linux/arch/sparc64/kernel/chmc.c
David S. Miller 83ef64b9de sparc64: Use consistent chmc_ prefix in variables, types, and functions.
Signed-off-by: David S. Miller <davem@davemloft.net>
2008-08-24 21:45:44 -07:00

483 lines
11 KiB
C

/* chmc.c: Driver for UltraSPARC-III memory controller.
*
* Copyright (C) 2001, 2007, 2008 David S. Miller (davem@davemloft.net)
*/
#include <linux/module.h>
#include <linux/kernel.h>
#include <linux/types.h>
#include <linux/slab.h>
#include <linux/list.h>
#include <linux/string.h>
#include <linux/sched.h>
#include <linux/smp.h>
#include <linux/errno.h>
#include <linux/init.h>
#include <linux/of.h>
#include <linux/of_device.h>
#include <asm/spitfire.h>
#include <asm/chmctrl.h>
#include <asm/cpudata.h>
#include <asm/oplib.h>
#include <asm/prom.h>
#include <asm/head.h>
#include <asm/io.h>
#define DRV_MODULE_NAME "chmc"
#define PFX DRV_MODULE_NAME ": "
#define DRV_MODULE_VERSION "0.2"
MODULE_AUTHOR("David S. Miller (davem@davemloft.net)");
MODULE_DESCRIPTION("UltraSPARC-III memory controller driver");
MODULE_LICENSE("GPL");
MODULE_VERSION(DRV_MODULE_VERSION);
#define CHMCTRL_NDGRPS 2
#define CHMCTRL_NDIMMS 4
#define CHMC_DIMMS_PER_MC (CHMCTRL_NDGRPS * CHMCTRL_NDIMMS)
/* OBP memory-layout property format. */
struct chmc_obp_map {
unsigned char dimm_map[144];
unsigned char pin_map[576];
};
#define DIMM_LABEL_SZ 8
struct chmc_obp_mem_layout {
/* One max 8-byte string label per DIMM. Usually
* this matches the label on the motherboard where
* that DIMM resides.
*/
char dimm_labels[CHMC_DIMMS_PER_MC][DIMM_LABEL_SZ];
/* If symmetric use map[0], else it is
* asymmetric and map[1] should be used.
*/
char symmetric;
struct chmc_obp_map map[2];
};
#define CHMCTRL_NBANKS 4
struct chmc_bank_info {
struct chmc *p;
int bank_id;
u64 raw_reg;
int valid;
int uk;
int um;
int lk;
int lm;
int interleave;
unsigned long base;
unsigned long size;
};
struct chmc {
struct list_head list;
int portid;
struct chmc_obp_mem_layout layout_prop;
int layout_size;
void __iomem *regs;
u64 timing_control1;
u64 timing_control2;
u64 timing_control3;
u64 timing_control4;
u64 memaddr_control;
struct chmc_bank_info logical_banks[CHMCTRL_NBANKS];
};
static LIST_HEAD(mctrl_list);
/* Does BANK decode PHYS_ADDR? */
static int chmc_bank_match(struct chmc_bank_info *bp, unsigned long phys_addr)
{
unsigned long upper_bits = (phys_addr & PA_UPPER_BITS) >> PA_UPPER_BITS_SHIFT;
unsigned long lower_bits = (phys_addr & PA_LOWER_BITS) >> PA_LOWER_BITS_SHIFT;
/* Bank must be enabled to match. */
if (bp->valid == 0)
return 0;
/* Would BANK match upper bits? */
upper_bits ^= bp->um; /* What bits are different? */
upper_bits = ~upper_bits; /* Invert. */
upper_bits |= bp->uk; /* What bits don't matter for matching? */
upper_bits = ~upper_bits; /* Invert. */
if (upper_bits)
return 0;
/* Would BANK match lower bits? */
lower_bits ^= bp->lm; /* What bits are different? */
lower_bits = ~lower_bits; /* Invert. */
lower_bits |= bp->lk; /* What bits don't matter for matching? */
lower_bits = ~lower_bits; /* Invert. */
if (lower_bits)
return 0;
/* I always knew you'd be the one. */
return 1;
}
/* Given PHYS_ADDR, search memory controller banks for a match. */
static struct chmc_bank_info *chmc_find_bank(unsigned long phys_addr)
{
struct list_head *mctrl_head = &mctrl_list;
struct list_head *mctrl_entry = mctrl_head->next;
for (;;) {
struct chmc *p = list_entry(mctrl_entry, struct chmc, list);
int bank_no;
if (mctrl_entry == mctrl_head)
break;
mctrl_entry = mctrl_entry->next;
for (bank_no = 0; bank_no < CHMCTRL_NBANKS; bank_no++) {
struct chmc_bank_info *bp;
bp = &p->logical_banks[bank_no];
if (chmc_bank_match(bp, phys_addr))
return bp;
}
}
return NULL;
}
/* This is the main purpose of this driver. */
#define SYNDROME_MIN -1
#define SYNDROME_MAX 144
int chmc_getunumber(int syndrome_code,
unsigned long phys_addr,
char *buf, int buflen)
{
struct chmc_bank_info *bp;
struct chmc_obp_mem_layout *prop;
int bank_in_controller, first_dimm;
bp = chmc_find_bank(phys_addr);
if (bp == NULL ||
syndrome_code < SYNDROME_MIN ||
syndrome_code > SYNDROME_MAX) {
buf[0] = '?';
buf[1] = '?';
buf[2] = '?';
buf[3] = '\0';
return 0;
}
prop = &bp->p->layout_prop;
bank_in_controller = bp->bank_id & (CHMCTRL_NBANKS - 1);
first_dimm = (bank_in_controller & (CHMCTRL_NDGRPS - 1));
first_dimm *= CHMCTRL_NDIMMS;
if (syndrome_code != SYNDROME_MIN) {
struct chmc_obp_map *map;
int qword, where_in_line, where, map_index, map_offset;
unsigned int map_val;
/* Yaay, single bit error so we can figure out
* the exact dimm.
*/
if (prop->symmetric)
map = &prop->map[0];
else
map = &prop->map[1];
/* Covert syndrome code into the way the bits are
* positioned on the bus.
*/
if (syndrome_code < 144 - 16)
syndrome_code += 16;
else if (syndrome_code < 144)
syndrome_code -= (144 - 7);
else if (syndrome_code < (144 + 3))
syndrome_code -= (144 + 3 - 4);
else
syndrome_code -= 144 + 3;
/* All this magic has to do with how a cache line
* comes over the wire on Safari. A 64-bit line
* comes over in 4 quadword cycles, each of which
* transmit ECC/MTAG info as well as the actual
* data. 144 bits per quadword, 576 total.
*/
#define LINE_SIZE 64
#define LINE_ADDR_MSK (LINE_SIZE - 1)
#define QW_PER_LINE 4
#define QW_BYTES (LINE_SIZE / QW_PER_LINE)
#define QW_BITS 144
#define LAST_BIT (576 - 1)
qword = (phys_addr & LINE_ADDR_MSK) / QW_BYTES;
where_in_line = ((3 - qword) * QW_BITS) + syndrome_code;
where = (LAST_BIT - where_in_line);
map_index = where >> 2;
map_offset = where & 0x3;
map_val = map->dimm_map[map_index];
map_val = ((map_val >> ((3 - map_offset) << 1)) & (2 - 1));
sprintf(buf, "%s, pin %3d",
prop->dimm_labels[first_dimm + map_val],
map->pin_map[where_in_line]);
} else {
int dimm;
/* Multi-bit error, we just dump out all the
* dimm labels associated with this bank.
*/
for (dimm = 0; dimm < CHMCTRL_NDIMMS; dimm++) {
sprintf(buf, "%s ",
prop->dimm_labels[first_dimm + dimm]);
buf += strlen(buf);
}
}
return 0;
}
/* Accessing the registers is slightly complicated. If you want
* to get at the memory controller which is on the same processor
* the code is executing, you must use special ASI load/store else
* you go through the global mapping.
*/
static u64 chmc_read_mcreg(struct chmc *p, unsigned long offset)
{
unsigned long ret, this_cpu;
preempt_disable();
this_cpu = real_hard_smp_processor_id();
if (p->portid == this_cpu) {
__asm__ __volatile__("ldxa [%1] %2, %0"
: "=r" (ret)
: "r" (offset), "i" (ASI_MCU_CTRL_REG));
} else {
__asm__ __volatile__("ldxa [%1] %2, %0"
: "=r" (ret)
: "r" (p->regs + offset),
"i" (ASI_PHYS_BYPASS_EC_E));
}
preempt_enable();
return ret;
}
#if 0 /* currently unused */
static void chmc_write_mcreg(struct chmc *p, unsigned long offset, u64 val)
{
if (p->portid == smp_processor_id()) {
__asm__ __volatile__("stxa %0, [%1] %2"
: : "r" (val),
"r" (offset), "i" (ASI_MCU_CTRL_REG));
} else {
__asm__ __volatile__("ldxa %0, [%1] %2"
: : "r" (val),
"r" (p->regs + offset),
"i" (ASI_PHYS_BYPASS_EC_E));
}
}
#endif
static void chmc_interpret_one_decode_reg(struct chmc *p, int which_bank, u64 val)
{
struct chmc_bank_info *bp = &p->logical_banks[which_bank];
bp->p = p;
bp->bank_id = (CHMCTRL_NBANKS * p->portid) + which_bank;
bp->raw_reg = val;
bp->valid = (val & MEM_DECODE_VALID) >> MEM_DECODE_VALID_SHIFT;
bp->uk = (val & MEM_DECODE_UK) >> MEM_DECODE_UK_SHIFT;
bp->um = (val & MEM_DECODE_UM) >> MEM_DECODE_UM_SHIFT;
bp->lk = (val & MEM_DECODE_LK) >> MEM_DECODE_LK_SHIFT;
bp->lm = (val & MEM_DECODE_LM) >> MEM_DECODE_LM_SHIFT;
bp->base = (bp->um);
bp->base &= ~(bp->uk);
bp->base <<= PA_UPPER_BITS_SHIFT;
switch(bp->lk) {
case 0xf:
default:
bp->interleave = 1;
break;
case 0xe:
bp->interleave = 2;
break;
case 0xc:
bp->interleave = 4;
break;
case 0x8:
bp->interleave = 8;
break;
case 0x0:
bp->interleave = 16;
break;
};
/* UK[10] is reserved, and UK[11] is not set for the SDRAM
* bank size definition.
*/
bp->size = (((unsigned long)bp->uk &
((1UL << 10UL) - 1UL)) + 1UL) << PA_UPPER_BITS_SHIFT;
bp->size /= bp->interleave;
}
static void chmc_fetch_decode_regs(struct chmc *p)
{
if (p->layout_size == 0)
return;
chmc_interpret_one_decode_reg(p, 0,
chmc_read_mcreg(p, CHMCTRL_DECODE1));
chmc_interpret_one_decode_reg(p, 1,
chmc_read_mcreg(p, CHMCTRL_DECODE2));
chmc_interpret_one_decode_reg(p, 2,
chmc_read_mcreg(p, CHMCTRL_DECODE3));
chmc_interpret_one_decode_reg(p, 3,
chmc_read_mcreg(p, CHMCTRL_DECODE4));
}
static int __devinit chmc_probe(struct of_device *op,
const struct of_device_id *match)
{
struct device_node *dp = op->node;
unsigned long ver;
const void *pval;
int len, portid;
struct chmc *p;
int err;
err = -ENODEV;
__asm__ ("rdpr %%ver, %0" : "=r" (ver));
if ((ver >> 32UL) == __JALAPENO_ID ||
(ver >> 32UL) == __SERRANO_ID)
goto out;
portid = of_getintprop_default(dp, "portid", -1);
if (portid == -1)
goto out;
pval = of_get_property(dp, "memory-layout", &len);
if (pval && len > sizeof(p->layout_prop)) {
printk(KERN_ERR PFX "Unexpected memory-layout property "
"size %d.\n", len);
goto out;
}
err = -ENOMEM;
p = kzalloc(sizeof(*p), GFP_KERNEL);
if (!p) {
printk(KERN_ERR PFX "Could not allocate struct chmc.\n");
goto out;
}
p->portid = portid;
p->layout_size = len;
if (!pval)
p->layout_size = 0;
else
memcpy(&p->layout_prop, pval, len);
p->regs = of_ioremap(&op->resource[0], 0, 0x48, "chmc");
if (!p->regs) {
printk(KERN_ERR PFX "Could not map registers.\n");
goto out_free;
}
if (p->layout_size != 0UL) {
p->timing_control1 = chmc_read_mcreg(p, CHMCTRL_TCTRL1);
p->timing_control2 = chmc_read_mcreg(p, CHMCTRL_TCTRL2);
p->timing_control3 = chmc_read_mcreg(p, CHMCTRL_TCTRL3);
p->timing_control4 = chmc_read_mcreg(p, CHMCTRL_TCTRL4);
p->memaddr_control = chmc_read_mcreg(p, CHMCTRL_MACTRL);
}
chmc_fetch_decode_regs(p);
list_add(&p->list, &mctrl_list);
/* Report the device. */
printk(KERN_INFO PFX "UltraSPARC-III memory controller at %s [%s]\n",
dp->full_name,
(p->layout_size ? "ACTIVE" : "INACTIVE"));
dev_set_drvdata(&op->dev, p);
err = 0;
out:
return err;
out_free:
kfree(p);
goto out;
}
static int __devexit chmc_remove(struct of_device *op)
{
struct chmc *p = dev_get_drvdata(&op->dev);
if (p) {
list_del(&p->list);
of_iounmap(&op->resource[0], p->regs, 0x48);
kfree(p);
}
return 0;
}
static struct of_device_id chmc_match[] = {
{
.name = "memory-controller",
},
{},
};
MODULE_DEVICE_TABLE(of, chmc_match);
static struct of_platform_driver chmc_driver = {
.name = "chmc",
.match_table = chmc_match,
.probe = chmc_probe,
.remove = __devexit_p(chmc_remove),
};
static inline bool chmc_platform(void)
{
if (tlb_type == cheetah || tlb_type == cheetah_plus)
return true;
return false;
}
static int __init chmc_init(void)
{
if (!chmc_platform())
return -ENODEV;
return of_register_driver(&chmc_driver, &of_bus_type);
}
static void __exit chmc_cleanup(void)
{
if (chmc_platform())
of_unregister_driver(&chmc_driver);
}
module_init(chmc_init);
module_exit(chmc_cleanup);