linux/net/rxrpc/misc.c
David Howells 805b21b929 rxrpc: Send an ACK after every few DATA packets we receive
Send an ACK if we haven't sent one for the last two packets we've received.
This keeps the other end apprised of where we've got to - which is
important if they're doing slow-start.

We do this in recvmsg so that we can dispatch a packet directly without the
need to wake up the background thread.

This should possibly be made configurable in future.

Signed-off-by: David Howells <dhowells@redhat.com>
2016-09-24 18:05:26 +01:00

214 lines
6.7 KiB
C

/* Miscellaneous bits
*
* Copyright (C) 2016 Red Hat, Inc. All Rights Reserved.
* Written by David Howells (dhowells@redhat.com)
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public Licence
* as published by the Free Software Foundation; either version
* 2 of the Licence, or (at your option) any later version.
*/
#include <linux/kernel.h>
#include <net/sock.h>
#include <net/af_rxrpc.h>
#include "ar-internal.h"
/*
* The maximum listening backlog queue size that may be set on a socket by
* listen().
*/
unsigned int rxrpc_max_backlog __read_mostly = 10;
/*
* How long to wait before scheduling ACK generation after seeing a
* packet with RXRPC_REQUEST_ACK set (in jiffies).
*/
unsigned int rxrpc_requested_ack_delay = 1;
/*
* How long to wait before scheduling an ACK with subtype DELAY (in jiffies).
*
* We use this when we've received new data packets. If those packets aren't
* all consumed within this time we will send a DELAY ACK if an ACK was not
* requested to let the sender know it doesn't need to resend.
*/
unsigned int rxrpc_soft_ack_delay = 1 * HZ;
/*
* How long to wait before scheduling an ACK with subtype IDLE (in jiffies).
*
* We use this when we've consumed some previously soft-ACK'd packets when
* further packets aren't immediately received to decide when to send an IDLE
* ACK let the other end know that it can free up its Tx buffer space.
*/
unsigned int rxrpc_idle_ack_delay = 0.5 * HZ;
/*
* Receive window size in packets. This indicates the maximum number of
* unconsumed received packets we're willing to retain in memory. Once this
* limit is hit, we should generate an EXCEEDS_WINDOW ACK and discard further
* packets.
*/
unsigned int rxrpc_rx_window_size = RXRPC_INIT_RX_WINDOW_SIZE;
#if (RXRPC_RXTX_BUFF_SIZE - 1) < RXRPC_INIT_RX_WINDOW_SIZE
#error Need to reduce RXRPC_INIT_RX_WINDOW_SIZE
#endif
/*
* Maximum Rx MTU size. This indicates to the sender the size of jumbo packet
* made by gluing normal packets together that we're willing to handle.
*/
unsigned int rxrpc_rx_mtu = 5692;
/*
* The maximum number of fragments in a received jumbo packet that we tell the
* sender that we're willing to handle.
*/
unsigned int rxrpc_rx_jumbo_max = 4;
/*
* Time till packet resend (in milliseconds).
*/
unsigned int rxrpc_resend_timeout = 4 * 1000;
const char *const rxrpc_pkts[] = {
"?00",
"DATA", "ACK", "BUSY", "ABORT", "ACKALL", "CHALL", "RESP", "DEBUG",
"?09", "?10", "?11", "?12", "VERSION", "?14", "?15"
};
const s8 rxrpc_ack_priority[] = {
[0] = 0,
[RXRPC_ACK_DELAY] = 1,
[RXRPC_ACK_REQUESTED] = 2,
[RXRPC_ACK_IDLE] = 3,
[RXRPC_ACK_DUPLICATE] = 4,
[RXRPC_ACK_OUT_OF_SEQUENCE] = 5,
[RXRPC_ACK_EXCEEDS_WINDOW] = 6,
[RXRPC_ACK_NOSPACE] = 7,
[RXRPC_ACK_PING_RESPONSE] = 8,
[RXRPC_ACK_PING] = 9,
};
const char const rxrpc_ack_names[RXRPC_ACK__INVALID + 1][4] = {
"---", "REQ", "DUP", "OOS", "WIN", "MEM", "PNG", "PNR", "DLY",
"IDL", "-?-"
};
const char rxrpc_skb_traces[rxrpc_skb__nr_trace][7] = {
[rxrpc_skb_rx_cleaned] = "Rx CLN",
[rxrpc_skb_rx_freed] = "Rx FRE",
[rxrpc_skb_rx_got] = "Rx GOT",
[rxrpc_skb_rx_lost] = "Rx *L*",
[rxrpc_skb_rx_received] = "Rx RCV",
[rxrpc_skb_rx_purged] = "Rx PUR",
[rxrpc_skb_rx_rotated] = "Rx ROT",
[rxrpc_skb_rx_seen] = "Rx SEE",
[rxrpc_skb_tx_cleaned] = "Tx CLN",
[rxrpc_skb_tx_freed] = "Tx FRE",
[rxrpc_skb_tx_got] = "Tx GOT",
[rxrpc_skb_tx_lost] = "Tx *L*",
[rxrpc_skb_tx_new] = "Tx NEW",
[rxrpc_skb_tx_rotated] = "Tx ROT",
[rxrpc_skb_tx_seen] = "Tx SEE",
};
const char rxrpc_conn_traces[rxrpc_conn__nr_trace][4] = {
[rxrpc_conn_new_client] = "NWc",
[rxrpc_conn_new_service] = "NWs",
[rxrpc_conn_queued] = "QUE",
[rxrpc_conn_seen] = "SEE",
[rxrpc_conn_got] = "GOT",
[rxrpc_conn_put_client] = "PTc",
[rxrpc_conn_put_service] = "PTs",
};
const char rxrpc_client_traces[rxrpc_client__nr_trace][7] = {
[rxrpc_client_activate_chans] = "Activa",
[rxrpc_client_alloc] = "Alloc ",
[rxrpc_client_chan_activate] = "ChActv",
[rxrpc_client_chan_disconnect] = "ChDisc",
[rxrpc_client_chan_pass] = "ChPass",
[rxrpc_client_chan_unstarted] = "ChUnst",
[rxrpc_client_cleanup] = "Clean ",
[rxrpc_client_count] = "Count ",
[rxrpc_client_discard] = "Discar",
[rxrpc_client_duplicate] = "Duplic",
[rxrpc_client_exposed] = "Expose",
[rxrpc_client_replace] = "Replac",
[rxrpc_client_to_active] = "->Actv",
[rxrpc_client_to_culled] = "->Cull",
[rxrpc_client_to_idle] = "->Idle",
[rxrpc_client_to_inactive] = "->Inac",
[rxrpc_client_to_waiting] = "->Wait",
[rxrpc_client_uncount] = "Uncoun",
};
const char rxrpc_transmit_traces[rxrpc_transmit__nr_trace][4] = {
[rxrpc_transmit_wait] = "WAI",
[rxrpc_transmit_queue] = "QUE",
[rxrpc_transmit_queue_last] = "QLS",
[rxrpc_transmit_rotate] = "ROT",
[rxrpc_transmit_rotate_last] = "RLS",
[rxrpc_transmit_await_reply] = "AWR",
[rxrpc_transmit_end] = "END",
};
const char rxrpc_receive_traces[rxrpc_receive__nr_trace][4] = {
[rxrpc_receive_incoming] = "INC",
[rxrpc_receive_queue] = "QUE",
[rxrpc_receive_queue_last] = "QLS",
[rxrpc_receive_front] = "FRN",
[rxrpc_receive_rotate] = "ROT",
[rxrpc_receive_end] = "END",
};
const char rxrpc_recvmsg_traces[rxrpc_recvmsg__nr_trace][5] = {
[rxrpc_recvmsg_enter] = "ENTR",
[rxrpc_recvmsg_wait] = "WAIT",
[rxrpc_recvmsg_dequeue] = "DEQU",
[rxrpc_recvmsg_hole] = "HOLE",
[rxrpc_recvmsg_next] = "NEXT",
[rxrpc_recvmsg_cont] = "CONT",
[rxrpc_recvmsg_full] = "FULL",
[rxrpc_recvmsg_data_return] = "DATA",
[rxrpc_recvmsg_terminal] = "TERM",
[rxrpc_recvmsg_to_be_accepted] = "TBAC",
[rxrpc_recvmsg_return] = "RETN",
};
const char rxrpc_rtt_tx_traces[rxrpc_rtt_tx__nr_trace][5] = {
[rxrpc_rtt_tx_ping] = "PING",
[rxrpc_rtt_tx_data] = "DATA",
};
const char rxrpc_rtt_rx_traces[rxrpc_rtt_rx__nr_trace][5] = {
[rxrpc_rtt_rx_ping_response] = "PONG",
[rxrpc_rtt_rx_requested_ack] = "RACK",
};
const char rxrpc_timer_traces[rxrpc_timer__nr_trace][8] = {
[rxrpc_timer_begin] = "Begin ",
[rxrpc_timer_expired] = "*EXPR*",
[rxrpc_timer_set_for_ack] = "SetAck",
[rxrpc_timer_set_for_send] = "SetTx ",
[rxrpc_timer_set_for_resend] = "SetRTx",
};
const char rxrpc_propose_ack_traces[rxrpc_propose_ack__nr_trace][8] = {
[rxrpc_propose_ack_input_data] = "DataIn ",
[rxrpc_propose_ack_ping_for_params] = "Params ",
[rxrpc_propose_ack_respond_to_ack] = "Rsp2Ack",
[rxrpc_propose_ack_respond_to_ping] = "Rsp2Png",
[rxrpc_propose_ack_retry_tx] = "RetryTx",
[rxrpc_propose_ack_rotate_rx] = "RxAck ",
[rxrpc_propose_ack_terminal_ack] = "ClTerm ",
};
const char *const rxrpc_propose_ack_outcomes[rxrpc_propose_ack__nr_outcomes] = {
[rxrpc_propose_ack_use] = "",
[rxrpc_propose_ack_update] = " Update",
[rxrpc_propose_ack_subsume] = " Subsume",
};