mirror of
https://github.com/FEX-Emu/linux.git
synced 2025-01-07 01:51:42 +00:00
364f566537
When issuing an IPI RT push, where an IPI is sent to each CPU that has more
than one RT task scheduled on it, it references the root domain's rto_mask,
that contains all the CPUs within the root domain that has more than one RT
task in the runable state. The problem is, after the IPIs are initiated, the
rq->lock is released. This means that the root domain that is associated to
the run queue could be freed while the IPIs are going around.
Add a sched_get_rd() and a sched_put_rd() that will increment and decrement
the root domain's ref count respectively. This way when initiating the IPIs,
the scheduler will up the root domain's ref count before releasing the
rq->lock, ensuring that the root domain does not go away until the IPI round
is complete.
Reported-by: Pavan Kondeti <pkondeti@codeaurora.org>
Signed-off-by: Steven Rostedt (VMware) <rostedt@goodmis.org>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Mike Galbraith <efault@gmx.de>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Fixes: 4bdced5c9a
("sched/rt: Simplify the IPI based RT balancing logic")
Link: http://lkml.kernel.org/r/CAEU1=PkiHO35Dzna8EQqNSKW1fr1y1zRQ5y66X117MG06sQtNA@mail.gmail.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
2136 lines
55 KiB
C
2136 lines
55 KiB
C
/* SPDX-License-Identifier: GPL-2.0 */
|
|
|
|
#include <linux/sched.h>
|
|
#include <linux/sched/autogroup.h>
|
|
#include <linux/sched/sysctl.h>
|
|
#include <linux/sched/topology.h>
|
|
#include <linux/sched/rt.h>
|
|
#include <linux/sched/deadline.h>
|
|
#include <linux/sched/clock.h>
|
|
#include <linux/sched/wake_q.h>
|
|
#include <linux/sched/signal.h>
|
|
#include <linux/sched/numa_balancing.h>
|
|
#include <linux/sched/mm.h>
|
|
#include <linux/sched/cpufreq.h>
|
|
#include <linux/sched/stat.h>
|
|
#include <linux/sched/nohz.h>
|
|
#include <linux/sched/debug.h>
|
|
#include <linux/sched/hotplug.h>
|
|
#include <linux/sched/task.h>
|
|
#include <linux/sched/task_stack.h>
|
|
#include <linux/sched/cputime.h>
|
|
#include <linux/sched/init.h>
|
|
|
|
#include <linux/u64_stats_sync.h>
|
|
#include <linux/kernel_stat.h>
|
|
#include <linux/binfmts.h>
|
|
#include <linux/mutex.h>
|
|
#include <linux/spinlock.h>
|
|
#include <linux/stop_machine.h>
|
|
#include <linux/irq_work.h>
|
|
#include <linux/tick.h>
|
|
#include <linux/slab.h>
|
|
#include <linux/cgroup.h>
|
|
|
|
#ifdef CONFIG_PARAVIRT
|
|
#include <asm/paravirt.h>
|
|
#endif
|
|
|
|
#include "cpupri.h"
|
|
#include "cpudeadline.h"
|
|
|
|
#ifdef CONFIG_SCHED_DEBUG
|
|
# define SCHED_WARN_ON(x) WARN_ONCE(x, #x)
|
|
#else
|
|
# define SCHED_WARN_ON(x) ({ (void)(x), 0; })
|
|
#endif
|
|
|
|
struct rq;
|
|
struct cpuidle_state;
|
|
|
|
/* task_struct::on_rq states: */
|
|
#define TASK_ON_RQ_QUEUED 1
|
|
#define TASK_ON_RQ_MIGRATING 2
|
|
|
|
extern __read_mostly int scheduler_running;
|
|
|
|
extern unsigned long calc_load_update;
|
|
extern atomic_long_t calc_load_tasks;
|
|
|
|
extern void calc_global_load_tick(struct rq *this_rq);
|
|
extern long calc_load_fold_active(struct rq *this_rq, long adjust);
|
|
|
|
#ifdef CONFIG_SMP
|
|
extern void cpu_load_update_active(struct rq *this_rq);
|
|
#else
|
|
static inline void cpu_load_update_active(struct rq *this_rq) { }
|
|
#endif
|
|
|
|
/*
|
|
* Helpers for converting nanosecond timing to jiffy resolution
|
|
*/
|
|
#define NS_TO_JIFFIES(TIME) ((unsigned long)(TIME) / (NSEC_PER_SEC / HZ))
|
|
|
|
/*
|
|
* Increase resolution of nice-level calculations for 64-bit architectures.
|
|
* The extra resolution improves shares distribution and load balancing of
|
|
* low-weight task groups (eg. nice +19 on an autogroup), deeper taskgroup
|
|
* hierarchies, especially on larger systems. This is not a user-visible change
|
|
* and does not change the user-interface for setting shares/weights.
|
|
*
|
|
* We increase resolution only if we have enough bits to allow this increased
|
|
* resolution (i.e. 64bit). The costs for increasing resolution when 32bit are
|
|
* pretty high and the returns do not justify the increased costs.
|
|
*
|
|
* Really only required when CONFIG_FAIR_GROUP_SCHED is also set, but to
|
|
* increase coverage and consistency always enable it on 64bit platforms.
|
|
*/
|
|
#ifdef CONFIG_64BIT
|
|
# define NICE_0_LOAD_SHIFT (SCHED_FIXEDPOINT_SHIFT + SCHED_FIXEDPOINT_SHIFT)
|
|
# define scale_load(w) ((w) << SCHED_FIXEDPOINT_SHIFT)
|
|
# define scale_load_down(w) ((w) >> SCHED_FIXEDPOINT_SHIFT)
|
|
#else
|
|
# define NICE_0_LOAD_SHIFT (SCHED_FIXEDPOINT_SHIFT)
|
|
# define scale_load(w) (w)
|
|
# define scale_load_down(w) (w)
|
|
#endif
|
|
|
|
/*
|
|
* Task weight (visible to users) and its load (invisible to users) have
|
|
* independent resolution, but they should be well calibrated. We use
|
|
* scale_load() and scale_load_down(w) to convert between them. The
|
|
* following must be true:
|
|
*
|
|
* scale_load(sched_prio_to_weight[USER_PRIO(NICE_TO_PRIO(0))]) == NICE_0_LOAD
|
|
*
|
|
*/
|
|
#define NICE_0_LOAD (1L << NICE_0_LOAD_SHIFT)
|
|
|
|
/*
|
|
* Single value that decides SCHED_DEADLINE internal math precision.
|
|
* 10 -> just above 1us
|
|
* 9 -> just above 0.5us
|
|
*/
|
|
#define DL_SCALE (10)
|
|
|
|
/*
|
|
* These are the 'tuning knobs' of the scheduler:
|
|
*/
|
|
|
|
/*
|
|
* single value that denotes runtime == period, ie unlimited time.
|
|
*/
|
|
#define RUNTIME_INF ((u64)~0ULL)
|
|
|
|
static inline int idle_policy(int policy)
|
|
{
|
|
return policy == SCHED_IDLE;
|
|
}
|
|
static inline int fair_policy(int policy)
|
|
{
|
|
return policy == SCHED_NORMAL || policy == SCHED_BATCH;
|
|
}
|
|
|
|
static inline int rt_policy(int policy)
|
|
{
|
|
return policy == SCHED_FIFO || policy == SCHED_RR;
|
|
}
|
|
|
|
static inline int dl_policy(int policy)
|
|
{
|
|
return policy == SCHED_DEADLINE;
|
|
}
|
|
static inline bool valid_policy(int policy)
|
|
{
|
|
return idle_policy(policy) || fair_policy(policy) ||
|
|
rt_policy(policy) || dl_policy(policy);
|
|
}
|
|
|
|
static inline int task_has_rt_policy(struct task_struct *p)
|
|
{
|
|
return rt_policy(p->policy);
|
|
}
|
|
|
|
static inline int task_has_dl_policy(struct task_struct *p)
|
|
{
|
|
return dl_policy(p->policy);
|
|
}
|
|
|
|
#define cap_scale(v, s) ((v)*(s) >> SCHED_CAPACITY_SHIFT)
|
|
|
|
/*
|
|
* !! For sched_setattr_nocheck() (kernel) only !!
|
|
*
|
|
* This is actually gross. :(
|
|
*
|
|
* It is used to make schedutil kworker(s) higher priority than SCHED_DEADLINE
|
|
* tasks, but still be able to sleep. We need this on platforms that cannot
|
|
* atomically change clock frequency. Remove once fast switching will be
|
|
* available on such platforms.
|
|
*
|
|
* SUGOV stands for SchedUtil GOVernor.
|
|
*/
|
|
#define SCHED_FLAG_SUGOV 0x10000000
|
|
|
|
static inline bool dl_entity_is_special(struct sched_dl_entity *dl_se)
|
|
{
|
|
#ifdef CONFIG_CPU_FREQ_GOV_SCHEDUTIL
|
|
return unlikely(dl_se->flags & SCHED_FLAG_SUGOV);
|
|
#else
|
|
return false;
|
|
#endif
|
|
}
|
|
|
|
/*
|
|
* Tells if entity @a should preempt entity @b.
|
|
*/
|
|
static inline bool
|
|
dl_entity_preempt(struct sched_dl_entity *a, struct sched_dl_entity *b)
|
|
{
|
|
return dl_entity_is_special(a) ||
|
|
dl_time_before(a->deadline, b->deadline);
|
|
}
|
|
|
|
/*
|
|
* This is the priority-queue data structure of the RT scheduling class:
|
|
*/
|
|
struct rt_prio_array {
|
|
DECLARE_BITMAP(bitmap, MAX_RT_PRIO+1); /* include 1 bit for delimiter */
|
|
struct list_head queue[MAX_RT_PRIO];
|
|
};
|
|
|
|
struct rt_bandwidth {
|
|
/* nests inside the rq lock: */
|
|
raw_spinlock_t rt_runtime_lock;
|
|
ktime_t rt_period;
|
|
u64 rt_runtime;
|
|
struct hrtimer rt_period_timer;
|
|
unsigned int rt_period_active;
|
|
};
|
|
|
|
void __dl_clear_params(struct task_struct *p);
|
|
|
|
/*
|
|
* To keep the bandwidth of -deadline tasks and groups under control
|
|
* we need some place where:
|
|
* - store the maximum -deadline bandwidth of the system (the group);
|
|
* - cache the fraction of that bandwidth that is currently allocated.
|
|
*
|
|
* This is all done in the data structure below. It is similar to the
|
|
* one used for RT-throttling (rt_bandwidth), with the main difference
|
|
* that, since here we are only interested in admission control, we
|
|
* do not decrease any runtime while the group "executes", neither we
|
|
* need a timer to replenish it.
|
|
*
|
|
* With respect to SMP, the bandwidth is given on a per-CPU basis,
|
|
* meaning that:
|
|
* - dl_bw (< 100%) is the bandwidth of the system (group) on each CPU;
|
|
* - dl_total_bw array contains, in the i-eth element, the currently
|
|
* allocated bandwidth on the i-eth CPU.
|
|
* Moreover, groups consume bandwidth on each CPU, while tasks only
|
|
* consume bandwidth on the CPU they're running on.
|
|
* Finally, dl_total_bw_cpu is used to cache the index of dl_total_bw
|
|
* that will be shown the next time the proc or cgroup controls will
|
|
* be red. It on its turn can be changed by writing on its own
|
|
* control.
|
|
*/
|
|
struct dl_bandwidth {
|
|
raw_spinlock_t dl_runtime_lock;
|
|
u64 dl_runtime;
|
|
u64 dl_period;
|
|
};
|
|
|
|
static inline int dl_bandwidth_enabled(void)
|
|
{
|
|
return sysctl_sched_rt_runtime >= 0;
|
|
}
|
|
|
|
struct dl_bw {
|
|
raw_spinlock_t lock;
|
|
u64 bw, total_bw;
|
|
};
|
|
|
|
static inline void __dl_update(struct dl_bw *dl_b, s64 bw);
|
|
|
|
static inline
|
|
void __dl_sub(struct dl_bw *dl_b, u64 tsk_bw, int cpus)
|
|
{
|
|
dl_b->total_bw -= tsk_bw;
|
|
__dl_update(dl_b, (s32)tsk_bw / cpus);
|
|
}
|
|
|
|
static inline
|
|
void __dl_add(struct dl_bw *dl_b, u64 tsk_bw, int cpus)
|
|
{
|
|
dl_b->total_bw += tsk_bw;
|
|
__dl_update(dl_b, -((s32)tsk_bw / cpus));
|
|
}
|
|
|
|
static inline
|
|
bool __dl_overflow(struct dl_bw *dl_b, int cpus, u64 old_bw, u64 new_bw)
|
|
{
|
|
return dl_b->bw != -1 &&
|
|
dl_b->bw * cpus < dl_b->total_bw - old_bw + new_bw;
|
|
}
|
|
|
|
void dl_change_utilization(struct task_struct *p, u64 new_bw);
|
|
extern void init_dl_bw(struct dl_bw *dl_b);
|
|
extern int sched_dl_global_validate(void);
|
|
extern void sched_dl_do_global(void);
|
|
extern int sched_dl_overflow(struct task_struct *p, int policy,
|
|
const struct sched_attr *attr);
|
|
extern void __setparam_dl(struct task_struct *p, const struct sched_attr *attr);
|
|
extern void __getparam_dl(struct task_struct *p, struct sched_attr *attr);
|
|
extern bool __checkparam_dl(const struct sched_attr *attr);
|
|
extern bool dl_param_changed(struct task_struct *p, const struct sched_attr *attr);
|
|
extern int dl_task_can_attach(struct task_struct *p,
|
|
const struct cpumask *cs_cpus_allowed);
|
|
extern int dl_cpuset_cpumask_can_shrink(const struct cpumask *cur,
|
|
const struct cpumask *trial);
|
|
extern bool dl_cpu_busy(unsigned int cpu);
|
|
|
|
#ifdef CONFIG_CGROUP_SCHED
|
|
|
|
#include <linux/cgroup.h>
|
|
|
|
struct cfs_rq;
|
|
struct rt_rq;
|
|
|
|
extern struct list_head task_groups;
|
|
|
|
struct cfs_bandwidth {
|
|
#ifdef CONFIG_CFS_BANDWIDTH
|
|
raw_spinlock_t lock;
|
|
ktime_t period;
|
|
u64 quota, runtime;
|
|
s64 hierarchical_quota;
|
|
u64 runtime_expires;
|
|
|
|
int idle, period_active;
|
|
struct hrtimer period_timer, slack_timer;
|
|
struct list_head throttled_cfs_rq;
|
|
|
|
/* statistics */
|
|
int nr_periods, nr_throttled;
|
|
u64 throttled_time;
|
|
#endif
|
|
};
|
|
|
|
/* task group related information */
|
|
struct task_group {
|
|
struct cgroup_subsys_state css;
|
|
|
|
#ifdef CONFIG_FAIR_GROUP_SCHED
|
|
/* schedulable entities of this group on each cpu */
|
|
struct sched_entity **se;
|
|
/* runqueue "owned" by this group on each cpu */
|
|
struct cfs_rq **cfs_rq;
|
|
unsigned long shares;
|
|
|
|
#ifdef CONFIG_SMP
|
|
/*
|
|
* load_avg can be heavily contended at clock tick time, so put
|
|
* it in its own cacheline separated from the fields above which
|
|
* will also be accessed at each tick.
|
|
*/
|
|
atomic_long_t load_avg ____cacheline_aligned;
|
|
#endif
|
|
#endif
|
|
|
|
#ifdef CONFIG_RT_GROUP_SCHED
|
|
struct sched_rt_entity **rt_se;
|
|
struct rt_rq **rt_rq;
|
|
|
|
struct rt_bandwidth rt_bandwidth;
|
|
#endif
|
|
|
|
struct rcu_head rcu;
|
|
struct list_head list;
|
|
|
|
struct task_group *parent;
|
|
struct list_head siblings;
|
|
struct list_head children;
|
|
|
|
#ifdef CONFIG_SCHED_AUTOGROUP
|
|
struct autogroup *autogroup;
|
|
#endif
|
|
|
|
struct cfs_bandwidth cfs_bandwidth;
|
|
};
|
|
|
|
#ifdef CONFIG_FAIR_GROUP_SCHED
|
|
#define ROOT_TASK_GROUP_LOAD NICE_0_LOAD
|
|
|
|
/*
|
|
* A weight of 0 or 1 can cause arithmetics problems.
|
|
* A weight of a cfs_rq is the sum of weights of which entities
|
|
* are queued on this cfs_rq, so a weight of a entity should not be
|
|
* too large, so as the shares value of a task group.
|
|
* (The default weight is 1024 - so there's no practical
|
|
* limitation from this.)
|
|
*/
|
|
#define MIN_SHARES (1UL << 1)
|
|
#define MAX_SHARES (1UL << 18)
|
|
#endif
|
|
|
|
typedef int (*tg_visitor)(struct task_group *, void *);
|
|
|
|
extern int walk_tg_tree_from(struct task_group *from,
|
|
tg_visitor down, tg_visitor up, void *data);
|
|
|
|
/*
|
|
* Iterate the full tree, calling @down when first entering a node and @up when
|
|
* leaving it for the final time.
|
|
*
|
|
* Caller must hold rcu_lock or sufficient equivalent.
|
|
*/
|
|
static inline int walk_tg_tree(tg_visitor down, tg_visitor up, void *data)
|
|
{
|
|
return walk_tg_tree_from(&root_task_group, down, up, data);
|
|
}
|
|
|
|
extern int tg_nop(struct task_group *tg, void *data);
|
|
|
|
extern void free_fair_sched_group(struct task_group *tg);
|
|
extern int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent);
|
|
extern void online_fair_sched_group(struct task_group *tg);
|
|
extern void unregister_fair_sched_group(struct task_group *tg);
|
|
extern void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq,
|
|
struct sched_entity *se, int cpu,
|
|
struct sched_entity *parent);
|
|
extern void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b);
|
|
|
|
extern void __refill_cfs_bandwidth_runtime(struct cfs_bandwidth *cfs_b);
|
|
extern void start_cfs_bandwidth(struct cfs_bandwidth *cfs_b);
|
|
extern void unthrottle_cfs_rq(struct cfs_rq *cfs_rq);
|
|
|
|
extern void free_rt_sched_group(struct task_group *tg);
|
|
extern int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent);
|
|
extern void init_tg_rt_entry(struct task_group *tg, struct rt_rq *rt_rq,
|
|
struct sched_rt_entity *rt_se, int cpu,
|
|
struct sched_rt_entity *parent);
|
|
extern int sched_group_set_rt_runtime(struct task_group *tg, long rt_runtime_us);
|
|
extern int sched_group_set_rt_period(struct task_group *tg, u64 rt_period_us);
|
|
extern long sched_group_rt_runtime(struct task_group *tg);
|
|
extern long sched_group_rt_period(struct task_group *tg);
|
|
extern int sched_rt_can_attach(struct task_group *tg, struct task_struct *tsk);
|
|
|
|
extern struct task_group *sched_create_group(struct task_group *parent);
|
|
extern void sched_online_group(struct task_group *tg,
|
|
struct task_group *parent);
|
|
extern void sched_destroy_group(struct task_group *tg);
|
|
extern void sched_offline_group(struct task_group *tg);
|
|
|
|
extern void sched_move_task(struct task_struct *tsk);
|
|
|
|
#ifdef CONFIG_FAIR_GROUP_SCHED
|
|
extern int sched_group_set_shares(struct task_group *tg, unsigned long shares);
|
|
|
|
#ifdef CONFIG_SMP
|
|
extern void set_task_rq_fair(struct sched_entity *se,
|
|
struct cfs_rq *prev, struct cfs_rq *next);
|
|
#else /* !CONFIG_SMP */
|
|
static inline void set_task_rq_fair(struct sched_entity *se,
|
|
struct cfs_rq *prev, struct cfs_rq *next) { }
|
|
#endif /* CONFIG_SMP */
|
|
#endif /* CONFIG_FAIR_GROUP_SCHED */
|
|
|
|
#else /* CONFIG_CGROUP_SCHED */
|
|
|
|
struct cfs_bandwidth { };
|
|
|
|
#endif /* CONFIG_CGROUP_SCHED */
|
|
|
|
/* CFS-related fields in a runqueue */
|
|
struct cfs_rq {
|
|
struct load_weight load;
|
|
unsigned long runnable_weight;
|
|
unsigned int nr_running, h_nr_running;
|
|
|
|
u64 exec_clock;
|
|
u64 min_vruntime;
|
|
#ifndef CONFIG_64BIT
|
|
u64 min_vruntime_copy;
|
|
#endif
|
|
|
|
struct rb_root_cached tasks_timeline;
|
|
|
|
/*
|
|
* 'curr' points to currently running entity on this cfs_rq.
|
|
* It is set to NULL otherwise (i.e when none are currently running).
|
|
*/
|
|
struct sched_entity *curr, *next, *last, *skip;
|
|
|
|
#ifdef CONFIG_SCHED_DEBUG
|
|
unsigned int nr_spread_over;
|
|
#endif
|
|
|
|
#ifdef CONFIG_SMP
|
|
/*
|
|
* CFS load tracking
|
|
*/
|
|
struct sched_avg avg;
|
|
#ifndef CONFIG_64BIT
|
|
u64 load_last_update_time_copy;
|
|
#endif
|
|
struct {
|
|
raw_spinlock_t lock ____cacheline_aligned;
|
|
int nr;
|
|
unsigned long load_avg;
|
|
unsigned long util_avg;
|
|
unsigned long runnable_sum;
|
|
} removed;
|
|
|
|
#ifdef CONFIG_FAIR_GROUP_SCHED
|
|
unsigned long tg_load_avg_contrib;
|
|
long propagate;
|
|
long prop_runnable_sum;
|
|
|
|
/*
|
|
* h_load = weight * f(tg)
|
|
*
|
|
* Where f(tg) is the recursive weight fraction assigned to
|
|
* this group.
|
|
*/
|
|
unsigned long h_load;
|
|
u64 last_h_load_update;
|
|
struct sched_entity *h_load_next;
|
|
#endif /* CONFIG_FAIR_GROUP_SCHED */
|
|
#endif /* CONFIG_SMP */
|
|
|
|
#ifdef CONFIG_FAIR_GROUP_SCHED
|
|
struct rq *rq; /* cpu runqueue to which this cfs_rq is attached */
|
|
|
|
/*
|
|
* leaf cfs_rqs are those that hold tasks (lowest schedulable entity in
|
|
* a hierarchy). Non-leaf lrqs hold other higher schedulable entities
|
|
* (like users, containers etc.)
|
|
*
|
|
* leaf_cfs_rq_list ties together list of leaf cfs_rq's in a cpu. This
|
|
* list is used during load balance.
|
|
*/
|
|
int on_list;
|
|
struct list_head leaf_cfs_rq_list;
|
|
struct task_group *tg; /* group that "owns" this runqueue */
|
|
|
|
#ifdef CONFIG_CFS_BANDWIDTH
|
|
int runtime_enabled;
|
|
u64 runtime_expires;
|
|
s64 runtime_remaining;
|
|
|
|
u64 throttled_clock, throttled_clock_task;
|
|
u64 throttled_clock_task_time;
|
|
int throttled, throttle_count;
|
|
struct list_head throttled_list;
|
|
#endif /* CONFIG_CFS_BANDWIDTH */
|
|
#endif /* CONFIG_FAIR_GROUP_SCHED */
|
|
};
|
|
|
|
static inline int rt_bandwidth_enabled(void)
|
|
{
|
|
return sysctl_sched_rt_runtime >= 0;
|
|
}
|
|
|
|
/* RT IPI pull logic requires IRQ_WORK */
|
|
#if defined(CONFIG_IRQ_WORK) && defined(CONFIG_SMP)
|
|
# define HAVE_RT_PUSH_IPI
|
|
#endif
|
|
|
|
/* Real-Time classes' related field in a runqueue: */
|
|
struct rt_rq {
|
|
struct rt_prio_array active;
|
|
unsigned int rt_nr_running;
|
|
unsigned int rr_nr_running;
|
|
#if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
|
|
struct {
|
|
int curr; /* highest queued rt task prio */
|
|
#ifdef CONFIG_SMP
|
|
int next; /* next highest */
|
|
#endif
|
|
} highest_prio;
|
|
#endif
|
|
#ifdef CONFIG_SMP
|
|
unsigned long rt_nr_migratory;
|
|
unsigned long rt_nr_total;
|
|
int overloaded;
|
|
struct plist_head pushable_tasks;
|
|
#endif /* CONFIG_SMP */
|
|
int rt_queued;
|
|
|
|
int rt_throttled;
|
|
u64 rt_time;
|
|
u64 rt_runtime;
|
|
/* Nests inside the rq lock: */
|
|
raw_spinlock_t rt_runtime_lock;
|
|
|
|
#ifdef CONFIG_RT_GROUP_SCHED
|
|
unsigned long rt_nr_boosted;
|
|
|
|
struct rq *rq;
|
|
struct task_group *tg;
|
|
#endif
|
|
};
|
|
|
|
/* Deadline class' related fields in a runqueue */
|
|
struct dl_rq {
|
|
/* runqueue is an rbtree, ordered by deadline */
|
|
struct rb_root_cached root;
|
|
|
|
unsigned long dl_nr_running;
|
|
|
|
#ifdef CONFIG_SMP
|
|
/*
|
|
* Deadline values of the currently executing and the
|
|
* earliest ready task on this rq. Caching these facilitates
|
|
* the decision wether or not a ready but not running task
|
|
* should migrate somewhere else.
|
|
*/
|
|
struct {
|
|
u64 curr;
|
|
u64 next;
|
|
} earliest_dl;
|
|
|
|
unsigned long dl_nr_migratory;
|
|
int overloaded;
|
|
|
|
/*
|
|
* Tasks on this rq that can be pushed away. They are kept in
|
|
* an rb-tree, ordered by tasks' deadlines, with caching
|
|
* of the leftmost (earliest deadline) element.
|
|
*/
|
|
struct rb_root_cached pushable_dl_tasks_root;
|
|
#else
|
|
struct dl_bw dl_bw;
|
|
#endif
|
|
/*
|
|
* "Active utilization" for this runqueue: increased when a
|
|
* task wakes up (becomes TASK_RUNNING) and decreased when a
|
|
* task blocks
|
|
*/
|
|
u64 running_bw;
|
|
|
|
/*
|
|
* Utilization of the tasks "assigned" to this runqueue (including
|
|
* the tasks that are in runqueue and the tasks that executed on this
|
|
* CPU and blocked). Increased when a task moves to this runqueue, and
|
|
* decreased when the task moves away (migrates, changes scheduling
|
|
* policy, or terminates).
|
|
* This is needed to compute the "inactive utilization" for the
|
|
* runqueue (inactive utilization = this_bw - running_bw).
|
|
*/
|
|
u64 this_bw;
|
|
u64 extra_bw;
|
|
|
|
/*
|
|
* Inverse of the fraction of CPU utilization that can be reclaimed
|
|
* by the GRUB algorithm.
|
|
*/
|
|
u64 bw_ratio;
|
|
};
|
|
|
|
#ifdef CONFIG_SMP
|
|
|
|
static inline bool sched_asym_prefer(int a, int b)
|
|
{
|
|
return arch_asym_cpu_priority(a) > arch_asym_cpu_priority(b);
|
|
}
|
|
|
|
/*
|
|
* We add the notion of a root-domain which will be used to define per-domain
|
|
* variables. Each exclusive cpuset essentially defines an island domain by
|
|
* fully partitioning the member cpus from any other cpuset. Whenever a new
|
|
* exclusive cpuset is created, we also create and attach a new root-domain
|
|
* object.
|
|
*
|
|
*/
|
|
struct root_domain {
|
|
atomic_t refcount;
|
|
atomic_t rto_count;
|
|
struct rcu_head rcu;
|
|
cpumask_var_t span;
|
|
cpumask_var_t online;
|
|
|
|
/* Indicate more than one runnable task for any CPU */
|
|
bool overload;
|
|
|
|
/*
|
|
* The bit corresponding to a CPU gets set here if such CPU has more
|
|
* than one runnable -deadline task (as it is below for RT tasks).
|
|
*/
|
|
cpumask_var_t dlo_mask;
|
|
atomic_t dlo_count;
|
|
struct dl_bw dl_bw;
|
|
struct cpudl cpudl;
|
|
|
|
#ifdef HAVE_RT_PUSH_IPI
|
|
/*
|
|
* For IPI pull requests, loop across the rto_mask.
|
|
*/
|
|
struct irq_work rto_push_work;
|
|
raw_spinlock_t rto_lock;
|
|
/* These are only updated and read within rto_lock */
|
|
int rto_loop;
|
|
int rto_cpu;
|
|
/* These atomics are updated outside of a lock */
|
|
atomic_t rto_loop_next;
|
|
atomic_t rto_loop_start;
|
|
#endif
|
|
/*
|
|
* The "RT overload" flag: it gets set if a CPU has more than
|
|
* one runnable RT task.
|
|
*/
|
|
cpumask_var_t rto_mask;
|
|
struct cpupri cpupri;
|
|
|
|
unsigned long max_cpu_capacity;
|
|
};
|
|
|
|
extern struct root_domain def_root_domain;
|
|
extern struct mutex sched_domains_mutex;
|
|
|
|
extern void init_defrootdomain(void);
|
|
extern int sched_init_domains(const struct cpumask *cpu_map);
|
|
extern void rq_attach_root(struct rq *rq, struct root_domain *rd);
|
|
extern void sched_get_rd(struct root_domain *rd);
|
|
extern void sched_put_rd(struct root_domain *rd);
|
|
|
|
#ifdef HAVE_RT_PUSH_IPI
|
|
extern void rto_push_irq_work_func(struct irq_work *work);
|
|
#endif
|
|
#endif /* CONFIG_SMP */
|
|
|
|
/*
|
|
* This is the main, per-CPU runqueue data structure.
|
|
*
|
|
* Locking rule: those places that want to lock multiple runqueues
|
|
* (such as the load balancing or the thread migration code), lock
|
|
* acquire operations must be ordered by ascending &runqueue.
|
|
*/
|
|
struct rq {
|
|
/* runqueue lock: */
|
|
raw_spinlock_t lock;
|
|
|
|
/*
|
|
* nr_running and cpu_load should be in the same cacheline because
|
|
* remote CPUs use both these fields when doing load calculation.
|
|
*/
|
|
unsigned int nr_running;
|
|
#ifdef CONFIG_NUMA_BALANCING
|
|
unsigned int nr_numa_running;
|
|
unsigned int nr_preferred_running;
|
|
#endif
|
|
#define CPU_LOAD_IDX_MAX 5
|
|
unsigned long cpu_load[CPU_LOAD_IDX_MAX];
|
|
#ifdef CONFIG_NO_HZ_COMMON
|
|
#ifdef CONFIG_SMP
|
|
unsigned long last_load_update_tick;
|
|
#endif /* CONFIG_SMP */
|
|
unsigned long nohz_flags;
|
|
#endif /* CONFIG_NO_HZ_COMMON */
|
|
#ifdef CONFIG_NO_HZ_FULL
|
|
unsigned long last_sched_tick;
|
|
#endif
|
|
/* capture load from *all* tasks on this cpu: */
|
|
struct load_weight load;
|
|
unsigned long nr_load_updates;
|
|
u64 nr_switches;
|
|
|
|
struct cfs_rq cfs;
|
|
struct rt_rq rt;
|
|
struct dl_rq dl;
|
|
|
|
#ifdef CONFIG_FAIR_GROUP_SCHED
|
|
/* list of leaf cfs_rq on this cpu: */
|
|
struct list_head leaf_cfs_rq_list;
|
|
struct list_head *tmp_alone_branch;
|
|
#endif /* CONFIG_FAIR_GROUP_SCHED */
|
|
|
|
/*
|
|
* This is part of a global counter where only the total sum
|
|
* over all CPUs matters. A task can increase this counter on
|
|
* one CPU and if it got migrated afterwards it may decrease
|
|
* it on another CPU. Always updated under the runqueue lock:
|
|
*/
|
|
unsigned long nr_uninterruptible;
|
|
|
|
struct task_struct *curr, *idle, *stop;
|
|
unsigned long next_balance;
|
|
struct mm_struct *prev_mm;
|
|
|
|
unsigned int clock_update_flags;
|
|
u64 clock;
|
|
u64 clock_task;
|
|
|
|
atomic_t nr_iowait;
|
|
|
|
#ifdef CONFIG_SMP
|
|
struct root_domain *rd;
|
|
struct sched_domain *sd;
|
|
|
|
unsigned long cpu_capacity;
|
|
unsigned long cpu_capacity_orig;
|
|
|
|
struct callback_head *balance_callback;
|
|
|
|
unsigned char idle_balance;
|
|
/* For active balancing */
|
|
int active_balance;
|
|
int push_cpu;
|
|
struct cpu_stop_work active_balance_work;
|
|
/* cpu of this runqueue: */
|
|
int cpu;
|
|
int online;
|
|
|
|
struct list_head cfs_tasks;
|
|
|
|
u64 rt_avg;
|
|
u64 age_stamp;
|
|
u64 idle_stamp;
|
|
u64 avg_idle;
|
|
|
|
/* This is used to determine avg_idle's max value */
|
|
u64 max_idle_balance_cost;
|
|
#endif
|
|
|
|
#ifdef CONFIG_IRQ_TIME_ACCOUNTING
|
|
u64 prev_irq_time;
|
|
#endif
|
|
#ifdef CONFIG_PARAVIRT
|
|
u64 prev_steal_time;
|
|
#endif
|
|
#ifdef CONFIG_PARAVIRT_TIME_ACCOUNTING
|
|
u64 prev_steal_time_rq;
|
|
#endif
|
|
|
|
/* calc_load related fields */
|
|
unsigned long calc_load_update;
|
|
long calc_load_active;
|
|
|
|
#ifdef CONFIG_SCHED_HRTICK
|
|
#ifdef CONFIG_SMP
|
|
int hrtick_csd_pending;
|
|
call_single_data_t hrtick_csd;
|
|
#endif
|
|
struct hrtimer hrtick_timer;
|
|
#endif
|
|
|
|
#ifdef CONFIG_SCHEDSTATS
|
|
/* latency stats */
|
|
struct sched_info rq_sched_info;
|
|
unsigned long long rq_cpu_time;
|
|
/* could above be rq->cfs_rq.exec_clock + rq->rt_rq.rt_runtime ? */
|
|
|
|
/* sys_sched_yield() stats */
|
|
unsigned int yld_count;
|
|
|
|
/* schedule() stats */
|
|
unsigned int sched_count;
|
|
unsigned int sched_goidle;
|
|
|
|
/* try_to_wake_up() stats */
|
|
unsigned int ttwu_count;
|
|
unsigned int ttwu_local;
|
|
#endif
|
|
|
|
#ifdef CONFIG_SMP
|
|
struct llist_head wake_list;
|
|
#endif
|
|
|
|
#ifdef CONFIG_CPU_IDLE
|
|
/* Must be inspected within a rcu lock section */
|
|
struct cpuidle_state *idle_state;
|
|
#endif
|
|
};
|
|
|
|
static inline int cpu_of(struct rq *rq)
|
|
{
|
|
#ifdef CONFIG_SMP
|
|
return rq->cpu;
|
|
#else
|
|
return 0;
|
|
#endif
|
|
}
|
|
|
|
|
|
#ifdef CONFIG_SCHED_SMT
|
|
|
|
extern struct static_key_false sched_smt_present;
|
|
|
|
extern void __update_idle_core(struct rq *rq);
|
|
|
|
static inline void update_idle_core(struct rq *rq)
|
|
{
|
|
if (static_branch_unlikely(&sched_smt_present))
|
|
__update_idle_core(rq);
|
|
}
|
|
|
|
#else
|
|
static inline void update_idle_core(struct rq *rq) { }
|
|
#endif
|
|
|
|
DECLARE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
|
|
|
|
#define cpu_rq(cpu) (&per_cpu(runqueues, (cpu)))
|
|
#define this_rq() this_cpu_ptr(&runqueues)
|
|
#define task_rq(p) cpu_rq(task_cpu(p))
|
|
#define cpu_curr(cpu) (cpu_rq(cpu)->curr)
|
|
#define raw_rq() raw_cpu_ptr(&runqueues)
|
|
|
|
static inline u64 __rq_clock_broken(struct rq *rq)
|
|
{
|
|
return READ_ONCE(rq->clock);
|
|
}
|
|
|
|
/*
|
|
* rq::clock_update_flags bits
|
|
*
|
|
* %RQCF_REQ_SKIP - will request skipping of clock update on the next
|
|
* call to __schedule(). This is an optimisation to avoid
|
|
* neighbouring rq clock updates.
|
|
*
|
|
* %RQCF_ACT_SKIP - is set from inside of __schedule() when skipping is
|
|
* in effect and calls to update_rq_clock() are being ignored.
|
|
*
|
|
* %RQCF_UPDATED - is a debug flag that indicates whether a call has been
|
|
* made to update_rq_clock() since the last time rq::lock was pinned.
|
|
*
|
|
* If inside of __schedule(), clock_update_flags will have been
|
|
* shifted left (a left shift is a cheap operation for the fast path
|
|
* to promote %RQCF_REQ_SKIP to %RQCF_ACT_SKIP), so you must use,
|
|
*
|
|
* if (rq-clock_update_flags >= RQCF_UPDATED)
|
|
*
|
|
* to check if %RQCF_UPADTED is set. It'll never be shifted more than
|
|
* one position though, because the next rq_unpin_lock() will shift it
|
|
* back.
|
|
*/
|
|
#define RQCF_REQ_SKIP 0x01
|
|
#define RQCF_ACT_SKIP 0x02
|
|
#define RQCF_UPDATED 0x04
|
|
|
|
static inline void assert_clock_updated(struct rq *rq)
|
|
{
|
|
/*
|
|
* The only reason for not seeing a clock update since the
|
|
* last rq_pin_lock() is if we're currently skipping updates.
|
|
*/
|
|
SCHED_WARN_ON(rq->clock_update_flags < RQCF_ACT_SKIP);
|
|
}
|
|
|
|
static inline u64 rq_clock(struct rq *rq)
|
|
{
|
|
lockdep_assert_held(&rq->lock);
|
|
assert_clock_updated(rq);
|
|
|
|
return rq->clock;
|
|
}
|
|
|
|
static inline u64 rq_clock_task(struct rq *rq)
|
|
{
|
|
lockdep_assert_held(&rq->lock);
|
|
assert_clock_updated(rq);
|
|
|
|
return rq->clock_task;
|
|
}
|
|
|
|
static inline void rq_clock_skip_update(struct rq *rq, bool skip)
|
|
{
|
|
lockdep_assert_held(&rq->lock);
|
|
if (skip)
|
|
rq->clock_update_flags |= RQCF_REQ_SKIP;
|
|
else
|
|
rq->clock_update_flags &= ~RQCF_REQ_SKIP;
|
|
}
|
|
|
|
struct rq_flags {
|
|
unsigned long flags;
|
|
struct pin_cookie cookie;
|
|
#ifdef CONFIG_SCHED_DEBUG
|
|
/*
|
|
* A copy of (rq::clock_update_flags & RQCF_UPDATED) for the
|
|
* current pin context is stashed here in case it needs to be
|
|
* restored in rq_repin_lock().
|
|
*/
|
|
unsigned int clock_update_flags;
|
|
#endif
|
|
};
|
|
|
|
static inline void rq_pin_lock(struct rq *rq, struct rq_flags *rf)
|
|
{
|
|
rf->cookie = lockdep_pin_lock(&rq->lock);
|
|
|
|
#ifdef CONFIG_SCHED_DEBUG
|
|
rq->clock_update_flags &= (RQCF_REQ_SKIP|RQCF_ACT_SKIP);
|
|
rf->clock_update_flags = 0;
|
|
#endif
|
|
}
|
|
|
|
static inline void rq_unpin_lock(struct rq *rq, struct rq_flags *rf)
|
|
{
|
|
#ifdef CONFIG_SCHED_DEBUG
|
|
if (rq->clock_update_flags > RQCF_ACT_SKIP)
|
|
rf->clock_update_flags = RQCF_UPDATED;
|
|
#endif
|
|
|
|
lockdep_unpin_lock(&rq->lock, rf->cookie);
|
|
}
|
|
|
|
static inline void rq_repin_lock(struct rq *rq, struct rq_flags *rf)
|
|
{
|
|
lockdep_repin_lock(&rq->lock, rf->cookie);
|
|
|
|
#ifdef CONFIG_SCHED_DEBUG
|
|
/*
|
|
* Restore the value we stashed in @rf for this pin context.
|
|
*/
|
|
rq->clock_update_flags |= rf->clock_update_flags;
|
|
#endif
|
|
}
|
|
|
|
#ifdef CONFIG_NUMA
|
|
enum numa_topology_type {
|
|
NUMA_DIRECT,
|
|
NUMA_GLUELESS_MESH,
|
|
NUMA_BACKPLANE,
|
|
};
|
|
extern enum numa_topology_type sched_numa_topology_type;
|
|
extern int sched_max_numa_distance;
|
|
extern bool find_numa_distance(int distance);
|
|
#endif
|
|
|
|
#ifdef CONFIG_NUMA
|
|
extern void sched_init_numa(void);
|
|
extern void sched_domains_numa_masks_set(unsigned int cpu);
|
|
extern void sched_domains_numa_masks_clear(unsigned int cpu);
|
|
#else
|
|
static inline void sched_init_numa(void) { }
|
|
static inline void sched_domains_numa_masks_set(unsigned int cpu) { }
|
|
static inline void sched_domains_numa_masks_clear(unsigned int cpu) { }
|
|
#endif
|
|
|
|
#ifdef CONFIG_NUMA_BALANCING
|
|
/* The regions in numa_faults array from task_struct */
|
|
enum numa_faults_stats {
|
|
NUMA_MEM = 0,
|
|
NUMA_CPU,
|
|
NUMA_MEMBUF,
|
|
NUMA_CPUBUF
|
|
};
|
|
extern void sched_setnuma(struct task_struct *p, int node);
|
|
extern int migrate_task_to(struct task_struct *p, int cpu);
|
|
extern int migrate_swap(struct task_struct *, struct task_struct *);
|
|
#endif /* CONFIG_NUMA_BALANCING */
|
|
|
|
#ifdef CONFIG_SMP
|
|
|
|
static inline void
|
|
queue_balance_callback(struct rq *rq,
|
|
struct callback_head *head,
|
|
void (*func)(struct rq *rq))
|
|
{
|
|
lockdep_assert_held(&rq->lock);
|
|
|
|
if (unlikely(head->next))
|
|
return;
|
|
|
|
head->func = (void (*)(struct callback_head *))func;
|
|
head->next = rq->balance_callback;
|
|
rq->balance_callback = head;
|
|
}
|
|
|
|
extern void sched_ttwu_pending(void);
|
|
|
|
#define rcu_dereference_check_sched_domain(p) \
|
|
rcu_dereference_check((p), \
|
|
lockdep_is_held(&sched_domains_mutex))
|
|
|
|
/*
|
|
* The domain tree (rq->sd) is protected by RCU's quiescent state transition.
|
|
* See detach_destroy_domains: synchronize_sched for details.
|
|
*
|
|
* The domain tree of any CPU may only be accessed from within
|
|
* preempt-disabled sections.
|
|
*/
|
|
#define for_each_domain(cpu, __sd) \
|
|
for (__sd = rcu_dereference_check_sched_domain(cpu_rq(cpu)->sd); \
|
|
__sd; __sd = __sd->parent)
|
|
|
|
#define for_each_lower_domain(sd) for (; sd; sd = sd->child)
|
|
|
|
/**
|
|
* highest_flag_domain - Return highest sched_domain containing flag.
|
|
* @cpu: The cpu whose highest level of sched domain is to
|
|
* be returned.
|
|
* @flag: The flag to check for the highest sched_domain
|
|
* for the given cpu.
|
|
*
|
|
* Returns the highest sched_domain of a cpu which contains the given flag.
|
|
*/
|
|
static inline struct sched_domain *highest_flag_domain(int cpu, int flag)
|
|
{
|
|
struct sched_domain *sd, *hsd = NULL;
|
|
|
|
for_each_domain(cpu, sd) {
|
|
if (!(sd->flags & flag))
|
|
break;
|
|
hsd = sd;
|
|
}
|
|
|
|
return hsd;
|
|
}
|
|
|
|
static inline struct sched_domain *lowest_flag_domain(int cpu, int flag)
|
|
{
|
|
struct sched_domain *sd;
|
|
|
|
for_each_domain(cpu, sd) {
|
|
if (sd->flags & flag)
|
|
break;
|
|
}
|
|
|
|
return sd;
|
|
}
|
|
|
|
DECLARE_PER_CPU(struct sched_domain *, sd_llc);
|
|
DECLARE_PER_CPU(int, sd_llc_size);
|
|
DECLARE_PER_CPU(int, sd_llc_id);
|
|
DECLARE_PER_CPU(struct sched_domain_shared *, sd_llc_shared);
|
|
DECLARE_PER_CPU(struct sched_domain *, sd_numa);
|
|
DECLARE_PER_CPU(struct sched_domain *, sd_asym);
|
|
|
|
struct sched_group_capacity {
|
|
atomic_t ref;
|
|
/*
|
|
* CPU capacity of this group, SCHED_CAPACITY_SCALE being max capacity
|
|
* for a single CPU.
|
|
*/
|
|
unsigned long capacity;
|
|
unsigned long min_capacity; /* Min per-CPU capacity in group */
|
|
unsigned long next_update;
|
|
int imbalance; /* XXX unrelated to capacity but shared group state */
|
|
|
|
#ifdef CONFIG_SCHED_DEBUG
|
|
int id;
|
|
#endif
|
|
|
|
unsigned long cpumask[0]; /* balance mask */
|
|
};
|
|
|
|
struct sched_group {
|
|
struct sched_group *next; /* Must be a circular list */
|
|
atomic_t ref;
|
|
|
|
unsigned int group_weight;
|
|
struct sched_group_capacity *sgc;
|
|
int asym_prefer_cpu; /* cpu of highest priority in group */
|
|
|
|
/*
|
|
* The CPUs this group covers.
|
|
*
|
|
* NOTE: this field is variable length. (Allocated dynamically
|
|
* by attaching extra space to the end of the structure,
|
|
* depending on how many CPUs the kernel has booted up with)
|
|
*/
|
|
unsigned long cpumask[0];
|
|
};
|
|
|
|
static inline struct cpumask *sched_group_span(struct sched_group *sg)
|
|
{
|
|
return to_cpumask(sg->cpumask);
|
|
}
|
|
|
|
/*
|
|
* See build_balance_mask().
|
|
*/
|
|
static inline struct cpumask *group_balance_mask(struct sched_group *sg)
|
|
{
|
|
return to_cpumask(sg->sgc->cpumask);
|
|
}
|
|
|
|
/**
|
|
* group_first_cpu - Returns the first cpu in the cpumask of a sched_group.
|
|
* @group: The group whose first cpu is to be returned.
|
|
*/
|
|
static inline unsigned int group_first_cpu(struct sched_group *group)
|
|
{
|
|
return cpumask_first(sched_group_span(group));
|
|
}
|
|
|
|
extern int group_balance_cpu(struct sched_group *sg);
|
|
|
|
#if defined(CONFIG_SCHED_DEBUG) && defined(CONFIG_SYSCTL)
|
|
void register_sched_domain_sysctl(void);
|
|
void dirty_sched_domain_sysctl(int cpu);
|
|
void unregister_sched_domain_sysctl(void);
|
|
#else
|
|
static inline void register_sched_domain_sysctl(void)
|
|
{
|
|
}
|
|
static inline void dirty_sched_domain_sysctl(int cpu)
|
|
{
|
|
}
|
|
static inline void unregister_sched_domain_sysctl(void)
|
|
{
|
|
}
|
|
#endif
|
|
|
|
#else
|
|
|
|
static inline void sched_ttwu_pending(void) { }
|
|
|
|
#endif /* CONFIG_SMP */
|
|
|
|
#include "stats.h"
|
|
#include "autogroup.h"
|
|
|
|
#ifdef CONFIG_CGROUP_SCHED
|
|
|
|
/*
|
|
* Return the group to which this tasks belongs.
|
|
*
|
|
* We cannot use task_css() and friends because the cgroup subsystem
|
|
* changes that value before the cgroup_subsys::attach() method is called,
|
|
* therefore we cannot pin it and might observe the wrong value.
|
|
*
|
|
* The same is true for autogroup's p->signal->autogroup->tg, the autogroup
|
|
* core changes this before calling sched_move_task().
|
|
*
|
|
* Instead we use a 'copy' which is updated from sched_move_task() while
|
|
* holding both task_struct::pi_lock and rq::lock.
|
|
*/
|
|
static inline struct task_group *task_group(struct task_struct *p)
|
|
{
|
|
return p->sched_task_group;
|
|
}
|
|
|
|
/* Change a task's cfs_rq and parent entity if it moves across CPUs/groups */
|
|
static inline void set_task_rq(struct task_struct *p, unsigned int cpu)
|
|
{
|
|
#if defined(CONFIG_FAIR_GROUP_SCHED) || defined(CONFIG_RT_GROUP_SCHED)
|
|
struct task_group *tg = task_group(p);
|
|
#endif
|
|
|
|
#ifdef CONFIG_FAIR_GROUP_SCHED
|
|
set_task_rq_fair(&p->se, p->se.cfs_rq, tg->cfs_rq[cpu]);
|
|
p->se.cfs_rq = tg->cfs_rq[cpu];
|
|
p->se.parent = tg->se[cpu];
|
|
#endif
|
|
|
|
#ifdef CONFIG_RT_GROUP_SCHED
|
|
p->rt.rt_rq = tg->rt_rq[cpu];
|
|
p->rt.parent = tg->rt_se[cpu];
|
|
#endif
|
|
}
|
|
|
|
#else /* CONFIG_CGROUP_SCHED */
|
|
|
|
static inline void set_task_rq(struct task_struct *p, unsigned int cpu) { }
|
|
static inline struct task_group *task_group(struct task_struct *p)
|
|
{
|
|
return NULL;
|
|
}
|
|
|
|
#endif /* CONFIG_CGROUP_SCHED */
|
|
|
|
static inline void __set_task_cpu(struct task_struct *p, unsigned int cpu)
|
|
{
|
|
set_task_rq(p, cpu);
|
|
#ifdef CONFIG_SMP
|
|
/*
|
|
* After ->cpu is set up to a new value, task_rq_lock(p, ...) can be
|
|
* successfuly executed on another CPU. We must ensure that updates of
|
|
* per-task data have been completed by this moment.
|
|
*/
|
|
smp_wmb();
|
|
#ifdef CONFIG_THREAD_INFO_IN_TASK
|
|
p->cpu = cpu;
|
|
#else
|
|
task_thread_info(p)->cpu = cpu;
|
|
#endif
|
|
p->wake_cpu = cpu;
|
|
#endif
|
|
}
|
|
|
|
/*
|
|
* Tunables that become constants when CONFIG_SCHED_DEBUG is off:
|
|
*/
|
|
#ifdef CONFIG_SCHED_DEBUG
|
|
# include <linux/static_key.h>
|
|
# define const_debug __read_mostly
|
|
#else
|
|
# define const_debug const
|
|
#endif
|
|
|
|
#define SCHED_FEAT(name, enabled) \
|
|
__SCHED_FEAT_##name ,
|
|
|
|
enum {
|
|
#include "features.h"
|
|
__SCHED_FEAT_NR,
|
|
};
|
|
|
|
#undef SCHED_FEAT
|
|
|
|
#if defined(CONFIG_SCHED_DEBUG) && defined(HAVE_JUMP_LABEL)
|
|
|
|
/*
|
|
* To support run-time toggling of sched features, all the translation units
|
|
* (but core.c) reference the sysctl_sched_features defined in core.c.
|
|
*/
|
|
extern const_debug unsigned int sysctl_sched_features;
|
|
|
|
#define SCHED_FEAT(name, enabled) \
|
|
static __always_inline bool static_branch_##name(struct static_key *key) \
|
|
{ \
|
|
return static_key_##enabled(key); \
|
|
}
|
|
|
|
#include "features.h"
|
|
#undef SCHED_FEAT
|
|
|
|
extern struct static_key sched_feat_keys[__SCHED_FEAT_NR];
|
|
#define sched_feat(x) (static_branch_##x(&sched_feat_keys[__SCHED_FEAT_##x]))
|
|
|
|
#else /* !(SCHED_DEBUG && HAVE_JUMP_LABEL) */
|
|
|
|
/*
|
|
* Each translation unit has its own copy of sysctl_sched_features to allow
|
|
* constants propagation at compile time and compiler optimization based on
|
|
* features default.
|
|
*/
|
|
#define SCHED_FEAT(name, enabled) \
|
|
(1UL << __SCHED_FEAT_##name) * enabled |
|
|
static const_debug __maybe_unused unsigned int sysctl_sched_features =
|
|
#include "features.h"
|
|
0;
|
|
#undef SCHED_FEAT
|
|
|
|
#define sched_feat(x) (sysctl_sched_features & (1UL << __SCHED_FEAT_##x))
|
|
|
|
#endif /* SCHED_DEBUG && HAVE_JUMP_LABEL */
|
|
|
|
extern struct static_key_false sched_numa_balancing;
|
|
extern struct static_key_false sched_schedstats;
|
|
|
|
static inline u64 global_rt_period(void)
|
|
{
|
|
return (u64)sysctl_sched_rt_period * NSEC_PER_USEC;
|
|
}
|
|
|
|
static inline u64 global_rt_runtime(void)
|
|
{
|
|
if (sysctl_sched_rt_runtime < 0)
|
|
return RUNTIME_INF;
|
|
|
|
return (u64)sysctl_sched_rt_runtime * NSEC_PER_USEC;
|
|
}
|
|
|
|
static inline int task_current(struct rq *rq, struct task_struct *p)
|
|
{
|
|
return rq->curr == p;
|
|
}
|
|
|
|
static inline int task_running(struct rq *rq, struct task_struct *p)
|
|
{
|
|
#ifdef CONFIG_SMP
|
|
return p->on_cpu;
|
|
#else
|
|
return task_current(rq, p);
|
|
#endif
|
|
}
|
|
|
|
static inline int task_on_rq_queued(struct task_struct *p)
|
|
{
|
|
return p->on_rq == TASK_ON_RQ_QUEUED;
|
|
}
|
|
|
|
static inline int task_on_rq_migrating(struct task_struct *p)
|
|
{
|
|
return p->on_rq == TASK_ON_RQ_MIGRATING;
|
|
}
|
|
|
|
#ifndef prepare_arch_switch
|
|
# define prepare_arch_switch(next) do { } while (0)
|
|
#endif
|
|
#ifndef finish_arch_post_lock_switch
|
|
# define finish_arch_post_lock_switch() do { } while (0)
|
|
#endif
|
|
|
|
/*
|
|
* wake flags
|
|
*/
|
|
#define WF_SYNC 0x01 /* waker goes to sleep after wakeup */
|
|
#define WF_FORK 0x02 /* child wakeup after fork */
|
|
#define WF_MIGRATED 0x4 /* internal use, task got migrated */
|
|
|
|
/*
|
|
* To aid in avoiding the subversion of "niceness" due to uneven distribution
|
|
* of tasks with abnormal "nice" values across CPUs the contribution that
|
|
* each task makes to its run queue's load is weighted according to its
|
|
* scheduling class and "nice" value. For SCHED_NORMAL tasks this is just a
|
|
* scaled version of the new time slice allocation that they receive on time
|
|
* slice expiry etc.
|
|
*/
|
|
|
|
#define WEIGHT_IDLEPRIO 3
|
|
#define WMULT_IDLEPRIO 1431655765
|
|
|
|
extern const int sched_prio_to_weight[40];
|
|
extern const u32 sched_prio_to_wmult[40];
|
|
|
|
/*
|
|
* {de,en}queue flags:
|
|
*
|
|
* DEQUEUE_SLEEP - task is no longer runnable
|
|
* ENQUEUE_WAKEUP - task just became runnable
|
|
*
|
|
* SAVE/RESTORE - an otherwise spurious dequeue/enqueue, done to ensure tasks
|
|
* are in a known state which allows modification. Such pairs
|
|
* should preserve as much state as possible.
|
|
*
|
|
* MOVE - paired with SAVE/RESTORE, explicitly does not preserve the location
|
|
* in the runqueue.
|
|
*
|
|
* ENQUEUE_HEAD - place at front of runqueue (tail if not specified)
|
|
* ENQUEUE_REPLENISH - CBS (replenish runtime and postpone deadline)
|
|
* ENQUEUE_MIGRATED - the task was migrated during wakeup
|
|
*
|
|
*/
|
|
|
|
#define DEQUEUE_SLEEP 0x01
|
|
#define DEQUEUE_SAVE 0x02 /* matches ENQUEUE_RESTORE */
|
|
#define DEQUEUE_MOVE 0x04 /* matches ENQUEUE_MOVE */
|
|
#define DEQUEUE_NOCLOCK 0x08 /* matches ENQUEUE_NOCLOCK */
|
|
|
|
#define ENQUEUE_WAKEUP 0x01
|
|
#define ENQUEUE_RESTORE 0x02
|
|
#define ENQUEUE_MOVE 0x04
|
|
#define ENQUEUE_NOCLOCK 0x08
|
|
|
|
#define ENQUEUE_HEAD 0x10
|
|
#define ENQUEUE_REPLENISH 0x20
|
|
#ifdef CONFIG_SMP
|
|
#define ENQUEUE_MIGRATED 0x40
|
|
#else
|
|
#define ENQUEUE_MIGRATED 0x00
|
|
#endif
|
|
|
|
#define RETRY_TASK ((void *)-1UL)
|
|
|
|
struct sched_class {
|
|
const struct sched_class *next;
|
|
|
|
void (*enqueue_task) (struct rq *rq, struct task_struct *p, int flags);
|
|
void (*dequeue_task) (struct rq *rq, struct task_struct *p, int flags);
|
|
void (*yield_task) (struct rq *rq);
|
|
bool (*yield_to_task) (struct rq *rq, struct task_struct *p, bool preempt);
|
|
|
|
void (*check_preempt_curr) (struct rq *rq, struct task_struct *p, int flags);
|
|
|
|
/*
|
|
* It is the responsibility of the pick_next_task() method that will
|
|
* return the next task to call put_prev_task() on the @prev task or
|
|
* something equivalent.
|
|
*
|
|
* May return RETRY_TASK when it finds a higher prio class has runnable
|
|
* tasks.
|
|
*/
|
|
struct task_struct * (*pick_next_task) (struct rq *rq,
|
|
struct task_struct *prev,
|
|
struct rq_flags *rf);
|
|
void (*put_prev_task) (struct rq *rq, struct task_struct *p);
|
|
|
|
#ifdef CONFIG_SMP
|
|
int (*select_task_rq)(struct task_struct *p, int task_cpu, int sd_flag, int flags);
|
|
void (*migrate_task_rq)(struct task_struct *p);
|
|
|
|
void (*task_woken) (struct rq *this_rq, struct task_struct *task);
|
|
|
|
void (*set_cpus_allowed)(struct task_struct *p,
|
|
const struct cpumask *newmask);
|
|
|
|
void (*rq_online)(struct rq *rq);
|
|
void (*rq_offline)(struct rq *rq);
|
|
#endif
|
|
|
|
void (*set_curr_task) (struct rq *rq);
|
|
void (*task_tick) (struct rq *rq, struct task_struct *p, int queued);
|
|
void (*task_fork) (struct task_struct *p);
|
|
void (*task_dead) (struct task_struct *p);
|
|
|
|
/*
|
|
* The switched_from() call is allowed to drop rq->lock, therefore we
|
|
* cannot assume the switched_from/switched_to pair is serliazed by
|
|
* rq->lock. They are however serialized by p->pi_lock.
|
|
*/
|
|
void (*switched_from) (struct rq *this_rq, struct task_struct *task);
|
|
void (*switched_to) (struct rq *this_rq, struct task_struct *task);
|
|
void (*prio_changed) (struct rq *this_rq, struct task_struct *task,
|
|
int oldprio);
|
|
|
|
unsigned int (*get_rr_interval) (struct rq *rq,
|
|
struct task_struct *task);
|
|
|
|
void (*update_curr) (struct rq *rq);
|
|
|
|
#define TASK_SET_GROUP 0
|
|
#define TASK_MOVE_GROUP 1
|
|
|
|
#ifdef CONFIG_FAIR_GROUP_SCHED
|
|
void (*task_change_group) (struct task_struct *p, int type);
|
|
#endif
|
|
};
|
|
|
|
static inline void put_prev_task(struct rq *rq, struct task_struct *prev)
|
|
{
|
|
prev->sched_class->put_prev_task(rq, prev);
|
|
}
|
|
|
|
static inline void set_curr_task(struct rq *rq, struct task_struct *curr)
|
|
{
|
|
curr->sched_class->set_curr_task(rq);
|
|
}
|
|
|
|
#ifdef CONFIG_SMP
|
|
#define sched_class_highest (&stop_sched_class)
|
|
#else
|
|
#define sched_class_highest (&dl_sched_class)
|
|
#endif
|
|
#define for_each_class(class) \
|
|
for (class = sched_class_highest; class; class = class->next)
|
|
|
|
extern const struct sched_class stop_sched_class;
|
|
extern const struct sched_class dl_sched_class;
|
|
extern const struct sched_class rt_sched_class;
|
|
extern const struct sched_class fair_sched_class;
|
|
extern const struct sched_class idle_sched_class;
|
|
|
|
|
|
#ifdef CONFIG_SMP
|
|
|
|
extern void update_group_capacity(struct sched_domain *sd, int cpu);
|
|
|
|
extern void trigger_load_balance(struct rq *rq);
|
|
|
|
extern void set_cpus_allowed_common(struct task_struct *p, const struct cpumask *new_mask);
|
|
|
|
#endif
|
|
|
|
#ifdef CONFIG_CPU_IDLE
|
|
static inline void idle_set_state(struct rq *rq,
|
|
struct cpuidle_state *idle_state)
|
|
{
|
|
rq->idle_state = idle_state;
|
|
}
|
|
|
|
static inline struct cpuidle_state *idle_get_state(struct rq *rq)
|
|
{
|
|
SCHED_WARN_ON(!rcu_read_lock_held());
|
|
return rq->idle_state;
|
|
}
|
|
#else
|
|
static inline void idle_set_state(struct rq *rq,
|
|
struct cpuidle_state *idle_state)
|
|
{
|
|
}
|
|
|
|
static inline struct cpuidle_state *idle_get_state(struct rq *rq)
|
|
{
|
|
return NULL;
|
|
}
|
|
#endif
|
|
|
|
extern void schedule_idle(void);
|
|
|
|
extern void sysrq_sched_debug_show(void);
|
|
extern void sched_init_granularity(void);
|
|
extern void update_max_interval(void);
|
|
|
|
extern void init_sched_dl_class(void);
|
|
extern void init_sched_rt_class(void);
|
|
extern void init_sched_fair_class(void);
|
|
|
|
extern void reweight_task(struct task_struct *p, int prio);
|
|
|
|
extern void resched_curr(struct rq *rq);
|
|
extern void resched_cpu(int cpu);
|
|
|
|
extern struct rt_bandwidth def_rt_bandwidth;
|
|
extern void init_rt_bandwidth(struct rt_bandwidth *rt_b, u64 period, u64 runtime);
|
|
|
|
extern struct dl_bandwidth def_dl_bandwidth;
|
|
extern void init_dl_bandwidth(struct dl_bandwidth *dl_b, u64 period, u64 runtime);
|
|
extern void init_dl_task_timer(struct sched_dl_entity *dl_se);
|
|
extern void init_dl_inactive_task_timer(struct sched_dl_entity *dl_se);
|
|
extern void init_dl_rq_bw_ratio(struct dl_rq *dl_rq);
|
|
|
|
#define BW_SHIFT 20
|
|
#define BW_UNIT (1 << BW_SHIFT)
|
|
#define RATIO_SHIFT 8
|
|
unsigned long to_ratio(u64 period, u64 runtime);
|
|
|
|
extern void init_entity_runnable_average(struct sched_entity *se);
|
|
extern void post_init_entity_util_avg(struct sched_entity *se);
|
|
|
|
#ifdef CONFIG_NO_HZ_FULL
|
|
extern bool sched_can_stop_tick(struct rq *rq);
|
|
|
|
/*
|
|
* Tick may be needed by tasks in the runqueue depending on their policy and
|
|
* requirements. If tick is needed, lets send the target an IPI to kick it out of
|
|
* nohz mode if necessary.
|
|
*/
|
|
static inline void sched_update_tick_dependency(struct rq *rq)
|
|
{
|
|
int cpu;
|
|
|
|
if (!tick_nohz_full_enabled())
|
|
return;
|
|
|
|
cpu = cpu_of(rq);
|
|
|
|
if (!tick_nohz_full_cpu(cpu))
|
|
return;
|
|
|
|
if (sched_can_stop_tick(rq))
|
|
tick_nohz_dep_clear_cpu(cpu, TICK_DEP_BIT_SCHED);
|
|
else
|
|
tick_nohz_dep_set_cpu(cpu, TICK_DEP_BIT_SCHED);
|
|
}
|
|
#else
|
|
static inline void sched_update_tick_dependency(struct rq *rq) { }
|
|
#endif
|
|
|
|
static inline void add_nr_running(struct rq *rq, unsigned count)
|
|
{
|
|
unsigned prev_nr = rq->nr_running;
|
|
|
|
rq->nr_running = prev_nr + count;
|
|
|
|
if (prev_nr < 2 && rq->nr_running >= 2) {
|
|
#ifdef CONFIG_SMP
|
|
if (!rq->rd->overload)
|
|
rq->rd->overload = true;
|
|
#endif
|
|
}
|
|
|
|
sched_update_tick_dependency(rq);
|
|
}
|
|
|
|
static inline void sub_nr_running(struct rq *rq, unsigned count)
|
|
{
|
|
rq->nr_running -= count;
|
|
/* Check if we still need preemption */
|
|
sched_update_tick_dependency(rq);
|
|
}
|
|
|
|
static inline void rq_last_tick_reset(struct rq *rq)
|
|
{
|
|
#ifdef CONFIG_NO_HZ_FULL
|
|
rq->last_sched_tick = jiffies;
|
|
#endif
|
|
}
|
|
|
|
extern void update_rq_clock(struct rq *rq);
|
|
|
|
extern void activate_task(struct rq *rq, struct task_struct *p, int flags);
|
|
extern void deactivate_task(struct rq *rq, struct task_struct *p, int flags);
|
|
|
|
extern void check_preempt_curr(struct rq *rq, struct task_struct *p, int flags);
|
|
|
|
extern const_debug unsigned int sysctl_sched_time_avg;
|
|
extern const_debug unsigned int sysctl_sched_nr_migrate;
|
|
extern const_debug unsigned int sysctl_sched_migration_cost;
|
|
|
|
static inline u64 sched_avg_period(void)
|
|
{
|
|
return (u64)sysctl_sched_time_avg * NSEC_PER_MSEC / 2;
|
|
}
|
|
|
|
#ifdef CONFIG_SCHED_HRTICK
|
|
|
|
/*
|
|
* Use hrtick when:
|
|
* - enabled by features
|
|
* - hrtimer is actually high res
|
|
*/
|
|
static inline int hrtick_enabled(struct rq *rq)
|
|
{
|
|
if (!sched_feat(HRTICK))
|
|
return 0;
|
|
if (!cpu_active(cpu_of(rq)))
|
|
return 0;
|
|
return hrtimer_is_hres_active(&rq->hrtick_timer);
|
|
}
|
|
|
|
void hrtick_start(struct rq *rq, u64 delay);
|
|
|
|
#else
|
|
|
|
static inline int hrtick_enabled(struct rq *rq)
|
|
{
|
|
return 0;
|
|
}
|
|
|
|
#endif /* CONFIG_SCHED_HRTICK */
|
|
|
|
#ifndef arch_scale_freq_capacity
|
|
static __always_inline
|
|
unsigned long arch_scale_freq_capacity(int cpu)
|
|
{
|
|
return SCHED_CAPACITY_SCALE;
|
|
}
|
|
#endif
|
|
|
|
#ifdef CONFIG_SMP
|
|
extern void sched_avg_update(struct rq *rq);
|
|
|
|
#ifndef arch_scale_cpu_capacity
|
|
static __always_inline
|
|
unsigned long arch_scale_cpu_capacity(struct sched_domain *sd, int cpu)
|
|
{
|
|
if (sd && (sd->flags & SD_SHARE_CPUCAPACITY) && (sd->span_weight > 1))
|
|
return sd->smt_gain / sd->span_weight;
|
|
|
|
return SCHED_CAPACITY_SCALE;
|
|
}
|
|
#endif
|
|
|
|
static inline void sched_rt_avg_update(struct rq *rq, u64 rt_delta)
|
|
{
|
|
rq->rt_avg += rt_delta * arch_scale_freq_capacity(cpu_of(rq));
|
|
sched_avg_update(rq);
|
|
}
|
|
#else
|
|
#ifndef arch_scale_cpu_capacity
|
|
static __always_inline
|
|
unsigned long arch_scale_cpu_capacity(void __always_unused *sd, int cpu)
|
|
{
|
|
return SCHED_CAPACITY_SCALE;
|
|
}
|
|
#endif
|
|
static inline void sched_rt_avg_update(struct rq *rq, u64 rt_delta) { }
|
|
static inline void sched_avg_update(struct rq *rq) { }
|
|
#endif
|
|
|
|
struct rq *__task_rq_lock(struct task_struct *p, struct rq_flags *rf)
|
|
__acquires(rq->lock);
|
|
|
|
struct rq *task_rq_lock(struct task_struct *p, struct rq_flags *rf)
|
|
__acquires(p->pi_lock)
|
|
__acquires(rq->lock);
|
|
|
|
static inline void __task_rq_unlock(struct rq *rq, struct rq_flags *rf)
|
|
__releases(rq->lock)
|
|
{
|
|
rq_unpin_lock(rq, rf);
|
|
raw_spin_unlock(&rq->lock);
|
|
}
|
|
|
|
static inline void
|
|
task_rq_unlock(struct rq *rq, struct task_struct *p, struct rq_flags *rf)
|
|
__releases(rq->lock)
|
|
__releases(p->pi_lock)
|
|
{
|
|
rq_unpin_lock(rq, rf);
|
|
raw_spin_unlock(&rq->lock);
|
|
raw_spin_unlock_irqrestore(&p->pi_lock, rf->flags);
|
|
}
|
|
|
|
static inline void
|
|
rq_lock_irqsave(struct rq *rq, struct rq_flags *rf)
|
|
__acquires(rq->lock)
|
|
{
|
|
raw_spin_lock_irqsave(&rq->lock, rf->flags);
|
|
rq_pin_lock(rq, rf);
|
|
}
|
|
|
|
static inline void
|
|
rq_lock_irq(struct rq *rq, struct rq_flags *rf)
|
|
__acquires(rq->lock)
|
|
{
|
|
raw_spin_lock_irq(&rq->lock);
|
|
rq_pin_lock(rq, rf);
|
|
}
|
|
|
|
static inline void
|
|
rq_lock(struct rq *rq, struct rq_flags *rf)
|
|
__acquires(rq->lock)
|
|
{
|
|
raw_spin_lock(&rq->lock);
|
|
rq_pin_lock(rq, rf);
|
|
}
|
|
|
|
static inline void
|
|
rq_relock(struct rq *rq, struct rq_flags *rf)
|
|
__acquires(rq->lock)
|
|
{
|
|
raw_spin_lock(&rq->lock);
|
|
rq_repin_lock(rq, rf);
|
|
}
|
|
|
|
static inline void
|
|
rq_unlock_irqrestore(struct rq *rq, struct rq_flags *rf)
|
|
__releases(rq->lock)
|
|
{
|
|
rq_unpin_lock(rq, rf);
|
|
raw_spin_unlock_irqrestore(&rq->lock, rf->flags);
|
|
}
|
|
|
|
static inline void
|
|
rq_unlock_irq(struct rq *rq, struct rq_flags *rf)
|
|
__releases(rq->lock)
|
|
{
|
|
rq_unpin_lock(rq, rf);
|
|
raw_spin_unlock_irq(&rq->lock);
|
|
}
|
|
|
|
static inline void
|
|
rq_unlock(struct rq *rq, struct rq_flags *rf)
|
|
__releases(rq->lock)
|
|
{
|
|
rq_unpin_lock(rq, rf);
|
|
raw_spin_unlock(&rq->lock);
|
|
}
|
|
|
|
#ifdef CONFIG_SMP
|
|
#ifdef CONFIG_PREEMPT
|
|
|
|
static inline void double_rq_lock(struct rq *rq1, struct rq *rq2);
|
|
|
|
/*
|
|
* fair double_lock_balance: Safely acquires both rq->locks in a fair
|
|
* way at the expense of forcing extra atomic operations in all
|
|
* invocations. This assures that the double_lock is acquired using the
|
|
* same underlying policy as the spinlock_t on this architecture, which
|
|
* reduces latency compared to the unfair variant below. However, it
|
|
* also adds more overhead and therefore may reduce throughput.
|
|
*/
|
|
static inline int _double_lock_balance(struct rq *this_rq, struct rq *busiest)
|
|
__releases(this_rq->lock)
|
|
__acquires(busiest->lock)
|
|
__acquires(this_rq->lock)
|
|
{
|
|
raw_spin_unlock(&this_rq->lock);
|
|
double_rq_lock(this_rq, busiest);
|
|
|
|
return 1;
|
|
}
|
|
|
|
#else
|
|
/*
|
|
* Unfair double_lock_balance: Optimizes throughput at the expense of
|
|
* latency by eliminating extra atomic operations when the locks are
|
|
* already in proper order on entry. This favors lower cpu-ids and will
|
|
* grant the double lock to lower cpus over higher ids under contention,
|
|
* regardless of entry order into the function.
|
|
*/
|
|
static inline int _double_lock_balance(struct rq *this_rq, struct rq *busiest)
|
|
__releases(this_rq->lock)
|
|
__acquires(busiest->lock)
|
|
__acquires(this_rq->lock)
|
|
{
|
|
int ret = 0;
|
|
|
|
if (unlikely(!raw_spin_trylock(&busiest->lock))) {
|
|
if (busiest < this_rq) {
|
|
raw_spin_unlock(&this_rq->lock);
|
|
raw_spin_lock(&busiest->lock);
|
|
raw_spin_lock_nested(&this_rq->lock,
|
|
SINGLE_DEPTH_NESTING);
|
|
ret = 1;
|
|
} else
|
|
raw_spin_lock_nested(&busiest->lock,
|
|
SINGLE_DEPTH_NESTING);
|
|
}
|
|
return ret;
|
|
}
|
|
|
|
#endif /* CONFIG_PREEMPT */
|
|
|
|
/*
|
|
* double_lock_balance - lock the busiest runqueue, this_rq is locked already.
|
|
*/
|
|
static inline int double_lock_balance(struct rq *this_rq, struct rq *busiest)
|
|
{
|
|
if (unlikely(!irqs_disabled())) {
|
|
/* printk() doesn't work good under rq->lock */
|
|
raw_spin_unlock(&this_rq->lock);
|
|
BUG_ON(1);
|
|
}
|
|
|
|
return _double_lock_balance(this_rq, busiest);
|
|
}
|
|
|
|
static inline void double_unlock_balance(struct rq *this_rq, struct rq *busiest)
|
|
__releases(busiest->lock)
|
|
{
|
|
raw_spin_unlock(&busiest->lock);
|
|
lock_set_subclass(&this_rq->lock.dep_map, 0, _RET_IP_);
|
|
}
|
|
|
|
static inline void double_lock(spinlock_t *l1, spinlock_t *l2)
|
|
{
|
|
if (l1 > l2)
|
|
swap(l1, l2);
|
|
|
|
spin_lock(l1);
|
|
spin_lock_nested(l2, SINGLE_DEPTH_NESTING);
|
|
}
|
|
|
|
static inline void double_lock_irq(spinlock_t *l1, spinlock_t *l2)
|
|
{
|
|
if (l1 > l2)
|
|
swap(l1, l2);
|
|
|
|
spin_lock_irq(l1);
|
|
spin_lock_nested(l2, SINGLE_DEPTH_NESTING);
|
|
}
|
|
|
|
static inline void double_raw_lock(raw_spinlock_t *l1, raw_spinlock_t *l2)
|
|
{
|
|
if (l1 > l2)
|
|
swap(l1, l2);
|
|
|
|
raw_spin_lock(l1);
|
|
raw_spin_lock_nested(l2, SINGLE_DEPTH_NESTING);
|
|
}
|
|
|
|
/*
|
|
* double_rq_lock - safely lock two runqueues
|
|
*
|
|
* Note this does not disable interrupts like task_rq_lock,
|
|
* you need to do so manually before calling.
|
|
*/
|
|
static inline void double_rq_lock(struct rq *rq1, struct rq *rq2)
|
|
__acquires(rq1->lock)
|
|
__acquires(rq2->lock)
|
|
{
|
|
BUG_ON(!irqs_disabled());
|
|
if (rq1 == rq2) {
|
|
raw_spin_lock(&rq1->lock);
|
|
__acquire(rq2->lock); /* Fake it out ;) */
|
|
} else {
|
|
if (rq1 < rq2) {
|
|
raw_spin_lock(&rq1->lock);
|
|
raw_spin_lock_nested(&rq2->lock, SINGLE_DEPTH_NESTING);
|
|
} else {
|
|
raw_spin_lock(&rq2->lock);
|
|
raw_spin_lock_nested(&rq1->lock, SINGLE_DEPTH_NESTING);
|
|
}
|
|
}
|
|
}
|
|
|
|
/*
|
|
* double_rq_unlock - safely unlock two runqueues
|
|
*
|
|
* Note this does not restore interrupts like task_rq_unlock,
|
|
* you need to do so manually after calling.
|
|
*/
|
|
static inline void double_rq_unlock(struct rq *rq1, struct rq *rq2)
|
|
__releases(rq1->lock)
|
|
__releases(rq2->lock)
|
|
{
|
|
raw_spin_unlock(&rq1->lock);
|
|
if (rq1 != rq2)
|
|
raw_spin_unlock(&rq2->lock);
|
|
else
|
|
__release(rq2->lock);
|
|
}
|
|
|
|
extern void set_rq_online (struct rq *rq);
|
|
extern void set_rq_offline(struct rq *rq);
|
|
extern bool sched_smp_initialized;
|
|
|
|
#else /* CONFIG_SMP */
|
|
|
|
/*
|
|
* double_rq_lock - safely lock two runqueues
|
|
*
|
|
* Note this does not disable interrupts like task_rq_lock,
|
|
* you need to do so manually before calling.
|
|
*/
|
|
static inline void double_rq_lock(struct rq *rq1, struct rq *rq2)
|
|
__acquires(rq1->lock)
|
|
__acquires(rq2->lock)
|
|
{
|
|
BUG_ON(!irqs_disabled());
|
|
BUG_ON(rq1 != rq2);
|
|
raw_spin_lock(&rq1->lock);
|
|
__acquire(rq2->lock); /* Fake it out ;) */
|
|
}
|
|
|
|
/*
|
|
* double_rq_unlock - safely unlock two runqueues
|
|
*
|
|
* Note this does not restore interrupts like task_rq_unlock,
|
|
* you need to do so manually after calling.
|
|
*/
|
|
static inline void double_rq_unlock(struct rq *rq1, struct rq *rq2)
|
|
__releases(rq1->lock)
|
|
__releases(rq2->lock)
|
|
{
|
|
BUG_ON(rq1 != rq2);
|
|
raw_spin_unlock(&rq1->lock);
|
|
__release(rq2->lock);
|
|
}
|
|
|
|
#endif
|
|
|
|
extern struct sched_entity *__pick_first_entity(struct cfs_rq *cfs_rq);
|
|
extern struct sched_entity *__pick_last_entity(struct cfs_rq *cfs_rq);
|
|
|
|
#ifdef CONFIG_SCHED_DEBUG
|
|
extern bool sched_debug_enabled;
|
|
|
|
extern void print_cfs_stats(struct seq_file *m, int cpu);
|
|
extern void print_rt_stats(struct seq_file *m, int cpu);
|
|
extern void print_dl_stats(struct seq_file *m, int cpu);
|
|
extern void
|
|
print_cfs_rq(struct seq_file *m, int cpu, struct cfs_rq *cfs_rq);
|
|
#ifdef CONFIG_NUMA_BALANCING
|
|
extern void
|
|
show_numa_stats(struct task_struct *p, struct seq_file *m);
|
|
extern void
|
|
print_numa_stats(struct seq_file *m, int node, unsigned long tsf,
|
|
unsigned long tpf, unsigned long gsf, unsigned long gpf);
|
|
#endif /* CONFIG_NUMA_BALANCING */
|
|
#endif /* CONFIG_SCHED_DEBUG */
|
|
|
|
extern void init_cfs_rq(struct cfs_rq *cfs_rq);
|
|
extern void init_rt_rq(struct rt_rq *rt_rq);
|
|
extern void init_dl_rq(struct dl_rq *dl_rq);
|
|
|
|
extern void cfs_bandwidth_usage_inc(void);
|
|
extern void cfs_bandwidth_usage_dec(void);
|
|
|
|
#ifdef CONFIG_NO_HZ_COMMON
|
|
enum rq_nohz_flag_bits {
|
|
NOHZ_TICK_STOPPED,
|
|
NOHZ_BALANCE_KICK,
|
|
};
|
|
|
|
#define nohz_flags(cpu) (&cpu_rq(cpu)->nohz_flags)
|
|
|
|
extern void nohz_balance_exit_idle(unsigned int cpu);
|
|
#else
|
|
static inline void nohz_balance_exit_idle(unsigned int cpu) { }
|
|
#endif
|
|
|
|
|
|
#ifdef CONFIG_SMP
|
|
static inline
|
|
void __dl_update(struct dl_bw *dl_b, s64 bw)
|
|
{
|
|
struct root_domain *rd = container_of(dl_b, struct root_domain, dl_bw);
|
|
int i;
|
|
|
|
RCU_LOCKDEP_WARN(!rcu_read_lock_sched_held(),
|
|
"sched RCU must be held");
|
|
for_each_cpu_and(i, rd->span, cpu_active_mask) {
|
|
struct rq *rq = cpu_rq(i);
|
|
|
|
rq->dl.extra_bw += bw;
|
|
}
|
|
}
|
|
#else
|
|
static inline
|
|
void __dl_update(struct dl_bw *dl_b, s64 bw)
|
|
{
|
|
struct dl_rq *dl = container_of(dl_b, struct dl_rq, dl_bw);
|
|
|
|
dl->extra_bw += bw;
|
|
}
|
|
#endif
|
|
|
|
|
|
#ifdef CONFIG_IRQ_TIME_ACCOUNTING
|
|
struct irqtime {
|
|
u64 total;
|
|
u64 tick_delta;
|
|
u64 irq_start_time;
|
|
struct u64_stats_sync sync;
|
|
};
|
|
|
|
DECLARE_PER_CPU(struct irqtime, cpu_irqtime);
|
|
|
|
/*
|
|
* Returns the irqtime minus the softirq time computed by ksoftirqd.
|
|
* Otherwise ksoftirqd's sum_exec_runtime is substracted its own runtime
|
|
* and never move forward.
|
|
*/
|
|
static inline u64 irq_time_read(int cpu)
|
|
{
|
|
struct irqtime *irqtime = &per_cpu(cpu_irqtime, cpu);
|
|
unsigned int seq;
|
|
u64 total;
|
|
|
|
do {
|
|
seq = __u64_stats_fetch_begin(&irqtime->sync);
|
|
total = irqtime->total;
|
|
} while (__u64_stats_fetch_retry(&irqtime->sync, seq));
|
|
|
|
return total;
|
|
}
|
|
#endif /* CONFIG_IRQ_TIME_ACCOUNTING */
|
|
|
|
#ifdef CONFIG_CPU_FREQ
|
|
DECLARE_PER_CPU(struct update_util_data *, cpufreq_update_util_data);
|
|
|
|
/**
|
|
* cpufreq_update_util - Take a note about CPU utilization changes.
|
|
* @rq: Runqueue to carry out the update for.
|
|
* @flags: Update reason flags.
|
|
*
|
|
* This function is called by the scheduler on the CPU whose utilization is
|
|
* being updated.
|
|
*
|
|
* It can only be called from RCU-sched read-side critical sections.
|
|
*
|
|
* The way cpufreq is currently arranged requires it to evaluate the CPU
|
|
* performance state (frequency/voltage) on a regular basis to prevent it from
|
|
* being stuck in a completely inadequate performance level for too long.
|
|
* That is not guaranteed to happen if the updates are only triggered from CFS
|
|
* and DL, though, because they may not be coming in if only RT tasks are
|
|
* active all the time (or there are RT tasks only).
|
|
*
|
|
* As a workaround for that issue, this function is called periodically by the
|
|
* RT sched class to trigger extra cpufreq updates to prevent it from stalling,
|
|
* but that really is a band-aid. Going forward it should be replaced with
|
|
* solutions targeted more specifically at RT tasks.
|
|
*/
|
|
static inline void cpufreq_update_util(struct rq *rq, unsigned int flags)
|
|
{
|
|
struct update_util_data *data;
|
|
|
|
data = rcu_dereference_sched(*per_cpu_ptr(&cpufreq_update_util_data,
|
|
cpu_of(rq)));
|
|
if (data)
|
|
data->func(data, rq_clock(rq), flags);
|
|
}
|
|
#else
|
|
static inline void cpufreq_update_util(struct rq *rq, unsigned int flags) {}
|
|
#endif /* CONFIG_CPU_FREQ */
|
|
|
|
#ifdef arch_scale_freq_capacity
|
|
#ifndef arch_scale_freq_invariant
|
|
#define arch_scale_freq_invariant() (true)
|
|
#endif
|
|
#else /* arch_scale_freq_capacity */
|
|
#define arch_scale_freq_invariant() (false)
|
|
#endif
|
|
|
|
#ifdef CONFIG_CPU_FREQ_GOV_SCHEDUTIL
|
|
|
|
static inline unsigned long cpu_util_dl(struct rq *rq)
|
|
{
|
|
return (rq->dl.running_bw * SCHED_CAPACITY_SCALE) >> BW_SHIFT;
|
|
}
|
|
|
|
static inline unsigned long cpu_util_cfs(struct rq *rq)
|
|
{
|
|
return rq->cfs.avg.util_avg;
|
|
}
|
|
|
|
#endif
|