linux/drivers/input/rmi4/rmi_f30.c
Andrew Duggan 6d0dbeae71 Input: synaptics-rmi4 - handle incomplete input data
Commit 5b65c2a02966 ("HID: rmi: check sanity of the incoming report") added
support for handling incomplete HID reports do to the input data being
corrupted in transit. This patch reimplements this functionality in the
function drivers so they can handle getting less valid data then they
expect.

Signed-off-by: Andrew Duggan <aduggan@synaptics.com>
Signed-off-by: Benjamin Tissoires <benjamin.tissoires@redhat.com>
Signed-off-by: Dmitry Torokhov <dmitry.torokhov@gmail.com>
2016-11-08 17:12:06 -08:00

412 lines
10 KiB
C

/*
* Copyright (c) 2012-2016 Synaptics Incorporated
*
* This program is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License version 2 as published by
* the Free Software Foundation.
*/
#include <linux/kernel.h>
#include <linux/rmi.h>
#include <linux/input.h>
#include <linux/slab.h>
#include "rmi_driver.h"
#define RMI_F30_QUERY_SIZE 2
/* Defs for Query 0 */
#define RMI_F30_EXTENDED_PATTERNS 0x01
#define RMI_F30_HAS_MAPPABLE_BUTTONS (1 << 1)
#define RMI_F30_HAS_LED (1 << 2)
#define RMI_F30_HAS_GPIO (1 << 3)
#define RMI_F30_HAS_HAPTIC (1 << 4)
#define RMI_F30_HAS_GPIO_DRV_CTL (1 << 5)
#define RMI_F30_HAS_MECH_MOUSE_BTNS (1 << 6)
/* Defs for Query 1 */
#define RMI_F30_GPIO_LED_COUNT 0x1F
/* Defs for Control Registers */
#define RMI_F30_CTRL_1_GPIO_DEBOUNCE 0x01
#define RMI_F30_CTRL_1_HALT (1 << 4)
#define RMI_F30_CTRL_1_HALTED (1 << 5)
#define RMI_F30_CTRL_10_NUM_MECH_MOUSE_BTNS 0x03
struct rmi_f30_ctrl_data {
int address;
int length;
u8 *regs;
};
#define RMI_F30_CTRL_MAX_REGS 32
#define RMI_F30_CTRL_MAX_BYTES ((RMI_F30_CTRL_MAX_REGS + 7) >> 3)
#define RMI_F30_CTRL_MAX_REG_BLOCKS 11
#define RMI_F30_CTRL_REGS_MAX_SIZE (RMI_F30_CTRL_MAX_BYTES \
+ 1 \
+ RMI_F30_CTRL_MAX_BYTES \
+ RMI_F30_CTRL_MAX_BYTES \
+ RMI_F30_CTRL_MAX_BYTES \
+ 6 \
+ RMI_F30_CTRL_MAX_REGS \
+ RMI_F30_CTRL_MAX_REGS \
+ RMI_F30_CTRL_MAX_BYTES \
+ 1 \
+ 1)
struct f30_data {
/* Query Data */
bool has_extended_pattern;
bool has_mappable_buttons;
bool has_led;
bool has_gpio;
bool has_haptic;
bool has_gpio_driver_control;
bool has_mech_mouse_btns;
u8 gpioled_count;
u8 register_count;
/* Control Register Data */
struct rmi_f30_ctrl_data ctrl[RMI_F30_CTRL_MAX_REG_BLOCKS];
u8 ctrl_regs[RMI_F30_CTRL_REGS_MAX_SIZE];
u32 ctrl_regs_size;
u8 data_regs[RMI_F30_CTRL_MAX_BYTES];
u16 *gpioled_key_map;
struct input_dev *input;
};
static int rmi_f30_read_control_parameters(struct rmi_function *fn,
struct f30_data *f30)
{
struct rmi_device *rmi_dev = fn->rmi_dev;
int error = 0;
error = rmi_read_block(rmi_dev, fn->fd.control_base_addr,
f30->ctrl_regs, f30->ctrl_regs_size);
if (error) {
dev_err(&rmi_dev->dev, "%s : Could not read control registers at 0x%x error (%d)\n",
__func__, fn->fd.control_base_addr, error);
return error;
}
return 0;
}
static int rmi_f30_attention(struct rmi_function *fn, unsigned long *irq_bits)
{
struct f30_data *f30 = dev_get_drvdata(&fn->dev);
struct rmi_device *rmi_dev = fn->rmi_dev;
int retval;
int gpiled = 0;
int value = 0;
int i;
int reg_num;
if (!f30->input)
return 0;
/* Read the gpi led data. */
if (rmi_dev->xport->attn_data) {
if (rmi_dev->xport->attn_size < f30->register_count) {
dev_warn(&fn->dev, "F30 interrupted, but data is missing\n");
return 0;
}
memcpy(f30->data_regs, rmi_dev->xport->attn_data,
f30->register_count);
rmi_dev->xport->attn_data += f30->register_count;
rmi_dev->xport->attn_size -= f30->register_count;
} else {
retval = rmi_read_block(rmi_dev, fn->fd.data_base_addr,
f30->data_regs, f30->register_count);
if (retval) {
dev_err(&fn->dev, "%s: Failed to read F30 data registers.\n",
__func__);
return retval;
}
}
for (reg_num = 0; reg_num < f30->register_count; ++reg_num) {
for (i = 0; gpiled < f30->gpioled_count && i < 8; ++i,
++gpiled) {
if (f30->gpioled_key_map[gpiled] != 0) {
/* buttons have pull up resistors */
value = (((f30->data_regs[reg_num] >> i) & 0x01)
== 0);
rmi_dbg(RMI_DEBUG_FN, &fn->dev,
"%s: call input report key (0x%04x) value (0x%02x)",
__func__,
f30->gpioled_key_map[gpiled], value);
input_report_key(f30->input,
f30->gpioled_key_map[gpiled],
value);
}
}
}
return 0;
}
static int rmi_f30_register_device(struct rmi_function *fn)
{
int i;
struct rmi_device *rmi_dev = fn->rmi_dev;
struct rmi_driver_data *drv_data = dev_get_drvdata(&rmi_dev->dev);
struct f30_data *f30 = dev_get_drvdata(&fn->dev);
struct input_dev *input_dev;
int button_count = 0;
input_dev = drv_data->input;
if (!input_dev) {
dev_info(&fn->dev, "F30: no input device found, ignoring.\n");
return -EINVAL;
}
f30->input = input_dev;
set_bit(EV_KEY, input_dev->evbit);
input_dev->keycode = f30->gpioled_key_map;
input_dev->keycodesize = sizeof(u16);
input_dev->keycodemax = f30->gpioled_count;
for (i = 0; i < f30->gpioled_count; i++) {
if (f30->gpioled_key_map[i] != 0) {
input_set_capability(input_dev, EV_KEY,
f30->gpioled_key_map[i]);
button_count++;
}
}
if (button_count == 1)
__set_bit(INPUT_PROP_BUTTONPAD, input_dev->propbit);
return 0;
}
static int rmi_f30_config(struct rmi_function *fn)
{
struct f30_data *f30 = dev_get_drvdata(&fn->dev);
struct rmi_driver *drv = fn->rmi_dev->driver;
const struct rmi_device_platform_data *pdata =
rmi_get_platform_data(fn->rmi_dev);
int error;
if (pdata->f30_data && pdata->f30_data->disable) {
drv->clear_irq_bits(fn->rmi_dev, fn->irq_mask);
} else {
/* Write Control Register values back to device */
error = rmi_write_block(fn->rmi_dev, fn->fd.control_base_addr,
f30->ctrl_regs, f30->ctrl_regs_size);
if (error) {
dev_err(&fn->rmi_dev->dev,
"%s : Could not write control registers at 0x%x error (%d)\n",
__func__, fn->fd.control_base_addr, error);
return error;
}
drv->set_irq_bits(fn->rmi_dev, fn->irq_mask);
}
return 0;
}
static inline void rmi_f30_set_ctrl_data(struct rmi_f30_ctrl_data *ctrl,
int *ctrl_addr, int len, u8 **reg)
{
ctrl->address = *ctrl_addr;
ctrl->length = len;
ctrl->regs = *reg;
*ctrl_addr += len;
*reg += len;
}
static inline bool rmi_f30_is_valid_button(int button,
struct rmi_f30_ctrl_data *ctrl)
{
int byte_position = button >> 3;
int bit_position = button & 0x07;
/*
* ctrl2 -> dir == 0 -> input mode
* ctrl3 -> data == 1 -> actual button
*/
return !(ctrl[2].regs[byte_position] & BIT(bit_position)) &&
(ctrl[3].regs[byte_position] & BIT(bit_position));
}
static inline int rmi_f30_initialize(struct rmi_function *fn)
{
struct f30_data *f30;
struct rmi_device *rmi_dev = fn->rmi_dev;
const struct rmi_device_platform_data *pdata;
int retval = 0;
int control_address;
int i;
int button;
u8 buf[RMI_F30_QUERY_SIZE];
u8 *ctrl_reg;
u8 *map_memory;
f30 = devm_kzalloc(&fn->dev, sizeof(struct f30_data),
GFP_KERNEL);
if (!f30)
return -ENOMEM;
dev_set_drvdata(&fn->dev, f30);
retval = rmi_read_block(fn->rmi_dev, fn->fd.query_base_addr, buf,
RMI_F30_QUERY_SIZE);
if (retval) {
dev_err(&fn->dev, "Failed to read query register.\n");
return retval;
}
f30->has_extended_pattern = buf[0] & RMI_F30_EXTENDED_PATTERNS;
f30->has_mappable_buttons = buf[0] & RMI_F30_HAS_MAPPABLE_BUTTONS;
f30->has_led = buf[0] & RMI_F30_HAS_LED;
f30->has_gpio = buf[0] & RMI_F30_HAS_GPIO;
f30->has_haptic = buf[0] & RMI_F30_HAS_HAPTIC;
f30->has_gpio_driver_control = buf[0] & RMI_F30_HAS_GPIO_DRV_CTL;
f30->has_mech_mouse_btns = buf[0] & RMI_F30_HAS_MECH_MOUSE_BTNS;
f30->gpioled_count = buf[1] & RMI_F30_GPIO_LED_COUNT;
f30->register_count = (f30->gpioled_count + 7) >> 3;
control_address = fn->fd.control_base_addr;
ctrl_reg = f30->ctrl_regs;
if (f30->has_gpio && f30->has_led)
rmi_f30_set_ctrl_data(&f30->ctrl[0], &control_address,
f30->register_count, &ctrl_reg);
rmi_f30_set_ctrl_data(&f30->ctrl[1], &control_address, sizeof(u8),
&ctrl_reg);
if (f30->has_gpio) {
rmi_f30_set_ctrl_data(&f30->ctrl[2], &control_address,
f30->register_count, &ctrl_reg);
rmi_f30_set_ctrl_data(&f30->ctrl[3], &control_address,
f30->register_count, &ctrl_reg);
}
if (f30->has_led) {
int ctrl5_len;
rmi_f30_set_ctrl_data(&f30->ctrl[4], &control_address,
f30->register_count, &ctrl_reg);
if (f30->has_extended_pattern)
ctrl5_len = 6;
else
ctrl5_len = 2;
rmi_f30_set_ctrl_data(&f30->ctrl[5], &control_address,
ctrl5_len, &ctrl_reg);
}
if (f30->has_led || f30->has_gpio_driver_control) {
/* control 6 uses a byte per gpio/led */
rmi_f30_set_ctrl_data(&f30->ctrl[6], &control_address,
f30->gpioled_count, &ctrl_reg);
}
if (f30->has_mappable_buttons) {
/* control 7 uses a byte per gpio/led */
rmi_f30_set_ctrl_data(&f30->ctrl[7], &control_address,
f30->gpioled_count, &ctrl_reg);
}
if (f30->has_haptic) {
rmi_f30_set_ctrl_data(&f30->ctrl[8], &control_address,
f30->register_count, &ctrl_reg);
rmi_f30_set_ctrl_data(&f30->ctrl[9], &control_address,
sizeof(u8), &ctrl_reg);
}
if (f30->has_mech_mouse_btns)
rmi_f30_set_ctrl_data(&f30->ctrl[10], &control_address,
sizeof(u8), &ctrl_reg);
f30->ctrl_regs_size = ctrl_reg - f30->ctrl_regs
?: RMI_F30_CTRL_REGS_MAX_SIZE;
retval = rmi_f30_read_control_parameters(fn, f30);
if (retval < 0) {
dev_err(&fn->dev,
"Failed to initialize F19 control params.\n");
return retval;
}
map_memory = devm_kzalloc(&fn->dev,
(f30->gpioled_count * (sizeof(u16))),
GFP_KERNEL);
if (!map_memory) {
dev_err(&fn->dev, "Failed to allocate gpioled map memory.\n");
return -ENOMEM;
}
f30->gpioled_key_map = (u16 *)map_memory;
pdata = rmi_get_platform_data(rmi_dev);
if (pdata && f30->has_gpio) {
button = BTN_LEFT;
for (i = 0; i < f30->gpioled_count; i++) {
if (rmi_f30_is_valid_button(i, f30->ctrl)) {
f30->gpioled_key_map[i] = button++;
/*
* buttonpad might be given by
* f30->has_mech_mouse_btns, but I am
* not sure, so use only the pdata info
*/
if (pdata->f30_data &&
pdata->f30_data->buttonpad)
break;
}
}
}
return 0;
}
static int rmi_f30_probe(struct rmi_function *fn)
{
int rc;
const struct rmi_device_platform_data *pdata =
rmi_get_platform_data(fn->rmi_dev);
if (pdata->f30_data && pdata->f30_data->disable)
return 0;
rc = rmi_f30_initialize(fn);
if (rc < 0)
goto error_exit;
rc = rmi_f30_register_device(fn);
if (rc < 0)
goto error_exit;
return 0;
error_exit:
return rc;
}
struct rmi_function_handler rmi_f30_handler = {
.driver = {
.name = "rmi4_f30",
},
.func = 0x30,
.probe = rmi_f30_probe,
.config = rmi_f30_config,
.attention = rmi_f30_attention,
};