mirror of
https://github.com/FEX-Emu/linux.git
synced 2024-12-26 19:36:41 +00:00
bb7f20b1c6
This patch fixes the handling of VSX alignment faults in little-endian mode (the current code assumes the processor is in big-endian mode). The patch also makes the handlers clear the top 8 bytes of the register when handling an 8 byte VSX load. This is based on 2.6.32. Signed-off-by: Neil Campbell <neilc@linux.vnet.ibm.com> Cc: <stable@kernel.org> Acked-by: Michael Neuling <mikey@neuling.org> Signed-off-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
974 lines
24 KiB
C
974 lines
24 KiB
C
/* align.c - handle alignment exceptions for the Power PC.
|
|
*
|
|
* Copyright (c) 1996 Paul Mackerras <paulus@cs.anu.edu.au>
|
|
* Copyright (c) 1998-1999 TiVo, Inc.
|
|
* PowerPC 403GCX modifications.
|
|
* Copyright (c) 1999 Grant Erickson <grant@lcse.umn.edu>
|
|
* PowerPC 403GCX/405GP modifications.
|
|
* Copyright (c) 2001-2002 PPC64 team, IBM Corp
|
|
* 64-bit and Power4 support
|
|
* Copyright (c) 2005 Benjamin Herrenschmidt, IBM Corp
|
|
* <benh@kernel.crashing.org>
|
|
* Merge ppc32 and ppc64 implementations
|
|
*
|
|
* This program is free software; you can redistribute it and/or
|
|
* modify it under the terms of the GNU General Public License
|
|
* as published by the Free Software Foundation; either version
|
|
* 2 of the License, or (at your option) any later version.
|
|
*/
|
|
|
|
#include <linux/kernel.h>
|
|
#include <linux/mm.h>
|
|
#include <asm/processor.h>
|
|
#include <asm/uaccess.h>
|
|
#include <asm/system.h>
|
|
#include <asm/cache.h>
|
|
#include <asm/cputable.h>
|
|
#include <asm/emulated_ops.h>
|
|
|
|
struct aligninfo {
|
|
unsigned char len;
|
|
unsigned char flags;
|
|
};
|
|
|
|
#define IS_XFORM(inst) (((inst) >> 26) == 31)
|
|
#define IS_DSFORM(inst) (((inst) >> 26) >= 56)
|
|
|
|
#define INVALID { 0, 0 }
|
|
|
|
/* Bits in the flags field */
|
|
#define LD 0 /* load */
|
|
#define ST 1 /* store */
|
|
#define SE 2 /* sign-extend value, or FP ld/st as word */
|
|
#define F 4 /* to/from fp regs */
|
|
#define U 8 /* update index register */
|
|
#define M 0x10 /* multiple load/store */
|
|
#define SW 0x20 /* byte swap */
|
|
#define S 0x40 /* single-precision fp or... */
|
|
#define SX 0x40 /* ... byte count in XER */
|
|
#define HARD 0x80 /* string, stwcx. */
|
|
#define E4 0x40 /* SPE endianness is word */
|
|
#define E8 0x80 /* SPE endianness is double word */
|
|
#define SPLT 0x80 /* VSX SPLAT load */
|
|
|
|
/* DSISR bits reported for a DCBZ instruction: */
|
|
#define DCBZ 0x5f /* 8xx/82xx dcbz faults when cache not enabled */
|
|
|
|
#define SWAP(a, b) (t = (a), (a) = (b), (b) = t)
|
|
|
|
/*
|
|
* The PowerPC stores certain bits of the instruction that caused the
|
|
* alignment exception in the DSISR register. This array maps those
|
|
* bits to information about the operand length and what the
|
|
* instruction would do.
|
|
*/
|
|
static struct aligninfo aligninfo[128] = {
|
|
{ 4, LD }, /* 00 0 0000: lwz / lwarx */
|
|
INVALID, /* 00 0 0001 */
|
|
{ 4, ST }, /* 00 0 0010: stw */
|
|
INVALID, /* 00 0 0011 */
|
|
{ 2, LD }, /* 00 0 0100: lhz */
|
|
{ 2, LD+SE }, /* 00 0 0101: lha */
|
|
{ 2, ST }, /* 00 0 0110: sth */
|
|
{ 4, LD+M }, /* 00 0 0111: lmw */
|
|
{ 4, LD+F+S }, /* 00 0 1000: lfs */
|
|
{ 8, LD+F }, /* 00 0 1001: lfd */
|
|
{ 4, ST+F+S }, /* 00 0 1010: stfs */
|
|
{ 8, ST+F }, /* 00 0 1011: stfd */
|
|
INVALID, /* 00 0 1100 */
|
|
{ 8, LD }, /* 00 0 1101: ld/ldu/lwa */
|
|
INVALID, /* 00 0 1110 */
|
|
{ 8, ST }, /* 00 0 1111: std/stdu */
|
|
{ 4, LD+U }, /* 00 1 0000: lwzu */
|
|
INVALID, /* 00 1 0001 */
|
|
{ 4, ST+U }, /* 00 1 0010: stwu */
|
|
INVALID, /* 00 1 0011 */
|
|
{ 2, LD+U }, /* 00 1 0100: lhzu */
|
|
{ 2, LD+SE+U }, /* 00 1 0101: lhau */
|
|
{ 2, ST+U }, /* 00 1 0110: sthu */
|
|
{ 4, ST+M }, /* 00 1 0111: stmw */
|
|
{ 4, LD+F+S+U }, /* 00 1 1000: lfsu */
|
|
{ 8, LD+F+U }, /* 00 1 1001: lfdu */
|
|
{ 4, ST+F+S+U }, /* 00 1 1010: stfsu */
|
|
{ 8, ST+F+U }, /* 00 1 1011: stfdu */
|
|
{ 16, LD+F }, /* 00 1 1100: lfdp */
|
|
INVALID, /* 00 1 1101 */
|
|
{ 16, ST+F }, /* 00 1 1110: stfdp */
|
|
INVALID, /* 00 1 1111 */
|
|
{ 8, LD }, /* 01 0 0000: ldx */
|
|
INVALID, /* 01 0 0001 */
|
|
{ 8, ST }, /* 01 0 0010: stdx */
|
|
INVALID, /* 01 0 0011 */
|
|
INVALID, /* 01 0 0100 */
|
|
{ 4, LD+SE }, /* 01 0 0101: lwax */
|
|
INVALID, /* 01 0 0110 */
|
|
INVALID, /* 01 0 0111 */
|
|
{ 4, LD+M+HARD+SX }, /* 01 0 1000: lswx */
|
|
{ 4, LD+M+HARD }, /* 01 0 1001: lswi */
|
|
{ 4, ST+M+HARD+SX }, /* 01 0 1010: stswx */
|
|
{ 4, ST+M+HARD }, /* 01 0 1011: stswi */
|
|
INVALID, /* 01 0 1100 */
|
|
{ 8, LD+U }, /* 01 0 1101: ldu */
|
|
INVALID, /* 01 0 1110 */
|
|
{ 8, ST+U }, /* 01 0 1111: stdu */
|
|
{ 8, LD+U }, /* 01 1 0000: ldux */
|
|
INVALID, /* 01 1 0001 */
|
|
{ 8, ST+U }, /* 01 1 0010: stdux */
|
|
INVALID, /* 01 1 0011 */
|
|
INVALID, /* 01 1 0100 */
|
|
{ 4, LD+SE+U }, /* 01 1 0101: lwaux */
|
|
INVALID, /* 01 1 0110 */
|
|
INVALID, /* 01 1 0111 */
|
|
INVALID, /* 01 1 1000 */
|
|
INVALID, /* 01 1 1001 */
|
|
INVALID, /* 01 1 1010 */
|
|
INVALID, /* 01 1 1011 */
|
|
INVALID, /* 01 1 1100 */
|
|
INVALID, /* 01 1 1101 */
|
|
INVALID, /* 01 1 1110 */
|
|
INVALID, /* 01 1 1111 */
|
|
INVALID, /* 10 0 0000 */
|
|
INVALID, /* 10 0 0001 */
|
|
INVALID, /* 10 0 0010: stwcx. */
|
|
INVALID, /* 10 0 0011 */
|
|
INVALID, /* 10 0 0100 */
|
|
INVALID, /* 10 0 0101 */
|
|
INVALID, /* 10 0 0110 */
|
|
INVALID, /* 10 0 0111 */
|
|
{ 4, LD+SW }, /* 10 0 1000: lwbrx */
|
|
INVALID, /* 10 0 1001 */
|
|
{ 4, ST+SW }, /* 10 0 1010: stwbrx */
|
|
INVALID, /* 10 0 1011 */
|
|
{ 2, LD+SW }, /* 10 0 1100: lhbrx */
|
|
{ 4, LD+SE }, /* 10 0 1101 lwa */
|
|
{ 2, ST+SW }, /* 10 0 1110: sthbrx */
|
|
INVALID, /* 10 0 1111 */
|
|
INVALID, /* 10 1 0000 */
|
|
INVALID, /* 10 1 0001 */
|
|
INVALID, /* 10 1 0010 */
|
|
INVALID, /* 10 1 0011 */
|
|
INVALID, /* 10 1 0100 */
|
|
INVALID, /* 10 1 0101 */
|
|
INVALID, /* 10 1 0110 */
|
|
INVALID, /* 10 1 0111 */
|
|
INVALID, /* 10 1 1000 */
|
|
INVALID, /* 10 1 1001 */
|
|
INVALID, /* 10 1 1010 */
|
|
INVALID, /* 10 1 1011 */
|
|
INVALID, /* 10 1 1100 */
|
|
INVALID, /* 10 1 1101 */
|
|
INVALID, /* 10 1 1110 */
|
|
{ 0, ST+HARD }, /* 10 1 1111: dcbz */
|
|
{ 4, LD }, /* 11 0 0000: lwzx */
|
|
INVALID, /* 11 0 0001 */
|
|
{ 4, ST }, /* 11 0 0010: stwx */
|
|
INVALID, /* 11 0 0011 */
|
|
{ 2, LD }, /* 11 0 0100: lhzx */
|
|
{ 2, LD+SE }, /* 11 0 0101: lhax */
|
|
{ 2, ST }, /* 11 0 0110: sthx */
|
|
INVALID, /* 11 0 0111 */
|
|
{ 4, LD+F+S }, /* 11 0 1000: lfsx */
|
|
{ 8, LD+F }, /* 11 0 1001: lfdx */
|
|
{ 4, ST+F+S }, /* 11 0 1010: stfsx */
|
|
{ 8, ST+F }, /* 11 0 1011: stfdx */
|
|
{ 16, LD+F }, /* 11 0 1100: lfdpx */
|
|
{ 4, LD+F+SE }, /* 11 0 1101: lfiwax */
|
|
{ 16, ST+F }, /* 11 0 1110: stfdpx */
|
|
{ 4, ST+F }, /* 11 0 1111: stfiwx */
|
|
{ 4, LD+U }, /* 11 1 0000: lwzux */
|
|
INVALID, /* 11 1 0001 */
|
|
{ 4, ST+U }, /* 11 1 0010: stwux */
|
|
INVALID, /* 11 1 0011 */
|
|
{ 2, LD+U }, /* 11 1 0100: lhzux */
|
|
{ 2, LD+SE+U }, /* 11 1 0101: lhaux */
|
|
{ 2, ST+U }, /* 11 1 0110: sthux */
|
|
INVALID, /* 11 1 0111 */
|
|
{ 4, LD+F+S+U }, /* 11 1 1000: lfsux */
|
|
{ 8, LD+F+U }, /* 11 1 1001: lfdux */
|
|
{ 4, ST+F+S+U }, /* 11 1 1010: stfsux */
|
|
{ 8, ST+F+U }, /* 11 1 1011: stfdux */
|
|
INVALID, /* 11 1 1100 */
|
|
{ 4, LD+F }, /* 11 1 1101: lfiwzx */
|
|
INVALID, /* 11 1 1110 */
|
|
INVALID, /* 11 1 1111 */
|
|
};
|
|
|
|
/*
|
|
* Create a DSISR value from the instruction
|
|
*/
|
|
static inline unsigned make_dsisr(unsigned instr)
|
|
{
|
|
unsigned dsisr;
|
|
|
|
|
|
/* bits 6:15 --> 22:31 */
|
|
dsisr = (instr & 0x03ff0000) >> 16;
|
|
|
|
if (IS_XFORM(instr)) {
|
|
/* bits 29:30 --> 15:16 */
|
|
dsisr |= (instr & 0x00000006) << 14;
|
|
/* bit 25 --> 17 */
|
|
dsisr |= (instr & 0x00000040) << 8;
|
|
/* bits 21:24 --> 18:21 */
|
|
dsisr |= (instr & 0x00000780) << 3;
|
|
} else {
|
|
/* bit 5 --> 17 */
|
|
dsisr |= (instr & 0x04000000) >> 12;
|
|
/* bits 1: 4 --> 18:21 */
|
|
dsisr |= (instr & 0x78000000) >> 17;
|
|
/* bits 30:31 --> 12:13 */
|
|
if (IS_DSFORM(instr))
|
|
dsisr |= (instr & 0x00000003) << 18;
|
|
}
|
|
|
|
return dsisr;
|
|
}
|
|
|
|
/*
|
|
* The dcbz (data cache block zero) instruction
|
|
* gives an alignment fault if used on non-cacheable
|
|
* memory. We handle the fault mainly for the
|
|
* case when we are running with the cache disabled
|
|
* for debugging.
|
|
*/
|
|
static int emulate_dcbz(struct pt_regs *regs, unsigned char __user *addr)
|
|
{
|
|
long __user *p;
|
|
int i, size;
|
|
|
|
#ifdef __powerpc64__
|
|
size = ppc64_caches.dline_size;
|
|
#else
|
|
size = L1_CACHE_BYTES;
|
|
#endif
|
|
p = (long __user *) (regs->dar & -size);
|
|
if (user_mode(regs) && !access_ok(VERIFY_WRITE, p, size))
|
|
return -EFAULT;
|
|
for (i = 0; i < size / sizeof(long); ++i)
|
|
if (__put_user_inatomic(0, p+i))
|
|
return -EFAULT;
|
|
return 1;
|
|
}
|
|
|
|
/*
|
|
* Emulate load & store multiple instructions
|
|
* On 64-bit machines, these instructions only affect/use the
|
|
* bottom 4 bytes of each register, and the loads clear the
|
|
* top 4 bytes of the affected register.
|
|
*/
|
|
#ifdef CONFIG_PPC64
|
|
#define REG_BYTE(rp, i) *((u8 *)((rp) + ((i) >> 2)) + ((i) & 3) + 4)
|
|
#else
|
|
#define REG_BYTE(rp, i) *((u8 *)(rp) + (i))
|
|
#endif
|
|
|
|
#define SWIZ_PTR(p) ((unsigned char __user *)((p) ^ swiz))
|
|
|
|
static int emulate_multiple(struct pt_regs *regs, unsigned char __user *addr,
|
|
unsigned int reg, unsigned int nb,
|
|
unsigned int flags, unsigned int instr,
|
|
unsigned long swiz)
|
|
{
|
|
unsigned long *rptr;
|
|
unsigned int nb0, i, bswiz;
|
|
unsigned long p;
|
|
|
|
/*
|
|
* We do not try to emulate 8 bytes multiple as they aren't really
|
|
* available in our operating environments and we don't try to
|
|
* emulate multiples operations in kernel land as they should never
|
|
* be used/generated there at least not on unaligned boundaries
|
|
*/
|
|
if (unlikely((nb > 4) || !user_mode(regs)))
|
|
return 0;
|
|
|
|
/* lmw, stmw, lswi/x, stswi/x */
|
|
nb0 = 0;
|
|
if (flags & HARD) {
|
|
if (flags & SX) {
|
|
nb = regs->xer & 127;
|
|
if (nb == 0)
|
|
return 1;
|
|
} else {
|
|
unsigned long pc = regs->nip ^ (swiz & 4);
|
|
|
|
if (__get_user_inatomic(instr,
|
|
(unsigned int __user *)pc))
|
|
return -EFAULT;
|
|
if (swiz == 0 && (flags & SW))
|
|
instr = cpu_to_le32(instr);
|
|
nb = (instr >> 11) & 0x1f;
|
|
if (nb == 0)
|
|
nb = 32;
|
|
}
|
|
if (nb + reg * 4 > 128) {
|
|
nb0 = nb + reg * 4 - 128;
|
|
nb = 128 - reg * 4;
|
|
}
|
|
} else {
|
|
/* lwm, stmw */
|
|
nb = (32 - reg) * 4;
|
|
}
|
|
|
|
if (!access_ok((flags & ST ? VERIFY_WRITE: VERIFY_READ), addr, nb+nb0))
|
|
return -EFAULT; /* bad address */
|
|
|
|
rptr = ®s->gpr[reg];
|
|
p = (unsigned long) addr;
|
|
bswiz = (flags & SW)? 3: 0;
|
|
|
|
if (!(flags & ST)) {
|
|
/*
|
|
* This zeroes the top 4 bytes of the affected registers
|
|
* in 64-bit mode, and also zeroes out any remaining
|
|
* bytes of the last register for lsw*.
|
|
*/
|
|
memset(rptr, 0, ((nb + 3) / 4) * sizeof(unsigned long));
|
|
if (nb0 > 0)
|
|
memset(®s->gpr[0], 0,
|
|
((nb0 + 3) / 4) * sizeof(unsigned long));
|
|
|
|
for (i = 0; i < nb; ++i, ++p)
|
|
if (__get_user_inatomic(REG_BYTE(rptr, i ^ bswiz),
|
|
SWIZ_PTR(p)))
|
|
return -EFAULT;
|
|
if (nb0 > 0) {
|
|
rptr = ®s->gpr[0];
|
|
addr += nb;
|
|
for (i = 0; i < nb0; ++i, ++p)
|
|
if (__get_user_inatomic(REG_BYTE(rptr,
|
|
i ^ bswiz),
|
|
SWIZ_PTR(p)))
|
|
return -EFAULT;
|
|
}
|
|
|
|
} else {
|
|
for (i = 0; i < nb; ++i, ++p)
|
|
if (__put_user_inatomic(REG_BYTE(rptr, i ^ bswiz),
|
|
SWIZ_PTR(p)))
|
|
return -EFAULT;
|
|
if (nb0 > 0) {
|
|
rptr = ®s->gpr[0];
|
|
addr += nb;
|
|
for (i = 0; i < nb0; ++i, ++p)
|
|
if (__put_user_inatomic(REG_BYTE(rptr,
|
|
i ^ bswiz),
|
|
SWIZ_PTR(p)))
|
|
return -EFAULT;
|
|
}
|
|
}
|
|
return 1;
|
|
}
|
|
|
|
/*
|
|
* Emulate floating-point pair loads and stores.
|
|
* Only POWER6 has these instructions, and it does true little-endian,
|
|
* so we don't need the address swizzling.
|
|
*/
|
|
static int emulate_fp_pair(unsigned char __user *addr, unsigned int reg,
|
|
unsigned int flags)
|
|
{
|
|
char *ptr0 = (char *) ¤t->thread.TS_FPR(reg);
|
|
char *ptr1 = (char *) ¤t->thread.TS_FPR(reg+1);
|
|
int i, ret, sw = 0;
|
|
|
|
if (!(flags & F))
|
|
return 0;
|
|
if (reg & 1)
|
|
return 0; /* invalid form: FRS/FRT must be even */
|
|
if (flags & SW)
|
|
sw = 7;
|
|
ret = 0;
|
|
for (i = 0; i < 8; ++i) {
|
|
if (!(flags & ST)) {
|
|
ret |= __get_user(ptr0[i^sw], addr + i);
|
|
ret |= __get_user(ptr1[i^sw], addr + i + 8);
|
|
} else {
|
|
ret |= __put_user(ptr0[i^sw], addr + i);
|
|
ret |= __put_user(ptr1[i^sw], addr + i + 8);
|
|
}
|
|
}
|
|
if (ret)
|
|
return -EFAULT;
|
|
return 1; /* exception handled and fixed up */
|
|
}
|
|
|
|
#ifdef CONFIG_SPE
|
|
|
|
static struct aligninfo spe_aligninfo[32] = {
|
|
{ 8, LD+E8 }, /* 0 00 00: evldd[x] */
|
|
{ 8, LD+E4 }, /* 0 00 01: evldw[x] */
|
|
{ 8, LD }, /* 0 00 10: evldh[x] */
|
|
INVALID, /* 0 00 11 */
|
|
{ 2, LD }, /* 0 01 00: evlhhesplat[x] */
|
|
INVALID, /* 0 01 01 */
|
|
{ 2, LD }, /* 0 01 10: evlhhousplat[x] */
|
|
{ 2, LD+SE }, /* 0 01 11: evlhhossplat[x] */
|
|
{ 4, LD }, /* 0 10 00: evlwhe[x] */
|
|
INVALID, /* 0 10 01 */
|
|
{ 4, LD }, /* 0 10 10: evlwhou[x] */
|
|
{ 4, LD+SE }, /* 0 10 11: evlwhos[x] */
|
|
{ 4, LD+E4 }, /* 0 11 00: evlwwsplat[x] */
|
|
INVALID, /* 0 11 01 */
|
|
{ 4, LD }, /* 0 11 10: evlwhsplat[x] */
|
|
INVALID, /* 0 11 11 */
|
|
|
|
{ 8, ST+E8 }, /* 1 00 00: evstdd[x] */
|
|
{ 8, ST+E4 }, /* 1 00 01: evstdw[x] */
|
|
{ 8, ST }, /* 1 00 10: evstdh[x] */
|
|
INVALID, /* 1 00 11 */
|
|
INVALID, /* 1 01 00 */
|
|
INVALID, /* 1 01 01 */
|
|
INVALID, /* 1 01 10 */
|
|
INVALID, /* 1 01 11 */
|
|
{ 4, ST }, /* 1 10 00: evstwhe[x] */
|
|
INVALID, /* 1 10 01 */
|
|
{ 4, ST }, /* 1 10 10: evstwho[x] */
|
|
INVALID, /* 1 10 11 */
|
|
{ 4, ST+E4 }, /* 1 11 00: evstwwe[x] */
|
|
INVALID, /* 1 11 01 */
|
|
{ 4, ST+E4 }, /* 1 11 10: evstwwo[x] */
|
|
INVALID, /* 1 11 11 */
|
|
};
|
|
|
|
#define EVLDD 0x00
|
|
#define EVLDW 0x01
|
|
#define EVLDH 0x02
|
|
#define EVLHHESPLAT 0x04
|
|
#define EVLHHOUSPLAT 0x06
|
|
#define EVLHHOSSPLAT 0x07
|
|
#define EVLWHE 0x08
|
|
#define EVLWHOU 0x0A
|
|
#define EVLWHOS 0x0B
|
|
#define EVLWWSPLAT 0x0C
|
|
#define EVLWHSPLAT 0x0E
|
|
#define EVSTDD 0x10
|
|
#define EVSTDW 0x11
|
|
#define EVSTDH 0x12
|
|
#define EVSTWHE 0x18
|
|
#define EVSTWHO 0x1A
|
|
#define EVSTWWE 0x1C
|
|
#define EVSTWWO 0x1E
|
|
|
|
/*
|
|
* Emulate SPE loads and stores.
|
|
* Only Book-E has these instructions, and it does true little-endian,
|
|
* so we don't need the address swizzling.
|
|
*/
|
|
static int emulate_spe(struct pt_regs *regs, unsigned int reg,
|
|
unsigned int instr)
|
|
{
|
|
int t, ret;
|
|
union {
|
|
u64 ll;
|
|
u32 w[2];
|
|
u16 h[4];
|
|
u8 v[8];
|
|
} data, temp;
|
|
unsigned char __user *p, *addr;
|
|
unsigned long *evr = ¤t->thread.evr[reg];
|
|
unsigned int nb, flags;
|
|
|
|
instr = (instr >> 1) & 0x1f;
|
|
|
|
/* DAR has the operand effective address */
|
|
addr = (unsigned char __user *)regs->dar;
|
|
|
|
nb = spe_aligninfo[instr].len;
|
|
flags = spe_aligninfo[instr].flags;
|
|
|
|
/* Verify the address of the operand */
|
|
if (unlikely(user_mode(regs) &&
|
|
!access_ok((flags & ST ? VERIFY_WRITE : VERIFY_READ),
|
|
addr, nb)))
|
|
return -EFAULT;
|
|
|
|
/* userland only */
|
|
if (unlikely(!user_mode(regs)))
|
|
return 0;
|
|
|
|
flush_spe_to_thread(current);
|
|
|
|
/* If we are loading, get the data from user space, else
|
|
* get it from register values
|
|
*/
|
|
if (flags & ST) {
|
|
data.ll = 0;
|
|
switch (instr) {
|
|
case EVSTDD:
|
|
case EVSTDW:
|
|
case EVSTDH:
|
|
data.w[0] = *evr;
|
|
data.w[1] = regs->gpr[reg];
|
|
break;
|
|
case EVSTWHE:
|
|
data.h[2] = *evr >> 16;
|
|
data.h[3] = regs->gpr[reg] >> 16;
|
|
break;
|
|
case EVSTWHO:
|
|
data.h[2] = *evr & 0xffff;
|
|
data.h[3] = regs->gpr[reg] & 0xffff;
|
|
break;
|
|
case EVSTWWE:
|
|
data.w[1] = *evr;
|
|
break;
|
|
case EVSTWWO:
|
|
data.w[1] = regs->gpr[reg];
|
|
break;
|
|
default:
|
|
return -EINVAL;
|
|
}
|
|
} else {
|
|
temp.ll = data.ll = 0;
|
|
ret = 0;
|
|
p = addr;
|
|
|
|
switch (nb) {
|
|
case 8:
|
|
ret |= __get_user_inatomic(temp.v[0], p++);
|
|
ret |= __get_user_inatomic(temp.v[1], p++);
|
|
ret |= __get_user_inatomic(temp.v[2], p++);
|
|
ret |= __get_user_inatomic(temp.v[3], p++);
|
|
case 4:
|
|
ret |= __get_user_inatomic(temp.v[4], p++);
|
|
ret |= __get_user_inatomic(temp.v[5], p++);
|
|
case 2:
|
|
ret |= __get_user_inatomic(temp.v[6], p++);
|
|
ret |= __get_user_inatomic(temp.v[7], p++);
|
|
if (unlikely(ret))
|
|
return -EFAULT;
|
|
}
|
|
|
|
switch (instr) {
|
|
case EVLDD:
|
|
case EVLDW:
|
|
case EVLDH:
|
|
data.ll = temp.ll;
|
|
break;
|
|
case EVLHHESPLAT:
|
|
data.h[0] = temp.h[3];
|
|
data.h[2] = temp.h[3];
|
|
break;
|
|
case EVLHHOUSPLAT:
|
|
case EVLHHOSSPLAT:
|
|
data.h[1] = temp.h[3];
|
|
data.h[3] = temp.h[3];
|
|
break;
|
|
case EVLWHE:
|
|
data.h[0] = temp.h[2];
|
|
data.h[2] = temp.h[3];
|
|
break;
|
|
case EVLWHOU:
|
|
case EVLWHOS:
|
|
data.h[1] = temp.h[2];
|
|
data.h[3] = temp.h[3];
|
|
break;
|
|
case EVLWWSPLAT:
|
|
data.w[0] = temp.w[1];
|
|
data.w[1] = temp.w[1];
|
|
break;
|
|
case EVLWHSPLAT:
|
|
data.h[0] = temp.h[2];
|
|
data.h[1] = temp.h[2];
|
|
data.h[2] = temp.h[3];
|
|
data.h[3] = temp.h[3];
|
|
break;
|
|
default:
|
|
return -EINVAL;
|
|
}
|
|
}
|
|
|
|
if (flags & SW) {
|
|
switch (flags & 0xf0) {
|
|
case E8:
|
|
SWAP(data.v[0], data.v[7]);
|
|
SWAP(data.v[1], data.v[6]);
|
|
SWAP(data.v[2], data.v[5]);
|
|
SWAP(data.v[3], data.v[4]);
|
|
break;
|
|
case E4:
|
|
|
|
SWAP(data.v[0], data.v[3]);
|
|
SWAP(data.v[1], data.v[2]);
|
|
SWAP(data.v[4], data.v[7]);
|
|
SWAP(data.v[5], data.v[6]);
|
|
break;
|
|
/* Its half word endian */
|
|
default:
|
|
SWAP(data.v[0], data.v[1]);
|
|
SWAP(data.v[2], data.v[3]);
|
|
SWAP(data.v[4], data.v[5]);
|
|
SWAP(data.v[6], data.v[7]);
|
|
break;
|
|
}
|
|
}
|
|
|
|
if (flags & SE) {
|
|
data.w[0] = (s16)data.h[1];
|
|
data.w[1] = (s16)data.h[3];
|
|
}
|
|
|
|
/* Store result to memory or update registers */
|
|
if (flags & ST) {
|
|
ret = 0;
|
|
p = addr;
|
|
switch (nb) {
|
|
case 8:
|
|
ret |= __put_user_inatomic(data.v[0], p++);
|
|
ret |= __put_user_inatomic(data.v[1], p++);
|
|
ret |= __put_user_inatomic(data.v[2], p++);
|
|
ret |= __put_user_inatomic(data.v[3], p++);
|
|
case 4:
|
|
ret |= __put_user_inatomic(data.v[4], p++);
|
|
ret |= __put_user_inatomic(data.v[5], p++);
|
|
case 2:
|
|
ret |= __put_user_inatomic(data.v[6], p++);
|
|
ret |= __put_user_inatomic(data.v[7], p++);
|
|
}
|
|
if (unlikely(ret))
|
|
return -EFAULT;
|
|
} else {
|
|
*evr = data.w[0];
|
|
regs->gpr[reg] = data.w[1];
|
|
}
|
|
|
|
return 1;
|
|
}
|
|
#endif /* CONFIG_SPE */
|
|
|
|
#ifdef CONFIG_VSX
|
|
/*
|
|
* Emulate VSX instructions...
|
|
*/
|
|
static int emulate_vsx(unsigned char __user *addr, unsigned int reg,
|
|
unsigned int areg, struct pt_regs *regs,
|
|
unsigned int flags, unsigned int length,
|
|
unsigned int elsize)
|
|
{
|
|
char *ptr;
|
|
unsigned long *lptr;
|
|
int ret = 0;
|
|
int sw = 0;
|
|
int i, j;
|
|
|
|
flush_vsx_to_thread(current);
|
|
|
|
if (reg < 32)
|
|
ptr = (char *) ¤t->thread.TS_FPR(reg);
|
|
else
|
|
ptr = (char *) ¤t->thread.vr[reg - 32];
|
|
|
|
lptr = (unsigned long *) ptr;
|
|
|
|
if (flags & SW)
|
|
sw = elsize-1;
|
|
|
|
for (j = 0; j < length; j += elsize) {
|
|
for (i = 0; i < elsize; ++i) {
|
|
if (flags & ST)
|
|
ret |= __put_user(ptr[i^sw], addr + i);
|
|
else
|
|
ret |= __get_user(ptr[i^sw], addr + i);
|
|
}
|
|
ptr += elsize;
|
|
addr += elsize;
|
|
}
|
|
|
|
if (!ret) {
|
|
if (flags & U)
|
|
regs->gpr[areg] = regs->dar;
|
|
|
|
/* Splat load copies the same data to top and bottom 8 bytes */
|
|
if (flags & SPLT)
|
|
lptr[1] = lptr[0];
|
|
/* For 8 byte loads, zero the top 8 bytes */
|
|
else if (!(flags & ST) && (8 == length))
|
|
lptr[1] = 0;
|
|
} else
|
|
return -EFAULT;
|
|
|
|
return 1;
|
|
}
|
|
#endif
|
|
|
|
/*
|
|
* Called on alignment exception. Attempts to fixup
|
|
*
|
|
* Return 1 on success
|
|
* Return 0 if unable to handle the interrupt
|
|
* Return -EFAULT if data address is bad
|
|
*/
|
|
|
|
int fix_alignment(struct pt_regs *regs)
|
|
{
|
|
unsigned int instr, nb, flags, instruction = 0;
|
|
unsigned int reg, areg;
|
|
unsigned int dsisr;
|
|
unsigned char __user *addr;
|
|
unsigned long p, swiz;
|
|
int ret, t;
|
|
union {
|
|
u64 ll;
|
|
double dd;
|
|
unsigned char v[8];
|
|
struct {
|
|
unsigned hi32;
|
|
int low32;
|
|
} x32;
|
|
struct {
|
|
unsigned char hi48[6];
|
|
short low16;
|
|
} x16;
|
|
} data;
|
|
|
|
/*
|
|
* We require a complete register set, if not, then our assembly
|
|
* is broken
|
|
*/
|
|
CHECK_FULL_REGS(regs);
|
|
|
|
dsisr = regs->dsisr;
|
|
|
|
/* Some processors don't provide us with a DSISR we can use here,
|
|
* let's make one up from the instruction
|
|
*/
|
|
if (cpu_has_feature(CPU_FTR_NODSISRALIGN)) {
|
|
unsigned long pc = regs->nip;
|
|
|
|
if (cpu_has_feature(CPU_FTR_PPC_LE) && (regs->msr & MSR_LE))
|
|
pc ^= 4;
|
|
if (unlikely(__get_user_inatomic(instr,
|
|
(unsigned int __user *)pc)))
|
|
return -EFAULT;
|
|
if (cpu_has_feature(CPU_FTR_REAL_LE) && (regs->msr & MSR_LE))
|
|
instr = cpu_to_le32(instr);
|
|
dsisr = make_dsisr(instr);
|
|
instruction = instr;
|
|
}
|
|
|
|
/* extract the operation and registers from the dsisr */
|
|
reg = (dsisr >> 5) & 0x1f; /* source/dest register */
|
|
areg = dsisr & 0x1f; /* register to update */
|
|
|
|
#ifdef CONFIG_SPE
|
|
if ((instr >> 26) == 0x4) {
|
|
PPC_WARN_ALIGNMENT(spe, regs);
|
|
return emulate_spe(regs, reg, instr);
|
|
}
|
|
#endif
|
|
|
|
instr = (dsisr >> 10) & 0x7f;
|
|
instr |= (dsisr >> 13) & 0x60;
|
|
|
|
/* Lookup the operation in our table */
|
|
nb = aligninfo[instr].len;
|
|
flags = aligninfo[instr].flags;
|
|
|
|
/* Byteswap little endian loads and stores */
|
|
swiz = 0;
|
|
if (regs->msr & MSR_LE) {
|
|
flags ^= SW;
|
|
/*
|
|
* So-called "PowerPC little endian" mode works by
|
|
* swizzling addresses rather than by actually doing
|
|
* any byte-swapping. To emulate this, we XOR each
|
|
* byte address with 7. We also byte-swap, because
|
|
* the processor's address swizzling depends on the
|
|
* operand size (it xors the address with 7 for bytes,
|
|
* 6 for halfwords, 4 for words, 0 for doublewords) but
|
|
* we will xor with 7 and load/store each byte separately.
|
|
*/
|
|
if (cpu_has_feature(CPU_FTR_PPC_LE))
|
|
swiz = 7;
|
|
}
|
|
|
|
/* DAR has the operand effective address */
|
|
addr = (unsigned char __user *)regs->dar;
|
|
|
|
#ifdef CONFIG_VSX
|
|
if ((instruction & 0xfc00003e) == 0x7c000018) {
|
|
unsigned int elsize;
|
|
|
|
/* Additional register addressing bit (64 VSX vs 32 FPR/GPR) */
|
|
reg |= (instruction & 0x1) << 5;
|
|
/* Simple inline decoder instead of a table */
|
|
/* VSX has only 8 and 16 byte memory accesses */
|
|
nb = 8;
|
|
if (instruction & 0x200)
|
|
nb = 16;
|
|
|
|
/* Vector stores in little-endian mode swap individual
|
|
elements, so process them separately */
|
|
elsize = 4;
|
|
if (instruction & 0x80)
|
|
elsize = 8;
|
|
|
|
flags = 0;
|
|
if (regs->msr & MSR_LE)
|
|
flags |= SW;
|
|
if (instruction & 0x100)
|
|
flags |= ST;
|
|
if (instruction & 0x040)
|
|
flags |= U;
|
|
/* splat load needs a special decoder */
|
|
if ((instruction & 0x400) == 0){
|
|
flags |= SPLT;
|
|
nb = 8;
|
|
}
|
|
PPC_WARN_ALIGNMENT(vsx, regs);
|
|
return emulate_vsx(addr, reg, areg, regs, flags, nb, elsize);
|
|
}
|
|
#endif
|
|
/* A size of 0 indicates an instruction we don't support, with
|
|
* the exception of DCBZ which is handled as a special case here
|
|
*/
|
|
if (instr == DCBZ) {
|
|
PPC_WARN_ALIGNMENT(dcbz, regs);
|
|
return emulate_dcbz(regs, addr);
|
|
}
|
|
if (unlikely(nb == 0))
|
|
return 0;
|
|
|
|
/* Load/Store Multiple instructions are handled in their own
|
|
* function
|
|
*/
|
|
if (flags & M) {
|
|
PPC_WARN_ALIGNMENT(multiple, regs);
|
|
return emulate_multiple(regs, addr, reg, nb,
|
|
flags, instr, swiz);
|
|
}
|
|
|
|
/* Verify the address of the operand */
|
|
if (unlikely(user_mode(regs) &&
|
|
!access_ok((flags & ST ? VERIFY_WRITE : VERIFY_READ),
|
|
addr, nb)))
|
|
return -EFAULT;
|
|
|
|
/* Force the fprs into the save area so we can reference them */
|
|
if (flags & F) {
|
|
/* userland only */
|
|
if (unlikely(!user_mode(regs)))
|
|
return 0;
|
|
flush_fp_to_thread(current);
|
|
}
|
|
|
|
/* Special case for 16-byte FP loads and stores */
|
|
if (nb == 16) {
|
|
PPC_WARN_ALIGNMENT(fp_pair, regs);
|
|
return emulate_fp_pair(addr, reg, flags);
|
|
}
|
|
|
|
PPC_WARN_ALIGNMENT(unaligned, regs);
|
|
|
|
/* If we are loading, get the data from user space, else
|
|
* get it from register values
|
|
*/
|
|
if (!(flags & ST)) {
|
|
data.ll = 0;
|
|
ret = 0;
|
|
p = (unsigned long) addr;
|
|
switch (nb) {
|
|
case 8:
|
|
ret |= __get_user_inatomic(data.v[0], SWIZ_PTR(p++));
|
|
ret |= __get_user_inatomic(data.v[1], SWIZ_PTR(p++));
|
|
ret |= __get_user_inatomic(data.v[2], SWIZ_PTR(p++));
|
|
ret |= __get_user_inatomic(data.v[3], SWIZ_PTR(p++));
|
|
case 4:
|
|
ret |= __get_user_inatomic(data.v[4], SWIZ_PTR(p++));
|
|
ret |= __get_user_inatomic(data.v[5], SWIZ_PTR(p++));
|
|
case 2:
|
|
ret |= __get_user_inatomic(data.v[6], SWIZ_PTR(p++));
|
|
ret |= __get_user_inatomic(data.v[7], SWIZ_PTR(p++));
|
|
if (unlikely(ret))
|
|
return -EFAULT;
|
|
}
|
|
} else if (flags & F) {
|
|
data.dd = current->thread.TS_FPR(reg);
|
|
if (flags & S) {
|
|
/* Single-precision FP store requires conversion... */
|
|
#ifdef CONFIG_PPC_FPU
|
|
preempt_disable();
|
|
enable_kernel_fp();
|
|
cvt_df(&data.dd, (float *)&data.v[4], ¤t->thread);
|
|
preempt_enable();
|
|
#else
|
|
return 0;
|
|
#endif
|
|
}
|
|
} else
|
|
data.ll = regs->gpr[reg];
|
|
|
|
if (flags & SW) {
|
|
switch (nb) {
|
|
case 8:
|
|
SWAP(data.v[0], data.v[7]);
|
|
SWAP(data.v[1], data.v[6]);
|
|
SWAP(data.v[2], data.v[5]);
|
|
SWAP(data.v[3], data.v[4]);
|
|
break;
|
|
case 4:
|
|
SWAP(data.v[4], data.v[7]);
|
|
SWAP(data.v[5], data.v[6]);
|
|
break;
|
|
case 2:
|
|
SWAP(data.v[6], data.v[7]);
|
|
break;
|
|
}
|
|
}
|
|
|
|
/* Perform other misc operations like sign extension
|
|
* or floating point single precision conversion
|
|
*/
|
|
switch (flags & ~(U|SW)) {
|
|
case LD+SE: /* sign extending integer loads */
|
|
case LD+F+SE: /* sign extend for lfiwax */
|
|
if ( nb == 2 )
|
|
data.ll = data.x16.low16;
|
|
else /* nb must be 4 */
|
|
data.ll = data.x32.low32;
|
|
break;
|
|
|
|
/* Single-precision FP load requires conversion... */
|
|
case LD+F+S:
|
|
#ifdef CONFIG_PPC_FPU
|
|
preempt_disable();
|
|
enable_kernel_fp();
|
|
cvt_fd((float *)&data.v[4], &data.dd, ¤t->thread);
|
|
preempt_enable();
|
|
#else
|
|
return 0;
|
|
#endif
|
|
break;
|
|
}
|
|
|
|
/* Store result to memory or update registers */
|
|
if (flags & ST) {
|
|
ret = 0;
|
|
p = (unsigned long) addr;
|
|
switch (nb) {
|
|
case 8:
|
|
ret |= __put_user_inatomic(data.v[0], SWIZ_PTR(p++));
|
|
ret |= __put_user_inatomic(data.v[1], SWIZ_PTR(p++));
|
|
ret |= __put_user_inatomic(data.v[2], SWIZ_PTR(p++));
|
|
ret |= __put_user_inatomic(data.v[3], SWIZ_PTR(p++));
|
|
case 4:
|
|
ret |= __put_user_inatomic(data.v[4], SWIZ_PTR(p++));
|
|
ret |= __put_user_inatomic(data.v[5], SWIZ_PTR(p++));
|
|
case 2:
|
|
ret |= __put_user_inatomic(data.v[6], SWIZ_PTR(p++));
|
|
ret |= __put_user_inatomic(data.v[7], SWIZ_PTR(p++));
|
|
}
|
|
if (unlikely(ret))
|
|
return -EFAULT;
|
|
} else if (flags & F)
|
|
current->thread.TS_FPR(reg) = data.dd;
|
|
else
|
|
regs->gpr[reg] = data.ll;
|
|
|
|
/* Update RA as needed */
|
|
if (flags & U)
|
|
regs->gpr[areg] = regs->dar;
|
|
|
|
return 1;
|
|
}
|