) &&
|
|
x86_power_flags[i])
|
|
seq_printf(m, "%s%s",
|
|
x86_power_flags[i][0]?" ":"",
|
|
x86_power_flags[i]);
|
|
else
|
|
seq_printf(m, " [%d]", i);
|
|
}
|
|
}
|
|
|
|
seq_printf(m, "\n\n");
|
|
|
|
return 0;
|
|
}
|
|
|
|
static void *c_start(struct seq_file *m, loff_t *pos)
|
|
{
|
|
if (*pos == 0) /* just in case, cpu 0 is not the first */
|
|
*pos = first_cpu(cpu_online_map);
|
|
if ((*pos) < NR_CPUS && cpu_online(*pos))
|
|
return &cpu_data(*pos);
|
|
return NULL;
|
|
}
|
|
|
|
static void *c_next(struct seq_file *m, void *v, loff_t *pos)
|
|
{
|
|
*pos = next_cpu(*pos, cpu_online_map);
|
|
return c_start(m, pos);
|
|
}
|
|
|
|
static void c_stop(struct seq_file *m, void *v)
|
|
{
|
|
}
|
|
|
|
const struct seq_operations cpuinfo_op = {
|
|
.start = c_start,
|
|
.next = c_next,
|
|
.stop = c_stop,
|
|
.show = show_cpuinfo,
|
|
};
|