mirror of
https://github.com/FEX-Emu/linux.git
synced 2025-01-04 16:22:09 +00:00
2c95cd71f8
Signed-off-by: Mike Frysinger <michael.frysinger@analog.com> Signed-off-by: Bryan Wu <bryan.wu@analog.com>
446 lines
12 KiB
C
446 lines
12 KiB
C
/*
|
|
* Blackfin On-Chip Real Time Clock Driver
|
|
* Supports BF53[123]/BF53[467]/BF54[2489]
|
|
*
|
|
* Copyright 2004-2007 Analog Devices Inc.
|
|
*
|
|
* Enter bugs at http://blackfin.uclinux.org/
|
|
*
|
|
* Licensed under the GPL-2 or later.
|
|
*/
|
|
|
|
/* The biggest issue we deal with in this driver is that register writes are
|
|
* synced to the RTC frequency of 1Hz. So if you write to a register and
|
|
* attempt to write again before the first write has completed, the new write
|
|
* is simply discarded. This can easily be troublesome if userspace disables
|
|
* one event (say periodic) and then right after enables an event (say alarm).
|
|
* Since all events are maintained in the same interrupt mask register, if
|
|
* we wrote to it to disable the first event and then wrote to it again to
|
|
* enable the second event, that second event would not be enabled as the
|
|
* write would be discarded and things quickly fall apart.
|
|
*
|
|
* To keep this delay from significantly degrading performance (we, in theory,
|
|
* would have to sleep for up to 1 second everytime we wanted to write a
|
|
* register), we only check the write pending status before we start to issue
|
|
* a new write. We bank on the idea that it doesnt matter when the sync
|
|
* happens so long as we don't attempt another write before it does. The only
|
|
* time userspace would take this penalty is when they try and do multiple
|
|
* operations right after another ... but in this case, they need to take the
|
|
* sync penalty, so we should be OK.
|
|
*
|
|
* Also note that the RTC_ISTAT register does not suffer this penalty; its
|
|
* writes to clear status registers complete immediately.
|
|
*/
|
|
|
|
#include <linux/module.h>
|
|
#include <linux/kernel.h>
|
|
#include <linux/bcd.h>
|
|
#include <linux/rtc.h>
|
|
#include <linux/init.h>
|
|
#include <linux/platform_device.h>
|
|
#include <linux/seq_file.h>
|
|
#include <linux/interrupt.h>
|
|
#include <linux/spinlock.h>
|
|
#include <linux/delay.h>
|
|
|
|
#include <asm/blackfin.h>
|
|
|
|
#define stamp(fmt, args...) pr_debug("%s:%i: " fmt "\n", __FUNCTION__, __LINE__, ## args)
|
|
#define stampit() stamp("here i am")
|
|
|
|
struct bfin_rtc {
|
|
struct rtc_device *rtc_dev;
|
|
struct rtc_time rtc_alarm;
|
|
spinlock_t lock;
|
|
};
|
|
|
|
/* Bit values for the ISTAT / ICTL registers */
|
|
#define RTC_ISTAT_WRITE_COMPLETE 0x8000
|
|
#define RTC_ISTAT_WRITE_PENDING 0x4000
|
|
#define RTC_ISTAT_ALARM_DAY 0x0040
|
|
#define RTC_ISTAT_24HR 0x0020
|
|
#define RTC_ISTAT_HOUR 0x0010
|
|
#define RTC_ISTAT_MIN 0x0008
|
|
#define RTC_ISTAT_SEC 0x0004
|
|
#define RTC_ISTAT_ALARM 0x0002
|
|
#define RTC_ISTAT_STOPWATCH 0x0001
|
|
|
|
/* Shift values for RTC_STAT register */
|
|
#define DAY_BITS_OFF 17
|
|
#define HOUR_BITS_OFF 12
|
|
#define MIN_BITS_OFF 6
|
|
#define SEC_BITS_OFF 0
|
|
|
|
/* Some helper functions to convert between the common RTC notion of time
|
|
* and the internal Blackfin notion that is stored in 32bits.
|
|
*/
|
|
static inline u32 rtc_time_to_bfin(unsigned long now)
|
|
{
|
|
u32 sec = (now % 60);
|
|
u32 min = (now % (60 * 60)) / 60;
|
|
u32 hour = (now % (60 * 60 * 24)) / (60 * 60);
|
|
u32 days = (now / (60 * 60 * 24));
|
|
return (sec << SEC_BITS_OFF) +
|
|
(min << MIN_BITS_OFF) +
|
|
(hour << HOUR_BITS_OFF) +
|
|
(days << DAY_BITS_OFF);
|
|
}
|
|
static inline unsigned long rtc_bfin_to_time(u32 rtc_bfin)
|
|
{
|
|
return (((rtc_bfin >> SEC_BITS_OFF) & 0x003F)) +
|
|
(((rtc_bfin >> MIN_BITS_OFF) & 0x003F) * 60) +
|
|
(((rtc_bfin >> HOUR_BITS_OFF) & 0x001F) * 60 * 60) +
|
|
(((rtc_bfin >> DAY_BITS_OFF) & 0x7FFF) * 60 * 60 * 24);
|
|
}
|
|
static inline void rtc_bfin_to_tm(u32 rtc_bfin, struct rtc_time *tm)
|
|
{
|
|
rtc_time_to_tm(rtc_bfin_to_time(rtc_bfin), tm);
|
|
}
|
|
|
|
/* Wait for the previous write to a RTC register to complete.
|
|
* Unfortunately, we can't sleep here as that introduces a race condition when
|
|
* turning on interrupt events. Consider this:
|
|
* - process sets alarm
|
|
* - process enables alarm
|
|
* - process sleeps while waiting for rtc write to sync
|
|
* - interrupt fires while process is sleeping
|
|
* - interrupt acks the event by writing to ISTAT
|
|
* - interrupt sets the WRITE PENDING bit
|
|
* - interrupt handler finishes
|
|
* - process wakes up, sees WRITE PENDING bit set, goes to sleep
|
|
* - interrupt fires while process is sleeping
|
|
* If anyone can point out the obvious solution here, i'm listening :). This
|
|
* shouldn't be an issue on an SMP or preempt system as this function should
|
|
* only be called with the rtc lock held.
|
|
*/
|
|
static void rtc_bfin_sync_pending(void)
|
|
{
|
|
stampit();
|
|
while (!(bfin_read_RTC_ISTAT() & RTC_ISTAT_WRITE_COMPLETE)) {
|
|
if (!(bfin_read_RTC_ISTAT() & RTC_ISTAT_WRITE_PENDING))
|
|
break;
|
|
}
|
|
bfin_write_RTC_ISTAT(RTC_ISTAT_WRITE_COMPLETE);
|
|
}
|
|
|
|
static void rtc_bfin_reset(struct bfin_rtc *rtc)
|
|
{
|
|
/* Initialize the RTC. Enable pre-scaler to scale RTC clock
|
|
* to 1Hz and clear interrupt/status registers. */
|
|
spin_lock_irq(&rtc->lock);
|
|
rtc_bfin_sync_pending();
|
|
bfin_write_RTC_PREN(0x1);
|
|
bfin_write_RTC_ICTL(0);
|
|
bfin_write_RTC_SWCNT(0);
|
|
bfin_write_RTC_ALARM(0);
|
|
bfin_write_RTC_ISTAT(0xFFFF);
|
|
spin_unlock_irq(&rtc->lock);
|
|
}
|
|
|
|
static irqreturn_t bfin_rtc_interrupt(int irq, void *dev_id)
|
|
{
|
|
struct platform_device *pdev = to_platform_device(dev_id);
|
|
struct bfin_rtc *rtc = platform_get_drvdata(pdev);
|
|
unsigned long events = 0;
|
|
u16 rtc_istat;
|
|
|
|
stampit();
|
|
|
|
spin_lock_irq(&rtc->lock);
|
|
|
|
rtc_istat = bfin_read_RTC_ISTAT();
|
|
|
|
if (rtc_istat & (RTC_ISTAT_ALARM | RTC_ISTAT_ALARM_DAY)) {
|
|
bfin_write_RTC_ISTAT(RTC_ISTAT_ALARM | RTC_ISTAT_ALARM_DAY);
|
|
events |= RTC_AF | RTC_IRQF;
|
|
}
|
|
|
|
if (rtc_istat & RTC_ISTAT_STOPWATCH) {
|
|
bfin_write_RTC_ISTAT(RTC_ISTAT_STOPWATCH);
|
|
events |= RTC_PF | RTC_IRQF;
|
|
bfin_write_RTC_SWCNT(rtc->rtc_dev->irq_freq);
|
|
}
|
|
|
|
if (rtc_istat & RTC_ISTAT_SEC) {
|
|
bfin_write_RTC_ISTAT(RTC_ISTAT_SEC);
|
|
events |= RTC_UF | RTC_IRQF;
|
|
}
|
|
|
|
rtc_update_irq(rtc->rtc_dev, 1, events);
|
|
|
|
spin_unlock_irq(&rtc->lock);
|
|
|
|
return IRQ_HANDLED;
|
|
}
|
|
|
|
static int bfin_rtc_open(struct device *dev)
|
|
{
|
|
struct bfin_rtc *rtc = dev_get_drvdata(dev);
|
|
int ret;
|
|
|
|
stampit();
|
|
|
|
ret = request_irq(IRQ_RTC, bfin_rtc_interrupt, IRQF_DISABLED, "rtc-bfin", dev);
|
|
if (unlikely(ret)) {
|
|
dev_err(dev, "request RTC IRQ failed with %d\n", ret);
|
|
return ret;
|
|
}
|
|
|
|
rtc_bfin_reset(rtc);
|
|
|
|
return ret;
|
|
}
|
|
|
|
static void bfin_rtc_release(struct device *dev)
|
|
{
|
|
struct bfin_rtc *rtc = dev_get_drvdata(dev);
|
|
stampit();
|
|
rtc_bfin_reset(rtc);
|
|
free_irq(IRQ_RTC, dev);
|
|
}
|
|
|
|
static int bfin_rtc_ioctl(struct device *dev, unsigned int cmd, unsigned long arg)
|
|
{
|
|
struct bfin_rtc *rtc = dev_get_drvdata(dev);
|
|
|
|
stampit();
|
|
|
|
switch (cmd) {
|
|
case RTC_PIE_ON:
|
|
stampit();
|
|
spin_lock_irq(&rtc->lock);
|
|
rtc_bfin_sync_pending();
|
|
bfin_write_RTC_ISTAT(RTC_ISTAT_STOPWATCH);
|
|
bfin_write_RTC_SWCNT(rtc->rtc_dev->irq_freq);
|
|
bfin_write_RTC_ICTL(bfin_read_RTC_ICTL() | RTC_ISTAT_STOPWATCH);
|
|
spin_unlock_irq(&rtc->lock);
|
|
return 0;
|
|
case RTC_PIE_OFF:
|
|
stampit();
|
|
spin_lock_irq(&rtc->lock);
|
|
rtc_bfin_sync_pending();
|
|
bfin_write_RTC_SWCNT(0);
|
|
bfin_write_RTC_ICTL(bfin_read_RTC_ICTL() & ~RTC_ISTAT_STOPWATCH);
|
|
spin_unlock_irq(&rtc->lock);
|
|
return 0;
|
|
|
|
case RTC_UIE_ON:
|
|
stampit();
|
|
spin_lock_irq(&rtc->lock);
|
|
rtc_bfin_sync_pending();
|
|
bfin_write_RTC_ISTAT(RTC_ISTAT_SEC);
|
|
bfin_write_RTC_ICTL(bfin_read_RTC_ICTL() | RTC_ISTAT_SEC);
|
|
spin_unlock_irq(&rtc->lock);
|
|
return 0;
|
|
case RTC_UIE_OFF:
|
|
stampit();
|
|
spin_lock_irq(&rtc->lock);
|
|
rtc_bfin_sync_pending();
|
|
bfin_write_RTC_ICTL(bfin_read_RTC_ICTL() & ~RTC_ISTAT_SEC);
|
|
spin_unlock_irq(&rtc->lock);
|
|
return 0;
|
|
|
|
case RTC_AIE_ON: {
|
|
unsigned long rtc_alarm;
|
|
u16 which_alarm;
|
|
int ret = 0;
|
|
|
|
stampit();
|
|
|
|
spin_lock_irq(&rtc->lock);
|
|
|
|
rtc_bfin_sync_pending();
|
|
if (rtc->rtc_alarm.tm_yday == -1) {
|
|
struct rtc_time now;
|
|
rtc_bfin_to_tm(bfin_read_RTC_STAT(), &now);
|
|
now.tm_sec = rtc->rtc_alarm.tm_sec;
|
|
now.tm_min = rtc->rtc_alarm.tm_min;
|
|
now.tm_hour = rtc->rtc_alarm.tm_hour;
|
|
ret = rtc_tm_to_time(&now, &rtc_alarm);
|
|
which_alarm = RTC_ISTAT_ALARM;
|
|
} else {
|
|
ret = rtc_tm_to_time(&rtc->rtc_alarm, &rtc_alarm);
|
|
which_alarm = RTC_ISTAT_ALARM_DAY;
|
|
}
|
|
if (ret == 0) {
|
|
bfin_write_RTC_ISTAT(which_alarm);
|
|
bfin_write_RTC_ALARM(rtc_time_to_bfin(rtc_alarm));
|
|
bfin_write_RTC_ICTL(bfin_read_RTC_ICTL() | which_alarm);
|
|
}
|
|
|
|
spin_unlock_irq(&rtc->lock);
|
|
|
|
return ret;
|
|
}
|
|
case RTC_AIE_OFF:
|
|
stampit();
|
|
spin_lock_irq(&rtc->lock);
|
|
rtc_bfin_sync_pending();
|
|
bfin_write_RTC_ICTL(bfin_read_RTC_ICTL() & ~(RTC_ISTAT_ALARM | RTC_ISTAT_ALARM_DAY));
|
|
spin_unlock_irq(&rtc->lock);
|
|
return 0;
|
|
}
|
|
|
|
return -ENOIOCTLCMD;
|
|
}
|
|
|
|
static int bfin_rtc_read_time(struct device *dev, struct rtc_time *tm)
|
|
{
|
|
struct bfin_rtc *rtc = dev_get_drvdata(dev);
|
|
|
|
stampit();
|
|
|
|
spin_lock_irq(&rtc->lock);
|
|
rtc_bfin_sync_pending();
|
|
rtc_bfin_to_tm(bfin_read_RTC_STAT(), tm);
|
|
spin_unlock_irq(&rtc->lock);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int bfin_rtc_set_time(struct device *dev, struct rtc_time *tm)
|
|
{
|
|
struct bfin_rtc *rtc = dev_get_drvdata(dev);
|
|
int ret;
|
|
unsigned long now;
|
|
|
|
stampit();
|
|
|
|
spin_lock_irq(&rtc->lock);
|
|
|
|
ret = rtc_tm_to_time(tm, &now);
|
|
if (ret == 0) {
|
|
rtc_bfin_sync_pending();
|
|
bfin_write_RTC_STAT(rtc_time_to_bfin(now));
|
|
}
|
|
|
|
spin_unlock_irq(&rtc->lock);
|
|
|
|
return ret;
|
|
}
|
|
|
|
static int bfin_rtc_read_alarm(struct device *dev, struct rtc_wkalrm *alrm)
|
|
{
|
|
struct bfin_rtc *rtc = dev_get_drvdata(dev);
|
|
stampit();
|
|
memcpy(&alrm->time, &rtc->rtc_alarm, sizeof(struct rtc_time));
|
|
alrm->pending = !!(bfin_read_RTC_ICTL() & (RTC_ISTAT_ALARM | RTC_ISTAT_ALARM_DAY));
|
|
return 0;
|
|
}
|
|
|
|
static int bfin_rtc_set_alarm(struct device *dev, struct rtc_wkalrm *alrm)
|
|
{
|
|
struct bfin_rtc *rtc = dev_get_drvdata(dev);
|
|
stampit();
|
|
memcpy(&rtc->rtc_alarm, &alrm->time, sizeof(struct rtc_time));
|
|
return 0;
|
|
}
|
|
|
|
static int bfin_rtc_proc(struct device *dev, struct seq_file *seq)
|
|
{
|
|
#define yesno(x) (x ? "yes" : "no")
|
|
u16 ictl = bfin_read_RTC_ICTL();
|
|
stampit();
|
|
seq_printf(seq, "alarm_IRQ\t: %s\n", yesno(ictl & RTC_ISTAT_ALARM));
|
|
seq_printf(seq, "wkalarm_IRQ\t: %s\n", yesno(ictl & RTC_ISTAT_ALARM_DAY));
|
|
seq_printf(seq, "seconds_IRQ\t: %s\n", yesno(ictl & RTC_ISTAT_SEC));
|
|
seq_printf(seq, "periodic_IRQ\t: %s\n", yesno(ictl & RTC_ISTAT_STOPWATCH));
|
|
#ifdef DEBUG
|
|
seq_printf(seq, "RTC_STAT\t: 0x%08X\n", bfin_read_RTC_STAT());
|
|
seq_printf(seq, "RTC_ICTL\t: 0x%04X\n", bfin_read_RTC_ICTL());
|
|
seq_printf(seq, "RTC_ISTAT\t: 0x%04X\n", bfin_read_RTC_ISTAT());
|
|
seq_printf(seq, "RTC_SWCNT\t: 0x%04X\n", bfin_read_RTC_SWCNT());
|
|
seq_printf(seq, "RTC_ALARM\t: 0x%08X\n", bfin_read_RTC_ALARM());
|
|
seq_printf(seq, "RTC_PREN\t: 0x%04X\n", bfin_read_RTC_PREN());
|
|
#endif
|
|
return 0;
|
|
}
|
|
|
|
static int bfin_irq_set_freq(struct device *dev, int freq)
|
|
{
|
|
struct bfin_rtc *rtc = dev_get_drvdata(dev);
|
|
stampit();
|
|
rtc->rtc_dev->irq_freq = freq;
|
|
return 0;
|
|
}
|
|
|
|
static struct rtc_class_ops bfin_rtc_ops = {
|
|
.open = bfin_rtc_open,
|
|
.release = bfin_rtc_release,
|
|
.ioctl = bfin_rtc_ioctl,
|
|
.read_time = bfin_rtc_read_time,
|
|
.set_time = bfin_rtc_set_time,
|
|
.read_alarm = bfin_rtc_read_alarm,
|
|
.set_alarm = bfin_rtc_set_alarm,
|
|
.proc = bfin_rtc_proc,
|
|
.irq_set_freq = bfin_irq_set_freq,
|
|
};
|
|
|
|
static int __devinit bfin_rtc_probe(struct platform_device *pdev)
|
|
{
|
|
struct bfin_rtc *rtc;
|
|
int ret = 0;
|
|
|
|
stampit();
|
|
|
|
rtc = kzalloc(sizeof(*rtc), GFP_KERNEL);
|
|
if (unlikely(!rtc))
|
|
return -ENOMEM;
|
|
|
|
spin_lock_init(&rtc->lock);
|
|
|
|
rtc->rtc_dev = rtc_device_register(pdev->name, &pdev->dev, &bfin_rtc_ops, THIS_MODULE);
|
|
if (unlikely(IS_ERR(rtc))) {
|
|
ret = PTR_ERR(rtc->rtc_dev);
|
|
goto err;
|
|
}
|
|
rtc->rtc_dev->irq_freq = 0;
|
|
rtc->rtc_dev->max_user_freq = (2 << 16); /* stopwatch is an unsigned 16 bit reg */
|
|
|
|
platform_set_drvdata(pdev, rtc);
|
|
|
|
return 0;
|
|
|
|
err:
|
|
kfree(rtc);
|
|
return ret;
|
|
}
|
|
|
|
static int __devexit bfin_rtc_remove(struct platform_device *pdev)
|
|
{
|
|
struct bfin_rtc *rtc = platform_get_drvdata(pdev);
|
|
|
|
rtc_device_unregister(rtc->rtc_dev);
|
|
platform_set_drvdata(pdev, NULL);
|
|
kfree(rtc);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static struct platform_driver bfin_rtc_driver = {
|
|
.driver = {
|
|
.name = "rtc-bfin",
|
|
.owner = THIS_MODULE,
|
|
},
|
|
.probe = bfin_rtc_probe,
|
|
.remove = __devexit_p(bfin_rtc_remove),
|
|
};
|
|
|
|
static int __init bfin_rtc_init(void)
|
|
{
|
|
stampit();
|
|
return platform_driver_register(&bfin_rtc_driver);
|
|
}
|
|
|
|
static void __exit bfin_rtc_exit(void)
|
|
{
|
|
platform_driver_unregister(&bfin_rtc_driver);
|
|
}
|
|
|
|
module_init(bfin_rtc_init);
|
|
module_exit(bfin_rtc_exit);
|
|
|
|
MODULE_DESCRIPTION("Blackfin On-Chip Real Time Clock Driver");
|
|
MODULE_AUTHOR("Mike Frysinger <vapier@gentoo.org>");
|
|
MODULE_LICENSE("GPL");
|