mirror of
https://github.com/FEX-Emu/linux.git
synced 2024-12-28 20:37:27 +00:00
703133de33
If local fragmentation is allowed, then ip_select_ident() and ip_select_ident_more() need to generate unique IDs to ensure correct defragmentation on the peer. For example, if IPsec (tunnel mode) has to encrypt large skbs that have local_df bit set, then all IP fragments that belonged to different ESP datagrams would have used the same identificator. If one of these IP fragments would get lost or reordered, then peer could possibly stitch together wrong IP fragments that did not belong to the same datagram. This would lead to a packet loss or data corruption. Signed-off-by: Ansis Atteka <aatteka@nicira.com> Signed-off-by: David S. Miller <davem@davemloft.net>
605 lines
18 KiB
C
605 lines
18 KiB
C
/*
|
|
* INETPEER - A storage for permanent information about peers
|
|
*
|
|
* This source is covered by the GNU GPL, the same as all kernel sources.
|
|
*
|
|
* Authors: Andrey V. Savochkin <saw@msu.ru>
|
|
*/
|
|
|
|
#include <linux/module.h>
|
|
#include <linux/types.h>
|
|
#include <linux/slab.h>
|
|
#include <linux/interrupt.h>
|
|
#include <linux/spinlock.h>
|
|
#include <linux/random.h>
|
|
#include <linux/timer.h>
|
|
#include <linux/time.h>
|
|
#include <linux/kernel.h>
|
|
#include <linux/mm.h>
|
|
#include <linux/net.h>
|
|
#include <linux/workqueue.h>
|
|
#include <net/ip.h>
|
|
#include <net/inetpeer.h>
|
|
#include <net/secure_seq.h>
|
|
|
|
/*
|
|
* Theory of operations.
|
|
* We keep one entry for each peer IP address. The nodes contains long-living
|
|
* information about the peer which doesn't depend on routes.
|
|
* At this moment this information consists only of ID field for the next
|
|
* outgoing IP packet. This field is incremented with each packet as encoded
|
|
* in inet_getid() function (include/net/inetpeer.h).
|
|
* At the moment of writing this notes identifier of IP packets is generated
|
|
* to be unpredictable using this code only for packets subjected
|
|
* (actually or potentially) to defragmentation. I.e. DF packets less than
|
|
* PMTU in size when local fragmentation is disabled use a constant ID and do
|
|
* not use this code (see ip_select_ident() in include/net/ip.h).
|
|
*
|
|
* Route cache entries hold references to our nodes.
|
|
* New cache entries get references via lookup by destination IP address in
|
|
* the avl tree. The reference is grabbed only when it's needed i.e. only
|
|
* when we try to output IP packet which needs an unpredictable ID (see
|
|
* __ip_select_ident() in net/ipv4/route.c).
|
|
* Nodes are removed only when reference counter goes to 0.
|
|
* When it's happened the node may be removed when a sufficient amount of
|
|
* time has been passed since its last use. The less-recently-used entry can
|
|
* also be removed if the pool is overloaded i.e. if the total amount of
|
|
* entries is greater-or-equal than the threshold.
|
|
*
|
|
* Node pool is organised as an AVL tree.
|
|
* Such an implementation has been chosen not just for fun. It's a way to
|
|
* prevent easy and efficient DoS attacks by creating hash collisions. A huge
|
|
* amount of long living nodes in a single hash slot would significantly delay
|
|
* lookups performed with disabled BHs.
|
|
*
|
|
* Serialisation issues.
|
|
* 1. Nodes may appear in the tree only with the pool lock held.
|
|
* 2. Nodes may disappear from the tree only with the pool lock held
|
|
* AND reference count being 0.
|
|
* 3. Global variable peer_total is modified under the pool lock.
|
|
* 4. struct inet_peer fields modification:
|
|
* avl_left, avl_right, avl_parent, avl_height: pool lock
|
|
* refcnt: atomically against modifications on other CPU;
|
|
* usually under some other lock to prevent node disappearing
|
|
* daddr: unchangeable
|
|
* ip_id_count: atomic value (no lock needed)
|
|
*/
|
|
|
|
static struct kmem_cache *peer_cachep __read_mostly;
|
|
|
|
static LIST_HEAD(gc_list);
|
|
static const int gc_delay = 60 * HZ;
|
|
static struct delayed_work gc_work;
|
|
static DEFINE_SPINLOCK(gc_lock);
|
|
|
|
#define node_height(x) x->avl_height
|
|
|
|
#define peer_avl_empty ((struct inet_peer *)&peer_fake_node)
|
|
#define peer_avl_empty_rcu ((struct inet_peer __rcu __force *)&peer_fake_node)
|
|
static const struct inet_peer peer_fake_node = {
|
|
.avl_left = peer_avl_empty_rcu,
|
|
.avl_right = peer_avl_empty_rcu,
|
|
.avl_height = 0
|
|
};
|
|
|
|
void inet_peer_base_init(struct inet_peer_base *bp)
|
|
{
|
|
bp->root = peer_avl_empty_rcu;
|
|
seqlock_init(&bp->lock);
|
|
bp->flush_seq = ~0U;
|
|
bp->total = 0;
|
|
}
|
|
EXPORT_SYMBOL_GPL(inet_peer_base_init);
|
|
|
|
static atomic_t v4_seq = ATOMIC_INIT(0);
|
|
static atomic_t v6_seq = ATOMIC_INIT(0);
|
|
|
|
static atomic_t *inetpeer_seq_ptr(int family)
|
|
{
|
|
return (family == AF_INET ? &v4_seq : &v6_seq);
|
|
}
|
|
|
|
static inline void flush_check(struct inet_peer_base *base, int family)
|
|
{
|
|
atomic_t *fp = inetpeer_seq_ptr(family);
|
|
|
|
if (unlikely(base->flush_seq != atomic_read(fp))) {
|
|
inetpeer_invalidate_tree(base);
|
|
base->flush_seq = atomic_read(fp);
|
|
}
|
|
}
|
|
|
|
void inetpeer_invalidate_family(int family)
|
|
{
|
|
atomic_t *fp = inetpeer_seq_ptr(family);
|
|
|
|
atomic_inc(fp);
|
|
}
|
|
|
|
#define PEER_MAXDEPTH 40 /* sufficient for about 2^27 nodes */
|
|
|
|
/* Exported for sysctl_net_ipv4. */
|
|
int inet_peer_threshold __read_mostly = 65536 + 128; /* start to throw entries more
|
|
* aggressively at this stage */
|
|
int inet_peer_minttl __read_mostly = 120 * HZ; /* TTL under high load: 120 sec */
|
|
int inet_peer_maxttl __read_mostly = 10 * 60 * HZ; /* usual time to live: 10 min */
|
|
|
|
static void inetpeer_gc_worker(struct work_struct *work)
|
|
{
|
|
struct inet_peer *p, *n, *c;
|
|
LIST_HEAD(list);
|
|
|
|
spin_lock_bh(&gc_lock);
|
|
list_replace_init(&gc_list, &list);
|
|
spin_unlock_bh(&gc_lock);
|
|
|
|
if (list_empty(&list))
|
|
return;
|
|
|
|
list_for_each_entry_safe(p, n, &list, gc_list) {
|
|
|
|
if (need_resched())
|
|
cond_resched();
|
|
|
|
c = rcu_dereference_protected(p->avl_left, 1);
|
|
if (c != peer_avl_empty) {
|
|
list_add_tail(&c->gc_list, &list);
|
|
p->avl_left = peer_avl_empty_rcu;
|
|
}
|
|
|
|
c = rcu_dereference_protected(p->avl_right, 1);
|
|
if (c != peer_avl_empty) {
|
|
list_add_tail(&c->gc_list, &list);
|
|
p->avl_right = peer_avl_empty_rcu;
|
|
}
|
|
|
|
n = list_entry(p->gc_list.next, struct inet_peer, gc_list);
|
|
|
|
if (!atomic_read(&p->refcnt)) {
|
|
list_del(&p->gc_list);
|
|
kmem_cache_free(peer_cachep, p);
|
|
}
|
|
}
|
|
|
|
if (list_empty(&list))
|
|
return;
|
|
|
|
spin_lock_bh(&gc_lock);
|
|
list_splice(&list, &gc_list);
|
|
spin_unlock_bh(&gc_lock);
|
|
|
|
schedule_delayed_work(&gc_work, gc_delay);
|
|
}
|
|
|
|
/* Called from ip_output.c:ip_init */
|
|
void __init inet_initpeers(void)
|
|
{
|
|
struct sysinfo si;
|
|
|
|
/* Use the straight interface to information about memory. */
|
|
si_meminfo(&si);
|
|
/* The values below were suggested by Alexey Kuznetsov
|
|
* <kuznet@ms2.inr.ac.ru>. I don't have any opinion about the values
|
|
* myself. --SAW
|
|
*/
|
|
if (si.totalram <= (32768*1024)/PAGE_SIZE)
|
|
inet_peer_threshold >>= 1; /* max pool size about 1MB on IA32 */
|
|
if (si.totalram <= (16384*1024)/PAGE_SIZE)
|
|
inet_peer_threshold >>= 1; /* about 512KB */
|
|
if (si.totalram <= (8192*1024)/PAGE_SIZE)
|
|
inet_peer_threshold >>= 2; /* about 128KB */
|
|
|
|
peer_cachep = kmem_cache_create("inet_peer_cache",
|
|
sizeof(struct inet_peer),
|
|
0, SLAB_HWCACHE_ALIGN | SLAB_PANIC,
|
|
NULL);
|
|
|
|
INIT_DEFERRABLE_WORK(&gc_work, inetpeer_gc_worker);
|
|
}
|
|
|
|
static int addr_compare(const struct inetpeer_addr *a,
|
|
const struct inetpeer_addr *b)
|
|
{
|
|
int i, n = (a->family == AF_INET ? 1 : 4);
|
|
|
|
for (i = 0; i < n; i++) {
|
|
if (a->addr.a6[i] == b->addr.a6[i])
|
|
continue;
|
|
if ((__force u32)a->addr.a6[i] < (__force u32)b->addr.a6[i])
|
|
return -1;
|
|
return 1;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
#define rcu_deref_locked(X, BASE) \
|
|
rcu_dereference_protected(X, lockdep_is_held(&(BASE)->lock.lock))
|
|
|
|
/*
|
|
* Called with local BH disabled and the pool lock held.
|
|
*/
|
|
#define lookup(_daddr, _stack, _base) \
|
|
({ \
|
|
struct inet_peer *u; \
|
|
struct inet_peer __rcu **v; \
|
|
\
|
|
stackptr = _stack; \
|
|
*stackptr++ = &_base->root; \
|
|
for (u = rcu_deref_locked(_base->root, _base); \
|
|
u != peer_avl_empty; ) { \
|
|
int cmp = addr_compare(_daddr, &u->daddr); \
|
|
if (cmp == 0) \
|
|
break; \
|
|
if (cmp == -1) \
|
|
v = &u->avl_left; \
|
|
else \
|
|
v = &u->avl_right; \
|
|
*stackptr++ = v; \
|
|
u = rcu_deref_locked(*v, _base); \
|
|
} \
|
|
u; \
|
|
})
|
|
|
|
/*
|
|
* Called with rcu_read_lock()
|
|
* Because we hold no lock against a writer, its quite possible we fall
|
|
* in an endless loop.
|
|
* But every pointer we follow is guaranteed to be valid thanks to RCU.
|
|
* We exit from this function if number of links exceeds PEER_MAXDEPTH
|
|
*/
|
|
static struct inet_peer *lookup_rcu(const struct inetpeer_addr *daddr,
|
|
struct inet_peer_base *base)
|
|
{
|
|
struct inet_peer *u = rcu_dereference(base->root);
|
|
int count = 0;
|
|
|
|
while (u != peer_avl_empty) {
|
|
int cmp = addr_compare(daddr, &u->daddr);
|
|
if (cmp == 0) {
|
|
/* Before taking a reference, check if this entry was
|
|
* deleted (refcnt=-1)
|
|
*/
|
|
if (!atomic_add_unless(&u->refcnt, 1, -1))
|
|
u = NULL;
|
|
return u;
|
|
}
|
|
if (cmp == -1)
|
|
u = rcu_dereference(u->avl_left);
|
|
else
|
|
u = rcu_dereference(u->avl_right);
|
|
if (unlikely(++count == PEER_MAXDEPTH))
|
|
break;
|
|
}
|
|
return NULL;
|
|
}
|
|
|
|
/* Called with local BH disabled and the pool lock held. */
|
|
#define lookup_rightempty(start, base) \
|
|
({ \
|
|
struct inet_peer *u; \
|
|
struct inet_peer __rcu **v; \
|
|
*stackptr++ = &start->avl_left; \
|
|
v = &start->avl_left; \
|
|
for (u = rcu_deref_locked(*v, base); \
|
|
u->avl_right != peer_avl_empty_rcu; ) { \
|
|
v = &u->avl_right; \
|
|
*stackptr++ = v; \
|
|
u = rcu_deref_locked(*v, base); \
|
|
} \
|
|
u; \
|
|
})
|
|
|
|
/* Called with local BH disabled and the pool lock held.
|
|
* Variable names are the proof of operation correctness.
|
|
* Look into mm/map_avl.c for more detail description of the ideas.
|
|
*/
|
|
static void peer_avl_rebalance(struct inet_peer __rcu **stack[],
|
|
struct inet_peer __rcu ***stackend,
|
|
struct inet_peer_base *base)
|
|
{
|
|
struct inet_peer __rcu **nodep;
|
|
struct inet_peer *node, *l, *r;
|
|
int lh, rh;
|
|
|
|
while (stackend > stack) {
|
|
nodep = *--stackend;
|
|
node = rcu_deref_locked(*nodep, base);
|
|
l = rcu_deref_locked(node->avl_left, base);
|
|
r = rcu_deref_locked(node->avl_right, base);
|
|
lh = node_height(l);
|
|
rh = node_height(r);
|
|
if (lh > rh + 1) { /* l: RH+2 */
|
|
struct inet_peer *ll, *lr, *lrl, *lrr;
|
|
int lrh;
|
|
ll = rcu_deref_locked(l->avl_left, base);
|
|
lr = rcu_deref_locked(l->avl_right, base);
|
|
lrh = node_height(lr);
|
|
if (lrh <= node_height(ll)) { /* ll: RH+1 */
|
|
RCU_INIT_POINTER(node->avl_left, lr); /* lr: RH or RH+1 */
|
|
RCU_INIT_POINTER(node->avl_right, r); /* r: RH */
|
|
node->avl_height = lrh + 1; /* RH+1 or RH+2 */
|
|
RCU_INIT_POINTER(l->avl_left, ll); /* ll: RH+1 */
|
|
RCU_INIT_POINTER(l->avl_right, node); /* node: RH+1 or RH+2 */
|
|
l->avl_height = node->avl_height + 1;
|
|
RCU_INIT_POINTER(*nodep, l);
|
|
} else { /* ll: RH, lr: RH+1 */
|
|
lrl = rcu_deref_locked(lr->avl_left, base);/* lrl: RH or RH-1 */
|
|
lrr = rcu_deref_locked(lr->avl_right, base);/* lrr: RH or RH-1 */
|
|
RCU_INIT_POINTER(node->avl_left, lrr); /* lrr: RH or RH-1 */
|
|
RCU_INIT_POINTER(node->avl_right, r); /* r: RH */
|
|
node->avl_height = rh + 1; /* node: RH+1 */
|
|
RCU_INIT_POINTER(l->avl_left, ll); /* ll: RH */
|
|
RCU_INIT_POINTER(l->avl_right, lrl); /* lrl: RH or RH-1 */
|
|
l->avl_height = rh + 1; /* l: RH+1 */
|
|
RCU_INIT_POINTER(lr->avl_left, l); /* l: RH+1 */
|
|
RCU_INIT_POINTER(lr->avl_right, node); /* node: RH+1 */
|
|
lr->avl_height = rh + 2;
|
|
RCU_INIT_POINTER(*nodep, lr);
|
|
}
|
|
} else if (rh > lh + 1) { /* r: LH+2 */
|
|
struct inet_peer *rr, *rl, *rlr, *rll;
|
|
int rlh;
|
|
rr = rcu_deref_locked(r->avl_right, base);
|
|
rl = rcu_deref_locked(r->avl_left, base);
|
|
rlh = node_height(rl);
|
|
if (rlh <= node_height(rr)) { /* rr: LH+1 */
|
|
RCU_INIT_POINTER(node->avl_right, rl); /* rl: LH or LH+1 */
|
|
RCU_INIT_POINTER(node->avl_left, l); /* l: LH */
|
|
node->avl_height = rlh + 1; /* LH+1 or LH+2 */
|
|
RCU_INIT_POINTER(r->avl_right, rr); /* rr: LH+1 */
|
|
RCU_INIT_POINTER(r->avl_left, node); /* node: LH+1 or LH+2 */
|
|
r->avl_height = node->avl_height + 1;
|
|
RCU_INIT_POINTER(*nodep, r);
|
|
} else { /* rr: RH, rl: RH+1 */
|
|
rlr = rcu_deref_locked(rl->avl_right, base);/* rlr: LH or LH-1 */
|
|
rll = rcu_deref_locked(rl->avl_left, base);/* rll: LH or LH-1 */
|
|
RCU_INIT_POINTER(node->avl_right, rll); /* rll: LH or LH-1 */
|
|
RCU_INIT_POINTER(node->avl_left, l); /* l: LH */
|
|
node->avl_height = lh + 1; /* node: LH+1 */
|
|
RCU_INIT_POINTER(r->avl_right, rr); /* rr: LH */
|
|
RCU_INIT_POINTER(r->avl_left, rlr); /* rlr: LH or LH-1 */
|
|
r->avl_height = lh + 1; /* r: LH+1 */
|
|
RCU_INIT_POINTER(rl->avl_right, r); /* r: LH+1 */
|
|
RCU_INIT_POINTER(rl->avl_left, node); /* node: LH+1 */
|
|
rl->avl_height = lh + 2;
|
|
RCU_INIT_POINTER(*nodep, rl);
|
|
}
|
|
} else {
|
|
node->avl_height = (lh > rh ? lh : rh) + 1;
|
|
}
|
|
}
|
|
}
|
|
|
|
/* Called with local BH disabled and the pool lock held. */
|
|
#define link_to_pool(n, base) \
|
|
do { \
|
|
n->avl_height = 1; \
|
|
n->avl_left = peer_avl_empty_rcu; \
|
|
n->avl_right = peer_avl_empty_rcu; \
|
|
/* lockless readers can catch us now */ \
|
|
rcu_assign_pointer(**--stackptr, n); \
|
|
peer_avl_rebalance(stack, stackptr, base); \
|
|
} while (0)
|
|
|
|
static void inetpeer_free_rcu(struct rcu_head *head)
|
|
{
|
|
kmem_cache_free(peer_cachep, container_of(head, struct inet_peer, rcu));
|
|
}
|
|
|
|
static void unlink_from_pool(struct inet_peer *p, struct inet_peer_base *base,
|
|
struct inet_peer __rcu **stack[PEER_MAXDEPTH])
|
|
{
|
|
struct inet_peer __rcu ***stackptr, ***delp;
|
|
|
|
if (lookup(&p->daddr, stack, base) != p)
|
|
BUG();
|
|
delp = stackptr - 1; /* *delp[0] == p */
|
|
if (p->avl_left == peer_avl_empty_rcu) {
|
|
*delp[0] = p->avl_right;
|
|
--stackptr;
|
|
} else {
|
|
/* look for a node to insert instead of p */
|
|
struct inet_peer *t;
|
|
t = lookup_rightempty(p, base);
|
|
BUG_ON(rcu_deref_locked(*stackptr[-1], base) != t);
|
|
**--stackptr = t->avl_left;
|
|
/* t is removed, t->daddr > x->daddr for any
|
|
* x in p->avl_left subtree.
|
|
* Put t in the old place of p. */
|
|
RCU_INIT_POINTER(*delp[0], t);
|
|
t->avl_left = p->avl_left;
|
|
t->avl_right = p->avl_right;
|
|
t->avl_height = p->avl_height;
|
|
BUG_ON(delp[1] != &p->avl_left);
|
|
delp[1] = &t->avl_left; /* was &p->avl_left */
|
|
}
|
|
peer_avl_rebalance(stack, stackptr, base);
|
|
base->total--;
|
|
call_rcu(&p->rcu, inetpeer_free_rcu);
|
|
}
|
|
|
|
/* perform garbage collect on all items stacked during a lookup */
|
|
static int inet_peer_gc(struct inet_peer_base *base,
|
|
struct inet_peer __rcu **stack[PEER_MAXDEPTH],
|
|
struct inet_peer __rcu ***stackptr)
|
|
{
|
|
struct inet_peer *p, *gchead = NULL;
|
|
__u32 delta, ttl;
|
|
int cnt = 0;
|
|
|
|
if (base->total >= inet_peer_threshold)
|
|
ttl = 0; /* be aggressive */
|
|
else
|
|
ttl = inet_peer_maxttl
|
|
- (inet_peer_maxttl - inet_peer_minttl) / HZ *
|
|
base->total / inet_peer_threshold * HZ;
|
|
stackptr--; /* last stack slot is peer_avl_empty */
|
|
while (stackptr > stack) {
|
|
stackptr--;
|
|
p = rcu_deref_locked(**stackptr, base);
|
|
if (atomic_read(&p->refcnt) == 0) {
|
|
smp_rmb();
|
|
delta = (__u32)jiffies - p->dtime;
|
|
if (delta >= ttl &&
|
|
atomic_cmpxchg(&p->refcnt, 0, -1) == 0) {
|
|
p->gc_next = gchead;
|
|
gchead = p;
|
|
}
|
|
}
|
|
}
|
|
while ((p = gchead) != NULL) {
|
|
gchead = p->gc_next;
|
|
cnt++;
|
|
unlink_from_pool(p, base, stack);
|
|
}
|
|
return cnt;
|
|
}
|
|
|
|
struct inet_peer *inet_getpeer(struct inet_peer_base *base,
|
|
const struct inetpeer_addr *daddr,
|
|
int create)
|
|
{
|
|
struct inet_peer __rcu **stack[PEER_MAXDEPTH], ***stackptr;
|
|
struct inet_peer *p;
|
|
unsigned int sequence;
|
|
int invalidated, gccnt = 0;
|
|
|
|
flush_check(base, daddr->family);
|
|
|
|
/* Attempt a lockless lookup first.
|
|
* Because of a concurrent writer, we might not find an existing entry.
|
|
*/
|
|
rcu_read_lock();
|
|
sequence = read_seqbegin(&base->lock);
|
|
p = lookup_rcu(daddr, base);
|
|
invalidated = read_seqretry(&base->lock, sequence);
|
|
rcu_read_unlock();
|
|
|
|
if (p)
|
|
return p;
|
|
|
|
/* If no writer did a change during our lookup, we can return early. */
|
|
if (!create && !invalidated)
|
|
return NULL;
|
|
|
|
/* retry an exact lookup, taking the lock before.
|
|
* At least, nodes should be hot in our cache.
|
|
*/
|
|
write_seqlock_bh(&base->lock);
|
|
relookup:
|
|
p = lookup(daddr, stack, base);
|
|
if (p != peer_avl_empty) {
|
|
atomic_inc(&p->refcnt);
|
|
write_sequnlock_bh(&base->lock);
|
|
return p;
|
|
}
|
|
if (!gccnt) {
|
|
gccnt = inet_peer_gc(base, stack, stackptr);
|
|
if (gccnt && create)
|
|
goto relookup;
|
|
}
|
|
p = create ? kmem_cache_alloc(peer_cachep, GFP_ATOMIC) : NULL;
|
|
if (p) {
|
|
p->daddr = *daddr;
|
|
atomic_set(&p->refcnt, 1);
|
|
atomic_set(&p->rid, 0);
|
|
atomic_set(&p->ip_id_count,
|
|
(daddr->family == AF_INET) ?
|
|
secure_ip_id(daddr->addr.a4) :
|
|
secure_ipv6_id(daddr->addr.a6));
|
|
p->metrics[RTAX_LOCK-1] = INETPEER_METRICS_NEW;
|
|
p->rate_tokens = 0;
|
|
/* 60*HZ is arbitrary, but chosen enough high so that the first
|
|
* calculation of tokens is at its maximum.
|
|
*/
|
|
p->rate_last = jiffies - 60*HZ;
|
|
INIT_LIST_HEAD(&p->gc_list);
|
|
|
|
/* Link the node. */
|
|
link_to_pool(p, base);
|
|
base->total++;
|
|
}
|
|
write_sequnlock_bh(&base->lock);
|
|
|
|
return p;
|
|
}
|
|
EXPORT_SYMBOL_GPL(inet_getpeer);
|
|
|
|
void inet_putpeer(struct inet_peer *p)
|
|
{
|
|
p->dtime = (__u32)jiffies;
|
|
smp_mb__before_atomic_dec();
|
|
atomic_dec(&p->refcnt);
|
|
}
|
|
EXPORT_SYMBOL_GPL(inet_putpeer);
|
|
|
|
/*
|
|
* Check transmit rate limitation for given message.
|
|
* The rate information is held in the inet_peer entries now.
|
|
* This function is generic and could be used for other purposes
|
|
* too. It uses a Token bucket filter as suggested by Alexey Kuznetsov.
|
|
*
|
|
* Note that the same inet_peer fields are modified by functions in
|
|
* route.c too, but these work for packet destinations while xrlim_allow
|
|
* works for icmp destinations. This means the rate limiting information
|
|
* for one "ip object" is shared - and these ICMPs are twice limited:
|
|
* by source and by destination.
|
|
*
|
|
* RFC 1812: 4.3.2.8 SHOULD be able to limit error message rate
|
|
* SHOULD allow setting of rate limits
|
|
*
|
|
* Shared between ICMPv4 and ICMPv6.
|
|
*/
|
|
#define XRLIM_BURST_FACTOR 6
|
|
bool inet_peer_xrlim_allow(struct inet_peer *peer, int timeout)
|
|
{
|
|
unsigned long now, token;
|
|
bool rc = false;
|
|
|
|
if (!peer)
|
|
return true;
|
|
|
|
token = peer->rate_tokens;
|
|
now = jiffies;
|
|
token += now - peer->rate_last;
|
|
peer->rate_last = now;
|
|
if (token > XRLIM_BURST_FACTOR * timeout)
|
|
token = XRLIM_BURST_FACTOR * timeout;
|
|
if (token >= timeout) {
|
|
token -= timeout;
|
|
rc = true;
|
|
}
|
|
peer->rate_tokens = token;
|
|
return rc;
|
|
}
|
|
EXPORT_SYMBOL(inet_peer_xrlim_allow);
|
|
|
|
static void inetpeer_inval_rcu(struct rcu_head *head)
|
|
{
|
|
struct inet_peer *p = container_of(head, struct inet_peer, gc_rcu);
|
|
|
|
spin_lock_bh(&gc_lock);
|
|
list_add_tail(&p->gc_list, &gc_list);
|
|
spin_unlock_bh(&gc_lock);
|
|
|
|
schedule_delayed_work(&gc_work, gc_delay);
|
|
}
|
|
|
|
void inetpeer_invalidate_tree(struct inet_peer_base *base)
|
|
{
|
|
struct inet_peer *root;
|
|
|
|
write_seqlock_bh(&base->lock);
|
|
|
|
root = rcu_deref_locked(base->root, base);
|
|
if (root != peer_avl_empty) {
|
|
base->root = peer_avl_empty_rcu;
|
|
base->total = 0;
|
|
call_rcu(&root->gc_rcu, inetpeer_inval_rcu);
|
|
}
|
|
|
|
write_sequnlock_bh(&base->lock);
|
|
}
|
|
EXPORT_SYMBOL(inetpeer_invalidate_tree);
|