linux/drivers/tty/synclink_gt.c
Linus Torvalds f309532bf3 tty: Revert the tty locking series, it needs more work
This reverts the tty layer change to use per-tty locking, because it's
not correct yet, and fixing it will require some more deep surgery.

The main revert is d29f3ef39be4 ("tty_lock: Localise the lock"), but
there are several smaller commits that built upon it, they also get
reverted here. The list of reverted commits is:

  fde86d310886 - tty: add lockdep annotations
  8f6576ad476b - tty: fix ldisc lock inversion trace
  d3ca8b64b97e - pty: Fix lock inversion
  b1d679afd766 - tty: drop the pty lock during hangup
  abcefe5fc357 - tty/amiserial: Add missing argument for tty_unlock()
  fd11b42e3598 - cris: fix missing tty arg in wait_event_interruptible_tty call
  d29f3ef39be4 - tty_lock: Localise the lock

The revert had a trivial conflict in the 68360serial.c staging driver
that got removed in the meantime.

Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2012-06-02 15:21:43 -07:00

5160 lines
132 KiB
C

/*
* Device driver for Microgate SyncLink GT serial adapters.
*
* written by Paul Fulghum for Microgate Corporation
* paulkf@microgate.com
*
* Microgate and SyncLink are trademarks of Microgate Corporation
*
* This code is released under the GNU General Public License (GPL)
*
* THIS SOFTWARE IS PROVIDED ``AS IS'' AND ANY EXPRESS OR IMPLIED
* WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
* OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
* DISCLAIMED. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT,
* INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
* (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
* SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
* STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
* OF THE POSSIBILITY OF SUCH DAMAGE.
*/
/*
* DEBUG OUTPUT DEFINITIONS
*
* uncomment lines below to enable specific types of debug output
*
* DBGINFO information - most verbose output
* DBGERR serious errors
* DBGBH bottom half service routine debugging
* DBGISR interrupt service routine debugging
* DBGDATA output receive and transmit data
* DBGTBUF output transmit DMA buffers and registers
* DBGRBUF output receive DMA buffers and registers
*/
#define DBGINFO(fmt) if (debug_level >= DEBUG_LEVEL_INFO) printk fmt
#define DBGERR(fmt) if (debug_level >= DEBUG_LEVEL_ERROR) printk fmt
#define DBGBH(fmt) if (debug_level >= DEBUG_LEVEL_BH) printk fmt
#define DBGISR(fmt) if (debug_level >= DEBUG_LEVEL_ISR) printk fmt
#define DBGDATA(info, buf, size, label) if (debug_level >= DEBUG_LEVEL_DATA) trace_block((info), (buf), (size), (label))
/*#define DBGTBUF(info) dump_tbufs(info)*/
/*#define DBGRBUF(info) dump_rbufs(info)*/
#include <linux/module.h>
#include <linux/errno.h>
#include <linux/signal.h>
#include <linux/sched.h>
#include <linux/timer.h>
#include <linux/interrupt.h>
#include <linux/pci.h>
#include <linux/tty.h>
#include <linux/tty_flip.h>
#include <linux/serial.h>
#include <linux/major.h>
#include <linux/string.h>
#include <linux/fcntl.h>
#include <linux/ptrace.h>
#include <linux/ioport.h>
#include <linux/mm.h>
#include <linux/seq_file.h>
#include <linux/slab.h>
#include <linux/netdevice.h>
#include <linux/vmalloc.h>
#include <linux/init.h>
#include <linux/delay.h>
#include <linux/ioctl.h>
#include <linux/termios.h>
#include <linux/bitops.h>
#include <linux/workqueue.h>
#include <linux/hdlc.h>
#include <linux/synclink.h>
#include <asm/io.h>
#include <asm/irq.h>
#include <asm/dma.h>
#include <asm/types.h>
#include <asm/uaccess.h>
#if defined(CONFIG_HDLC) || (defined(CONFIG_HDLC_MODULE) && defined(CONFIG_SYNCLINK_GT_MODULE))
#define SYNCLINK_GENERIC_HDLC 1
#else
#define SYNCLINK_GENERIC_HDLC 0
#endif
/*
* module identification
*/
static char *driver_name = "SyncLink GT";
static char *tty_driver_name = "synclink_gt";
static char *tty_dev_prefix = "ttySLG";
MODULE_LICENSE("GPL");
#define MGSL_MAGIC 0x5401
#define MAX_DEVICES 32
static struct pci_device_id pci_table[] = {
{PCI_VENDOR_ID_MICROGATE, SYNCLINK_GT_DEVICE_ID, PCI_ANY_ID, PCI_ANY_ID,},
{PCI_VENDOR_ID_MICROGATE, SYNCLINK_GT2_DEVICE_ID, PCI_ANY_ID, PCI_ANY_ID,},
{PCI_VENDOR_ID_MICROGATE, SYNCLINK_GT4_DEVICE_ID, PCI_ANY_ID, PCI_ANY_ID,},
{PCI_VENDOR_ID_MICROGATE, SYNCLINK_AC_DEVICE_ID, PCI_ANY_ID, PCI_ANY_ID,},
{0,}, /* terminate list */
};
MODULE_DEVICE_TABLE(pci, pci_table);
static int init_one(struct pci_dev *dev,const struct pci_device_id *ent);
static void remove_one(struct pci_dev *dev);
static struct pci_driver pci_driver = {
.name = "synclink_gt",
.id_table = pci_table,
.probe = init_one,
.remove = __devexit_p(remove_one),
};
static bool pci_registered;
/*
* module configuration and status
*/
static struct slgt_info *slgt_device_list;
static int slgt_device_count;
static int ttymajor;
static int debug_level;
static int maxframe[MAX_DEVICES];
module_param(ttymajor, int, 0);
module_param(debug_level, int, 0);
module_param_array(maxframe, int, NULL, 0);
MODULE_PARM_DESC(ttymajor, "TTY major device number override: 0=auto assigned");
MODULE_PARM_DESC(debug_level, "Debug syslog output: 0=disabled, 1 to 5=increasing detail");
MODULE_PARM_DESC(maxframe, "Maximum frame size used by device (4096 to 65535)");
/*
* tty support and callbacks
*/
static struct tty_driver *serial_driver;
static int open(struct tty_struct *tty, struct file * filp);
static void close(struct tty_struct *tty, struct file * filp);
static void hangup(struct tty_struct *tty);
static void set_termios(struct tty_struct *tty, struct ktermios *old_termios);
static int write(struct tty_struct *tty, const unsigned char *buf, int count);
static int put_char(struct tty_struct *tty, unsigned char ch);
static void send_xchar(struct tty_struct *tty, char ch);
static void wait_until_sent(struct tty_struct *tty, int timeout);
static int write_room(struct tty_struct *tty);
static void flush_chars(struct tty_struct *tty);
static void flush_buffer(struct tty_struct *tty);
static void tx_hold(struct tty_struct *tty);
static void tx_release(struct tty_struct *tty);
static int ioctl(struct tty_struct *tty, unsigned int cmd, unsigned long arg);
static int chars_in_buffer(struct tty_struct *tty);
static void throttle(struct tty_struct * tty);
static void unthrottle(struct tty_struct * tty);
static int set_break(struct tty_struct *tty, int break_state);
/*
* generic HDLC support and callbacks
*/
#if SYNCLINK_GENERIC_HDLC
#define dev_to_port(D) (dev_to_hdlc(D)->priv)
static void hdlcdev_tx_done(struct slgt_info *info);
static void hdlcdev_rx(struct slgt_info *info, char *buf, int size);
static int hdlcdev_init(struct slgt_info *info);
static void hdlcdev_exit(struct slgt_info *info);
#endif
/*
* device specific structures, macros and functions
*/
#define SLGT_MAX_PORTS 4
#define SLGT_REG_SIZE 256
/*
* conditional wait facility
*/
struct cond_wait {
struct cond_wait *next;
wait_queue_head_t q;
wait_queue_t wait;
unsigned int data;
};
static void init_cond_wait(struct cond_wait *w, unsigned int data);
static void add_cond_wait(struct cond_wait **head, struct cond_wait *w);
static void remove_cond_wait(struct cond_wait **head, struct cond_wait *w);
static void flush_cond_wait(struct cond_wait **head);
/*
* DMA buffer descriptor and access macros
*/
struct slgt_desc
{
__le16 count;
__le16 status;
__le32 pbuf; /* physical address of data buffer */
__le32 next; /* physical address of next descriptor */
/* driver book keeping */
char *buf; /* virtual address of data buffer */
unsigned int pdesc; /* physical address of this descriptor */
dma_addr_t buf_dma_addr;
unsigned short buf_count;
};
#define set_desc_buffer(a,b) (a).pbuf = cpu_to_le32((unsigned int)(b))
#define set_desc_next(a,b) (a).next = cpu_to_le32((unsigned int)(b))
#define set_desc_count(a,b)(a).count = cpu_to_le16((unsigned short)(b))
#define set_desc_eof(a,b) (a).status = cpu_to_le16((b) ? (le16_to_cpu((a).status) | BIT0) : (le16_to_cpu((a).status) & ~BIT0))
#define set_desc_status(a, b) (a).status = cpu_to_le16((unsigned short)(b))
#define desc_count(a) (le16_to_cpu((a).count))
#define desc_status(a) (le16_to_cpu((a).status))
#define desc_complete(a) (le16_to_cpu((a).status) & BIT15)
#define desc_eof(a) (le16_to_cpu((a).status) & BIT2)
#define desc_crc_error(a) (le16_to_cpu((a).status) & BIT1)
#define desc_abort(a) (le16_to_cpu((a).status) & BIT0)
#define desc_residue(a) ((le16_to_cpu((a).status) & 0x38) >> 3)
struct _input_signal_events {
int ri_up;
int ri_down;
int dsr_up;
int dsr_down;
int dcd_up;
int dcd_down;
int cts_up;
int cts_down;
};
/*
* device instance data structure
*/
struct slgt_info {
void *if_ptr; /* General purpose pointer (used by SPPP) */
struct tty_port port;
struct slgt_info *next_device; /* device list link */
int magic;
char device_name[25];
struct pci_dev *pdev;
int port_count; /* count of ports on adapter */
int adapter_num; /* adapter instance number */
int port_num; /* port instance number */
/* array of pointers to port contexts on this adapter */
struct slgt_info *port_array[SLGT_MAX_PORTS];
int line; /* tty line instance number */
struct mgsl_icount icount;
int timeout;
int x_char; /* xon/xoff character */
unsigned int read_status_mask;
unsigned int ignore_status_mask;
wait_queue_head_t status_event_wait_q;
wait_queue_head_t event_wait_q;
struct timer_list tx_timer;
struct timer_list rx_timer;
unsigned int gpio_present;
struct cond_wait *gpio_wait_q;
spinlock_t lock; /* spinlock for synchronizing with ISR */
struct work_struct task;
u32 pending_bh;
bool bh_requested;
bool bh_running;
int isr_overflow;
bool irq_requested; /* true if IRQ requested */
bool irq_occurred; /* for diagnostics use */
/* device configuration */
unsigned int bus_type;
unsigned int irq_level;
unsigned long irq_flags;
unsigned char __iomem * reg_addr; /* memory mapped registers address */
u32 phys_reg_addr;
bool reg_addr_requested;
MGSL_PARAMS params; /* communications parameters */
u32 idle_mode;
u32 max_frame_size; /* as set by device config */
unsigned int rbuf_fill_level;
unsigned int rx_pio;
unsigned int if_mode;
unsigned int base_clock;
unsigned int xsync;
unsigned int xctrl;
/* device status */
bool rx_enabled;
bool rx_restart;
bool tx_enabled;
bool tx_active;
unsigned char signals; /* serial signal states */
int init_error; /* initialization error */
unsigned char *tx_buf;
int tx_count;
char flag_buf[MAX_ASYNC_BUFFER_SIZE];
char char_buf[MAX_ASYNC_BUFFER_SIZE];
bool drop_rts_on_tx_done;
struct _input_signal_events input_signal_events;
int dcd_chkcount; /* check counts to prevent */
int cts_chkcount; /* too many IRQs if a signal */
int dsr_chkcount; /* is floating */
int ri_chkcount;
char *bufs; /* virtual address of DMA buffer lists */
dma_addr_t bufs_dma_addr; /* physical address of buffer descriptors */
unsigned int rbuf_count;
struct slgt_desc *rbufs;
unsigned int rbuf_current;
unsigned int rbuf_index;
unsigned int rbuf_fill_index;
unsigned short rbuf_fill_count;
unsigned int tbuf_count;
struct slgt_desc *tbufs;
unsigned int tbuf_current;
unsigned int tbuf_start;
unsigned char *tmp_rbuf;
unsigned int tmp_rbuf_count;
/* SPPP/Cisco HDLC device parts */
int netcount;
spinlock_t netlock;
#if SYNCLINK_GENERIC_HDLC
struct net_device *netdev;
#endif
};
static MGSL_PARAMS default_params = {
.mode = MGSL_MODE_HDLC,
.loopback = 0,
.flags = HDLC_FLAG_UNDERRUN_ABORT15,
.encoding = HDLC_ENCODING_NRZI_SPACE,
.clock_speed = 0,
.addr_filter = 0xff,
.crc_type = HDLC_CRC_16_CCITT,
.preamble_length = HDLC_PREAMBLE_LENGTH_8BITS,
.preamble = HDLC_PREAMBLE_PATTERN_NONE,
.data_rate = 9600,
.data_bits = 8,
.stop_bits = 1,
.parity = ASYNC_PARITY_NONE
};
#define BH_RECEIVE 1
#define BH_TRANSMIT 2
#define BH_STATUS 4
#define IO_PIN_SHUTDOWN_LIMIT 100
#define DMABUFSIZE 256
#define DESC_LIST_SIZE 4096
#define MASK_PARITY BIT1
#define MASK_FRAMING BIT0
#define MASK_BREAK BIT14
#define MASK_OVERRUN BIT4
#define GSR 0x00 /* global status */
#define JCR 0x04 /* JTAG control */
#define IODR 0x08 /* GPIO direction */
#define IOER 0x0c /* GPIO interrupt enable */
#define IOVR 0x10 /* GPIO value */
#define IOSR 0x14 /* GPIO interrupt status */
#define TDR 0x80 /* tx data */
#define RDR 0x80 /* rx data */
#define TCR 0x82 /* tx control */
#define TIR 0x84 /* tx idle */
#define TPR 0x85 /* tx preamble */
#define RCR 0x86 /* rx control */
#define VCR 0x88 /* V.24 control */
#define CCR 0x89 /* clock control */
#define BDR 0x8a /* baud divisor */
#define SCR 0x8c /* serial control */
#define SSR 0x8e /* serial status */
#define RDCSR 0x90 /* rx DMA control/status */
#define TDCSR 0x94 /* tx DMA control/status */
#define RDDAR 0x98 /* rx DMA descriptor address */
#define TDDAR 0x9c /* tx DMA descriptor address */
#define XSR 0x40 /* extended sync pattern */
#define XCR 0x44 /* extended control */
#define RXIDLE BIT14
#define RXBREAK BIT14
#define IRQ_TXDATA BIT13
#define IRQ_TXIDLE BIT12
#define IRQ_TXUNDER BIT11 /* HDLC */
#define IRQ_RXDATA BIT10
#define IRQ_RXIDLE BIT9 /* HDLC */
#define IRQ_RXBREAK BIT9 /* async */
#define IRQ_RXOVER BIT8
#define IRQ_DSR BIT7
#define IRQ_CTS BIT6
#define IRQ_DCD BIT5
#define IRQ_RI BIT4
#define IRQ_ALL 0x3ff0
#define IRQ_MASTER BIT0
#define slgt_irq_on(info, mask) \
wr_reg16((info), SCR, (unsigned short)(rd_reg16((info), SCR) | (mask)))
#define slgt_irq_off(info, mask) \
wr_reg16((info), SCR, (unsigned short)(rd_reg16((info), SCR) & ~(mask)))
static __u8 rd_reg8(struct slgt_info *info, unsigned int addr);
static void wr_reg8(struct slgt_info *info, unsigned int addr, __u8 value);
static __u16 rd_reg16(struct slgt_info *info, unsigned int addr);
static void wr_reg16(struct slgt_info *info, unsigned int addr, __u16 value);
static __u32 rd_reg32(struct slgt_info *info, unsigned int addr);
static void wr_reg32(struct slgt_info *info, unsigned int addr, __u32 value);
static void msc_set_vcr(struct slgt_info *info);
static int startup(struct slgt_info *info);
static int block_til_ready(struct tty_struct *tty, struct file * filp,struct slgt_info *info);
static void shutdown(struct slgt_info *info);
static void program_hw(struct slgt_info *info);
static void change_params(struct slgt_info *info);
static int register_test(struct slgt_info *info);
static int irq_test(struct slgt_info *info);
static int loopback_test(struct slgt_info *info);
static int adapter_test(struct slgt_info *info);
static void reset_adapter(struct slgt_info *info);
static void reset_port(struct slgt_info *info);
static void async_mode(struct slgt_info *info);
static void sync_mode(struct slgt_info *info);
static void rx_stop(struct slgt_info *info);
static void rx_start(struct slgt_info *info);
static void reset_rbufs(struct slgt_info *info);
static void free_rbufs(struct slgt_info *info, unsigned int first, unsigned int last);
static void rdma_reset(struct slgt_info *info);
static bool rx_get_frame(struct slgt_info *info);
static bool rx_get_buf(struct slgt_info *info);
static void tx_start(struct slgt_info *info);
static void tx_stop(struct slgt_info *info);
static void tx_set_idle(struct slgt_info *info);
static unsigned int free_tbuf_count(struct slgt_info *info);
static unsigned int tbuf_bytes(struct slgt_info *info);
static void reset_tbufs(struct slgt_info *info);
static void tdma_reset(struct slgt_info *info);
static bool tx_load(struct slgt_info *info, const char *buf, unsigned int count);
static void get_signals(struct slgt_info *info);
static void set_signals(struct slgt_info *info);
static void enable_loopback(struct slgt_info *info);
static void set_rate(struct slgt_info *info, u32 data_rate);
static int bh_action(struct slgt_info *info);
static void bh_handler(struct work_struct *work);
static void bh_transmit(struct slgt_info *info);
static void isr_serial(struct slgt_info *info);
static void isr_rdma(struct slgt_info *info);
static void isr_txeom(struct slgt_info *info, unsigned short status);
static void isr_tdma(struct slgt_info *info);
static int alloc_dma_bufs(struct slgt_info *info);
static void free_dma_bufs(struct slgt_info *info);
static int alloc_desc(struct slgt_info *info);
static void free_desc(struct slgt_info *info);
static int alloc_bufs(struct slgt_info *info, struct slgt_desc *bufs, int count);
static void free_bufs(struct slgt_info *info, struct slgt_desc *bufs, int count);
static int alloc_tmp_rbuf(struct slgt_info *info);
static void free_tmp_rbuf(struct slgt_info *info);
static void tx_timeout(unsigned long context);
static void rx_timeout(unsigned long context);
/*
* ioctl handlers
*/
static int get_stats(struct slgt_info *info, struct mgsl_icount __user *user_icount);
static int get_params(struct slgt_info *info, MGSL_PARAMS __user *params);
static int set_params(struct slgt_info *info, MGSL_PARAMS __user *params);
static int get_txidle(struct slgt_info *info, int __user *idle_mode);
static int set_txidle(struct slgt_info *info, int idle_mode);
static int tx_enable(struct slgt_info *info, int enable);
static int tx_abort(struct slgt_info *info);
static int rx_enable(struct slgt_info *info, int enable);
static int modem_input_wait(struct slgt_info *info,int arg);
static int wait_mgsl_event(struct slgt_info *info, int __user *mask_ptr);
static int tiocmget(struct tty_struct *tty);
static int tiocmset(struct tty_struct *tty,
unsigned int set, unsigned int clear);
static int set_break(struct tty_struct *tty, int break_state);
static int get_interface(struct slgt_info *info, int __user *if_mode);
static int set_interface(struct slgt_info *info, int if_mode);
static int set_gpio(struct slgt_info *info, struct gpio_desc __user *gpio);
static int get_gpio(struct slgt_info *info, struct gpio_desc __user *gpio);
static int wait_gpio(struct slgt_info *info, struct gpio_desc __user *gpio);
static int get_xsync(struct slgt_info *info, int __user *if_mode);
static int set_xsync(struct slgt_info *info, int if_mode);
static int get_xctrl(struct slgt_info *info, int __user *if_mode);
static int set_xctrl(struct slgt_info *info, int if_mode);
/*
* driver functions
*/
static void add_device(struct slgt_info *info);
static void device_init(int adapter_num, struct pci_dev *pdev);
static int claim_resources(struct slgt_info *info);
static void release_resources(struct slgt_info *info);
/*
* DEBUG OUTPUT CODE
*/
#ifndef DBGINFO
#define DBGINFO(fmt)
#endif
#ifndef DBGERR
#define DBGERR(fmt)
#endif
#ifndef DBGBH
#define DBGBH(fmt)
#endif
#ifndef DBGISR
#define DBGISR(fmt)
#endif
#ifdef DBGDATA
static void trace_block(struct slgt_info *info, const char *data, int count, const char *label)
{
int i;
int linecount;
printk("%s %s data:\n",info->device_name, label);
while(count) {
linecount = (count > 16) ? 16 : count;
for(i=0; i < linecount; i++)
printk("%02X ",(unsigned char)data[i]);
for(;i<17;i++)
printk(" ");
for(i=0;i<linecount;i++) {
if (data[i]>=040 && data[i]<=0176)
printk("%c",data[i]);
else
printk(".");
}
printk("\n");
data += linecount;
count -= linecount;
}
}
#else
#define DBGDATA(info, buf, size, label)
#endif
#ifdef DBGTBUF
static void dump_tbufs(struct slgt_info *info)
{
int i;
printk("tbuf_current=%d\n", info->tbuf_current);
for (i=0 ; i < info->tbuf_count ; i++) {
printk("%d: count=%04X status=%04X\n",
i, le16_to_cpu(info->tbufs[i].count), le16_to_cpu(info->tbufs[i].status));
}
}
#else
#define DBGTBUF(info)
#endif
#ifdef DBGRBUF
static void dump_rbufs(struct slgt_info *info)
{
int i;
printk("rbuf_current=%d\n", info->rbuf_current);
for (i=0 ; i < info->rbuf_count ; i++) {
printk("%d: count=%04X status=%04X\n",
i, le16_to_cpu(info->rbufs[i].count), le16_to_cpu(info->rbufs[i].status));
}
}
#else
#define DBGRBUF(info)
#endif
static inline int sanity_check(struct slgt_info *info, char *devname, const char *name)
{
#ifdef SANITY_CHECK
if (!info) {
printk("null struct slgt_info for (%s) in %s\n", devname, name);
return 1;
}
if (info->magic != MGSL_MAGIC) {
printk("bad magic number struct slgt_info (%s) in %s\n", devname, name);
return 1;
}
#else
if (!info)
return 1;
#endif
return 0;
}
/**
* line discipline callback wrappers
*
* The wrappers maintain line discipline references
* while calling into the line discipline.
*
* ldisc_receive_buf - pass receive data to line discipline
*/
static void ldisc_receive_buf(struct tty_struct *tty,
const __u8 *data, char *flags, int count)
{
struct tty_ldisc *ld;
if (!tty)
return;
ld = tty_ldisc_ref(tty);
if (ld) {
if (ld->ops->receive_buf)
ld->ops->receive_buf(tty, data, flags, count);
tty_ldisc_deref(ld);
}
}
/* tty callbacks */
static int open(struct tty_struct *tty, struct file *filp)
{
struct slgt_info *info;
int retval, line;
unsigned long flags;
line = tty->index;
if (line >= slgt_device_count) {
DBGERR(("%s: open with invalid line #%d.\n", driver_name, line));
return -ENODEV;
}
info = slgt_device_list;
while(info && info->line != line)
info = info->next_device;
if (sanity_check(info, tty->name, "open"))
return -ENODEV;
if (info->init_error) {
DBGERR(("%s init error=%d\n", info->device_name, info->init_error));
return -ENODEV;
}
tty->driver_data = info;
info->port.tty = tty;
DBGINFO(("%s open, old ref count = %d\n", info->device_name, info->port.count));
/* If port is closing, signal caller to try again */
if (tty_hung_up_p(filp) || info->port.flags & ASYNC_CLOSING){
if (info->port.flags & ASYNC_CLOSING)
interruptible_sleep_on(&info->port.close_wait);
retval = ((info->port.flags & ASYNC_HUP_NOTIFY) ?
-EAGAIN : -ERESTARTSYS);
goto cleanup;
}
mutex_lock(&info->port.mutex);
info->port.tty->low_latency = (info->port.flags & ASYNC_LOW_LATENCY) ? 1 : 0;
spin_lock_irqsave(&info->netlock, flags);
if (info->netcount) {
retval = -EBUSY;
spin_unlock_irqrestore(&info->netlock, flags);
mutex_unlock(&info->port.mutex);
goto cleanup;
}
info->port.count++;
spin_unlock_irqrestore(&info->netlock, flags);
if (info->port.count == 1) {
/* 1st open on this device, init hardware */
retval = startup(info);
if (retval < 0) {
mutex_unlock(&info->port.mutex);
goto cleanup;
}
}
mutex_unlock(&info->port.mutex);
retval = block_til_ready(tty, filp, info);
if (retval) {
DBGINFO(("%s block_til_ready rc=%d\n", info->device_name, retval));
goto cleanup;
}
retval = 0;
cleanup:
if (retval) {
if (tty->count == 1)
info->port.tty = NULL; /* tty layer will release tty struct */
if(info->port.count)
info->port.count--;
}
DBGINFO(("%s open rc=%d\n", info->device_name, retval));
return retval;
}
static void close(struct tty_struct *tty, struct file *filp)
{
struct slgt_info *info = tty->driver_data;
if (sanity_check(info, tty->name, "close"))
return;
DBGINFO(("%s close entry, count=%d\n", info->device_name, info->port.count));
if (tty_port_close_start(&info->port, tty, filp) == 0)
goto cleanup;
mutex_lock(&info->port.mutex);
if (info->port.flags & ASYNC_INITIALIZED)
wait_until_sent(tty, info->timeout);
flush_buffer(tty);
tty_ldisc_flush(tty);
shutdown(info);
mutex_unlock(&info->port.mutex);
tty_port_close_end(&info->port, tty);
info->port.tty = NULL;
cleanup:
DBGINFO(("%s close exit, count=%d\n", tty->driver->name, info->port.count));
}
static void hangup(struct tty_struct *tty)
{
struct slgt_info *info = tty->driver_data;
unsigned long flags;
if (sanity_check(info, tty->name, "hangup"))
return;
DBGINFO(("%s hangup\n", info->device_name));
flush_buffer(tty);
mutex_lock(&info->port.mutex);
shutdown(info);
spin_lock_irqsave(&info->port.lock, flags);
info->port.count = 0;
info->port.flags &= ~ASYNC_NORMAL_ACTIVE;
info->port.tty = NULL;
spin_unlock_irqrestore(&info->port.lock, flags);
mutex_unlock(&info->port.mutex);
wake_up_interruptible(&info->port.open_wait);
}
static void set_termios(struct tty_struct *tty, struct ktermios *old_termios)
{
struct slgt_info *info = tty->driver_data;
unsigned long flags;
DBGINFO(("%s set_termios\n", tty->driver->name));
change_params(info);
/* Handle transition to B0 status */
if (old_termios->c_cflag & CBAUD &&
!(tty->termios->c_cflag & CBAUD)) {
info->signals &= ~(SerialSignal_RTS + SerialSignal_DTR);
spin_lock_irqsave(&info->lock,flags);
set_signals(info);
spin_unlock_irqrestore(&info->lock,flags);
}
/* Handle transition away from B0 status */
if (!(old_termios->c_cflag & CBAUD) &&
tty->termios->c_cflag & CBAUD) {
info->signals |= SerialSignal_DTR;
if (!(tty->termios->c_cflag & CRTSCTS) ||
!test_bit(TTY_THROTTLED, &tty->flags)) {
info->signals |= SerialSignal_RTS;
}
spin_lock_irqsave(&info->lock,flags);
set_signals(info);
spin_unlock_irqrestore(&info->lock,flags);
}
/* Handle turning off CRTSCTS */
if (old_termios->c_cflag & CRTSCTS &&
!(tty->termios->c_cflag & CRTSCTS)) {
tty->hw_stopped = 0;
tx_release(tty);
}
}
static void update_tx_timer(struct slgt_info *info)
{
/*
* use worst case speed of 1200bps to calculate transmit timeout
* based on data in buffers (tbuf_bytes) and FIFO (128 bytes)
*/
if (info->params.mode == MGSL_MODE_HDLC) {
int timeout = (tbuf_bytes(info) * 7) + 1000;
mod_timer(&info->tx_timer, jiffies + msecs_to_jiffies(timeout));
}
}
static int write(struct tty_struct *tty,
const unsigned char *buf, int count)
{
int ret = 0;
struct slgt_info *info = tty->driver_data;
unsigned long flags;
if (sanity_check(info, tty->name, "write"))
return -EIO;
DBGINFO(("%s write count=%d\n", info->device_name, count));
if (!info->tx_buf || (count > info->max_frame_size))
return -EIO;
if (!count || tty->stopped || tty->hw_stopped)
return 0;
spin_lock_irqsave(&info->lock, flags);
if (info->tx_count) {
/* send accumulated data from send_char() */
if (!tx_load(info, info->tx_buf, info->tx_count))
goto cleanup;
info->tx_count = 0;
}
if (tx_load(info, buf, count))
ret = count;
cleanup:
spin_unlock_irqrestore(&info->lock, flags);
DBGINFO(("%s write rc=%d\n", info->device_name, ret));
return ret;
}
static int put_char(struct tty_struct *tty, unsigned char ch)
{
struct slgt_info *info = tty->driver_data;
unsigned long flags;
int ret = 0;
if (sanity_check(info, tty->name, "put_char"))
return 0;
DBGINFO(("%s put_char(%d)\n", info->device_name, ch));
if (!info->tx_buf)
return 0;
spin_lock_irqsave(&info->lock,flags);
if (info->tx_count < info->max_frame_size) {
info->tx_buf[info->tx_count++] = ch;
ret = 1;
}
spin_unlock_irqrestore(&info->lock,flags);
return ret;
}
static void send_xchar(struct tty_struct *tty, char ch)
{
struct slgt_info *info = tty->driver_data;
unsigned long flags;
if (sanity_check(info, tty->name, "send_xchar"))
return;
DBGINFO(("%s send_xchar(%d)\n", info->device_name, ch));
info->x_char = ch;
if (ch) {
spin_lock_irqsave(&info->lock,flags);
if (!info->tx_enabled)
tx_start(info);
spin_unlock_irqrestore(&info->lock,flags);
}
}
static void wait_until_sent(struct tty_struct *tty, int timeout)
{
struct slgt_info *info = tty->driver_data;
unsigned long orig_jiffies, char_time;
if (!info )
return;
if (sanity_check(info, tty->name, "wait_until_sent"))
return;
DBGINFO(("%s wait_until_sent entry\n", info->device_name));
if (!(info->port.flags & ASYNC_INITIALIZED))
goto exit;
orig_jiffies = jiffies;
/* Set check interval to 1/5 of estimated time to
* send a character, and make it at least 1. The check
* interval should also be less than the timeout.
* Note: use tight timings here to satisfy the NIST-PCTS.
*/
if (info->params.data_rate) {
char_time = info->timeout/(32 * 5);
if (!char_time)
char_time++;
} else
char_time = 1;
if (timeout)
char_time = min_t(unsigned long, char_time, timeout);
while (info->tx_active) {
msleep_interruptible(jiffies_to_msecs(char_time));
if (signal_pending(current))
break;
if (timeout && time_after(jiffies, orig_jiffies + timeout))
break;
}
exit:
DBGINFO(("%s wait_until_sent exit\n", info->device_name));
}
static int write_room(struct tty_struct *tty)
{
struct slgt_info *info = tty->driver_data;
int ret;
if (sanity_check(info, tty->name, "write_room"))
return 0;
ret = (info->tx_active) ? 0 : HDLC_MAX_FRAME_SIZE;
DBGINFO(("%s write_room=%d\n", info->device_name, ret));
return ret;
}
static void flush_chars(struct tty_struct *tty)
{
struct slgt_info *info = tty->driver_data;
unsigned long flags;
if (sanity_check(info, tty->name, "flush_chars"))
return;
DBGINFO(("%s flush_chars entry tx_count=%d\n", info->device_name, info->tx_count));
if (info->tx_count <= 0 || tty->stopped ||
tty->hw_stopped || !info->tx_buf)
return;
DBGINFO(("%s flush_chars start transmit\n", info->device_name));
spin_lock_irqsave(&info->lock,flags);
if (info->tx_count && tx_load(info, info->tx_buf, info->tx_count))
info->tx_count = 0;
spin_unlock_irqrestore(&info->lock,flags);
}
static void flush_buffer(struct tty_struct *tty)
{
struct slgt_info *info = tty->driver_data;
unsigned long flags;
if (sanity_check(info, tty->name, "flush_buffer"))
return;
DBGINFO(("%s flush_buffer\n", info->device_name));
spin_lock_irqsave(&info->lock, flags);
info->tx_count = 0;
spin_unlock_irqrestore(&info->lock, flags);
tty_wakeup(tty);
}
/*
* throttle (stop) transmitter
*/
static void tx_hold(struct tty_struct *tty)
{
struct slgt_info *info = tty->driver_data;
unsigned long flags;
if (sanity_check(info, tty->name, "tx_hold"))
return;
DBGINFO(("%s tx_hold\n", info->device_name));
spin_lock_irqsave(&info->lock,flags);
if (info->tx_enabled && info->params.mode == MGSL_MODE_ASYNC)
tx_stop(info);
spin_unlock_irqrestore(&info->lock,flags);
}
/*
* release (start) transmitter
*/
static void tx_release(struct tty_struct *tty)
{
struct slgt_info *info = tty->driver_data;
unsigned long flags;
if (sanity_check(info, tty->name, "tx_release"))
return;
DBGINFO(("%s tx_release\n", info->device_name));
spin_lock_irqsave(&info->lock, flags);
if (info->tx_count && tx_load(info, info->tx_buf, info->tx_count))
info->tx_count = 0;
spin_unlock_irqrestore(&info->lock, flags);
}
/*
* Service an IOCTL request
*
* Arguments
*
* tty pointer to tty instance data
* cmd IOCTL command code
* arg command argument/context
*
* Return 0 if success, otherwise error code
*/
static int ioctl(struct tty_struct *tty,
unsigned int cmd, unsigned long arg)
{
struct slgt_info *info = tty->driver_data;
void __user *argp = (void __user *)arg;
int ret;
if (sanity_check(info, tty->name, "ioctl"))
return -ENODEV;
DBGINFO(("%s ioctl() cmd=%08X\n", info->device_name, cmd));
if ((cmd != TIOCGSERIAL) && (cmd != TIOCSSERIAL) &&
(cmd != TIOCMIWAIT)) {
if (tty->flags & (1 << TTY_IO_ERROR))
return -EIO;
}
switch (cmd) {
case MGSL_IOCWAITEVENT:
return wait_mgsl_event(info, argp);
case TIOCMIWAIT:
return modem_input_wait(info,(int)arg);
case MGSL_IOCSGPIO:
return set_gpio(info, argp);
case MGSL_IOCGGPIO:
return get_gpio(info, argp);
case MGSL_IOCWAITGPIO:
return wait_gpio(info, argp);
case MGSL_IOCGXSYNC:
return get_xsync(info, argp);
case MGSL_IOCSXSYNC:
return set_xsync(info, (int)arg);
case MGSL_IOCGXCTRL:
return get_xctrl(info, argp);
case MGSL_IOCSXCTRL:
return set_xctrl(info, (int)arg);
}
mutex_lock(&info->port.mutex);
switch (cmd) {
case MGSL_IOCGPARAMS:
ret = get_params(info, argp);
break;
case MGSL_IOCSPARAMS:
ret = set_params(info, argp);
break;
case MGSL_IOCGTXIDLE:
ret = get_txidle(info, argp);
break;
case MGSL_IOCSTXIDLE:
ret = set_txidle(info, (int)arg);
break;
case MGSL_IOCTXENABLE:
ret = tx_enable(info, (int)arg);
break;
case MGSL_IOCRXENABLE:
ret = rx_enable(info, (int)arg);
break;
case MGSL_IOCTXABORT:
ret = tx_abort(info);
break;
case MGSL_IOCGSTATS:
ret = get_stats(info, argp);
break;
case MGSL_IOCGIF:
ret = get_interface(info, argp);
break;
case MGSL_IOCSIF:
ret = set_interface(info,(int)arg);
break;
default:
ret = -ENOIOCTLCMD;
}
mutex_unlock(&info->port.mutex);
return ret;
}
static int get_icount(struct tty_struct *tty,
struct serial_icounter_struct *icount)
{
struct slgt_info *info = tty->driver_data;
struct mgsl_icount cnow; /* kernel counter temps */
unsigned long flags;
spin_lock_irqsave(&info->lock,flags);
cnow = info->icount;
spin_unlock_irqrestore(&info->lock,flags);
icount->cts = cnow.cts;
icount->dsr = cnow.dsr;
icount->rng = cnow.rng;
icount->dcd = cnow.dcd;
icount->rx = cnow.rx;
icount->tx = cnow.tx;
icount->frame = cnow.frame;
icount->overrun = cnow.overrun;
icount->parity = cnow.parity;
icount->brk = cnow.brk;
icount->buf_overrun = cnow.buf_overrun;
return 0;
}
/*
* support for 32 bit ioctl calls on 64 bit systems
*/
#ifdef CONFIG_COMPAT
static long get_params32(struct slgt_info *info, struct MGSL_PARAMS32 __user *user_params)
{
struct MGSL_PARAMS32 tmp_params;
DBGINFO(("%s get_params32\n", info->device_name));
memset(&tmp_params, 0, sizeof(tmp_params));
tmp_params.mode = (compat_ulong_t)info->params.mode;
tmp_params.loopback = info->params.loopback;
tmp_params.flags = info->params.flags;
tmp_params.encoding = info->params.encoding;
tmp_params.clock_speed = (compat_ulong_t)info->params.clock_speed;
tmp_params.addr_filter = info->params.addr_filter;
tmp_params.crc_type = info->params.crc_type;
tmp_params.preamble_length = info->params.preamble_length;
tmp_params.preamble = info->params.preamble;
tmp_params.data_rate = (compat_ulong_t)info->params.data_rate;
tmp_params.data_bits = info->params.data_bits;
tmp_params.stop_bits = info->params.stop_bits;
tmp_params.parity = info->params.parity;
if (copy_to_user(user_params, &tmp_params, sizeof(struct MGSL_PARAMS32)))
return -EFAULT;
return 0;
}
static long set_params32(struct slgt_info *info, struct MGSL_PARAMS32 __user *new_params)
{
struct MGSL_PARAMS32 tmp_params;
DBGINFO(("%s set_params32\n", info->device_name));
if (copy_from_user(&tmp_params, new_params, sizeof(struct MGSL_PARAMS32)))
return -EFAULT;
spin_lock(&info->lock);
if (tmp_params.mode == MGSL_MODE_BASE_CLOCK) {
info->base_clock = tmp_params.clock_speed;
} else {
info->params.mode = tmp_params.mode;
info->params.loopback = tmp_params.loopback;
info->params.flags = tmp_params.flags;
info->params.encoding = tmp_params.encoding;
info->params.clock_speed = tmp_params.clock_speed;
info->params.addr_filter = tmp_params.addr_filter;
info->params.crc_type = tmp_params.crc_type;
info->params.preamble_length = tmp_params.preamble_length;
info->params.preamble = tmp_params.preamble;
info->params.data_rate = tmp_params.data_rate;
info->params.data_bits = tmp_params.data_bits;
info->params.stop_bits = tmp_params.stop_bits;
info->params.parity = tmp_params.parity;
}
spin_unlock(&info->lock);
program_hw(info);
return 0;
}
static long slgt_compat_ioctl(struct tty_struct *tty,
unsigned int cmd, unsigned long arg)
{
struct slgt_info *info = tty->driver_data;
int rc = -ENOIOCTLCMD;
if (sanity_check(info, tty->name, "compat_ioctl"))
return -ENODEV;
DBGINFO(("%s compat_ioctl() cmd=%08X\n", info->device_name, cmd));
switch (cmd) {
case MGSL_IOCSPARAMS32:
rc = set_params32(info, compat_ptr(arg));
break;
case MGSL_IOCGPARAMS32:
rc = get_params32(info, compat_ptr(arg));
break;
case MGSL_IOCGPARAMS:
case MGSL_IOCSPARAMS:
case MGSL_IOCGTXIDLE:
case MGSL_IOCGSTATS:
case MGSL_IOCWAITEVENT:
case MGSL_IOCGIF:
case MGSL_IOCSGPIO:
case MGSL_IOCGGPIO:
case MGSL_IOCWAITGPIO:
case MGSL_IOCGXSYNC:
case MGSL_IOCGXCTRL:
case MGSL_IOCSTXIDLE:
case MGSL_IOCTXENABLE:
case MGSL_IOCRXENABLE:
case MGSL_IOCTXABORT:
case TIOCMIWAIT:
case MGSL_IOCSIF:
case MGSL_IOCSXSYNC:
case MGSL_IOCSXCTRL:
rc = ioctl(tty, cmd, arg);
break;
}
DBGINFO(("%s compat_ioctl() cmd=%08X rc=%d\n", info->device_name, cmd, rc));
return rc;
}
#else
#define slgt_compat_ioctl NULL
#endif /* ifdef CONFIG_COMPAT */
/*
* proc fs support
*/
static inline void line_info(struct seq_file *m, struct slgt_info *info)
{
char stat_buf[30];
unsigned long flags;
seq_printf(m, "%s: IO=%08X IRQ=%d MaxFrameSize=%u\n",
info->device_name, info->phys_reg_addr,
info->irq_level, info->max_frame_size);
/* output current serial signal states */
spin_lock_irqsave(&info->lock,flags);
get_signals(info);
spin_unlock_irqrestore(&info->lock,flags);
stat_buf[0] = 0;
stat_buf[1] = 0;
if (info->signals & SerialSignal_RTS)
strcat(stat_buf, "|RTS");
if (info->signals & SerialSignal_CTS)
strcat(stat_buf, "|CTS");
if (info->signals & SerialSignal_DTR)
strcat(stat_buf, "|DTR");
if (info->signals & SerialSignal_DSR)
strcat(stat_buf, "|DSR");
if (info->signals & SerialSignal_DCD)
strcat(stat_buf, "|CD");
if (info->signals & SerialSignal_RI)
strcat(stat_buf, "|RI");
if (info->params.mode != MGSL_MODE_ASYNC) {
seq_printf(m, "\tHDLC txok:%d rxok:%d",
info->icount.txok, info->icount.rxok);
if (info->icount.txunder)
seq_printf(m, " txunder:%d", info->icount.txunder);
if (info->icount.txabort)
seq_printf(m, " txabort:%d", info->icount.txabort);
if (info->icount.rxshort)
seq_printf(m, " rxshort:%d", info->icount.rxshort);
if (info->icount.rxlong)
seq_printf(m, " rxlong:%d", info->icount.rxlong);
if (info->icount.rxover)
seq_printf(m, " rxover:%d", info->icount.rxover);
if (info->icount.rxcrc)
seq_printf(m, " rxcrc:%d", info->icount.rxcrc);
} else {
seq_printf(m, "\tASYNC tx:%d rx:%d",
info->icount.tx, info->icount.rx);
if (info->icount.frame)
seq_printf(m, " fe:%d", info->icount.frame);
if (info->icount.parity)
seq_printf(m, " pe:%d", info->icount.parity);
if (info->icount.brk)
seq_printf(m, " brk:%d", info->icount.brk);
if (info->icount.overrun)
seq_printf(m, " oe:%d", info->icount.overrun);
}
/* Append serial signal status to end */
seq_printf(m, " %s\n", stat_buf+1);
seq_printf(m, "\ttxactive=%d bh_req=%d bh_run=%d pending_bh=%x\n",
info->tx_active,info->bh_requested,info->bh_running,
info->pending_bh);
}
/* Called to print information about devices
*/
static int synclink_gt_proc_show(struct seq_file *m, void *v)
{
struct slgt_info *info;
seq_puts(m, "synclink_gt driver\n");
info = slgt_device_list;
while( info ) {
line_info(m, info);
info = info->next_device;
}
return 0;
}
static int synclink_gt_proc_open(struct inode *inode, struct file *file)
{
return single_open(file, synclink_gt_proc_show, NULL);
}
static const struct file_operations synclink_gt_proc_fops = {
.owner = THIS_MODULE,
.open = synclink_gt_proc_open,
.read = seq_read,
.llseek = seq_lseek,
.release = single_release,
};
/*
* return count of bytes in transmit buffer
*/
static int chars_in_buffer(struct tty_struct *tty)
{
struct slgt_info *info = tty->driver_data;
int count;
if (sanity_check(info, tty->name, "chars_in_buffer"))
return 0;
count = tbuf_bytes(info);
DBGINFO(("%s chars_in_buffer()=%d\n", info->device_name, count));
return count;
}
/*
* signal remote device to throttle send data (our receive data)
*/
static void throttle(struct tty_struct * tty)
{
struct slgt_info *info = tty->driver_data;
unsigned long flags;
if (sanity_check(info, tty->name, "throttle"))
return;
DBGINFO(("%s throttle\n", info->device_name));
if (I_IXOFF(tty))
send_xchar(tty, STOP_CHAR(tty));
if (tty->termios->c_cflag & CRTSCTS) {
spin_lock_irqsave(&info->lock,flags);
info->signals &= ~SerialSignal_RTS;
set_signals(info);
spin_unlock_irqrestore(&info->lock,flags);
}
}
/*
* signal remote device to stop throttling send data (our receive data)
*/
static void unthrottle(struct tty_struct * tty)
{
struct slgt_info *info = tty->driver_data;
unsigned long flags;
if (sanity_check(info, tty->name, "unthrottle"))
return;
DBGINFO(("%s unthrottle\n", info->device_name));
if (I_IXOFF(tty)) {
if (info->x_char)
info->x_char = 0;
else
send_xchar(tty, START_CHAR(tty));
}
if (tty->termios->c_cflag & CRTSCTS) {
spin_lock_irqsave(&info->lock,flags);
info->signals |= SerialSignal_RTS;
set_signals(info);
spin_unlock_irqrestore(&info->lock,flags);
}
}
/*
* set or clear transmit break condition
* break_state -1=set break condition, 0=clear
*/
static int set_break(struct tty_struct *tty, int break_state)
{
struct slgt_info *info = tty->driver_data;
unsigned short value;
unsigned long flags;
if (sanity_check(info, tty->name, "set_break"))
return -EINVAL;
DBGINFO(("%s set_break(%d)\n", info->device_name, break_state));
spin_lock_irqsave(&info->lock,flags);
value = rd_reg16(info, TCR);
if (break_state == -1)
value |= BIT6;
else
value &= ~BIT6;
wr_reg16(info, TCR, value);
spin_unlock_irqrestore(&info->lock,flags);
return 0;
}
#if SYNCLINK_GENERIC_HDLC
/**
* called by generic HDLC layer when protocol selected (PPP, frame relay, etc.)
* set encoding and frame check sequence (FCS) options
*
* dev pointer to network device structure
* encoding serial encoding setting
* parity FCS setting
*
* returns 0 if success, otherwise error code
*/
static int hdlcdev_attach(struct net_device *dev, unsigned short encoding,
unsigned short parity)
{
struct slgt_info *info = dev_to_port(dev);
unsigned char new_encoding;
unsigned short new_crctype;
/* return error if TTY interface open */
if (info->port.count)
return -EBUSY;
DBGINFO(("%s hdlcdev_attach\n", info->device_name));
switch (encoding)
{
case ENCODING_NRZ: new_encoding = HDLC_ENCODING_NRZ; break;
case ENCODING_NRZI: new_encoding = HDLC_ENCODING_NRZI_SPACE; break;
case ENCODING_FM_MARK: new_encoding = HDLC_ENCODING_BIPHASE_MARK; break;
case ENCODING_FM_SPACE: new_encoding = HDLC_ENCODING_BIPHASE_SPACE; break;
case ENCODING_MANCHESTER: new_encoding = HDLC_ENCODING_BIPHASE_LEVEL; break;
default: return -EINVAL;
}
switch (parity)
{
case PARITY_NONE: new_crctype = HDLC_CRC_NONE; break;
case PARITY_CRC16_PR1_CCITT: new_crctype = HDLC_CRC_16_CCITT; break;
case PARITY_CRC32_PR1_CCITT: new_crctype = HDLC_CRC_32_CCITT; break;
default: return -EINVAL;
}
info->params.encoding = new_encoding;
info->params.crc_type = new_crctype;
/* if network interface up, reprogram hardware */
if (info->netcount)
program_hw(info);
return 0;
}
/**
* called by generic HDLC layer to send frame
*
* skb socket buffer containing HDLC frame
* dev pointer to network device structure
*/
static netdev_tx_t hdlcdev_xmit(struct sk_buff *skb,
struct net_device *dev)
{
struct slgt_info *info = dev_to_port(dev);
unsigned long flags;
DBGINFO(("%s hdlc_xmit\n", dev->name));
if (!skb->len)
return NETDEV_TX_OK;
/* stop sending until this frame completes */
netif_stop_queue(dev);
/* update network statistics */
dev->stats.tx_packets++;
dev->stats.tx_bytes += skb->len;
/* save start time for transmit timeout detection */
dev->trans_start = jiffies;
spin_lock_irqsave(&info->lock, flags);
tx_load(info, skb->data, skb->len);
spin_unlock_irqrestore(&info->lock, flags);
/* done with socket buffer, so free it */
dev_kfree_skb(skb);
return NETDEV_TX_OK;
}
/**
* called by network layer when interface enabled
* claim resources and initialize hardware
*
* dev pointer to network device structure
*
* returns 0 if success, otherwise error code
*/
static int hdlcdev_open(struct net_device *dev)
{
struct slgt_info *info = dev_to_port(dev);
int rc;
unsigned long flags;
if (!try_module_get(THIS_MODULE))
return -EBUSY;
DBGINFO(("%s hdlcdev_open\n", dev->name));
/* generic HDLC layer open processing */
if ((rc = hdlc_open(dev)))
return rc;
/* arbitrate between network and tty opens */
spin_lock_irqsave(&info->netlock, flags);
if (info->port.count != 0 || info->netcount != 0) {
DBGINFO(("%s hdlc_open busy\n", dev->name));
spin_unlock_irqrestore(&info->netlock, flags);
return -EBUSY;
}
info->netcount=1;
spin_unlock_irqrestore(&info->netlock, flags);
/* claim resources and init adapter */
if ((rc = startup(info)) != 0) {
spin_lock_irqsave(&info->netlock, flags);
info->netcount=0;
spin_unlock_irqrestore(&info->netlock, flags);
return rc;
}
/* assert DTR and RTS, apply hardware settings */
info->signals |= SerialSignal_RTS + SerialSignal_DTR;
program_hw(info);
/* enable network layer transmit */
dev->trans_start = jiffies;
netif_start_queue(dev);
/* inform generic HDLC layer of current DCD status */
spin_lock_irqsave(&info->lock, flags);
get_signals(info);
spin_unlock_irqrestore(&info->lock, flags);
if (info->signals & SerialSignal_DCD)
netif_carrier_on(dev);
else
netif_carrier_off(dev);
return 0;
}
/**
* called by network layer when interface is disabled
* shutdown hardware and release resources
*
* dev pointer to network device structure
*
* returns 0 if success, otherwise error code
*/
static int hdlcdev_close(struct net_device *dev)
{
struct slgt_info *info = dev_to_port(dev);
unsigned long flags;
DBGINFO(("%s hdlcdev_close\n", dev->name));
netif_stop_queue(dev);
/* shutdown adapter and release resources */
shutdown(info);
hdlc_close(dev);
spin_lock_irqsave(&info->netlock, flags);
info->netcount=0;
spin_unlock_irqrestore(&info->netlock, flags);
module_put(THIS_MODULE);
return 0;
}
/**
* called by network layer to process IOCTL call to network device
*
* dev pointer to network device structure
* ifr pointer to network interface request structure
* cmd IOCTL command code
*
* returns 0 if success, otherwise error code
*/
static int hdlcdev_ioctl(struct net_device *dev, struct ifreq *ifr, int cmd)
{
const size_t size = sizeof(sync_serial_settings);
sync_serial_settings new_line;
sync_serial_settings __user *line = ifr->ifr_settings.ifs_ifsu.sync;
struct slgt_info *info = dev_to_port(dev);
unsigned int flags;
DBGINFO(("%s hdlcdev_ioctl\n", dev->name));
/* return error if TTY interface open */
if (info->port.count)
return -EBUSY;
if (cmd != SIOCWANDEV)
return hdlc_ioctl(dev, ifr, cmd);
memset(&new_line, 0, sizeof(new_line));
switch(ifr->ifr_settings.type) {
case IF_GET_IFACE: /* return current sync_serial_settings */
ifr->ifr_settings.type = IF_IFACE_SYNC_SERIAL;
if (ifr->ifr_settings.size < size) {
ifr->ifr_settings.size = size; /* data size wanted */
return -ENOBUFS;
}
flags = info->params.flags & (HDLC_FLAG_RXC_RXCPIN | HDLC_FLAG_RXC_DPLL |
HDLC_FLAG_RXC_BRG | HDLC_FLAG_RXC_TXCPIN |
HDLC_FLAG_TXC_TXCPIN | HDLC_FLAG_TXC_DPLL |
HDLC_FLAG_TXC_BRG | HDLC_FLAG_TXC_RXCPIN);
switch (flags){
case (HDLC_FLAG_RXC_RXCPIN | HDLC_FLAG_TXC_TXCPIN): new_line.clock_type = CLOCK_EXT; break;
case (HDLC_FLAG_RXC_BRG | HDLC_FLAG_TXC_BRG): new_line.clock_type = CLOCK_INT; break;
case (HDLC_FLAG_RXC_RXCPIN | HDLC_FLAG_TXC_BRG): new_line.clock_type = CLOCK_TXINT; break;
case (HDLC_FLAG_RXC_RXCPIN | HDLC_FLAG_TXC_RXCPIN): new_line.clock_type = CLOCK_TXFROMRX; break;
default: new_line.clock_type = CLOCK_DEFAULT;
}
new_line.clock_rate = info->params.clock_speed;
new_line.loopback = info->params.loopback ? 1:0;
if (copy_to_user(line, &new_line, size))
return -EFAULT;
return 0;
case IF_IFACE_SYNC_SERIAL: /* set sync_serial_settings */
if(!capable(CAP_NET_ADMIN))
return -EPERM;
if (copy_from_user(&new_line, line, size))
return -EFAULT;
switch (new_line.clock_type)
{
case CLOCK_EXT: flags = HDLC_FLAG_RXC_RXCPIN | HDLC_FLAG_TXC_TXCPIN; break;
case CLOCK_TXFROMRX: flags = HDLC_FLAG_RXC_RXCPIN | HDLC_FLAG_TXC_RXCPIN; break;
case CLOCK_INT: flags = HDLC_FLAG_RXC_BRG | HDLC_FLAG_TXC_BRG; break;
case CLOCK_TXINT: flags = HDLC_FLAG_RXC_RXCPIN | HDLC_FLAG_TXC_BRG; break;
case CLOCK_DEFAULT: flags = info->params.flags &
(HDLC_FLAG_RXC_RXCPIN | HDLC_FLAG_RXC_DPLL |
HDLC_FLAG_RXC_BRG | HDLC_FLAG_RXC_TXCPIN |
HDLC_FLAG_TXC_TXCPIN | HDLC_FLAG_TXC_DPLL |
HDLC_FLAG_TXC_BRG | HDLC_FLAG_TXC_RXCPIN); break;
default: return -EINVAL;
}
if (new_line.loopback != 0 && new_line.loopback != 1)
return -EINVAL;
info->params.flags &= ~(HDLC_FLAG_RXC_RXCPIN | HDLC_FLAG_RXC_DPLL |
HDLC_FLAG_RXC_BRG | HDLC_FLAG_RXC_TXCPIN |
HDLC_FLAG_TXC_TXCPIN | HDLC_FLAG_TXC_DPLL |
HDLC_FLAG_TXC_BRG | HDLC_FLAG_TXC_RXCPIN);
info->params.flags |= flags;
info->params.loopback = new_line.loopback;
if (flags & (HDLC_FLAG_RXC_BRG | HDLC_FLAG_TXC_BRG))
info->params.clock_speed = new_line.clock_rate;
else
info->params.clock_speed = 0;
/* if network interface up, reprogram hardware */
if (info->netcount)
program_hw(info);
return 0;
default:
return hdlc_ioctl(dev, ifr, cmd);
}
}
/**
* called by network layer when transmit timeout is detected
*
* dev pointer to network device structure
*/
static void hdlcdev_tx_timeout(struct net_device *dev)
{
struct slgt_info *info = dev_to_port(dev);
unsigned long flags;
DBGINFO(("%s hdlcdev_tx_timeout\n", dev->name));
dev->stats.tx_errors++;
dev->stats.tx_aborted_errors++;
spin_lock_irqsave(&info->lock,flags);
tx_stop(info);
spin_unlock_irqrestore(&info->lock,flags);
netif_wake_queue(dev);
}
/**
* called by device driver when transmit completes
* reenable network layer transmit if stopped
*
* info pointer to device instance information
*/
static void hdlcdev_tx_done(struct slgt_info *info)
{
if (netif_queue_stopped(info->netdev))
netif_wake_queue(info->netdev);
}
/**
* called by device driver when frame received
* pass frame to network layer
*
* info pointer to device instance information
* buf pointer to buffer contianing frame data
* size count of data bytes in buf
*/
static void hdlcdev_rx(struct slgt_info *info, char *buf, int size)
{
struct sk_buff *skb = dev_alloc_skb(size);
struct net_device *dev = info->netdev;
DBGINFO(("%s hdlcdev_rx\n", dev->name));
if (skb == NULL) {
DBGERR(("%s: can't alloc skb, drop packet\n", dev->name));
dev->stats.rx_dropped++;
return;
}
memcpy(skb_put(skb, size), buf, size);
skb->protocol = hdlc_type_trans(skb, dev);
dev->stats.rx_packets++;
dev->stats.rx_bytes += size;
netif_rx(skb);
}
static const struct net_device_ops hdlcdev_ops = {
.ndo_open = hdlcdev_open,
.ndo_stop = hdlcdev_close,
.ndo_change_mtu = hdlc_change_mtu,
.ndo_start_xmit = hdlc_start_xmit,
.ndo_do_ioctl = hdlcdev_ioctl,
.ndo_tx_timeout = hdlcdev_tx_timeout,
};
/**
* called by device driver when adding device instance
* do generic HDLC initialization
*
* info pointer to device instance information
*
* returns 0 if success, otherwise error code
*/
static int hdlcdev_init(struct slgt_info *info)
{
int rc;
struct net_device *dev;
hdlc_device *hdlc;
/* allocate and initialize network and HDLC layer objects */
if (!(dev = alloc_hdlcdev(info))) {
printk(KERN_ERR "%s hdlc device alloc failure\n", info->device_name);
return -ENOMEM;
}
/* for network layer reporting purposes only */
dev->mem_start = info->phys_reg_addr;
dev->mem_end = info->phys_reg_addr + SLGT_REG_SIZE - 1;
dev->irq = info->irq_level;
/* network layer callbacks and settings */
dev->netdev_ops = &hdlcdev_ops;
dev->watchdog_timeo = 10 * HZ;
dev->tx_queue_len = 50;
/* generic HDLC layer callbacks and settings */
hdlc = dev_to_hdlc(dev);
hdlc->attach = hdlcdev_attach;
hdlc->xmit = hdlcdev_xmit;
/* register objects with HDLC layer */
if ((rc = register_hdlc_device(dev))) {
printk(KERN_WARNING "%s:unable to register hdlc device\n",__FILE__);
free_netdev(dev);
return rc;
}
info->netdev = dev;
return 0;
}
/**
* called by device driver when removing device instance
* do generic HDLC cleanup
*
* info pointer to device instance information
*/
static void hdlcdev_exit(struct slgt_info *info)
{
unregister_hdlc_device(info->netdev);
free_netdev(info->netdev);
info->netdev = NULL;
}
#endif /* ifdef CONFIG_HDLC */
/*
* get async data from rx DMA buffers
*/
static void rx_async(struct slgt_info *info)
{
struct tty_struct *tty = info->port.tty;
struct mgsl_icount *icount = &info->icount;
unsigned int start, end;
unsigned char *p;
unsigned char status;
struct slgt_desc *bufs = info->rbufs;
int i, count;
int chars = 0;
int stat;
unsigned char ch;
start = end = info->rbuf_current;
while(desc_complete(bufs[end])) {
count = desc_count(bufs[end]) - info->rbuf_index;
p = bufs[end].buf + info->rbuf_index;
DBGISR(("%s rx_async count=%d\n", info->device_name, count));
DBGDATA(info, p, count, "rx");
for(i=0 ; i < count; i+=2, p+=2) {
ch = *p;
icount->rx++;
stat = 0;
if ((status = *(p+1) & (BIT1 + BIT0))) {
if (status & BIT1)
icount->parity++;
else if (status & BIT0)
icount->frame++;
/* discard char if tty control flags say so */
if (status & info->ignore_status_mask)
continue;
if (status & BIT1)
stat = TTY_PARITY;
else if (status & BIT0)
stat = TTY_FRAME;
}
if (tty) {
tty_insert_flip_char(tty, ch, stat);
chars++;
}
}
if (i < count) {
/* receive buffer not completed */
info->rbuf_index += i;
mod_timer(&info->rx_timer, jiffies + 1);
break;
}
info->rbuf_index = 0;
free_rbufs(info, end, end);
if (++end == info->rbuf_count)
end = 0;
/* if entire list searched then no frame available */
if (end == start)
break;
}
if (tty && chars)
tty_flip_buffer_push(tty);
}
/*
* return next bottom half action to perform
*/
static int bh_action(struct slgt_info *info)
{
unsigned long flags;
int rc;
spin_lock_irqsave(&info->lock,flags);
if (info->pending_bh & BH_RECEIVE) {
info->pending_bh &= ~BH_RECEIVE;
rc = BH_RECEIVE;
} else if (info->pending_bh & BH_TRANSMIT) {
info->pending_bh &= ~BH_TRANSMIT;
rc = BH_TRANSMIT;
} else if (info->pending_bh & BH_STATUS) {
info->pending_bh &= ~BH_STATUS;
rc = BH_STATUS;
} else {
/* Mark BH routine as complete */
info->bh_running = false;
info->bh_requested = false;
rc = 0;
}
spin_unlock_irqrestore(&info->lock,flags);
return rc;
}
/*
* perform bottom half processing
*/
static void bh_handler(struct work_struct *work)
{
struct slgt_info *info = container_of(work, struct slgt_info, task);
int action;
if (!info)
return;
info->bh_running = true;
while((action = bh_action(info))) {
switch (action) {
case BH_RECEIVE:
DBGBH(("%s bh receive\n", info->device_name));
switch(info->params.mode) {
case MGSL_MODE_ASYNC:
rx_async(info);
break;
case MGSL_MODE_HDLC:
while(rx_get_frame(info));
break;
case MGSL_MODE_RAW:
case MGSL_MODE_MONOSYNC:
case MGSL_MODE_BISYNC:
case MGSL_MODE_XSYNC:
while(rx_get_buf(info));
break;
}
/* restart receiver if rx DMA buffers exhausted */
if (info->rx_restart)
rx_start(info);
break;
case BH_TRANSMIT:
bh_transmit(info);
break;
case BH_STATUS:
DBGBH(("%s bh status\n", info->device_name));
info->ri_chkcount = 0;
info->dsr_chkcount = 0;
info->dcd_chkcount = 0;
info->cts_chkcount = 0;
break;
default:
DBGBH(("%s unknown action\n", info->device_name));
break;
}
}
DBGBH(("%s bh_handler exit\n", info->device_name));
}
static void bh_transmit(struct slgt_info *info)
{
struct tty_struct *tty = info->port.tty;
DBGBH(("%s bh_transmit\n", info->device_name));
if (tty)
tty_wakeup(tty);
}
static void dsr_change(struct slgt_info *info, unsigned short status)
{
if (status & BIT3) {
info->signals |= SerialSignal_DSR;
info->input_signal_events.dsr_up++;
} else {
info->signals &= ~SerialSignal_DSR;
info->input_signal_events.dsr_down++;
}
DBGISR(("dsr_change %s signals=%04X\n", info->device_name, info->signals));
if ((info->dsr_chkcount)++ == IO_PIN_SHUTDOWN_LIMIT) {
slgt_irq_off(info, IRQ_DSR);
return;
}
info->icount.dsr++;
wake_up_interruptible(&info->status_event_wait_q);
wake_up_interruptible(&info->event_wait_q);
info->pending_bh |= BH_STATUS;
}
static void cts_change(struct slgt_info *info, unsigned short status)
{
if (status & BIT2) {
info->signals |= SerialSignal_CTS;
info->input_signal_events.cts_up++;
} else {
info->signals &= ~SerialSignal_CTS;
info->input_signal_events.cts_down++;
}
DBGISR(("cts_change %s signals=%04X\n", info->device_name, info->signals));
if ((info->cts_chkcount)++ == IO_PIN_SHUTDOWN_LIMIT) {
slgt_irq_off(info, IRQ_CTS);
return;
}
info->icount.cts++;
wake_up_interruptible(&info->status_event_wait_q);
wake_up_interruptible(&info->event_wait_q);
info->pending_bh |= BH_STATUS;
if (info->port.flags & ASYNC_CTS_FLOW) {
if (info->port.tty) {
if (info->port.tty->hw_stopped) {
if (info->signals & SerialSignal_CTS) {
info->port.tty->hw_stopped = 0;
info->pending_bh |= BH_TRANSMIT;
return;
}
} else {
if (!(info->signals & SerialSignal_CTS))
info->port.tty->hw_stopped = 1;
}
}
}
}
static void dcd_change(struct slgt_info *info, unsigned short status)
{
if (status & BIT1) {
info->signals |= SerialSignal_DCD;
info->input_signal_events.dcd_up++;
} else {
info->signals &= ~SerialSignal_DCD;
info->input_signal_events.dcd_down++;
}
DBGISR(("dcd_change %s signals=%04X\n", info->device_name, info->signals));
if ((info->dcd_chkcount)++ == IO_PIN_SHUTDOWN_LIMIT) {
slgt_irq_off(info, IRQ_DCD);
return;
}
info->icount.dcd++;
#if SYNCLINK_GENERIC_HDLC
if (info->netcount) {
if (info->signals & SerialSignal_DCD)
netif_carrier_on(info->netdev);
else
netif_carrier_off(info->netdev);
}
#endif
wake_up_interruptible(&info->status_event_wait_q);
wake_up_interruptible(&info->event_wait_q);
info->pending_bh |= BH_STATUS;
if (info->port.flags & ASYNC_CHECK_CD) {
if (info->signals & SerialSignal_DCD)
wake_up_interruptible(&info->port.open_wait);
else {
if (info->port.tty)
tty_hangup(info->port.tty);
}
}
}
static void ri_change(struct slgt_info *info, unsigned short status)
{
if (status & BIT0) {
info->signals |= SerialSignal_RI;
info->input_signal_events.ri_up++;
} else {
info->signals &= ~SerialSignal_RI;
info->input_signal_events.ri_down++;
}
DBGISR(("ri_change %s signals=%04X\n", info->device_name, info->signals));
if ((info->ri_chkcount)++ == IO_PIN_SHUTDOWN_LIMIT) {
slgt_irq_off(info, IRQ_RI);
return;
}
info->icount.rng++;
wake_up_interruptible(&info->status_event_wait_q);
wake_up_interruptible(&info->event_wait_q);
info->pending_bh |= BH_STATUS;
}
static void isr_rxdata(struct slgt_info *info)
{
unsigned int count = info->rbuf_fill_count;
unsigned int i = info->rbuf_fill_index;
unsigned short reg;
while (rd_reg16(info, SSR) & IRQ_RXDATA) {
reg = rd_reg16(info, RDR);
DBGISR(("isr_rxdata %s RDR=%04X\n", info->device_name, reg));
if (desc_complete(info->rbufs[i])) {
/* all buffers full */
rx_stop(info);
info->rx_restart = 1;
continue;
}
info->rbufs[i].buf[count++] = (unsigned char)reg;
/* async mode saves status byte to buffer for each data byte */
if (info->params.mode == MGSL_MODE_ASYNC)
info->rbufs[i].buf[count++] = (unsigned char)(reg >> 8);
if (count == info->rbuf_fill_level || (reg & BIT10)) {
/* buffer full or end of frame */
set_desc_count(info->rbufs[i], count);
set_desc_status(info->rbufs[i], BIT15 | (reg >> 8));
info->rbuf_fill_count = count = 0;
if (++i == info->rbuf_count)
i = 0;
info->pending_bh |= BH_RECEIVE;
}
}
info->rbuf_fill_index = i;
info->rbuf_fill_count = count;
}
static void isr_serial(struct slgt_info *info)
{
unsigned short status = rd_reg16(info, SSR);
DBGISR(("%s isr_serial status=%04X\n", info->device_name, status));
wr_reg16(info, SSR, status); /* clear pending */
info->irq_occurred = true;
if (info->params.mode == MGSL_MODE_ASYNC) {
if (status & IRQ_TXIDLE) {
if (info->tx_active)
isr_txeom(info, status);
}
if (info->rx_pio && (status & IRQ_RXDATA))
isr_rxdata(info);
if ((status & IRQ_RXBREAK) && (status & RXBREAK)) {
info->icount.brk++;
/* process break detection if tty control allows */
if (info->port.tty) {
if (!(status & info->ignore_status_mask)) {
if (info->read_status_mask & MASK_BREAK) {
tty_insert_flip_char(info->port.tty, 0, TTY_BREAK);
if (info->port.flags & ASYNC_SAK)
do_SAK(info->port.tty);
}
}
}
}
} else {
if (status & (IRQ_TXIDLE + IRQ_TXUNDER))
isr_txeom(info, status);
if (info->rx_pio && (status & IRQ_RXDATA))
isr_rxdata(info);
if (status & IRQ_RXIDLE) {
if (status & RXIDLE)
info->icount.rxidle++;
else
info->icount.exithunt++;
wake_up_interruptible(&info->event_wait_q);
}
if (status & IRQ_RXOVER)
rx_start(info);
}
if (status & IRQ_DSR)
dsr_change(info, status);
if (status & IRQ_CTS)
cts_change(info, status);
if (status & IRQ_DCD)
dcd_change(info, status);
if (status & IRQ_RI)
ri_change(info, status);
}
static void isr_rdma(struct slgt_info *info)
{
unsigned int status = rd_reg32(info, RDCSR);
DBGISR(("%s isr_rdma status=%08x\n", info->device_name, status));
/* RDCSR (rx DMA control/status)
*
* 31..07 reserved
* 06 save status byte to DMA buffer
* 05 error
* 04 eol (end of list)
* 03 eob (end of buffer)
* 02 IRQ enable
* 01 reset
* 00 enable
*/
wr_reg32(info, RDCSR, status); /* clear pending */
if (status & (BIT5 + BIT4)) {
DBGISR(("%s isr_rdma rx_restart=1\n", info->device_name));
info->rx_restart = true;
}
info->pending_bh |= BH_RECEIVE;
}
static void isr_tdma(struct slgt_info *info)
{
unsigned int status = rd_reg32(info, TDCSR);
DBGISR(("%s isr_tdma status=%08x\n", info->device_name, status));
/* TDCSR (tx DMA control/status)
*
* 31..06 reserved
* 05 error
* 04 eol (end of list)
* 03 eob (end of buffer)
* 02 IRQ enable
* 01 reset
* 00 enable
*/
wr_reg32(info, TDCSR, status); /* clear pending */
if (status & (BIT5 + BIT4 + BIT3)) {
// another transmit buffer has completed
// run bottom half to get more send data from user
info->pending_bh |= BH_TRANSMIT;
}
}
/*
* return true if there are unsent tx DMA buffers, otherwise false
*
* if there are unsent buffers then info->tbuf_start
* is set to index of first unsent buffer
*/
static bool unsent_tbufs(struct slgt_info *info)
{
unsigned int i = info->tbuf_current;
bool rc = false;
/*
* search backwards from last loaded buffer (precedes tbuf_current)
* for first unsent buffer (desc_count > 0)
*/
do {
if (i)
i--;
else
i = info->tbuf_count - 1;
if (!desc_count(info->tbufs[i]))
break;
info->tbuf_start = i;
rc = true;
} while (i != info->tbuf_current);
return rc;
}
static void isr_txeom(struct slgt_info *info, unsigned short status)
{
DBGISR(("%s txeom status=%04x\n", info->device_name, status));
slgt_irq_off(info, IRQ_TXDATA + IRQ_TXIDLE + IRQ_TXUNDER);
tdma_reset(info);
if (status & IRQ_TXUNDER) {
unsigned short val = rd_reg16(info, TCR);
wr_reg16(info, TCR, (unsigned short)(val | BIT2)); /* set reset bit */
wr_reg16(info, TCR, val); /* clear reset bit */
}
if (info->tx_active) {
if (info->params.mode != MGSL_MODE_ASYNC) {
if (status & IRQ_TXUNDER)
info->icount.txunder++;
else if (status & IRQ_TXIDLE)
info->icount.txok++;
}
if (unsent_tbufs(info)) {
tx_start(info);
update_tx_timer(info);
return;
}
info->tx_active = false;
del_timer(&info->tx_timer);
if (info->params.mode != MGSL_MODE_ASYNC && info->drop_rts_on_tx_done) {
info->signals &= ~SerialSignal_RTS;
info->drop_rts_on_tx_done = false;
set_signals(info);
}
#if SYNCLINK_GENERIC_HDLC
if (info->netcount)
hdlcdev_tx_done(info);
else
#endif
{
if (info->port.tty && (info->port.tty->stopped || info->port.tty->hw_stopped)) {
tx_stop(info);
return;
}
info->pending_bh |= BH_TRANSMIT;
}
}
}
static void isr_gpio(struct slgt_info *info, unsigned int changed, unsigned int state)
{
struct cond_wait *w, *prev;
/* wake processes waiting for specific transitions */
for (w = info->gpio_wait_q, prev = NULL ; w != NULL ; w = w->next) {
if (w->data & changed) {
w->data = state;
wake_up_interruptible(&w->q);
if (prev != NULL)
prev->next = w->next;
else
info->gpio_wait_q = w->next;
} else
prev = w;
}
}
/* interrupt service routine
*
* irq interrupt number
* dev_id device ID supplied during interrupt registration
*/
static irqreturn_t slgt_interrupt(int dummy, void *dev_id)
{
struct slgt_info *info = dev_id;
unsigned int gsr;
unsigned int i;
DBGISR(("slgt_interrupt irq=%d entry\n", info->irq_level));
while((gsr = rd_reg32(info, GSR) & 0xffffff00)) {
DBGISR(("%s gsr=%08x\n", info->device_name, gsr));
info->irq_occurred = true;
for(i=0; i < info->port_count ; i++) {
if (info->port_array[i] == NULL)
continue;
spin_lock(&info->port_array[i]->lock);
if (gsr & (BIT8 << i))
isr_serial(info->port_array[i]);
if (gsr & (BIT16 << (i*2)))
isr_rdma(info->port_array[i]);
if (gsr & (BIT17 << (i*2)))
isr_tdma(info->port_array[i]);
spin_unlock(&info->port_array[i]->lock);
}
}
if (info->gpio_present) {
unsigned int state;
unsigned int changed;
spin_lock(&info->lock);
while ((changed = rd_reg32(info, IOSR)) != 0) {
DBGISR(("%s iosr=%08x\n", info->device_name, changed));
/* read latched state of GPIO signals */
state = rd_reg32(info, IOVR);
/* clear pending GPIO interrupt bits */
wr_reg32(info, IOSR, changed);
for (i=0 ; i < info->port_count ; i++) {
if (info->port_array[i] != NULL)
isr_gpio(info->port_array[i], changed, state);
}
}
spin_unlock(&info->lock);
}
for(i=0; i < info->port_count ; i++) {
struct slgt_info *port = info->port_array[i];
if (port == NULL)
continue;
spin_lock(&port->lock);
if ((port->port.count || port->netcount) &&
port->pending_bh && !port->bh_running &&
!port->bh_requested) {
DBGISR(("%s bh queued\n", port->device_name));
schedule_work(&port->task);
port->bh_requested = true;
}
spin_unlock(&port->lock);
}
DBGISR(("slgt_interrupt irq=%d exit\n", info->irq_level));
return IRQ_HANDLED;
}
static int startup(struct slgt_info *info)
{
DBGINFO(("%s startup\n", info->device_name));
if (info->port.flags & ASYNC_INITIALIZED)
return 0;
if (!info->tx_buf) {
info->tx_buf = kmalloc(info->max_frame_size, GFP_KERNEL);
if (!info->tx_buf) {
DBGERR(("%s can't allocate tx buffer\n", info->device_name));
return -ENOMEM;
}
}
info->pending_bh = 0;
memset(&info->icount, 0, sizeof(info->icount));
/* program hardware for current parameters */
change_params(info);
if (info->port.tty)
clear_bit(TTY_IO_ERROR, &info->port.tty->flags);
info->port.flags |= ASYNC_INITIALIZED;
return 0;
}
/*
* called by close() and hangup() to shutdown hardware
*/
static void shutdown(struct slgt_info *info)
{
unsigned long flags;
if (!(info->port.flags & ASYNC_INITIALIZED))
return;
DBGINFO(("%s shutdown\n", info->device_name));
/* clear status wait queue because status changes */
/* can't happen after shutting down the hardware */
wake_up_interruptible(&info->status_event_wait_q);
wake_up_interruptible(&info->event_wait_q);
del_timer_sync(&info->tx_timer);
del_timer_sync(&info->rx_timer);
kfree(info->tx_buf);
info->tx_buf = NULL;
spin_lock_irqsave(&info->lock,flags);
tx_stop(info);
rx_stop(info);
slgt_irq_off(info, IRQ_ALL | IRQ_MASTER);
if (!info->port.tty || info->port.tty->termios->c_cflag & HUPCL) {
info->signals &= ~(SerialSignal_DTR + SerialSignal_RTS);
set_signals(info);
}
flush_cond_wait(&info->gpio_wait_q);
spin_unlock_irqrestore(&info->lock,flags);
if (info->port.tty)
set_bit(TTY_IO_ERROR, &info->port.tty->flags);
info->port.flags &= ~ASYNC_INITIALIZED;
}
static void program_hw(struct slgt_info *info)
{
unsigned long flags;
spin_lock_irqsave(&info->lock,flags);
rx_stop(info);
tx_stop(info);
if (info->params.mode != MGSL_MODE_ASYNC ||
info->netcount)
sync_mode(info);
else
async_mode(info);
set_signals(info);
info->dcd_chkcount = 0;
info->cts_chkcount = 0;
info->ri_chkcount = 0;
info->dsr_chkcount = 0;
slgt_irq_on(info, IRQ_DCD | IRQ_CTS | IRQ_DSR | IRQ_RI);
get_signals(info);
if (info->netcount ||
(info->port.tty && info->port.tty->termios->c_cflag & CREAD))
rx_start(info);
spin_unlock_irqrestore(&info->lock,flags);
}
/*
* reconfigure adapter based on new parameters
*/
static void change_params(struct slgt_info *info)
{
unsigned cflag;
int bits_per_char;
if (!info->port.tty || !info->port.tty->termios)
return;
DBGINFO(("%s change_params\n", info->device_name));
cflag = info->port.tty->termios->c_cflag;
/* if B0 rate (hangup) specified then negate DTR and RTS */
/* otherwise assert DTR and RTS */
if (cflag & CBAUD)
info->signals |= SerialSignal_RTS + SerialSignal_DTR;
else
info->signals &= ~(SerialSignal_RTS + SerialSignal_DTR);
/* byte size and parity */
switch (cflag & CSIZE) {
case CS5: info->params.data_bits = 5; break;
case CS6: info->params.data_bits = 6; break;
case CS7: info->params.data_bits = 7; break;
case CS8: info->params.data_bits = 8; break;
default: info->params.data_bits = 7; break;
}
info->params.stop_bits = (cflag & CSTOPB) ? 2 : 1;
if (cflag & PARENB)
info->params.parity = (cflag & PARODD) ? ASYNC_PARITY_ODD : ASYNC_PARITY_EVEN;
else
info->params.parity = ASYNC_PARITY_NONE;
/* calculate number of jiffies to transmit a full
* FIFO (32 bytes) at specified data rate
*/
bits_per_char = info->params.data_bits +
info->params.stop_bits + 1;
info->params.data_rate = tty_get_baud_rate(info->port.tty);
if (info->params.data_rate) {
info->timeout = (32*HZ*bits_per_char) /
info->params.data_rate;
}
info->timeout += HZ/50; /* Add .02 seconds of slop */
if (cflag & CRTSCTS)
info->port.flags |= ASYNC_CTS_FLOW;
else
info->port.flags &= ~ASYNC_CTS_FLOW;
if (cflag & CLOCAL)
info->port.flags &= ~ASYNC_CHECK_CD;
else
info->port.flags |= ASYNC_CHECK_CD;
/* process tty input control flags */
info->read_status_mask = IRQ_RXOVER;
if (I_INPCK(info->port.tty))
info->read_status_mask |= MASK_PARITY | MASK_FRAMING;
if (I_BRKINT(info->port.tty) || I_PARMRK(info->port.tty))
info->read_status_mask |= MASK_BREAK;
if (I_IGNPAR(info->port.tty))
info->ignore_status_mask |= MASK_PARITY | MASK_FRAMING;
if (I_IGNBRK(info->port.tty)) {
info->ignore_status_mask |= MASK_BREAK;
/* If ignoring parity and break indicators, ignore
* overruns too. (For real raw support).
*/
if (I_IGNPAR(info->port.tty))
info->ignore_status_mask |= MASK_OVERRUN;
}
program_hw(info);
}
static int get_stats(struct slgt_info *info, struct mgsl_icount __user *user_icount)
{
DBGINFO(("%s get_stats\n", info->device_name));
if (!user_icount) {
memset(&info->icount, 0, sizeof(info->icount));
} else {
if (copy_to_user(user_icount, &info->icount, sizeof(struct mgsl_icount)))
return -EFAULT;
}
return 0;
}
static int get_params(struct slgt_info *info, MGSL_PARAMS __user *user_params)
{
DBGINFO(("%s get_params\n", info->device_name));
if (copy_to_user(user_params, &info->params, sizeof(MGSL_PARAMS)))
return -EFAULT;
return 0;
}
static int set_params(struct slgt_info *info, MGSL_PARAMS __user *new_params)
{
unsigned long flags;
MGSL_PARAMS tmp_params;
DBGINFO(("%s set_params\n", info->device_name));
if (copy_from_user(&tmp_params, new_params, sizeof(MGSL_PARAMS)))
return -EFAULT;
spin_lock_irqsave(&info->lock, flags);
if (tmp_params.mode == MGSL_MODE_BASE_CLOCK)
info->base_clock = tmp_params.clock_speed;
else
memcpy(&info->params, &tmp_params, sizeof(MGSL_PARAMS));
spin_unlock_irqrestore(&info->lock, flags);
program_hw(info);
return 0;
}
static int get_txidle(struct slgt_info *info, int __user *idle_mode)
{
DBGINFO(("%s get_txidle=%d\n", info->device_name, info->idle_mode));
if (put_user(info->idle_mode, idle_mode))
return -EFAULT;
return 0;
}
static int set_txidle(struct slgt_info *info, int idle_mode)
{
unsigned long flags;
DBGINFO(("%s set_txidle(%d)\n", info->device_name, idle_mode));
spin_lock_irqsave(&info->lock,flags);
info->idle_mode = idle_mode;
if (info->params.mode != MGSL_MODE_ASYNC)
tx_set_idle(info);
spin_unlock_irqrestore(&info->lock,flags);
return 0;
}
static int tx_enable(struct slgt_info *info, int enable)
{
unsigned long flags;
DBGINFO(("%s tx_enable(%d)\n", info->device_name, enable));
spin_lock_irqsave(&info->lock,flags);
if (enable) {
if (!info->tx_enabled)
tx_start(info);
} else {
if (info->tx_enabled)
tx_stop(info);
}
spin_unlock_irqrestore(&info->lock,flags);
return 0;
}
/*
* abort transmit HDLC frame
*/
static int tx_abort(struct slgt_info *info)
{
unsigned long flags;
DBGINFO(("%s tx_abort\n", info->device_name));
spin_lock_irqsave(&info->lock,flags);
tdma_reset(info);
spin_unlock_irqrestore(&info->lock,flags);
return 0;
}
static int rx_enable(struct slgt_info *info, int enable)
{
unsigned long flags;
unsigned int rbuf_fill_level;
DBGINFO(("%s rx_enable(%08x)\n", info->device_name, enable));
spin_lock_irqsave(&info->lock,flags);
/*
* enable[31..16] = receive DMA buffer fill level
* 0 = noop (leave fill level unchanged)
* fill level must be multiple of 4 and <= buffer size
*/
rbuf_fill_level = ((unsigned int)enable) >> 16;
if (rbuf_fill_level) {
if ((rbuf_fill_level > DMABUFSIZE) || (rbuf_fill_level % 4)) {
spin_unlock_irqrestore(&info->lock, flags);
return -EINVAL;
}
info->rbuf_fill_level = rbuf_fill_level;
if (rbuf_fill_level < 128)
info->rx_pio = 1; /* PIO mode */
else
info->rx_pio = 0; /* DMA mode */
rx_stop(info); /* restart receiver to use new fill level */
}
/*
* enable[1..0] = receiver enable command
* 0 = disable
* 1 = enable
* 2 = enable or force hunt mode if already enabled
*/
enable &= 3;
if (enable) {
if (!info->rx_enabled)
rx_start(info);
else if (enable == 2) {
/* force hunt mode (write 1 to RCR[3]) */
wr_reg16(info, RCR, rd_reg16(info, RCR) | BIT3);
}
} else {
if (info->rx_enabled)
rx_stop(info);
}
spin_unlock_irqrestore(&info->lock,flags);
return 0;
}
/*
* wait for specified event to occur
*/
static int wait_mgsl_event(struct slgt_info *info, int __user *mask_ptr)
{
unsigned long flags;
int s;
int rc=0;
struct mgsl_icount cprev, cnow;
int events;
int mask;
struct _input_signal_events oldsigs, newsigs;
DECLARE_WAITQUEUE(wait, current);
if (get_user(mask, mask_ptr))
return -EFAULT;
DBGINFO(("%s wait_mgsl_event(%d)\n", info->device_name, mask));
spin_lock_irqsave(&info->lock,flags);
/* return immediately if state matches requested events */
get_signals(info);
s = info->signals;
events = mask &
( ((s & SerialSignal_DSR) ? MgslEvent_DsrActive:MgslEvent_DsrInactive) +
((s & SerialSignal_DCD) ? MgslEvent_DcdActive:MgslEvent_DcdInactive) +
((s & SerialSignal_CTS) ? MgslEvent_CtsActive:MgslEvent_CtsInactive) +
((s & SerialSignal_RI) ? MgslEvent_RiActive :MgslEvent_RiInactive) );
if (events) {
spin_unlock_irqrestore(&info->lock,flags);
goto exit;
}
/* save current irq counts */
cprev = info->icount;
oldsigs = info->input_signal_events;
/* enable hunt and idle irqs if needed */
if (mask & (MgslEvent_ExitHuntMode+MgslEvent_IdleReceived)) {
unsigned short val = rd_reg16(info, SCR);
if (!(val & IRQ_RXIDLE))
wr_reg16(info, SCR, (unsigned short)(val | IRQ_RXIDLE));
}
set_current_state(TASK_INTERRUPTIBLE);
add_wait_queue(&info->event_wait_q, &wait);
spin_unlock_irqrestore(&info->lock,flags);
for(;;) {
schedule();
if (signal_pending(current)) {
rc = -ERESTARTSYS;
break;
}
/* get current irq counts */
spin_lock_irqsave(&info->lock,flags);
cnow = info->icount;
newsigs = info->input_signal_events;
set_current_state(TASK_INTERRUPTIBLE);
spin_unlock_irqrestore(&info->lock,flags);
/* if no change, wait aborted for some reason */
if (newsigs.dsr_up == oldsigs.dsr_up &&
newsigs.dsr_down == oldsigs.dsr_down &&
newsigs.dcd_up == oldsigs.dcd_up &&
newsigs.dcd_down == oldsigs.dcd_down &&
newsigs.cts_up == oldsigs.cts_up &&
newsigs.cts_down == oldsigs.cts_down &&
newsigs.ri_up == oldsigs.ri_up &&
newsigs.ri_down == oldsigs.ri_down &&
cnow.exithunt == cprev.exithunt &&
cnow.rxidle == cprev.rxidle) {
rc = -EIO;
break;
}
events = mask &
( (newsigs.dsr_up != oldsigs.dsr_up ? MgslEvent_DsrActive:0) +
(newsigs.dsr_down != oldsigs.dsr_down ? MgslEvent_DsrInactive:0) +
(newsigs.dcd_up != oldsigs.dcd_up ? MgslEvent_DcdActive:0) +
(newsigs.dcd_down != oldsigs.dcd_down ? MgslEvent_DcdInactive:0) +
(newsigs.cts_up != oldsigs.cts_up ? MgslEvent_CtsActive:0) +
(newsigs.cts_down != oldsigs.cts_down ? MgslEvent_CtsInactive:0) +
(newsigs.ri_up != oldsigs.ri_up ? MgslEvent_RiActive:0) +
(newsigs.ri_down != oldsigs.ri_down ? MgslEvent_RiInactive:0) +
(cnow.exithunt != cprev.exithunt ? MgslEvent_ExitHuntMode:0) +
(cnow.rxidle != cprev.rxidle ? MgslEvent_IdleReceived:0) );
if (events)
break;
cprev = cnow;
oldsigs = newsigs;
}
remove_wait_queue(&info->event_wait_q, &wait);
set_current_state(TASK_RUNNING);
if (mask & (MgslEvent_ExitHuntMode + MgslEvent_IdleReceived)) {
spin_lock_irqsave(&info->lock,flags);
if (!waitqueue_active(&info->event_wait_q)) {
/* disable enable exit hunt mode/idle rcvd IRQs */
wr_reg16(info, SCR,
(unsigned short)(rd_reg16(info, SCR) & ~IRQ_RXIDLE));
}
spin_unlock_irqrestore(&info->lock,flags);
}
exit:
if (rc == 0)
rc = put_user(events, mask_ptr);
return rc;
}
static int get_interface(struct slgt_info *info, int __user *if_mode)
{
DBGINFO(("%s get_interface=%x\n", info->device_name, info->if_mode));
if (put_user(info->if_mode, if_mode))
return -EFAULT;
return 0;
}
static int set_interface(struct slgt_info *info, int if_mode)
{
unsigned long flags;
unsigned short val;
DBGINFO(("%s set_interface=%x)\n", info->device_name, if_mode));
spin_lock_irqsave(&info->lock,flags);
info->if_mode = if_mode;
msc_set_vcr(info);
/* TCR (tx control) 07 1=RTS driver control */
val = rd_reg16(info, TCR);
if (info->if_mode & MGSL_INTERFACE_RTS_EN)
val |= BIT7;
else
val &= ~BIT7;
wr_reg16(info, TCR, val);
spin_unlock_irqrestore(&info->lock,flags);
return 0;
}
static int get_xsync(struct slgt_info *info, int __user *xsync)
{
DBGINFO(("%s get_xsync=%x\n", info->device_name, info->xsync));
if (put_user(info->xsync, xsync))
return -EFAULT;
return 0;
}
/*
* set extended sync pattern (1 to 4 bytes) for extended sync mode
*
* sync pattern is contained in least significant bytes of value
* most significant byte of sync pattern is oldest (1st sent/detected)
*/
static int set_xsync(struct slgt_info *info, int xsync)
{
unsigned long flags;
DBGINFO(("%s set_xsync=%x)\n", info->device_name, xsync));
spin_lock_irqsave(&info->lock, flags);
info->xsync = xsync;
wr_reg32(info, XSR, xsync);
spin_unlock_irqrestore(&info->lock, flags);
return 0;
}
static int get_xctrl(struct slgt_info *info, int __user *xctrl)
{
DBGINFO(("%s get_xctrl=%x\n", info->device_name, info->xctrl));
if (put_user(info->xctrl, xctrl))
return -EFAULT;
return 0;
}
/*
* set extended control options
*
* xctrl[31:19] reserved, must be zero
* xctrl[18:17] extended sync pattern length in bytes
* 00 = 1 byte in xsr[7:0]
* 01 = 2 bytes in xsr[15:0]
* 10 = 3 bytes in xsr[23:0]
* 11 = 4 bytes in xsr[31:0]
* xctrl[16] 1 = enable terminal count, 0=disabled
* xctrl[15:0] receive terminal count for fixed length packets
* value is count minus one (0 = 1 byte packet)
* when terminal count is reached, receiver
* automatically returns to hunt mode and receive
* FIFO contents are flushed to DMA buffers with
* end of frame (EOF) status
*/
static int set_xctrl(struct slgt_info *info, int xctrl)
{
unsigned long flags;
DBGINFO(("%s set_xctrl=%x)\n", info->device_name, xctrl));
spin_lock_irqsave(&info->lock, flags);
info->xctrl = xctrl;
wr_reg32(info, XCR, xctrl);
spin_unlock_irqrestore(&info->lock, flags);
return 0;
}
/*
* set general purpose IO pin state and direction
*
* user_gpio fields:
* state each bit indicates a pin state
* smask set bit indicates pin state to set
* dir each bit indicates a pin direction (0=input, 1=output)
* dmask set bit indicates pin direction to set
*/
static int set_gpio(struct slgt_info *info, struct gpio_desc __user *user_gpio)
{
unsigned long flags;
struct gpio_desc gpio;
__u32 data;
if (!info->gpio_present)
return -EINVAL;
if (copy_from_user(&gpio, user_gpio, sizeof(gpio)))
return -EFAULT;
DBGINFO(("%s set_gpio state=%08x smask=%08x dir=%08x dmask=%08x\n",
info->device_name, gpio.state, gpio.smask,
gpio.dir, gpio.dmask));
spin_lock_irqsave(&info->port_array[0]->lock, flags);
if (gpio.dmask) {
data = rd_reg32(info, IODR);
data |= gpio.dmask & gpio.dir;
data &= ~(gpio.dmask & ~gpio.dir);
wr_reg32(info, IODR, data);
}
if (gpio.smask) {
data = rd_reg32(info, IOVR);
data |= gpio.smask & gpio.state;
data &= ~(gpio.smask & ~gpio.state);
wr_reg32(info, IOVR, data);
}
spin_unlock_irqrestore(&info->port_array[0]->lock, flags);
return 0;
}
/*
* get general purpose IO pin state and direction
*/
static int get_gpio(struct slgt_info *info, struct gpio_desc __user *user_gpio)
{
struct gpio_desc gpio;
if (!info->gpio_present)
return -EINVAL;
gpio.state = rd_reg32(info, IOVR);
gpio.smask = 0xffffffff;
gpio.dir = rd_reg32(info, IODR);
gpio.dmask = 0xffffffff;
if (copy_to_user(user_gpio, &gpio, sizeof(gpio)))
return -EFAULT;
DBGINFO(("%s get_gpio state=%08x dir=%08x\n",
info->device_name, gpio.state, gpio.dir));
return 0;
}
/*
* conditional wait facility
*/
static void init_cond_wait(struct cond_wait *w, unsigned int data)
{
init_waitqueue_head(&w->q);
init_waitqueue_entry(&w->wait, current);
w->data = data;
}
static void add_cond_wait(struct cond_wait **head, struct cond_wait *w)
{
set_current_state(TASK_INTERRUPTIBLE);
add_wait_queue(&w->q, &w->wait);
w->next = *head;
*head = w;
}
static void remove_cond_wait(struct cond_wait **head, struct cond_wait *cw)
{
struct cond_wait *w, *prev;
remove_wait_queue(&cw->q, &cw->wait);
set_current_state(TASK_RUNNING);
for (w = *head, prev = NULL ; w != NULL ; prev = w, w = w->next) {
if (w == cw) {
if (prev != NULL)
prev->next = w->next;
else
*head = w->next;
break;
}
}
}
static void flush_cond_wait(struct cond_wait **head)
{
while (*head != NULL) {
wake_up_interruptible(&(*head)->q);
*head = (*head)->next;
}
}
/*
* wait for general purpose I/O pin(s) to enter specified state
*
* user_gpio fields:
* state - bit indicates target pin state
* smask - set bit indicates watched pin
*
* The wait ends when at least one watched pin enters the specified
* state. When 0 (no error) is returned, user_gpio->state is set to the
* state of all GPIO pins when the wait ends.
*
* Note: Each pin may be a dedicated input, dedicated output, or
* configurable input/output. The number and configuration of pins
* varies with the specific adapter model. Only input pins (dedicated
* or configured) can be monitored with this function.
*/
static int wait_gpio(struct slgt_info *info, struct gpio_desc __user *user_gpio)
{
unsigned long flags;
int rc = 0;
struct gpio_desc gpio;
struct cond_wait wait;
u32 state;
if (!info->gpio_present)
return -EINVAL;
if (copy_from_user(&gpio, user_gpio, sizeof(gpio)))
return -EFAULT;
DBGINFO(("%s wait_gpio() state=%08x smask=%08x\n",
info->device_name, gpio.state, gpio.smask));
/* ignore output pins identified by set IODR bit */
if ((gpio.smask &= ~rd_reg32(info, IODR)) == 0)
return -EINVAL;
init_cond_wait(&wait, gpio.smask);
spin_lock_irqsave(&info->port_array[0]->lock, flags);
/* enable interrupts for watched pins */
wr_reg32(info, IOER, rd_reg32(info, IOER) | gpio.smask);
/* get current pin states */
state = rd_reg32(info, IOVR);
if (gpio.smask & ~(state ^ gpio.state)) {
/* already in target state */
gpio.state = state;
} else {
/* wait for target state */
add_cond_wait(&info->gpio_wait_q, &wait);
spin_unlock_irqrestore(&info->port_array[0]->lock, flags);
schedule();
if (signal_pending(current))
rc = -ERESTARTSYS;
else
gpio.state = wait.data;
spin_lock_irqsave(&info->port_array[0]->lock, flags);
remove_cond_wait(&info->gpio_wait_q, &wait);
}
/* disable all GPIO interrupts if no waiting processes */
if (info->gpio_wait_q == NULL)
wr_reg32(info, IOER, 0);
spin_unlock_irqrestore(&info->port_array[0]->lock, flags);
if ((rc == 0) && copy_to_user(user_gpio, &gpio, sizeof(gpio)))
rc = -EFAULT;
return rc;
}
static int modem_input_wait(struct slgt_info *info,int arg)
{
unsigned long flags;
int rc;
struct mgsl_icount cprev, cnow;
DECLARE_WAITQUEUE(wait, current);
/* save current irq counts */
spin_lock_irqsave(&info->lock,flags);
cprev = info->icount;
add_wait_queue(&info->status_event_wait_q, &wait);
set_current_state(TASK_INTERRUPTIBLE);
spin_unlock_irqrestore(&info->lock,flags);
for(;;) {
schedule();
if (signal_pending(current)) {
rc = -ERESTARTSYS;
break;
}
/* get new irq counts */
spin_lock_irqsave(&info->lock,flags);
cnow = info->icount;
set_current_state(TASK_INTERRUPTIBLE);
spin_unlock_irqrestore(&info->lock,flags);
/* if no change, wait aborted for some reason */
if (cnow.rng == cprev.rng && cnow.dsr == cprev.dsr &&
cnow.dcd == cprev.dcd && cnow.cts == cprev.cts) {
rc = -EIO;
break;
}
/* check for change in caller specified modem input */
if ((arg & TIOCM_RNG && cnow.rng != cprev.rng) ||
(arg & TIOCM_DSR && cnow.dsr != cprev.dsr) ||
(arg & TIOCM_CD && cnow.dcd != cprev.dcd) ||
(arg & TIOCM_CTS && cnow.cts != cprev.cts)) {
rc = 0;
break;
}
cprev = cnow;
}
remove_wait_queue(&info->status_event_wait_q, &wait);
set_current_state(TASK_RUNNING);
return rc;
}
/*
* return state of serial control and status signals
*/
static int tiocmget(struct tty_struct *tty)
{
struct slgt_info *info = tty->driver_data;
unsigned int result;
unsigned long flags;
spin_lock_irqsave(&info->lock,flags);
get_signals(info);
spin_unlock_irqrestore(&info->lock,flags);
result = ((info->signals & SerialSignal_RTS) ? TIOCM_RTS:0) +
((info->signals & SerialSignal_DTR) ? TIOCM_DTR:0) +
((info->signals & SerialSignal_DCD) ? TIOCM_CAR:0) +
((info->signals & SerialSignal_RI) ? TIOCM_RNG:0) +
((info->signals & SerialSignal_DSR) ? TIOCM_DSR:0) +
((info->signals & SerialSignal_CTS) ? TIOCM_CTS:0);
DBGINFO(("%s tiocmget value=%08X\n", info->device_name, result));
return result;
}
/*
* set modem control signals (DTR/RTS)
*
* cmd signal command: TIOCMBIS = set bit TIOCMBIC = clear bit
* TIOCMSET = set/clear signal values
* value bit mask for command
*/
static int tiocmset(struct tty_struct *tty,
unsigned int set, unsigned int clear)
{
struct slgt_info *info = tty->driver_data;
unsigned long flags;
DBGINFO(("%s tiocmset(%x,%x)\n", info->device_name, set, clear));
if (set & TIOCM_RTS)
info->signals |= SerialSignal_RTS;
if (set & TIOCM_DTR)
info->signals |= SerialSignal_DTR;
if (clear & TIOCM_RTS)
info->signals &= ~SerialSignal_RTS;
if (clear & TIOCM_DTR)
info->signals &= ~SerialSignal_DTR;
spin_lock_irqsave(&info->lock,flags);
set_signals(info);
spin_unlock_irqrestore(&info->lock,flags);
return 0;
}
static int carrier_raised(struct tty_port *port)
{
unsigned long flags;
struct slgt_info *info = container_of(port, struct slgt_info, port);
spin_lock_irqsave(&info->lock,flags);
get_signals(info);
spin_unlock_irqrestore(&info->lock,flags);
return (info->signals & SerialSignal_DCD) ? 1 : 0;
}
static void dtr_rts(struct tty_port *port, int on)
{
unsigned long flags;
struct slgt_info *info = container_of(port, struct slgt_info, port);
spin_lock_irqsave(&info->lock,flags);
if (on)
info->signals |= SerialSignal_RTS + SerialSignal_DTR;
else
info->signals &= ~(SerialSignal_RTS + SerialSignal_DTR);
set_signals(info);
spin_unlock_irqrestore(&info->lock,flags);
}
/*
* block current process until the device is ready to open
*/
static int block_til_ready(struct tty_struct *tty, struct file *filp,
struct slgt_info *info)
{
DECLARE_WAITQUEUE(wait, current);
int retval;
bool do_clocal = false;
bool extra_count = false;
unsigned long flags;
int cd;
struct tty_port *port = &info->port;
DBGINFO(("%s block_til_ready\n", tty->driver->name));
if (filp->f_flags & O_NONBLOCK || tty->flags & (1 << TTY_IO_ERROR)){
/* nonblock mode is set or port is not enabled */
port->flags |= ASYNC_NORMAL_ACTIVE;
return 0;
}
if (tty->termios->c_cflag & CLOCAL)
do_clocal = true;
/* Wait for carrier detect and the line to become
* free (i.e., not in use by the callout). While we are in
* this loop, port->count is dropped by one, so that
* close() knows when to free things. We restore it upon
* exit, either normal or abnormal.
*/
retval = 0;
add_wait_queue(&port->open_wait, &wait);
spin_lock_irqsave(&info->lock, flags);
if (!tty_hung_up_p(filp)) {
extra_count = true;
port->count--;
}
spin_unlock_irqrestore(&info->lock, flags);
port->blocked_open++;
while (1) {
if ((tty->termios->c_cflag & CBAUD))
tty_port_raise_dtr_rts(port);
set_current_state(TASK_INTERRUPTIBLE);
if (tty_hung_up_p(filp) || !(port->flags & ASYNC_INITIALIZED)){
retval = (port->flags & ASYNC_HUP_NOTIFY) ?
-EAGAIN : -ERESTARTSYS;
break;
}
cd = tty_port_carrier_raised(port);
if (!(port->flags & ASYNC_CLOSING) && (do_clocal || cd ))
break;
if (signal_pending(current)) {
retval = -ERESTARTSYS;
break;
}
DBGINFO(("%s block_til_ready wait\n", tty->driver->name));
tty_unlock();
schedule();
tty_lock();
}
set_current_state(TASK_RUNNING);
remove_wait_queue(&port->open_wait, &wait);
if (extra_count)
port->count++;
port->blocked_open--;
if (!retval)
port->flags |= ASYNC_NORMAL_ACTIVE;
DBGINFO(("%s block_til_ready ready, rc=%d\n", tty->driver->name, retval));
return retval;
}
static int alloc_tmp_rbuf(struct slgt_info *info)
{
info->tmp_rbuf = kmalloc(info->max_frame_size + 5, GFP_KERNEL);
if (info->tmp_rbuf == NULL)
return -ENOMEM;
return 0;
}
static void free_tmp_rbuf(struct slgt_info *info)
{
kfree(info->tmp_rbuf);
info->tmp_rbuf = NULL;
}
/*
* allocate DMA descriptor lists.
*/
static int alloc_desc(struct slgt_info *info)
{
unsigned int i;
unsigned int pbufs;
/* allocate memory to hold descriptor lists */
info->bufs = pci_alloc_consistent(info->pdev, DESC_LIST_SIZE, &info->bufs_dma_addr);
if (info->bufs == NULL)
return -ENOMEM;
memset(info->bufs, 0, DESC_LIST_SIZE);
info->rbufs = (struct slgt_desc*)info->bufs;
info->tbufs = ((struct slgt_desc*)info->bufs) + info->rbuf_count;
pbufs = (unsigned int)info->bufs_dma_addr;
/*
* Build circular lists of descriptors
*/
for (i=0; i < info->rbuf_count; i++) {
/* physical address of this descriptor */
info->rbufs[i].pdesc = pbufs + (i * sizeof(struct slgt_desc));
/* physical address of next descriptor */
if (i == info->rbuf_count - 1)
info->rbufs[i].next = cpu_to_le32(pbufs);
else
info->rbufs[i].next = cpu_to_le32(pbufs + ((i+1) * sizeof(struct slgt_desc)));
set_desc_count(info->rbufs[i], DMABUFSIZE);
}
for (i=0; i < info->tbuf_count; i++) {
/* physical address of this descriptor */
info->tbufs[i].pdesc = pbufs + ((info->rbuf_count + i) * sizeof(struct slgt_desc));
/* physical address of next descriptor */
if (i == info->tbuf_count - 1)
info->tbufs[i].next = cpu_to_le32(pbufs + info->rbuf_count * sizeof(struct slgt_desc));
else
info->tbufs[i].next = cpu_to_le32(pbufs + ((info->rbuf_count + i + 1) * sizeof(struct slgt_desc)));
}
return 0;
}
static void free_desc(struct slgt_info *info)
{
if (info->bufs != NULL) {
pci_free_consistent(info->pdev, DESC_LIST_SIZE, info->bufs, info->bufs_dma_addr);
info->bufs = NULL;
info->rbufs = NULL;
info->tbufs = NULL;
}
}
static int alloc_bufs(struct slgt_info *info, struct slgt_desc *bufs, int count)
{
int i;
for (i=0; i < count; i++) {
if ((bufs[i].buf = pci_alloc_consistent(info->pdev, DMABUFSIZE, &bufs[i].buf_dma_addr)) == NULL)
return -ENOMEM;
bufs[i].pbuf = cpu_to_le32((unsigned int)bufs[i].buf_dma_addr);
}
return 0;
}
static void free_bufs(struct slgt_info *info, struct slgt_desc *bufs, int count)
{
int i;
for (i=0; i < count; i++) {
if (bufs[i].buf == NULL)
continue;
pci_free_consistent(info->pdev, DMABUFSIZE, bufs[i].buf, bufs[i].buf_dma_addr);
bufs[i].buf = NULL;
}
}
static int alloc_dma_bufs(struct slgt_info *info)
{
info->rbuf_count = 32;
info->tbuf_count = 32;
if (alloc_desc(info) < 0 ||
alloc_bufs(info, info->rbufs, info->rbuf_count) < 0 ||
alloc_bufs(info, info->tbufs, info->tbuf_count) < 0 ||
alloc_tmp_rbuf(info) < 0) {
DBGERR(("%s DMA buffer alloc fail\n", info->device_name));
return -ENOMEM;
}
reset_rbufs(info);
return 0;
}
static void free_dma_bufs(struct slgt_info *info)
{
if (info->bufs) {
free_bufs(info, info->rbufs, info->rbuf_count);
free_bufs(info, info->tbufs, info->tbuf_count);
free_desc(info);
}
free_tmp_rbuf(info);
}
static int claim_resources(struct slgt_info *info)
{
if (request_mem_region(info->phys_reg_addr, SLGT_REG_SIZE, "synclink_gt") == NULL) {
DBGERR(("%s reg addr conflict, addr=%08X\n",
info->device_name, info->phys_reg_addr));
info->init_error = DiagStatus_AddressConflict;
goto errout;
}
else
info->reg_addr_requested = true;
info->reg_addr = ioremap_nocache(info->phys_reg_addr, SLGT_REG_SIZE);
if (!info->reg_addr) {
DBGERR(("%s can't map device registers, addr=%08X\n",
info->device_name, info->phys_reg_addr));
info->init_error = DiagStatus_CantAssignPciResources;
goto errout;
}
return 0;
errout:
release_resources(info);
return -ENODEV;
}
static void release_resources(struct slgt_info *info)
{
if (info->irq_requested) {
free_irq(info->irq_level, info);
info->irq_requested = false;
}
if (info->reg_addr_requested) {
release_mem_region(info->phys_reg_addr, SLGT_REG_SIZE);
info->reg_addr_requested = false;
}
if (info->reg_addr) {
iounmap(info->reg_addr);
info->reg_addr = NULL;
}
}
/* Add the specified device instance data structure to the
* global linked list of devices and increment the device count.
*/
static void add_device(struct slgt_info *info)
{
char *devstr;
info->next_device = NULL;
info->line = slgt_device_count;
sprintf(info->device_name, "%s%d", tty_dev_prefix, info->line);
if (info->line < MAX_DEVICES) {
if (maxframe[info->line])
info->max_frame_size = maxframe[info->line];
}
slgt_device_count++;
if (!slgt_device_list)
slgt_device_list = info;
else {
struct slgt_info *current_dev = slgt_device_list;
while(current_dev->next_device)
current_dev = current_dev->next_device;
current_dev->next_device = info;
}
if (info->max_frame_size < 4096)
info->max_frame_size = 4096;
else if (info->max_frame_size > 65535)
info->max_frame_size = 65535;
switch(info->pdev->device) {
case SYNCLINK_GT_DEVICE_ID:
devstr = "GT";
break;
case SYNCLINK_GT2_DEVICE_ID:
devstr = "GT2";
break;
case SYNCLINK_GT4_DEVICE_ID:
devstr = "GT4";
break;
case SYNCLINK_AC_DEVICE_ID:
devstr = "AC";
info->params.mode = MGSL_MODE_ASYNC;
break;
default:
devstr = "(unknown model)";
}
printk("SyncLink %s %s IO=%08x IRQ=%d MaxFrameSize=%u\n",
devstr, info->device_name, info->phys_reg_addr,
info->irq_level, info->max_frame_size);
#if SYNCLINK_GENERIC_HDLC
hdlcdev_init(info);
#endif
}
static const struct tty_port_operations slgt_port_ops = {
.carrier_raised = carrier_raised,
.dtr_rts = dtr_rts,
};
/*
* allocate device instance structure, return NULL on failure
*/
static struct slgt_info *alloc_dev(int adapter_num, int port_num, struct pci_dev *pdev)
{
struct slgt_info *info;
info = kzalloc(sizeof(struct slgt_info), GFP_KERNEL);
if (!info) {
DBGERR(("%s device alloc failed adapter=%d port=%d\n",
driver_name, adapter_num, port_num));
} else {
tty_port_init(&info->port);
info->port.ops = &slgt_port_ops;
info->magic = MGSL_MAGIC;
INIT_WORK(&info->task, bh_handler);
info->max_frame_size = 4096;
info->base_clock = 14745600;
info->rbuf_fill_level = DMABUFSIZE;
info->port.close_delay = 5*HZ/10;
info->port.closing_wait = 30*HZ;
init_waitqueue_head(&info->status_event_wait_q);
init_waitqueue_head(&info->event_wait_q);
spin_lock_init(&info->netlock);
memcpy(&info->params,&default_params,sizeof(MGSL_PARAMS));
info->idle_mode = HDLC_TXIDLE_FLAGS;
info->adapter_num = adapter_num;
info->port_num = port_num;
setup_timer(&info->tx_timer, tx_timeout, (unsigned long)info);
setup_timer(&info->rx_timer, rx_timeout, (unsigned long)info);
/* Copy configuration info to device instance data */
info->pdev = pdev;
info->irq_level = pdev->irq;
info->phys_reg_addr = pci_resource_start(pdev,0);
info->bus_type = MGSL_BUS_TYPE_PCI;
info->irq_flags = IRQF_SHARED;
info->init_error = -1; /* assume error, set to 0 on successful init */
}
return info;
}
static void device_init(int adapter_num, struct pci_dev *pdev)
{
struct slgt_info *port_array[SLGT_MAX_PORTS];
int i;
int port_count = 1;
if (pdev->device == SYNCLINK_GT2_DEVICE_ID)
port_count = 2;
else if (pdev->device == SYNCLINK_GT4_DEVICE_ID)
port_count = 4;
/* allocate device instances for all ports */
for (i=0; i < port_count; ++i) {
port_array[i] = alloc_dev(adapter_num, i, pdev);
if (port_array[i] == NULL) {
for (--i; i >= 0; --i)
kfree(port_array[i]);
return;
}
}
/* give copy of port_array to all ports and add to device list */
for (i=0; i < port_count; ++i) {
memcpy(port_array[i]->port_array, port_array, sizeof(port_array));
add_device(port_array[i]);
port_array[i]->port_count = port_count;
spin_lock_init(&port_array[i]->lock);
}
/* Allocate and claim adapter resources */
if (!claim_resources(port_array[0])) {
alloc_dma_bufs(port_array[0]);
/* copy resource information from first port to others */
for (i = 1; i < port_count; ++i) {
port_array[i]->irq_level = port_array[0]->irq_level;
port_array[i]->reg_addr = port_array[0]->reg_addr;
alloc_dma_bufs(port_array[i]);
}
if (request_irq(port_array[0]->irq_level,
slgt_interrupt,
port_array[0]->irq_flags,
port_array[0]->device_name,
port_array[0]) < 0) {
DBGERR(("%s request_irq failed IRQ=%d\n",
port_array[0]->device_name,
port_array[0]->irq_level));
} else {
port_array[0]->irq_requested = true;
adapter_test(port_array[0]);
for (i=1 ; i < port_count ; i++) {
port_array[i]->init_error = port_array[0]->init_error;
port_array[i]->gpio_present = port_array[0]->gpio_present;
}
}
}
for (i=0; i < port_count; ++i)
tty_register_device(serial_driver, port_array[i]->line, &(port_array[i]->pdev->dev));
}
static int __devinit init_one(struct pci_dev *dev,
const struct pci_device_id *ent)
{
if (pci_enable_device(dev)) {
printk("error enabling pci device %p\n", dev);
return -EIO;
}
pci_set_master(dev);
device_init(slgt_device_count, dev);
return 0;
}
static void __devexit remove_one(struct pci_dev *dev)
{
}
static const struct tty_operations ops = {
.open = open,
.close = close,
.write = write,
.put_char = put_char,
.flush_chars = flush_chars,
.write_room = write_room,
.chars_in_buffer = chars_in_buffer,
.flush_buffer = flush_buffer,
.ioctl = ioctl,
.compat_ioctl = slgt_compat_ioctl,
.throttle = throttle,
.unthrottle = unthrottle,
.send_xchar = send_xchar,
.break_ctl = set_break,
.wait_until_sent = wait_until_sent,
.set_termios = set_termios,
.stop = tx_hold,
.start = tx_release,
.hangup = hangup,
.tiocmget = tiocmget,
.tiocmset = tiocmset,
.get_icount = get_icount,
.proc_fops = &synclink_gt_proc_fops,
};
static void slgt_cleanup(void)
{
int rc;
struct slgt_info *info;
struct slgt_info *tmp;
printk(KERN_INFO "unload %s\n", driver_name);
if (serial_driver) {
for (info=slgt_device_list ; info != NULL ; info=info->next_device)
tty_unregister_device(serial_driver, info->line);
if ((rc = tty_unregister_driver(serial_driver)))
DBGERR(("tty_unregister_driver error=%d\n", rc));
put_tty_driver(serial_driver);
}
/* reset devices */
info = slgt_device_list;
while(info) {
reset_port(info);
info = info->next_device;
}
/* release devices */
info = slgt_device_list;
while(info) {
#if SYNCLINK_GENERIC_HDLC
hdlcdev_exit(info);
#endif
free_dma_bufs(info);
free_tmp_rbuf(info);
if (info->port_num == 0)
release_resources(info);
tmp = info;
info = info->next_device;
kfree(tmp);
}
if (pci_registered)
pci_unregister_driver(&pci_driver);
}
/*
* Driver initialization entry point.
*/
static int __init slgt_init(void)
{
int rc;
printk(KERN_INFO "%s\n", driver_name);
serial_driver = alloc_tty_driver(MAX_DEVICES);
if (!serial_driver) {
printk("%s can't allocate tty driver\n", driver_name);
return -ENOMEM;
}
/* Initialize the tty_driver structure */
serial_driver->driver_name = tty_driver_name;
serial_driver->name = tty_dev_prefix;
serial_driver->major = ttymajor;
serial_driver->minor_start = 64;
serial_driver->type = TTY_DRIVER_TYPE_SERIAL;
serial_driver->subtype = SERIAL_TYPE_NORMAL;
serial_driver->init_termios = tty_std_termios;
serial_driver->init_termios.c_cflag =
B9600 | CS8 | CREAD | HUPCL | CLOCAL;
serial_driver->init_termios.c_ispeed = 9600;
serial_driver->init_termios.c_ospeed = 9600;
serial_driver->flags = TTY_DRIVER_REAL_RAW | TTY_DRIVER_DYNAMIC_DEV;
tty_set_operations(serial_driver, &ops);
if ((rc = tty_register_driver(serial_driver)) < 0) {
DBGERR(("%s can't register serial driver\n", driver_name));
put_tty_driver(serial_driver);
serial_driver = NULL;
goto error;
}
printk(KERN_INFO "%s, tty major#%d\n",
driver_name, serial_driver->major);
slgt_device_count = 0;
if ((rc = pci_register_driver(&pci_driver)) < 0) {
printk("%s pci_register_driver error=%d\n", driver_name, rc);
goto error;
}
pci_registered = true;
if (!slgt_device_list)
printk("%s no devices found\n",driver_name);
return 0;
error:
slgt_cleanup();
return rc;
}
static void __exit slgt_exit(void)
{
slgt_cleanup();
}
module_init(slgt_init);
module_exit(slgt_exit);
/*
* register access routines
*/
#define CALC_REGADDR() \
unsigned long reg_addr = ((unsigned long)info->reg_addr) + addr; \
if (addr >= 0x80) \
reg_addr += (info->port_num) * 32; \
else if (addr >= 0x40) \
reg_addr += (info->port_num) * 16;
static __u8 rd_reg8(struct slgt_info *info, unsigned int addr)
{
CALC_REGADDR();
return readb((void __iomem *)reg_addr);
}
static void wr_reg8(struct slgt_info *info, unsigned int addr, __u8 value)
{
CALC_REGADDR();
writeb(value, (void __iomem *)reg_addr);
}
static __u16 rd_reg16(struct slgt_info *info, unsigned int addr)
{
CALC_REGADDR();
return readw((void __iomem *)reg_addr);
}
static void wr_reg16(struct slgt_info *info, unsigned int addr, __u16 value)
{
CALC_REGADDR();
writew(value, (void __iomem *)reg_addr);
}
static __u32 rd_reg32(struct slgt_info *info, unsigned int addr)
{
CALC_REGADDR();
return readl((void __iomem *)reg_addr);
}
static void wr_reg32(struct slgt_info *info, unsigned int addr, __u32 value)
{
CALC_REGADDR();
writel(value, (void __iomem *)reg_addr);
}
static void rdma_reset(struct slgt_info *info)
{
unsigned int i;
/* set reset bit */
wr_reg32(info, RDCSR, BIT1);
/* wait for enable bit cleared */
for(i=0 ; i < 1000 ; i++)
if (!(rd_reg32(info, RDCSR) & BIT0))
break;
}
static void tdma_reset(struct slgt_info *info)
{
unsigned int i;
/* set reset bit */
wr_reg32(info, TDCSR, BIT1);
/* wait for enable bit cleared */
for(i=0 ; i < 1000 ; i++)
if (!(rd_reg32(info, TDCSR) & BIT0))
break;
}
/*
* enable internal loopback
* TxCLK and RxCLK are generated from BRG
* and TxD is looped back to RxD internally.
*/
static void enable_loopback(struct slgt_info *info)
{
/* SCR (serial control) BIT2=loopback enable */
wr_reg16(info, SCR, (unsigned short)(rd_reg16(info, SCR) | BIT2));
if (info->params.mode != MGSL_MODE_ASYNC) {
/* CCR (clock control)
* 07..05 tx clock source (010 = BRG)
* 04..02 rx clock source (010 = BRG)
* 01 auxclk enable (0 = disable)
* 00 BRG enable (1 = enable)
*
* 0100 1001
*/
wr_reg8(info, CCR, 0x49);
/* set speed if available, otherwise use default */
if (info->params.clock_speed)
set_rate(info, info->params.clock_speed);
else
set_rate(info, 3686400);
}
}
/*
* set baud rate generator to specified rate
*/
static void set_rate(struct slgt_info *info, u32 rate)
{
unsigned int div;
unsigned int osc = info->base_clock;
/* div = osc/rate - 1
*
* Round div up if osc/rate is not integer to
* force to next slowest rate.
*/
if (rate) {
div = osc/rate;
if (!(osc % rate) && div)
div--;
wr_reg16(info, BDR, (unsigned short)div);
}
}
static void rx_stop(struct slgt_info *info)
{
unsigned short val;
/* disable and reset receiver */
val = rd_reg16(info, RCR) & ~BIT1; /* clear enable bit */
wr_reg16(info, RCR, (unsigned short)(val | BIT2)); /* set reset bit */
wr_reg16(info, RCR, val); /* clear reset bit */
slgt_irq_off(info, IRQ_RXOVER + IRQ_RXDATA + IRQ_RXIDLE);
/* clear pending rx interrupts */
wr_reg16(info, SSR, IRQ_RXIDLE + IRQ_RXOVER);
rdma_reset(info);
info->rx_enabled = false;
info->rx_restart = false;
}
static void rx_start(struct slgt_info *info)
{
unsigned short val;
slgt_irq_off(info, IRQ_RXOVER + IRQ_RXDATA);
/* clear pending rx overrun IRQ */
wr_reg16(info, SSR, IRQ_RXOVER);
/* reset and disable receiver */
val = rd_reg16(info, RCR) & ~BIT1; /* clear enable bit */
wr_reg16(info, RCR, (unsigned short)(val | BIT2)); /* set reset bit */
wr_reg16(info, RCR, val); /* clear reset bit */
rdma_reset(info);
reset_rbufs(info);
if (info->rx_pio) {
/* rx request when rx FIFO not empty */
wr_reg16(info, SCR, (unsigned short)(rd_reg16(info, SCR) & ~BIT14));
slgt_irq_on(info, IRQ_RXDATA);
if (info->params.mode == MGSL_MODE_ASYNC) {
/* enable saving of rx status */
wr_reg32(info, RDCSR, BIT6);
}
} else {
/* rx request when rx FIFO half full */
wr_reg16(info, SCR, (unsigned short)(rd_reg16(info, SCR) | BIT14));
/* set 1st descriptor address */
wr_reg32(info, RDDAR, info->rbufs[0].pdesc);
if (info->params.mode != MGSL_MODE_ASYNC) {
/* enable rx DMA and DMA interrupt */
wr_reg32(info, RDCSR, (BIT2 + BIT0));
} else {
/* enable saving of rx status, rx DMA and DMA interrupt */
wr_reg32(info, RDCSR, (BIT6 + BIT2 + BIT0));
}
}
slgt_irq_on(info, IRQ_RXOVER);
/* enable receiver */
wr_reg16(info, RCR, (unsigned short)(rd_reg16(info, RCR) | BIT1));
info->rx_restart = false;
info->rx_enabled = true;
}
static void tx_start(struct slgt_info *info)
{
if (!info->tx_enabled) {
wr_reg16(info, TCR,
(unsigned short)((rd_reg16(info, TCR) | BIT1) & ~BIT2));
info->tx_enabled = true;
}
if (desc_count(info->tbufs[info->tbuf_start])) {
info->drop_rts_on_tx_done = false;
if (info->params.mode != MGSL_MODE_ASYNC) {
if (info->params.flags & HDLC_FLAG_AUTO_RTS) {
get_signals(info);
if (!(info->signals & SerialSignal_RTS)) {
info->signals |= SerialSignal_RTS;
set_signals(info);
info->drop_rts_on_tx_done = true;
}
}
slgt_irq_off(info, IRQ_TXDATA);
slgt_irq_on(info, IRQ_TXUNDER + IRQ_TXIDLE);
/* clear tx idle and underrun status bits */
wr_reg16(info, SSR, (unsigned short)(IRQ_TXIDLE + IRQ_TXUNDER));
} else {
slgt_irq_off(info, IRQ_TXDATA);
slgt_irq_on(info, IRQ_TXIDLE);
/* clear tx idle status bit */
wr_reg16(info, SSR, IRQ_TXIDLE);
}
/* set 1st descriptor address and start DMA */
wr_reg32(info, TDDAR, info->tbufs[info->tbuf_start].pdesc);
wr_reg32(info, TDCSR, BIT2 + BIT0);
info->tx_active = true;
}
}
static void tx_stop(struct slgt_info *info)
{
unsigned short val;
del_timer(&info->tx_timer);
tdma_reset(info);
/* reset and disable transmitter */
val = rd_reg16(info, TCR) & ~BIT1; /* clear enable bit */
wr_reg16(info, TCR, (unsigned short)(val | BIT2)); /* set reset bit */
slgt_irq_off(info, IRQ_TXDATA + IRQ_TXIDLE + IRQ_TXUNDER);
/* clear tx idle and underrun status bit */
wr_reg16(info, SSR, (unsigned short)(IRQ_TXIDLE + IRQ_TXUNDER));
reset_tbufs(info);
info->tx_enabled = false;
info->tx_active = false;
}
static void reset_port(struct slgt_info *info)
{
if (!info->reg_addr)
return;
tx_stop(info);
rx_stop(info);
info->signals &= ~(SerialSignal_DTR + SerialSignal_RTS);
set_signals(info);
slgt_irq_off(info, IRQ_ALL | IRQ_MASTER);
}
static void reset_adapter(struct slgt_info *info)
{
int i;
for (i=0; i < info->port_count; ++i) {
if (info->port_array[i])
reset_port(info->port_array[i]);
}
}
static void async_mode(struct slgt_info *info)
{
unsigned short val;
slgt_irq_off(info, IRQ_ALL | IRQ_MASTER);
tx_stop(info);
rx_stop(info);
/* TCR (tx control)
*
* 15..13 mode, 010=async
* 12..10 encoding, 000=NRZ
* 09 parity enable
* 08 1=odd parity, 0=even parity
* 07 1=RTS driver control
* 06 1=break enable
* 05..04 character length
* 00=5 bits
* 01=6 bits
* 10=7 bits
* 11=8 bits
* 03 0=1 stop bit, 1=2 stop bits
* 02 reset
* 01 enable
* 00 auto-CTS enable
*/
val = 0x4000;
if (info->if_mode & MGSL_INTERFACE_RTS_EN)
val |= BIT7;
if (info->params.parity != ASYNC_PARITY_NONE) {
val |= BIT9;
if (info->params.parity == ASYNC_PARITY_ODD)
val |= BIT8;
}
switch (info->params.data_bits)
{
case 6: val |= BIT4; break;
case 7: val |= BIT5; break;
case 8: val |= BIT5 + BIT4; break;
}
if (info->params.stop_bits != 1)
val |= BIT3;
if (info->params.flags & HDLC_FLAG_AUTO_CTS)
val |= BIT0;
wr_reg16(info, TCR, val);
/* RCR (rx control)
*
* 15..13 mode, 010=async
* 12..10 encoding, 000=NRZ
* 09 parity enable
* 08 1=odd parity, 0=even parity
* 07..06 reserved, must be 0
* 05..04 character length
* 00=5 bits
* 01=6 bits
* 10=7 bits
* 11=8 bits
* 03 reserved, must be zero
* 02 reset
* 01 enable
* 00 auto-DCD enable
*/
val = 0x4000;
if (info->params.parity != ASYNC_PARITY_NONE) {
val |= BIT9;
if (info->params.parity == ASYNC_PARITY_ODD)
val |= BIT8;
}
switch (info->params.data_bits)
{
case 6: val |= BIT4; break;
case 7: val |= BIT5; break;
case 8: val |= BIT5 + BIT4; break;
}
if (info->params.flags & HDLC_FLAG_AUTO_DCD)
val |= BIT0;
wr_reg16(info, RCR, val);
/* CCR (clock control)
*
* 07..05 011 = tx clock source is BRG/16
* 04..02 010 = rx clock source is BRG
* 01 0 = auxclk disabled
* 00 1 = BRG enabled
*
* 0110 1001
*/
wr_reg8(info, CCR, 0x69);
msc_set_vcr(info);
/* SCR (serial control)
*
* 15 1=tx req on FIFO half empty
* 14 1=rx req on FIFO half full
* 13 tx data IRQ enable
* 12 tx idle IRQ enable
* 11 rx break on IRQ enable
* 10 rx data IRQ enable
* 09 rx break off IRQ enable
* 08 overrun IRQ enable
* 07 DSR IRQ enable
* 06 CTS IRQ enable
* 05 DCD IRQ enable
* 04 RI IRQ enable
* 03 0=16x sampling, 1=8x sampling
* 02 1=txd->rxd internal loopback enable
* 01 reserved, must be zero
* 00 1=master IRQ enable
*/
val = BIT15 + BIT14 + BIT0;
/* JCR[8] : 1 = x8 async mode feature available */
if ((rd_reg32(info, JCR) & BIT8) && info->params.data_rate &&
((info->base_clock < (info->params.data_rate * 16)) ||
(info->base_clock % (info->params.data_rate * 16)))) {
/* use 8x sampling */
val |= BIT3;
set_rate(info, info->params.data_rate * 8);
} else {
/* use 16x sampling */
set_rate(info, info->params.data_rate * 16);
}
wr_reg16(info, SCR, val);
slgt_irq_on(info, IRQ_RXBREAK | IRQ_RXOVER);
if (info->params.loopback)
enable_loopback(info);
}
static void sync_mode(struct slgt_info *info)
{
unsigned short val;
slgt_irq_off(info, IRQ_ALL | IRQ_MASTER);
tx_stop(info);
rx_stop(info);
/* TCR (tx control)
*
* 15..13 mode
* 000=HDLC/SDLC
* 001=raw bit synchronous
* 010=asynchronous/isochronous
* 011=monosync byte synchronous
* 100=bisync byte synchronous
* 101=xsync byte synchronous
* 12..10 encoding
* 09 CRC enable
* 08 CRC32
* 07 1=RTS driver control
* 06 preamble enable
* 05..04 preamble length
* 03 share open/close flag
* 02 reset
* 01 enable
* 00 auto-CTS enable
*/
val = BIT2;
switch(info->params.mode) {
case MGSL_MODE_XSYNC:
val |= BIT15 + BIT13;
break;
case MGSL_MODE_MONOSYNC: val |= BIT14 + BIT13; break;
case MGSL_MODE_BISYNC: val |= BIT15; break;
case MGSL_MODE_RAW: val |= BIT13; break;
}
if (info->if_mode & MGSL_INTERFACE_RTS_EN)
val |= BIT7;
switch(info->params.encoding)
{
case HDLC_ENCODING_NRZB: val |= BIT10; break;
case HDLC_ENCODING_NRZI_MARK: val |= BIT11; break;
case HDLC_ENCODING_NRZI: val |= BIT11 + BIT10; break;
case HDLC_ENCODING_BIPHASE_MARK: val |= BIT12; break;
case HDLC_ENCODING_BIPHASE_SPACE: val |= BIT12 + BIT10; break;
case HDLC_ENCODING_BIPHASE_LEVEL: val |= BIT12 + BIT11; break;
case HDLC_ENCODING_DIFF_BIPHASE_LEVEL: val |= BIT12 + BIT11 + BIT10; break;
}
switch (info->params.crc_type & HDLC_CRC_MASK)
{
case HDLC_CRC_16_CCITT: val |= BIT9; break;
case HDLC_CRC_32_CCITT: val |= BIT9 + BIT8; break;
}
if (info->params.preamble != HDLC_PREAMBLE_PATTERN_NONE)
val |= BIT6;
switch (info->params.preamble_length)
{
case HDLC_PREAMBLE_LENGTH_16BITS: val |= BIT5; break;
case HDLC_PREAMBLE_LENGTH_32BITS: val |= BIT4; break;
case HDLC_PREAMBLE_LENGTH_64BITS: val |= BIT5 + BIT4; break;
}
if (info->params.flags & HDLC_FLAG_AUTO_CTS)
val |= BIT0;
wr_reg16(info, TCR, val);
/* TPR (transmit preamble) */
switch (info->params.preamble)
{
case HDLC_PREAMBLE_PATTERN_FLAGS: val = 0x7e; break;
case HDLC_PREAMBLE_PATTERN_ONES: val = 0xff; break;
case HDLC_PREAMBLE_PATTERN_ZEROS: val = 0x00; break;
case HDLC_PREAMBLE_PATTERN_10: val = 0x55; break;
case HDLC_PREAMBLE_PATTERN_01: val = 0xaa; break;
default: val = 0x7e; break;
}
wr_reg8(info, TPR, (unsigned char)val);
/* RCR (rx control)
*
* 15..13 mode
* 000=HDLC/SDLC
* 001=raw bit synchronous
* 010=asynchronous/isochronous
* 011=monosync byte synchronous
* 100=bisync byte synchronous
* 101=xsync byte synchronous
* 12..10 encoding
* 09 CRC enable
* 08 CRC32
* 07..03 reserved, must be 0
* 02 reset
* 01 enable
* 00 auto-DCD enable
*/
val = 0;
switch(info->params.mode) {
case MGSL_MODE_XSYNC:
val |= BIT15 + BIT13;
break;
case MGSL_MODE_MONOSYNC: val |= BIT14 + BIT13; break;
case MGSL_MODE_BISYNC: val |= BIT15; break;
case MGSL_MODE_RAW: val |= BIT13; break;
}
switch(info->params.encoding)
{
case HDLC_ENCODING_NRZB: val |= BIT10; break;
case HDLC_ENCODING_NRZI_MARK: val |= BIT11; break;
case HDLC_ENCODING_NRZI: val |= BIT11 + BIT10; break;
case HDLC_ENCODING_BIPHASE_MARK: val |= BIT12; break;
case HDLC_ENCODING_BIPHASE_SPACE: val |= BIT12 + BIT10; break;
case HDLC_ENCODING_BIPHASE_LEVEL: val |= BIT12 + BIT11; break;
case HDLC_ENCODING_DIFF_BIPHASE_LEVEL: val |= BIT12 + BIT11 + BIT10; break;
}
switch (info->params.crc_type & HDLC_CRC_MASK)
{
case HDLC_CRC_16_CCITT: val |= BIT9; break;
case HDLC_CRC_32_CCITT: val |= BIT9 + BIT8; break;
}
if (info->params.flags & HDLC_FLAG_AUTO_DCD)
val |= BIT0;
wr_reg16(info, RCR, val);
/* CCR (clock control)
*
* 07..05 tx clock source
* 04..02 rx clock source
* 01 auxclk enable
* 00 BRG enable
*/
val = 0;
if (info->params.flags & HDLC_FLAG_TXC_BRG)
{
// when RxC source is DPLL, BRG generates 16X DPLL
// reference clock, so take TxC from BRG/16 to get
// transmit clock at actual data rate
if (info->params.flags & HDLC_FLAG_RXC_DPLL)
val |= BIT6 + BIT5; /* 011, txclk = BRG/16 */
else
val |= BIT6; /* 010, txclk = BRG */
}
else if (info->params.flags & HDLC_FLAG_TXC_DPLL)
val |= BIT7; /* 100, txclk = DPLL Input */
else if (info->params.flags & HDLC_FLAG_TXC_RXCPIN)
val |= BIT5; /* 001, txclk = RXC Input */
if (info->params.flags & HDLC_FLAG_RXC_BRG)
val |= BIT3; /* 010, rxclk = BRG */
else if (info->params.flags & HDLC_FLAG_RXC_DPLL)
val |= BIT4; /* 100, rxclk = DPLL */
else if (info->params.flags & HDLC_FLAG_RXC_TXCPIN)
val |= BIT2; /* 001, rxclk = TXC Input */
if (info->params.clock_speed)
val |= BIT1 + BIT0;
wr_reg8(info, CCR, (unsigned char)val);
if (info->params.flags & (HDLC_FLAG_TXC_DPLL + HDLC_FLAG_RXC_DPLL))
{
// program DPLL mode
switch(info->params.encoding)
{
case HDLC_ENCODING_BIPHASE_MARK:
case HDLC_ENCODING_BIPHASE_SPACE:
val = BIT7; break;
case HDLC_ENCODING_BIPHASE_LEVEL:
case HDLC_ENCODING_DIFF_BIPHASE_LEVEL:
val = BIT7 + BIT6; break;
default: val = BIT6; // NRZ encodings
}
wr_reg16(info, RCR, (unsigned short)(rd_reg16(info, RCR) | val));
// DPLL requires a 16X reference clock from BRG
set_rate(info, info->params.clock_speed * 16);
}
else
set_rate(info, info->params.clock_speed);
tx_set_idle(info);
msc_set_vcr(info);
/* SCR (serial control)
*
* 15 1=tx req on FIFO half empty
* 14 1=rx req on FIFO half full
* 13 tx data IRQ enable
* 12 tx idle IRQ enable
* 11 underrun IRQ enable
* 10 rx data IRQ enable
* 09 rx idle IRQ enable
* 08 overrun IRQ enable
* 07 DSR IRQ enable
* 06 CTS IRQ enable
* 05 DCD IRQ enable
* 04 RI IRQ enable
* 03 reserved, must be zero
* 02 1=txd->rxd internal loopback enable
* 01 reserved, must be zero
* 00 1=master IRQ enable
*/
wr_reg16(info, SCR, BIT15 + BIT14 + BIT0);
if (info->params.loopback)
enable_loopback(info);
}
/*
* set transmit idle mode
*/
static void tx_set_idle(struct slgt_info *info)
{
unsigned char val;
unsigned short tcr;
/* if preamble enabled (tcr[6] == 1) then tx idle size = 8 bits
* else tcr[5:4] = tx idle size: 00 = 8 bits, 01 = 16 bits
*/
tcr = rd_reg16(info, TCR);
if (info->idle_mode & HDLC_TXIDLE_CUSTOM_16) {
/* disable preamble, set idle size to 16 bits */
tcr = (tcr & ~(BIT6 + BIT5)) | BIT4;
/* MSB of 16 bit idle specified in tx preamble register (TPR) */
wr_reg8(info, TPR, (unsigned char)((info->idle_mode >> 8) & 0xff));
} else if (!(tcr & BIT6)) {
/* preamble is disabled, set idle size to 8 bits */
tcr &= ~(BIT5 + BIT4);
}
wr_reg16(info, TCR, tcr);
if (info->idle_mode & (HDLC_TXIDLE_CUSTOM_8 | HDLC_TXIDLE_CUSTOM_16)) {
/* LSB of custom tx idle specified in tx idle register */
val = (unsigned char)(info->idle_mode & 0xff);
} else {
/* standard 8 bit idle patterns */
switch(info->idle_mode)
{
case HDLC_TXIDLE_FLAGS: val = 0x7e; break;
case HDLC_TXIDLE_ALT_ZEROS_ONES:
case HDLC_TXIDLE_ALT_MARK_SPACE: val = 0xaa; break;
case HDLC_TXIDLE_ZEROS:
case HDLC_TXIDLE_SPACE: val = 0x00; break;
default: val = 0xff;
}
}
wr_reg8(info, TIR, val);
}
/*
* get state of V24 status (input) signals
*/
static void get_signals(struct slgt_info *info)
{
unsigned short status = rd_reg16(info, SSR);
/* clear all serial signals except DTR and RTS */
info->signals &= SerialSignal_DTR + SerialSignal_RTS;
if (status & BIT3)
info->signals |= SerialSignal_DSR;
if (status & BIT2)
info->signals |= SerialSignal_CTS;
if (status & BIT1)
info->signals |= SerialSignal_DCD;
if (status & BIT0)
info->signals |= SerialSignal_RI;
}
/*
* set V.24 Control Register based on current configuration
*/
static void msc_set_vcr(struct slgt_info *info)
{
unsigned char val = 0;
/* VCR (V.24 control)
*
* 07..04 serial IF select
* 03 DTR
* 02 RTS
* 01 LL
* 00 RL
*/
switch(info->if_mode & MGSL_INTERFACE_MASK)
{
case MGSL_INTERFACE_RS232:
val |= BIT5; /* 0010 */
break;
case MGSL_INTERFACE_V35:
val |= BIT7 + BIT6 + BIT5; /* 1110 */
break;
case MGSL_INTERFACE_RS422:
val |= BIT6; /* 0100 */
break;
}
if (info->if_mode & MGSL_INTERFACE_MSB_FIRST)
val |= BIT4;
if (info->signals & SerialSignal_DTR)
val |= BIT3;
if (info->signals & SerialSignal_RTS)
val |= BIT2;
if (info->if_mode & MGSL_INTERFACE_LL)
val |= BIT1;
if (info->if_mode & MGSL_INTERFACE_RL)
val |= BIT0;
wr_reg8(info, VCR, val);
}
/*
* set state of V24 control (output) signals
*/
static void set_signals(struct slgt_info *info)
{
unsigned char val = rd_reg8(info, VCR);
if (info->signals & SerialSignal_DTR)
val |= BIT3;
else
val &= ~BIT3;
if (info->signals & SerialSignal_RTS)
val |= BIT2;
else
val &= ~BIT2;
wr_reg8(info, VCR, val);
}
/*
* free range of receive DMA buffers (i to last)
*/
static void free_rbufs(struct slgt_info *info, unsigned int i, unsigned int last)
{
int done = 0;
while(!done) {
/* reset current buffer for reuse */
info->rbufs[i].status = 0;
set_desc_count(info->rbufs[i], info->rbuf_fill_level);
if (i == last)
done = 1;
if (++i == info->rbuf_count)
i = 0;
}
info->rbuf_current = i;
}
/*
* mark all receive DMA buffers as free
*/
static void reset_rbufs(struct slgt_info *info)
{
free_rbufs(info, 0, info->rbuf_count - 1);
info->rbuf_fill_index = 0;
info->rbuf_fill_count = 0;
}
/*
* pass receive HDLC frame to upper layer
*
* return true if frame available, otherwise false
*/
static bool rx_get_frame(struct slgt_info *info)
{
unsigned int start, end;
unsigned short status;
unsigned int framesize = 0;
unsigned long flags;
struct tty_struct *tty = info->port.tty;
unsigned char addr_field = 0xff;
unsigned int crc_size = 0;
switch (info->params.crc_type & HDLC_CRC_MASK) {
case HDLC_CRC_16_CCITT: crc_size = 2; break;
case HDLC_CRC_32_CCITT: crc_size = 4; break;
}
check_again:
framesize = 0;
addr_field = 0xff;
start = end = info->rbuf_current;
for (;;) {
if (!desc_complete(info->rbufs[end]))
goto cleanup;
if (framesize == 0 && info->params.addr_filter != 0xff)
addr_field = info->rbufs[end].buf[0];
framesize += desc_count(info->rbufs[end]);
if (desc_eof(info->rbufs[end]))
break;
if (++end == info->rbuf_count)
end = 0;
if (end == info->rbuf_current) {
if (info->rx_enabled){
spin_lock_irqsave(&info->lock,flags);
rx_start(info);
spin_unlock_irqrestore(&info->lock,flags);
}
goto cleanup;
}
}
/* status
*
* 15 buffer complete
* 14..06 reserved
* 05..04 residue
* 02 eof (end of frame)
* 01 CRC error
* 00 abort
*/
status = desc_status(info->rbufs[end]);
/* ignore CRC bit if not using CRC (bit is undefined) */
if ((info->params.crc_type & HDLC_CRC_MASK) == HDLC_CRC_NONE)
status &= ~BIT1;
if (framesize == 0 ||
(addr_field != 0xff && addr_field != info->params.addr_filter)) {
free_rbufs(info, start, end);
goto check_again;
}
if (framesize < (2 + crc_size) || status & BIT0) {
info->icount.rxshort++;
framesize = 0;
} else if (status & BIT1) {
info->icount.rxcrc++;
if (!(info->params.crc_type & HDLC_CRC_RETURN_EX))
framesize = 0;
}
#if SYNCLINK_GENERIC_HDLC
if (framesize == 0) {
info->netdev->stats.rx_errors++;
info->netdev->stats.rx_frame_errors++;
}
#endif
DBGBH(("%s rx frame status=%04X size=%d\n",
info->device_name, status, framesize));
DBGDATA(info, info->rbufs[start].buf, min_t(int, framesize, info->rbuf_fill_level), "rx");
if (framesize) {
if (!(info->params.crc_type & HDLC_CRC_RETURN_EX)) {
framesize -= crc_size;
crc_size = 0;
}
if (framesize > info->max_frame_size + crc_size)
info->icount.rxlong++;
else {
/* copy dma buffer(s) to contiguous temp buffer */
int copy_count = framesize;
int i = start;
unsigned char *p = info->tmp_rbuf;
info->tmp_rbuf_count = framesize;
info->icount.rxok++;
while(copy_count) {
int partial_count = min_t(int, copy_count, info->rbuf_fill_level);
memcpy(p, info->rbufs[i].buf, partial_count);
p += partial_count;
copy_count -= partial_count;
if (++i == info->rbuf_count)
i = 0;
}
if (info->params.crc_type & HDLC_CRC_RETURN_EX) {
*p = (status & BIT1) ? RX_CRC_ERROR : RX_OK;
framesize++;
}
#if SYNCLINK_GENERIC_HDLC
if (info->netcount)
hdlcdev_rx(info,info->tmp_rbuf, framesize);
else
#endif
ldisc_receive_buf(tty, info->tmp_rbuf, info->flag_buf, framesize);
}
}
free_rbufs(info, start, end);
return true;
cleanup:
return false;
}
/*
* pass receive buffer (RAW synchronous mode) to tty layer
* return true if buffer available, otherwise false
*/
static bool rx_get_buf(struct slgt_info *info)
{
unsigned int i = info->rbuf_current;
unsigned int count;
if (!desc_complete(info->rbufs[i]))
return false;
count = desc_count(info->rbufs[i]);
switch(info->params.mode) {
case MGSL_MODE_MONOSYNC:
case MGSL_MODE_BISYNC:
case MGSL_MODE_XSYNC:
/* ignore residue in byte synchronous modes */
if (desc_residue(info->rbufs[i]))
count--;
break;
}
DBGDATA(info, info->rbufs[i].buf, count, "rx");
DBGINFO(("rx_get_buf size=%d\n", count));
if (count)
ldisc_receive_buf(info->port.tty, info->rbufs[i].buf,
info->flag_buf, count);
free_rbufs(info, i, i);
return true;
}
static void reset_tbufs(struct slgt_info *info)
{
unsigned int i;
info->tbuf_current = 0;
for (i=0 ; i < info->tbuf_count ; i++) {
info->tbufs[i].status = 0;
info->tbufs[i].count = 0;
}
}
/*
* return number of free transmit DMA buffers
*/
static unsigned int free_tbuf_count(struct slgt_info *info)
{
unsigned int count = 0;
unsigned int i = info->tbuf_current;
do
{
if (desc_count(info->tbufs[i]))
break; /* buffer in use */
++count;
if (++i == info->tbuf_count)
i=0;
} while (i != info->tbuf_current);
/* if tx DMA active, last zero count buffer is in use */
if (count && (rd_reg32(info, TDCSR) & BIT0))
--count;
return count;
}
/*
* return number of bytes in unsent transmit DMA buffers
* and the serial controller tx FIFO
*/
static unsigned int tbuf_bytes(struct slgt_info *info)
{
unsigned int total_count = 0;
unsigned int i = info->tbuf_current;
unsigned int reg_value;
unsigned int count;
unsigned int active_buf_count = 0;
/*
* Add descriptor counts for all tx DMA buffers.
* If count is zero (cleared by DMA controller after read),
* the buffer is complete or is actively being read from.
*
* Record buf_count of last buffer with zero count starting
* from current ring position. buf_count is mirror
* copy of count and is not cleared by serial controller.
* If DMA controller is active, that buffer is actively
* being read so add to total.
*/
do {
count = desc_count(info->tbufs[i]);
if (count)
total_count += count;
else if (!total_count)
active_buf_count = info->tbufs[i].buf_count;
if (++i == info->tbuf_count)
i = 0;
} while (i != info->tbuf_current);
/* read tx DMA status register */
reg_value = rd_reg32(info, TDCSR);
/* if tx DMA active, last zero count buffer is in use */
if (reg_value & BIT0)
total_count += active_buf_count;
/* add tx FIFO count = reg_value[15..8] */
total_count += (reg_value >> 8) & 0xff;
/* if transmitter active add one byte for shift register */
if (info->tx_active)
total_count++;
return total_count;
}
/*
* load data into transmit DMA buffer ring and start transmitter if needed
* return true if data accepted, otherwise false (buffers full)
*/
static bool tx_load(struct slgt_info *info, const char *buf, unsigned int size)
{
unsigned short count;
unsigned int i;
struct slgt_desc *d;
/* check required buffer space */
if (DIV_ROUND_UP(size, DMABUFSIZE) > free_tbuf_count(info))
return false;
DBGDATA(info, buf, size, "tx");
/*
* copy data to one or more DMA buffers in circular ring
* tbuf_start = first buffer for this data
* tbuf_current = next free buffer
*
* Copy all data before making data visible to DMA controller by
* setting descriptor count of the first buffer.
* This prevents an active DMA controller from reading the first DMA
* buffers of a frame and stopping before the final buffers are filled.
*/
info->tbuf_start = i = info->tbuf_current;
while (size) {
d = &info->tbufs[i];
count = (unsigned short)((size > DMABUFSIZE) ? DMABUFSIZE : size);
memcpy(d->buf, buf, count);
size -= count;
buf += count;
/*
* set EOF bit for last buffer of HDLC frame or
* for every buffer in raw mode
*/
if ((!size && info->params.mode == MGSL_MODE_HDLC) ||
info->params.mode == MGSL_MODE_RAW)
set_desc_eof(*d, 1);
else
set_desc_eof(*d, 0);
/* set descriptor count for all but first buffer */
if (i != info->tbuf_start)
set_desc_count(*d, count);
d->buf_count = count;
if (++i == info->tbuf_count)
i = 0;
}
info->tbuf_current = i;
/* set first buffer count to make new data visible to DMA controller */
d = &info->tbufs[info->tbuf_start];
set_desc_count(*d, d->buf_count);
/* start transmitter if needed and update transmit timeout */
if (!info->tx_active)
tx_start(info);
update_tx_timer(info);
return true;
}
static int register_test(struct slgt_info *info)
{
static unsigned short patterns[] =
{0x0000, 0xffff, 0xaaaa, 0x5555, 0x6969, 0x9696};
static unsigned int count = ARRAY_SIZE(patterns);
unsigned int i;
int rc = 0;
for (i=0 ; i < count ; i++) {
wr_reg16(info, TIR, patterns[i]);
wr_reg16(info, BDR, patterns[(i+1)%count]);
if ((rd_reg16(info, TIR) != patterns[i]) ||
(rd_reg16(info, BDR) != patterns[(i+1)%count])) {
rc = -ENODEV;
break;
}
}
info->gpio_present = (rd_reg32(info, JCR) & BIT5) ? 1 : 0;
info->init_error = rc ? 0 : DiagStatus_AddressFailure;
return rc;
}
static int irq_test(struct slgt_info *info)
{
unsigned long timeout;
unsigned long flags;
struct tty_struct *oldtty = info->port.tty;
u32 speed = info->params.data_rate;
info->params.data_rate = 921600;
info->port.tty = NULL;
spin_lock_irqsave(&info->lock, flags);
async_mode(info);
slgt_irq_on(info, IRQ_TXIDLE);
/* enable transmitter */
wr_reg16(info, TCR,
(unsigned short)(rd_reg16(info, TCR) | BIT1));
/* write one byte and wait for tx idle */
wr_reg16(info, TDR, 0);
/* assume failure */
info->init_error = DiagStatus_IrqFailure;
info->irq_occurred = false;
spin_unlock_irqrestore(&info->lock, flags);
timeout=100;
while(timeout-- && !info->irq_occurred)
msleep_interruptible(10);
spin_lock_irqsave(&info->lock,flags);
reset_port(info);
spin_unlock_irqrestore(&info->lock,flags);
info->params.data_rate = speed;
info->port.tty = oldtty;
info->init_error = info->irq_occurred ? 0 : DiagStatus_IrqFailure;
return info->irq_occurred ? 0 : -ENODEV;
}
static int loopback_test_rx(struct slgt_info *info)
{
unsigned char *src, *dest;
int count;
if (desc_complete(info->rbufs[0])) {
count = desc_count(info->rbufs[0]);
src = info->rbufs[0].buf;
dest = info->tmp_rbuf;
for( ; count ; count-=2, src+=2) {
/* src=data byte (src+1)=status byte */
if (!(*(src+1) & (BIT9 + BIT8))) {
*dest = *src;
dest++;
info->tmp_rbuf_count++;
}
}
DBGDATA(info, info->tmp_rbuf, info->tmp_rbuf_count, "rx");
return 1;
}
return 0;
}
static int loopback_test(struct slgt_info *info)
{
#define TESTFRAMESIZE 20
unsigned long timeout;
u16 count = TESTFRAMESIZE;
unsigned char buf[TESTFRAMESIZE];
int rc = -ENODEV;
unsigned long flags;
struct tty_struct *oldtty = info->port.tty;
MGSL_PARAMS params;
memcpy(&params, &info->params, sizeof(params));
info->params.mode = MGSL_MODE_ASYNC;
info->params.data_rate = 921600;
info->params.loopback = 1;
info->port.tty = NULL;
/* build and send transmit frame */
for (count = 0; count < TESTFRAMESIZE; ++count)
buf[count] = (unsigned char)count;
info->tmp_rbuf_count = 0;
memset(info->tmp_rbuf, 0, TESTFRAMESIZE);
/* program hardware for HDLC and enabled receiver */
spin_lock_irqsave(&info->lock,flags);
async_mode(info);
rx_start(info);
tx_load(info, buf, count);
spin_unlock_irqrestore(&info->lock, flags);
/* wait for receive complete */
for (timeout = 100; timeout; --timeout) {
msleep_interruptible(10);
if (loopback_test_rx(info)) {
rc = 0;
break;
}
}
/* verify received frame length and contents */
if (!rc && (info->tmp_rbuf_count != count ||
memcmp(buf, info->tmp_rbuf, count))) {
rc = -ENODEV;
}
spin_lock_irqsave(&info->lock,flags);
reset_adapter(info);
spin_unlock_irqrestore(&info->lock,flags);
memcpy(&info->params, &params, sizeof(info->params));
info->port.tty = oldtty;
info->init_error = rc ? DiagStatus_DmaFailure : 0;
return rc;
}
static int adapter_test(struct slgt_info *info)
{
DBGINFO(("testing %s\n", info->device_name));
if (register_test(info) < 0) {
printk("register test failure %s addr=%08X\n",
info->device_name, info->phys_reg_addr);
} else if (irq_test(info) < 0) {
printk("IRQ test failure %s IRQ=%d\n",
info->device_name, info->irq_level);
} else if (loopback_test(info) < 0) {
printk("loopback test failure %s\n", info->device_name);
}
return info->init_error;
}
/*
* transmit timeout handler
*/
static void tx_timeout(unsigned long context)
{
struct slgt_info *info = (struct slgt_info*)context;
unsigned long flags;
DBGINFO(("%s tx_timeout\n", info->device_name));
if(info->tx_active && info->params.mode == MGSL_MODE_HDLC) {
info->icount.txtimeout++;
}
spin_lock_irqsave(&info->lock,flags);
tx_stop(info);
spin_unlock_irqrestore(&info->lock,flags);
#if SYNCLINK_GENERIC_HDLC
if (info->netcount)
hdlcdev_tx_done(info);
else
#endif
bh_transmit(info);
}
/*
* receive buffer polling timer
*/
static void rx_timeout(unsigned long context)
{
struct slgt_info *info = (struct slgt_info*)context;
unsigned long flags;
DBGINFO(("%s rx_timeout\n", info->device_name));
spin_lock_irqsave(&info->lock, flags);
info->pending_bh |= BH_RECEIVE;
spin_unlock_irqrestore(&info->lock, flags);
bh_handler(&info->task);
}