mirror of
https://github.com/FEX-Emu/linux.git
synced 2025-01-18 15:48:59 +00:00
88b2b32bab
* Convert {ide_hwif_t,ide_pci_device_t}->host_flag to be u16. * Add IDE_HFLAG_POST_SET_MODE host flag to indicate the need to program the host for the transfer mode after programming the device. Set it in au1xxx-ide, amd74xx, cs5530, cs5535, pdc202xx_new, sc1200, pmac and via82cxxx host drivers. * Add IDE_HFLAG_NO_SET_MODE host flag to indicate the need to completely skip programming of host/device for the transfer mode ("smart" hosts). Set it in it821x host driver and check it in ide_tune_dma(). * Add ide_set_pio_mode()/ide_set_dma_mode() helpers and convert all direct ->set_pio_mode/->speedproc users to use these helpers. * Move ide_config_drive_speed() calls from ->set_pio_mode/->speedproc methods to callers. * Rename ->speedproc method to ->set_dma_mode, make it void and update all implementations accordingly. * Update ide_set_xfer_rate() comments. * Unexport ide_config_drive_speed(). v2: * Fix issues noticed by Sergei: - export ide_set_dma_mode() instead of moving ->set_pio_mode abuse wrt to setting DMA modes from sc1200_set_pio_mode() to do_special() - check IDE_HFLAG_NO_SET_MODE in ide_tune_dma() - check for (hwif->set_pio_mode) == NULL in ide_set_pio_mode() - check for (hwif->set_dma_mode) == NULL in ide_set_dma_mode() - return -1 from ide_set_{pio,dma}_mode() if ->set_{pio,dma}_mode == NULL - don't set ->set_{pio,dma}_mode on it821x in "smart" mode - fix build problem in pmac.c - minor fixes in au1xxx-ide.c/cs5530.c/siimage.c - improve patch description Changes in behavior caused by this patch: - HDIO_SET_PIO_MODE ioctl would now return -ENOSYS for attempts to change PIO mode if it821x controller is in "smart" mode - removal of two debugging printk-s (from cs5530.c and sc1200.c) - transfer modes 0x00-0x07 passed from user space may be programmed twice on the device (not really an issue since 0x00 is not supported correctly by any host driver ATM, 0x01 is not supported at all and 0x02-0x07 are invalid) Acked-by: Sergei Shtylyov <sshtylyov@ru.mvista.com> Signed-off-by: Bartlomiej Zolnierkiewicz <bzolnier@gmail.com>
1240 lines
34 KiB
C
1240 lines
34 KiB
C
/*
|
|
* linux/drivers/ide/ide-iops.c Version 0.37 Mar 05, 2003
|
|
*
|
|
* Copyright (C) 2000-2002 Andre Hedrick <andre@linux-ide.org>
|
|
* Copyright (C) 2003 Red Hat <alan@redhat.com>
|
|
*
|
|
*/
|
|
|
|
#include <linux/module.h>
|
|
#include <linux/types.h>
|
|
#include <linux/string.h>
|
|
#include <linux/kernel.h>
|
|
#include <linux/timer.h>
|
|
#include <linux/mm.h>
|
|
#include <linux/interrupt.h>
|
|
#include <linux/major.h>
|
|
#include <linux/errno.h>
|
|
#include <linux/genhd.h>
|
|
#include <linux/blkpg.h>
|
|
#include <linux/slab.h>
|
|
#include <linux/pci.h>
|
|
#include <linux/delay.h>
|
|
#include <linux/hdreg.h>
|
|
#include <linux/ide.h>
|
|
#include <linux/bitops.h>
|
|
#include <linux/nmi.h>
|
|
|
|
#include <asm/byteorder.h>
|
|
#include <asm/irq.h>
|
|
#include <asm/uaccess.h>
|
|
#include <asm/io.h>
|
|
|
|
/*
|
|
* Conventional PIO operations for ATA devices
|
|
*/
|
|
|
|
static u8 ide_inb (unsigned long port)
|
|
{
|
|
return (u8) inb(port);
|
|
}
|
|
|
|
static u16 ide_inw (unsigned long port)
|
|
{
|
|
return (u16) inw(port);
|
|
}
|
|
|
|
static void ide_insw (unsigned long port, void *addr, u32 count)
|
|
{
|
|
insw(port, addr, count);
|
|
}
|
|
|
|
static void ide_insl (unsigned long port, void *addr, u32 count)
|
|
{
|
|
insl(port, addr, count);
|
|
}
|
|
|
|
static void ide_outb (u8 val, unsigned long port)
|
|
{
|
|
outb(val, port);
|
|
}
|
|
|
|
static void ide_outbsync (ide_drive_t *drive, u8 addr, unsigned long port)
|
|
{
|
|
outb(addr, port);
|
|
}
|
|
|
|
static void ide_outw (u16 val, unsigned long port)
|
|
{
|
|
outw(val, port);
|
|
}
|
|
|
|
static void ide_outsw (unsigned long port, void *addr, u32 count)
|
|
{
|
|
outsw(port, addr, count);
|
|
}
|
|
|
|
static void ide_outsl (unsigned long port, void *addr, u32 count)
|
|
{
|
|
outsl(port, addr, count);
|
|
}
|
|
|
|
void default_hwif_iops (ide_hwif_t *hwif)
|
|
{
|
|
hwif->OUTB = ide_outb;
|
|
hwif->OUTBSYNC = ide_outbsync;
|
|
hwif->OUTW = ide_outw;
|
|
hwif->OUTSW = ide_outsw;
|
|
hwif->OUTSL = ide_outsl;
|
|
hwif->INB = ide_inb;
|
|
hwif->INW = ide_inw;
|
|
hwif->INSW = ide_insw;
|
|
hwif->INSL = ide_insl;
|
|
}
|
|
|
|
/*
|
|
* MMIO operations, typically used for SATA controllers
|
|
*/
|
|
|
|
static u8 ide_mm_inb (unsigned long port)
|
|
{
|
|
return (u8) readb((void __iomem *) port);
|
|
}
|
|
|
|
static u16 ide_mm_inw (unsigned long port)
|
|
{
|
|
return (u16) readw((void __iomem *) port);
|
|
}
|
|
|
|
static void ide_mm_insw (unsigned long port, void *addr, u32 count)
|
|
{
|
|
__ide_mm_insw((void __iomem *) port, addr, count);
|
|
}
|
|
|
|
static void ide_mm_insl (unsigned long port, void *addr, u32 count)
|
|
{
|
|
__ide_mm_insl((void __iomem *) port, addr, count);
|
|
}
|
|
|
|
static void ide_mm_outb (u8 value, unsigned long port)
|
|
{
|
|
writeb(value, (void __iomem *) port);
|
|
}
|
|
|
|
static void ide_mm_outbsync (ide_drive_t *drive, u8 value, unsigned long port)
|
|
{
|
|
writeb(value, (void __iomem *) port);
|
|
}
|
|
|
|
static void ide_mm_outw (u16 value, unsigned long port)
|
|
{
|
|
writew(value, (void __iomem *) port);
|
|
}
|
|
|
|
static void ide_mm_outsw (unsigned long port, void *addr, u32 count)
|
|
{
|
|
__ide_mm_outsw((void __iomem *) port, addr, count);
|
|
}
|
|
|
|
static void ide_mm_outsl (unsigned long port, void *addr, u32 count)
|
|
{
|
|
__ide_mm_outsl((void __iomem *) port, addr, count);
|
|
}
|
|
|
|
void default_hwif_mmiops (ide_hwif_t *hwif)
|
|
{
|
|
hwif->OUTB = ide_mm_outb;
|
|
/* Most systems will need to override OUTBSYNC, alas however
|
|
this one is controller specific! */
|
|
hwif->OUTBSYNC = ide_mm_outbsync;
|
|
hwif->OUTW = ide_mm_outw;
|
|
hwif->OUTSW = ide_mm_outsw;
|
|
hwif->OUTSL = ide_mm_outsl;
|
|
hwif->INB = ide_mm_inb;
|
|
hwif->INW = ide_mm_inw;
|
|
hwif->INSW = ide_mm_insw;
|
|
hwif->INSL = ide_mm_insl;
|
|
}
|
|
|
|
EXPORT_SYMBOL(default_hwif_mmiops);
|
|
|
|
u32 ide_read_24 (ide_drive_t *drive)
|
|
{
|
|
u8 hcyl = HWIF(drive)->INB(IDE_HCYL_REG);
|
|
u8 lcyl = HWIF(drive)->INB(IDE_LCYL_REG);
|
|
u8 sect = HWIF(drive)->INB(IDE_SECTOR_REG);
|
|
return (hcyl<<16)|(lcyl<<8)|sect;
|
|
}
|
|
|
|
void SELECT_DRIVE (ide_drive_t *drive)
|
|
{
|
|
if (HWIF(drive)->selectproc)
|
|
HWIF(drive)->selectproc(drive);
|
|
HWIF(drive)->OUTB(drive->select.all, IDE_SELECT_REG);
|
|
}
|
|
|
|
EXPORT_SYMBOL(SELECT_DRIVE);
|
|
|
|
void SELECT_INTERRUPT (ide_drive_t *drive)
|
|
{
|
|
if (HWIF(drive)->intrproc)
|
|
HWIF(drive)->intrproc(drive);
|
|
else
|
|
HWIF(drive)->OUTB(drive->ctl|2, IDE_CONTROL_REG);
|
|
}
|
|
|
|
void SELECT_MASK (ide_drive_t *drive, int mask)
|
|
{
|
|
if (HWIF(drive)->maskproc)
|
|
HWIF(drive)->maskproc(drive, mask);
|
|
}
|
|
|
|
void QUIRK_LIST (ide_drive_t *drive)
|
|
{
|
|
if (HWIF(drive)->quirkproc)
|
|
drive->quirk_list = HWIF(drive)->quirkproc(drive);
|
|
}
|
|
|
|
/*
|
|
* Some localbus EIDE interfaces require a special access sequence
|
|
* when using 32-bit I/O instructions to transfer data. We call this
|
|
* the "vlb_sync" sequence, which consists of three successive reads
|
|
* of the sector count register location, with interrupts disabled
|
|
* to ensure that the reads all happen together.
|
|
*/
|
|
static void ata_vlb_sync(ide_drive_t *drive, unsigned long port)
|
|
{
|
|
(void) HWIF(drive)->INB(port);
|
|
(void) HWIF(drive)->INB(port);
|
|
(void) HWIF(drive)->INB(port);
|
|
}
|
|
|
|
/*
|
|
* This is used for most PIO data transfers *from* the IDE interface
|
|
*/
|
|
static void ata_input_data(ide_drive_t *drive, void *buffer, u32 wcount)
|
|
{
|
|
ide_hwif_t *hwif = HWIF(drive);
|
|
u8 io_32bit = drive->io_32bit;
|
|
|
|
if (io_32bit) {
|
|
if (io_32bit & 2) {
|
|
unsigned long flags;
|
|
local_irq_save(flags);
|
|
ata_vlb_sync(drive, IDE_NSECTOR_REG);
|
|
hwif->INSL(IDE_DATA_REG, buffer, wcount);
|
|
local_irq_restore(flags);
|
|
} else
|
|
hwif->INSL(IDE_DATA_REG, buffer, wcount);
|
|
} else {
|
|
hwif->INSW(IDE_DATA_REG, buffer, wcount<<1);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* This is used for most PIO data transfers *to* the IDE interface
|
|
*/
|
|
static void ata_output_data(ide_drive_t *drive, void *buffer, u32 wcount)
|
|
{
|
|
ide_hwif_t *hwif = HWIF(drive);
|
|
u8 io_32bit = drive->io_32bit;
|
|
|
|
if (io_32bit) {
|
|
if (io_32bit & 2) {
|
|
unsigned long flags;
|
|
local_irq_save(flags);
|
|
ata_vlb_sync(drive, IDE_NSECTOR_REG);
|
|
hwif->OUTSL(IDE_DATA_REG, buffer, wcount);
|
|
local_irq_restore(flags);
|
|
} else
|
|
hwif->OUTSL(IDE_DATA_REG, buffer, wcount);
|
|
} else {
|
|
hwif->OUTSW(IDE_DATA_REG, buffer, wcount<<1);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* The following routines are mainly used by the ATAPI drivers.
|
|
*
|
|
* These routines will round up any request for an odd number of bytes,
|
|
* so if an odd bytecount is specified, be sure that there's at least one
|
|
* extra byte allocated for the buffer.
|
|
*/
|
|
|
|
static void atapi_input_bytes(ide_drive_t *drive, void *buffer, u32 bytecount)
|
|
{
|
|
ide_hwif_t *hwif = HWIF(drive);
|
|
|
|
++bytecount;
|
|
#if defined(CONFIG_ATARI) || defined(CONFIG_Q40)
|
|
if (MACH_IS_ATARI || MACH_IS_Q40) {
|
|
/* Atari has a byte-swapped IDE interface */
|
|
insw_swapw(IDE_DATA_REG, buffer, bytecount / 2);
|
|
return;
|
|
}
|
|
#endif /* CONFIG_ATARI || CONFIG_Q40 */
|
|
hwif->ata_input_data(drive, buffer, bytecount / 4);
|
|
if ((bytecount & 0x03) >= 2)
|
|
hwif->INSW(IDE_DATA_REG, ((u8 *)buffer)+(bytecount & ~0x03), 1);
|
|
}
|
|
|
|
static void atapi_output_bytes(ide_drive_t *drive, void *buffer, u32 bytecount)
|
|
{
|
|
ide_hwif_t *hwif = HWIF(drive);
|
|
|
|
++bytecount;
|
|
#if defined(CONFIG_ATARI) || defined(CONFIG_Q40)
|
|
if (MACH_IS_ATARI || MACH_IS_Q40) {
|
|
/* Atari has a byte-swapped IDE interface */
|
|
outsw_swapw(IDE_DATA_REG, buffer, bytecount / 2);
|
|
return;
|
|
}
|
|
#endif /* CONFIG_ATARI || CONFIG_Q40 */
|
|
hwif->ata_output_data(drive, buffer, bytecount / 4);
|
|
if ((bytecount & 0x03) >= 2)
|
|
hwif->OUTSW(IDE_DATA_REG, ((u8*)buffer)+(bytecount & ~0x03), 1);
|
|
}
|
|
|
|
void default_hwif_transport(ide_hwif_t *hwif)
|
|
{
|
|
hwif->ata_input_data = ata_input_data;
|
|
hwif->ata_output_data = ata_output_data;
|
|
hwif->atapi_input_bytes = atapi_input_bytes;
|
|
hwif->atapi_output_bytes = atapi_output_bytes;
|
|
}
|
|
|
|
/*
|
|
* Beginning of Taskfile OPCODE Library and feature sets.
|
|
*/
|
|
void ide_fix_driveid (struct hd_driveid *id)
|
|
{
|
|
#ifndef __LITTLE_ENDIAN
|
|
# ifdef __BIG_ENDIAN
|
|
int i;
|
|
u16 *stringcast;
|
|
|
|
id->config = __le16_to_cpu(id->config);
|
|
id->cyls = __le16_to_cpu(id->cyls);
|
|
id->reserved2 = __le16_to_cpu(id->reserved2);
|
|
id->heads = __le16_to_cpu(id->heads);
|
|
id->track_bytes = __le16_to_cpu(id->track_bytes);
|
|
id->sector_bytes = __le16_to_cpu(id->sector_bytes);
|
|
id->sectors = __le16_to_cpu(id->sectors);
|
|
id->vendor0 = __le16_to_cpu(id->vendor0);
|
|
id->vendor1 = __le16_to_cpu(id->vendor1);
|
|
id->vendor2 = __le16_to_cpu(id->vendor2);
|
|
stringcast = (u16 *)&id->serial_no[0];
|
|
for (i = 0; i < (20/2); i++)
|
|
stringcast[i] = __le16_to_cpu(stringcast[i]);
|
|
id->buf_type = __le16_to_cpu(id->buf_type);
|
|
id->buf_size = __le16_to_cpu(id->buf_size);
|
|
id->ecc_bytes = __le16_to_cpu(id->ecc_bytes);
|
|
stringcast = (u16 *)&id->fw_rev[0];
|
|
for (i = 0; i < (8/2); i++)
|
|
stringcast[i] = __le16_to_cpu(stringcast[i]);
|
|
stringcast = (u16 *)&id->model[0];
|
|
for (i = 0; i < (40/2); i++)
|
|
stringcast[i] = __le16_to_cpu(stringcast[i]);
|
|
id->dword_io = __le16_to_cpu(id->dword_io);
|
|
id->reserved50 = __le16_to_cpu(id->reserved50);
|
|
id->field_valid = __le16_to_cpu(id->field_valid);
|
|
id->cur_cyls = __le16_to_cpu(id->cur_cyls);
|
|
id->cur_heads = __le16_to_cpu(id->cur_heads);
|
|
id->cur_sectors = __le16_to_cpu(id->cur_sectors);
|
|
id->cur_capacity0 = __le16_to_cpu(id->cur_capacity0);
|
|
id->cur_capacity1 = __le16_to_cpu(id->cur_capacity1);
|
|
id->lba_capacity = __le32_to_cpu(id->lba_capacity);
|
|
id->dma_1word = __le16_to_cpu(id->dma_1word);
|
|
id->dma_mword = __le16_to_cpu(id->dma_mword);
|
|
id->eide_pio_modes = __le16_to_cpu(id->eide_pio_modes);
|
|
id->eide_dma_min = __le16_to_cpu(id->eide_dma_min);
|
|
id->eide_dma_time = __le16_to_cpu(id->eide_dma_time);
|
|
id->eide_pio = __le16_to_cpu(id->eide_pio);
|
|
id->eide_pio_iordy = __le16_to_cpu(id->eide_pio_iordy);
|
|
for (i = 0; i < 2; ++i)
|
|
id->words69_70[i] = __le16_to_cpu(id->words69_70[i]);
|
|
for (i = 0; i < 4; ++i)
|
|
id->words71_74[i] = __le16_to_cpu(id->words71_74[i]);
|
|
id->queue_depth = __le16_to_cpu(id->queue_depth);
|
|
for (i = 0; i < 4; ++i)
|
|
id->words76_79[i] = __le16_to_cpu(id->words76_79[i]);
|
|
id->major_rev_num = __le16_to_cpu(id->major_rev_num);
|
|
id->minor_rev_num = __le16_to_cpu(id->minor_rev_num);
|
|
id->command_set_1 = __le16_to_cpu(id->command_set_1);
|
|
id->command_set_2 = __le16_to_cpu(id->command_set_2);
|
|
id->cfsse = __le16_to_cpu(id->cfsse);
|
|
id->cfs_enable_1 = __le16_to_cpu(id->cfs_enable_1);
|
|
id->cfs_enable_2 = __le16_to_cpu(id->cfs_enable_2);
|
|
id->csf_default = __le16_to_cpu(id->csf_default);
|
|
id->dma_ultra = __le16_to_cpu(id->dma_ultra);
|
|
id->trseuc = __le16_to_cpu(id->trseuc);
|
|
id->trsEuc = __le16_to_cpu(id->trsEuc);
|
|
id->CurAPMvalues = __le16_to_cpu(id->CurAPMvalues);
|
|
id->mprc = __le16_to_cpu(id->mprc);
|
|
id->hw_config = __le16_to_cpu(id->hw_config);
|
|
id->acoustic = __le16_to_cpu(id->acoustic);
|
|
id->msrqs = __le16_to_cpu(id->msrqs);
|
|
id->sxfert = __le16_to_cpu(id->sxfert);
|
|
id->sal = __le16_to_cpu(id->sal);
|
|
id->spg = __le32_to_cpu(id->spg);
|
|
id->lba_capacity_2 = __le64_to_cpu(id->lba_capacity_2);
|
|
for (i = 0; i < 22; i++)
|
|
id->words104_125[i] = __le16_to_cpu(id->words104_125[i]);
|
|
id->last_lun = __le16_to_cpu(id->last_lun);
|
|
id->word127 = __le16_to_cpu(id->word127);
|
|
id->dlf = __le16_to_cpu(id->dlf);
|
|
id->csfo = __le16_to_cpu(id->csfo);
|
|
for (i = 0; i < 26; i++)
|
|
id->words130_155[i] = __le16_to_cpu(id->words130_155[i]);
|
|
id->word156 = __le16_to_cpu(id->word156);
|
|
for (i = 0; i < 3; i++)
|
|
id->words157_159[i] = __le16_to_cpu(id->words157_159[i]);
|
|
id->cfa_power = __le16_to_cpu(id->cfa_power);
|
|
for (i = 0; i < 14; i++)
|
|
id->words161_175[i] = __le16_to_cpu(id->words161_175[i]);
|
|
for (i = 0; i < 31; i++)
|
|
id->words176_205[i] = __le16_to_cpu(id->words176_205[i]);
|
|
for (i = 0; i < 48; i++)
|
|
id->words206_254[i] = __le16_to_cpu(id->words206_254[i]);
|
|
id->integrity_word = __le16_to_cpu(id->integrity_word);
|
|
# else
|
|
# error "Please fix <asm/byteorder.h>"
|
|
# endif
|
|
#endif
|
|
}
|
|
|
|
/* FIXME: exported for use by the USB storage (isd200.c) code only */
|
|
EXPORT_SYMBOL(ide_fix_driveid);
|
|
|
|
void ide_fixstring (u8 *s, const int bytecount, const int byteswap)
|
|
{
|
|
u8 *p = s, *end = &s[bytecount & ~1]; /* bytecount must be even */
|
|
|
|
if (byteswap) {
|
|
/* convert from big-endian to host byte order */
|
|
for (p = end ; p != s;) {
|
|
unsigned short *pp = (unsigned short *) (p -= 2);
|
|
*pp = ntohs(*pp);
|
|
}
|
|
}
|
|
/* strip leading blanks */
|
|
while (s != end && *s == ' ')
|
|
++s;
|
|
/* compress internal blanks and strip trailing blanks */
|
|
while (s != end && *s) {
|
|
if (*s++ != ' ' || (s != end && *s && *s != ' '))
|
|
*p++ = *(s-1);
|
|
}
|
|
/* wipe out trailing garbage */
|
|
while (p != end)
|
|
*p++ = '\0';
|
|
}
|
|
|
|
EXPORT_SYMBOL(ide_fixstring);
|
|
|
|
/*
|
|
* Needed for PCI irq sharing
|
|
*/
|
|
int drive_is_ready (ide_drive_t *drive)
|
|
{
|
|
ide_hwif_t *hwif = HWIF(drive);
|
|
u8 stat = 0;
|
|
|
|
if (drive->waiting_for_dma)
|
|
return hwif->ide_dma_test_irq(drive);
|
|
|
|
#if 0
|
|
/* need to guarantee 400ns since last command was issued */
|
|
udelay(1);
|
|
#endif
|
|
|
|
#ifdef CONFIG_IDEPCI_SHARE_IRQ
|
|
/*
|
|
* We do a passive status test under shared PCI interrupts on
|
|
* cards that truly share the ATA side interrupt, but may also share
|
|
* an interrupt with another pci card/device. We make no assumptions
|
|
* about possible isa-pnp and pci-pnp issues yet.
|
|
*/
|
|
if (IDE_CONTROL_REG)
|
|
stat = hwif->INB(IDE_ALTSTATUS_REG);
|
|
else
|
|
#endif /* CONFIG_IDEPCI_SHARE_IRQ */
|
|
/* Note: this may clear a pending IRQ!! */
|
|
stat = hwif->INB(IDE_STATUS_REG);
|
|
|
|
if (stat & BUSY_STAT)
|
|
/* drive busy: definitely not interrupting */
|
|
return 0;
|
|
|
|
/* drive ready: *might* be interrupting */
|
|
return 1;
|
|
}
|
|
|
|
EXPORT_SYMBOL(drive_is_ready);
|
|
|
|
/*
|
|
* This routine busy-waits for the drive status to be not "busy".
|
|
* It then checks the status for all of the "good" bits and none
|
|
* of the "bad" bits, and if all is okay it returns 0. All other
|
|
* cases return error -- caller may then invoke ide_error().
|
|
*
|
|
* This routine should get fixed to not hog the cpu during extra long waits..
|
|
* That could be done by busy-waiting for the first jiffy or two, and then
|
|
* setting a timer to wake up at half second intervals thereafter,
|
|
* until timeout is achieved, before timing out.
|
|
*/
|
|
static int __ide_wait_stat(ide_drive_t *drive, u8 good, u8 bad, unsigned long timeout, u8 *rstat)
|
|
{
|
|
ide_hwif_t *hwif = drive->hwif;
|
|
unsigned long flags;
|
|
int i;
|
|
u8 stat;
|
|
|
|
udelay(1); /* spec allows drive 400ns to assert "BUSY" */
|
|
if ((stat = hwif->INB(IDE_STATUS_REG)) & BUSY_STAT) {
|
|
local_irq_set(flags);
|
|
timeout += jiffies;
|
|
while ((stat = hwif->INB(IDE_STATUS_REG)) & BUSY_STAT) {
|
|
if (time_after(jiffies, timeout)) {
|
|
/*
|
|
* One last read after the timeout in case
|
|
* heavy interrupt load made us not make any
|
|
* progress during the timeout..
|
|
*/
|
|
stat = hwif->INB(IDE_STATUS_REG);
|
|
if (!(stat & BUSY_STAT))
|
|
break;
|
|
|
|
local_irq_restore(flags);
|
|
*rstat = stat;
|
|
return -EBUSY;
|
|
}
|
|
}
|
|
local_irq_restore(flags);
|
|
}
|
|
/*
|
|
* Allow status to settle, then read it again.
|
|
* A few rare drives vastly violate the 400ns spec here,
|
|
* so we'll wait up to 10usec for a "good" status
|
|
* rather than expensively fail things immediately.
|
|
* This fix courtesy of Matthew Faupel & Niccolo Rigacci.
|
|
*/
|
|
for (i = 0; i < 10; i++) {
|
|
udelay(1);
|
|
if (OK_STAT((stat = hwif->INB(IDE_STATUS_REG)), good, bad)) {
|
|
*rstat = stat;
|
|
return 0;
|
|
}
|
|
}
|
|
*rstat = stat;
|
|
return -EFAULT;
|
|
}
|
|
|
|
/*
|
|
* In case of error returns error value after doing "*startstop = ide_error()".
|
|
* The caller should return the updated value of "startstop" in this case,
|
|
* "startstop" is unchanged when the function returns 0.
|
|
*/
|
|
int ide_wait_stat(ide_startstop_t *startstop, ide_drive_t *drive, u8 good, u8 bad, unsigned long timeout)
|
|
{
|
|
int err;
|
|
u8 stat;
|
|
|
|
/* bail early if we've exceeded max_failures */
|
|
if (drive->max_failures && (drive->failures > drive->max_failures)) {
|
|
*startstop = ide_stopped;
|
|
return 1;
|
|
}
|
|
|
|
err = __ide_wait_stat(drive, good, bad, timeout, &stat);
|
|
|
|
if (err) {
|
|
char *s = (err == -EBUSY) ? "status timeout" : "status error";
|
|
*startstop = ide_error(drive, s, stat);
|
|
}
|
|
|
|
return err;
|
|
}
|
|
|
|
EXPORT_SYMBOL(ide_wait_stat);
|
|
|
|
/**
|
|
* ide_in_drive_list - look for drive in black/white list
|
|
* @id: drive identifier
|
|
* @drive_table: list to inspect
|
|
*
|
|
* Look for a drive in the blacklist and the whitelist tables
|
|
* Returns 1 if the drive is found in the table.
|
|
*/
|
|
|
|
int ide_in_drive_list(struct hd_driveid *id, const struct drive_list_entry *drive_table)
|
|
{
|
|
for ( ; drive_table->id_model; drive_table++)
|
|
if ((!strcmp(drive_table->id_model, id->model)) &&
|
|
(!drive_table->id_firmware ||
|
|
strstr(id->fw_rev, drive_table->id_firmware)))
|
|
return 1;
|
|
return 0;
|
|
}
|
|
|
|
EXPORT_SYMBOL_GPL(ide_in_drive_list);
|
|
|
|
/*
|
|
* Early UDMA66 devices don't set bit14 to 1, only bit13 is valid.
|
|
* We list them here and depend on the device side cable detection for them.
|
|
*/
|
|
static const struct drive_list_entry ivb_list[] = {
|
|
{ "QUANTUM FIREBALLlct10 05" , "A03.0900" },
|
|
{ NULL , NULL }
|
|
};
|
|
|
|
/*
|
|
* All hosts that use the 80c ribbon must use!
|
|
* The name is derived from upper byte of word 93 and the 80c ribbon.
|
|
*/
|
|
u8 eighty_ninty_three (ide_drive_t *drive)
|
|
{
|
|
ide_hwif_t *hwif = drive->hwif;
|
|
struct hd_driveid *id = drive->id;
|
|
int ivb = ide_in_drive_list(id, ivb_list);
|
|
|
|
if (hwif->cbl == ATA_CBL_PATA40_SHORT)
|
|
return 1;
|
|
|
|
if (ivb)
|
|
printk(KERN_DEBUG "%s: skipping word 93 validity check\n",
|
|
drive->name);
|
|
|
|
if (hwif->cbl != ATA_CBL_PATA80 && !ivb)
|
|
goto no_80w;
|
|
|
|
if (ide_dev_is_sata(id))
|
|
return 1;
|
|
|
|
/*
|
|
* FIXME:
|
|
* - change master/slave IDENTIFY order
|
|
* - force bit13 (80c cable present) check also for !ivb devices
|
|
* (unless the slave device is pre-ATA3)
|
|
*/
|
|
#ifndef CONFIG_IDEDMA_IVB
|
|
if ((id->hw_config & 0x4000) || (ivb && (id->hw_config & 0x2000)))
|
|
#else
|
|
if (id->hw_config & 0x6000)
|
|
#endif
|
|
return 1;
|
|
|
|
no_80w:
|
|
if (drive->udma33_warned == 1)
|
|
return 0;
|
|
|
|
printk(KERN_WARNING "%s: %s side 80-wire cable detection failed, "
|
|
"limiting max speed to UDMA33\n",
|
|
drive->name,
|
|
hwif->cbl == ATA_CBL_PATA80 ? "drive" : "host");
|
|
|
|
drive->udma33_warned = 1;
|
|
|
|
return 0;
|
|
}
|
|
|
|
int ide_ata66_check (ide_drive_t *drive, ide_task_t *args)
|
|
{
|
|
if ((args->tfRegister[IDE_COMMAND_OFFSET] == WIN_SETFEATURES) &&
|
|
(args->tfRegister[IDE_SECTOR_OFFSET] > XFER_UDMA_2) &&
|
|
(args->tfRegister[IDE_FEATURE_OFFSET] == SETFEATURES_XFER)) {
|
|
if (eighty_ninty_three(drive) == 0) {
|
|
printk(KERN_WARNING "%s: UDMA speeds >UDMA33 cannot "
|
|
"be set\n", drive->name);
|
|
return 1;
|
|
}
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* Backside of HDIO_DRIVE_CMD call of SETFEATURES_XFER.
|
|
* 1 : Safe to update drive->id DMA registers.
|
|
* 0 : OOPs not allowed.
|
|
*/
|
|
int set_transfer (ide_drive_t *drive, ide_task_t *args)
|
|
{
|
|
if ((args->tfRegister[IDE_COMMAND_OFFSET] == WIN_SETFEATURES) &&
|
|
(args->tfRegister[IDE_SECTOR_OFFSET] >= XFER_SW_DMA_0) &&
|
|
(args->tfRegister[IDE_FEATURE_OFFSET] == SETFEATURES_XFER) &&
|
|
(drive->id->dma_ultra ||
|
|
drive->id->dma_mword ||
|
|
drive->id->dma_1word))
|
|
return 1;
|
|
|
|
return 0;
|
|
}
|
|
|
|
#ifdef CONFIG_BLK_DEV_IDEDMA
|
|
static u8 ide_auto_reduce_xfer (ide_drive_t *drive)
|
|
{
|
|
if (!drive->crc_count)
|
|
return drive->current_speed;
|
|
drive->crc_count = 0;
|
|
|
|
switch(drive->current_speed) {
|
|
case XFER_UDMA_7: return XFER_UDMA_6;
|
|
case XFER_UDMA_6: return XFER_UDMA_5;
|
|
case XFER_UDMA_5: return XFER_UDMA_4;
|
|
case XFER_UDMA_4: return XFER_UDMA_3;
|
|
case XFER_UDMA_3: return XFER_UDMA_2;
|
|
case XFER_UDMA_2: return XFER_UDMA_1;
|
|
case XFER_UDMA_1: return XFER_UDMA_0;
|
|
/*
|
|
* OOPS we do not goto non Ultra DMA modes
|
|
* without iCRC's available we force
|
|
* the system to PIO and make the user
|
|
* invoke the ATA-1 ATA-2 DMA modes.
|
|
*/
|
|
case XFER_UDMA_0:
|
|
default: return XFER_PIO_4;
|
|
}
|
|
}
|
|
#endif /* CONFIG_BLK_DEV_IDEDMA */
|
|
|
|
/*
|
|
* Update the
|
|
*/
|
|
int ide_driveid_update (ide_drive_t *drive)
|
|
{
|
|
ide_hwif_t *hwif = HWIF(drive);
|
|
struct hd_driveid *id;
|
|
#if 0
|
|
id = kmalloc(SECTOR_WORDS*4, GFP_ATOMIC);
|
|
if (!id)
|
|
return 0;
|
|
|
|
taskfile_lib_get_identify(drive, (char *)&id);
|
|
|
|
ide_fix_driveid(id);
|
|
if (id) {
|
|
drive->id->dma_ultra = id->dma_ultra;
|
|
drive->id->dma_mword = id->dma_mword;
|
|
drive->id->dma_1word = id->dma_1word;
|
|
/* anything more ? */
|
|
kfree(id);
|
|
}
|
|
return 1;
|
|
#else
|
|
/*
|
|
* Re-read drive->id for possible DMA mode
|
|
* change (copied from ide-probe.c)
|
|
*/
|
|
unsigned long timeout, flags;
|
|
|
|
SELECT_MASK(drive, 1);
|
|
if (IDE_CONTROL_REG)
|
|
hwif->OUTB(drive->ctl,IDE_CONTROL_REG);
|
|
msleep(50);
|
|
hwif->OUTB(WIN_IDENTIFY, IDE_COMMAND_REG);
|
|
timeout = jiffies + WAIT_WORSTCASE;
|
|
do {
|
|
if (time_after(jiffies, timeout)) {
|
|
SELECT_MASK(drive, 0);
|
|
return 0; /* drive timed-out */
|
|
}
|
|
msleep(50); /* give drive a breather */
|
|
} while (hwif->INB(IDE_ALTSTATUS_REG) & BUSY_STAT);
|
|
msleep(50); /* wait for IRQ and DRQ_STAT */
|
|
if (!OK_STAT(hwif->INB(IDE_STATUS_REG),DRQ_STAT,BAD_R_STAT)) {
|
|
SELECT_MASK(drive, 0);
|
|
printk("%s: CHECK for good STATUS\n", drive->name);
|
|
return 0;
|
|
}
|
|
local_irq_save(flags);
|
|
SELECT_MASK(drive, 0);
|
|
id = kmalloc(SECTOR_WORDS*4, GFP_ATOMIC);
|
|
if (!id) {
|
|
local_irq_restore(flags);
|
|
return 0;
|
|
}
|
|
ata_input_data(drive, id, SECTOR_WORDS);
|
|
(void) hwif->INB(IDE_STATUS_REG); /* clear drive IRQ */
|
|
local_irq_enable();
|
|
local_irq_restore(flags);
|
|
ide_fix_driveid(id);
|
|
if (id) {
|
|
drive->id->dma_ultra = id->dma_ultra;
|
|
drive->id->dma_mword = id->dma_mword;
|
|
drive->id->dma_1word = id->dma_1word;
|
|
/* anything more ? */
|
|
kfree(id);
|
|
}
|
|
|
|
return 1;
|
|
#endif
|
|
}
|
|
|
|
int ide_config_drive_speed(ide_drive_t *drive, u8 speed)
|
|
{
|
|
ide_hwif_t *hwif = drive->hwif;
|
|
int error;
|
|
u8 stat;
|
|
|
|
// while (HWGROUP(drive)->busy)
|
|
// msleep(50);
|
|
|
|
#ifdef CONFIG_BLK_DEV_IDEDMA
|
|
if (hwif->ide_dma_check) /* check if host supports DMA */
|
|
hwif->dma_host_off(drive);
|
|
#endif
|
|
|
|
/*
|
|
* Don't use ide_wait_cmd here - it will
|
|
* attempt to set_geometry and recalibrate,
|
|
* but for some reason these don't work at
|
|
* this point (lost interrupt).
|
|
*/
|
|
/*
|
|
* Select the drive, and issue the SETFEATURES command
|
|
*/
|
|
disable_irq_nosync(hwif->irq);
|
|
|
|
/*
|
|
* FIXME: we race against the running IRQ here if
|
|
* this is called from non IRQ context. If we use
|
|
* disable_irq() we hang on the error path. Work
|
|
* is needed.
|
|
*/
|
|
|
|
udelay(1);
|
|
SELECT_DRIVE(drive);
|
|
SELECT_MASK(drive, 0);
|
|
udelay(1);
|
|
if (IDE_CONTROL_REG)
|
|
hwif->OUTB(drive->ctl | 2, IDE_CONTROL_REG);
|
|
hwif->OUTB(speed, IDE_NSECTOR_REG);
|
|
hwif->OUTB(SETFEATURES_XFER, IDE_FEATURE_REG);
|
|
hwif->OUTBSYNC(drive, WIN_SETFEATURES, IDE_COMMAND_REG);
|
|
if ((IDE_CONTROL_REG) && (drive->quirk_list == 2))
|
|
hwif->OUTB(drive->ctl, IDE_CONTROL_REG);
|
|
|
|
error = __ide_wait_stat(drive, drive->ready_stat,
|
|
BUSY_STAT|DRQ_STAT|ERR_STAT,
|
|
WAIT_CMD, &stat);
|
|
|
|
SELECT_MASK(drive, 0);
|
|
|
|
enable_irq(hwif->irq);
|
|
|
|
if (error) {
|
|
(void) ide_dump_status(drive, "set_drive_speed_status", stat);
|
|
return error;
|
|
}
|
|
|
|
drive->id->dma_ultra &= ~0xFF00;
|
|
drive->id->dma_mword &= ~0x0F00;
|
|
drive->id->dma_1word &= ~0x0F00;
|
|
|
|
#ifdef CONFIG_BLK_DEV_IDEDMA
|
|
if (speed >= XFER_SW_DMA_0)
|
|
hwif->dma_host_on(drive);
|
|
else if (hwif->ide_dma_check) /* check if host supports DMA */
|
|
hwif->dma_off_quietly(drive);
|
|
#endif
|
|
|
|
switch(speed) {
|
|
case XFER_UDMA_7: drive->id->dma_ultra |= 0x8080; break;
|
|
case XFER_UDMA_6: drive->id->dma_ultra |= 0x4040; break;
|
|
case XFER_UDMA_5: drive->id->dma_ultra |= 0x2020; break;
|
|
case XFER_UDMA_4: drive->id->dma_ultra |= 0x1010; break;
|
|
case XFER_UDMA_3: drive->id->dma_ultra |= 0x0808; break;
|
|
case XFER_UDMA_2: drive->id->dma_ultra |= 0x0404; break;
|
|
case XFER_UDMA_1: drive->id->dma_ultra |= 0x0202; break;
|
|
case XFER_UDMA_0: drive->id->dma_ultra |= 0x0101; break;
|
|
case XFER_MW_DMA_2: drive->id->dma_mword |= 0x0404; break;
|
|
case XFER_MW_DMA_1: drive->id->dma_mword |= 0x0202; break;
|
|
case XFER_MW_DMA_0: drive->id->dma_mword |= 0x0101; break;
|
|
case XFER_SW_DMA_2: drive->id->dma_1word |= 0x0404; break;
|
|
case XFER_SW_DMA_1: drive->id->dma_1word |= 0x0202; break;
|
|
case XFER_SW_DMA_0: drive->id->dma_1word |= 0x0101; break;
|
|
default: break;
|
|
}
|
|
if (!drive->init_speed)
|
|
drive->init_speed = speed;
|
|
drive->current_speed = speed;
|
|
return error;
|
|
}
|
|
|
|
/*
|
|
* This should get invoked any time we exit the driver to
|
|
* wait for an interrupt response from a drive. handler() points
|
|
* at the appropriate code to handle the next interrupt, and a
|
|
* timer is started to prevent us from waiting forever in case
|
|
* something goes wrong (see the ide_timer_expiry() handler later on).
|
|
*
|
|
* See also ide_execute_command
|
|
*/
|
|
static void __ide_set_handler (ide_drive_t *drive, ide_handler_t *handler,
|
|
unsigned int timeout, ide_expiry_t *expiry)
|
|
{
|
|
ide_hwgroup_t *hwgroup = HWGROUP(drive);
|
|
|
|
if (hwgroup->handler != NULL) {
|
|
printk(KERN_CRIT "%s: ide_set_handler: handler not null; "
|
|
"old=%p, new=%p\n",
|
|
drive->name, hwgroup->handler, handler);
|
|
}
|
|
hwgroup->handler = handler;
|
|
hwgroup->expiry = expiry;
|
|
hwgroup->timer.expires = jiffies + timeout;
|
|
hwgroup->req_gen_timer = hwgroup->req_gen;
|
|
add_timer(&hwgroup->timer);
|
|
}
|
|
|
|
void ide_set_handler (ide_drive_t *drive, ide_handler_t *handler,
|
|
unsigned int timeout, ide_expiry_t *expiry)
|
|
{
|
|
unsigned long flags;
|
|
spin_lock_irqsave(&ide_lock, flags);
|
|
__ide_set_handler(drive, handler, timeout, expiry);
|
|
spin_unlock_irqrestore(&ide_lock, flags);
|
|
}
|
|
|
|
EXPORT_SYMBOL(ide_set_handler);
|
|
|
|
/**
|
|
* ide_execute_command - execute an IDE command
|
|
* @drive: IDE drive to issue the command against
|
|
* @command: command byte to write
|
|
* @handler: handler for next phase
|
|
* @timeout: timeout for command
|
|
* @expiry: handler to run on timeout
|
|
*
|
|
* Helper function to issue an IDE command. This handles the
|
|
* atomicity requirements, command timing and ensures that the
|
|
* handler and IRQ setup do not race. All IDE command kick off
|
|
* should go via this function or do equivalent locking.
|
|
*/
|
|
|
|
void ide_execute_command(ide_drive_t *drive, task_ioreg_t cmd, ide_handler_t *handler, unsigned timeout, ide_expiry_t *expiry)
|
|
{
|
|
unsigned long flags;
|
|
ide_hwgroup_t *hwgroup = HWGROUP(drive);
|
|
ide_hwif_t *hwif = HWIF(drive);
|
|
|
|
spin_lock_irqsave(&ide_lock, flags);
|
|
|
|
BUG_ON(hwgroup->handler);
|
|
hwgroup->handler = handler;
|
|
hwgroup->expiry = expiry;
|
|
hwgroup->timer.expires = jiffies + timeout;
|
|
hwgroup->req_gen_timer = hwgroup->req_gen;
|
|
add_timer(&hwgroup->timer);
|
|
hwif->OUTBSYNC(drive, cmd, IDE_COMMAND_REG);
|
|
/* Drive takes 400nS to respond, we must avoid the IRQ being
|
|
serviced before that.
|
|
|
|
FIXME: we could skip this delay with care on non shared
|
|
devices
|
|
*/
|
|
ndelay(400);
|
|
spin_unlock_irqrestore(&ide_lock, flags);
|
|
}
|
|
|
|
EXPORT_SYMBOL(ide_execute_command);
|
|
|
|
|
|
/* needed below */
|
|
static ide_startstop_t do_reset1 (ide_drive_t *, int);
|
|
|
|
/*
|
|
* atapi_reset_pollfunc() gets invoked to poll the interface for completion every 50ms
|
|
* during an atapi drive reset operation. If the drive has not yet responded,
|
|
* and we have not yet hit our maximum waiting time, then the timer is restarted
|
|
* for another 50ms.
|
|
*/
|
|
static ide_startstop_t atapi_reset_pollfunc (ide_drive_t *drive)
|
|
{
|
|
ide_hwgroup_t *hwgroup = HWGROUP(drive);
|
|
ide_hwif_t *hwif = HWIF(drive);
|
|
u8 stat;
|
|
|
|
SELECT_DRIVE(drive);
|
|
udelay (10);
|
|
|
|
if (OK_STAT(stat = hwif->INB(IDE_STATUS_REG), 0, BUSY_STAT)) {
|
|
printk("%s: ATAPI reset complete\n", drive->name);
|
|
} else {
|
|
if (time_before(jiffies, hwgroup->poll_timeout)) {
|
|
BUG_ON(HWGROUP(drive)->handler != NULL);
|
|
ide_set_handler(drive, &atapi_reset_pollfunc, HZ/20, NULL);
|
|
/* continue polling */
|
|
return ide_started;
|
|
}
|
|
/* end of polling */
|
|
hwgroup->polling = 0;
|
|
printk("%s: ATAPI reset timed-out, status=0x%02x\n",
|
|
drive->name, stat);
|
|
/* do it the old fashioned way */
|
|
return do_reset1(drive, 1);
|
|
}
|
|
/* done polling */
|
|
hwgroup->polling = 0;
|
|
hwgroup->resetting = 0;
|
|
return ide_stopped;
|
|
}
|
|
|
|
/*
|
|
* reset_pollfunc() gets invoked to poll the interface for completion every 50ms
|
|
* during an ide reset operation. If the drives have not yet responded,
|
|
* and we have not yet hit our maximum waiting time, then the timer is restarted
|
|
* for another 50ms.
|
|
*/
|
|
static ide_startstop_t reset_pollfunc (ide_drive_t *drive)
|
|
{
|
|
ide_hwgroup_t *hwgroup = HWGROUP(drive);
|
|
ide_hwif_t *hwif = HWIF(drive);
|
|
u8 tmp;
|
|
|
|
if (hwif->reset_poll != NULL) {
|
|
if (hwif->reset_poll(drive)) {
|
|
printk(KERN_ERR "%s: host reset_poll failure for %s.\n",
|
|
hwif->name, drive->name);
|
|
return ide_stopped;
|
|
}
|
|
}
|
|
|
|
if (!OK_STAT(tmp = hwif->INB(IDE_STATUS_REG), 0, BUSY_STAT)) {
|
|
if (time_before(jiffies, hwgroup->poll_timeout)) {
|
|
BUG_ON(HWGROUP(drive)->handler != NULL);
|
|
ide_set_handler(drive, &reset_pollfunc, HZ/20, NULL);
|
|
/* continue polling */
|
|
return ide_started;
|
|
}
|
|
printk("%s: reset timed-out, status=0x%02x\n", hwif->name, tmp);
|
|
drive->failures++;
|
|
} else {
|
|
printk("%s: reset: ", hwif->name);
|
|
if ((tmp = hwif->INB(IDE_ERROR_REG)) == 1) {
|
|
printk("success\n");
|
|
drive->failures = 0;
|
|
} else {
|
|
drive->failures++;
|
|
printk("master: ");
|
|
switch (tmp & 0x7f) {
|
|
case 1: printk("passed");
|
|
break;
|
|
case 2: printk("formatter device error");
|
|
break;
|
|
case 3: printk("sector buffer error");
|
|
break;
|
|
case 4: printk("ECC circuitry error");
|
|
break;
|
|
case 5: printk("controlling MPU error");
|
|
break;
|
|
default:printk("error (0x%02x?)", tmp);
|
|
}
|
|
if (tmp & 0x80)
|
|
printk("; slave: failed");
|
|
printk("\n");
|
|
}
|
|
}
|
|
hwgroup->polling = 0; /* done polling */
|
|
hwgroup->resetting = 0; /* done reset attempt */
|
|
return ide_stopped;
|
|
}
|
|
|
|
static void check_dma_crc(ide_drive_t *drive)
|
|
{
|
|
#ifdef CONFIG_BLK_DEV_IDEDMA
|
|
if (drive->crc_count) {
|
|
drive->hwif->dma_off_quietly(drive);
|
|
ide_set_xfer_rate(drive, ide_auto_reduce_xfer(drive));
|
|
if (drive->current_speed >= XFER_SW_DMA_0)
|
|
(void) HWIF(drive)->ide_dma_on(drive);
|
|
} else
|
|
ide_dma_off(drive);
|
|
#endif
|
|
}
|
|
|
|
static void ide_disk_pre_reset(ide_drive_t *drive)
|
|
{
|
|
int legacy = (drive->id->cfs_enable_2 & 0x0400) ? 0 : 1;
|
|
|
|
drive->special.all = 0;
|
|
drive->special.b.set_geometry = legacy;
|
|
drive->special.b.recalibrate = legacy;
|
|
if (OK_TO_RESET_CONTROLLER)
|
|
drive->mult_count = 0;
|
|
if (!drive->keep_settings && !drive->using_dma)
|
|
drive->mult_req = 0;
|
|
if (drive->mult_req != drive->mult_count)
|
|
drive->special.b.set_multmode = 1;
|
|
}
|
|
|
|
static void pre_reset(ide_drive_t *drive)
|
|
{
|
|
if (drive->media == ide_disk)
|
|
ide_disk_pre_reset(drive);
|
|
else
|
|
drive->post_reset = 1;
|
|
|
|
if (!drive->keep_settings) {
|
|
if (drive->using_dma) {
|
|
check_dma_crc(drive);
|
|
} else {
|
|
drive->unmask = 0;
|
|
drive->io_32bit = 0;
|
|
}
|
|
return;
|
|
}
|
|
if (drive->using_dma)
|
|
check_dma_crc(drive);
|
|
|
|
if (HWIF(drive)->pre_reset != NULL)
|
|
HWIF(drive)->pre_reset(drive);
|
|
|
|
if (drive->current_speed != 0xff)
|
|
drive->desired_speed = drive->current_speed;
|
|
drive->current_speed = 0xff;
|
|
}
|
|
|
|
/*
|
|
* do_reset1() attempts to recover a confused drive by resetting it.
|
|
* Unfortunately, resetting a disk drive actually resets all devices on
|
|
* the same interface, so it can really be thought of as resetting the
|
|
* interface rather than resetting the drive.
|
|
*
|
|
* ATAPI devices have their own reset mechanism which allows them to be
|
|
* individually reset without clobbering other devices on the same interface.
|
|
*
|
|
* Unfortunately, the IDE interface does not generate an interrupt to let
|
|
* us know when the reset operation has finished, so we must poll for this.
|
|
* Equally poor, though, is the fact that this may a very long time to complete,
|
|
* (up to 30 seconds worstcase). So, instead of busy-waiting here for it,
|
|
* we set a timer to poll at 50ms intervals.
|
|
*/
|
|
static ide_startstop_t do_reset1 (ide_drive_t *drive, int do_not_try_atapi)
|
|
{
|
|
unsigned int unit;
|
|
unsigned long flags;
|
|
ide_hwif_t *hwif;
|
|
ide_hwgroup_t *hwgroup;
|
|
|
|
spin_lock_irqsave(&ide_lock, flags);
|
|
hwif = HWIF(drive);
|
|
hwgroup = HWGROUP(drive);
|
|
|
|
/* We must not reset with running handlers */
|
|
BUG_ON(hwgroup->handler != NULL);
|
|
|
|
/* For an ATAPI device, first try an ATAPI SRST. */
|
|
if (drive->media != ide_disk && !do_not_try_atapi) {
|
|
hwgroup->resetting = 1;
|
|
pre_reset(drive);
|
|
SELECT_DRIVE(drive);
|
|
udelay (20);
|
|
hwif->OUTBSYNC(drive, WIN_SRST, IDE_COMMAND_REG);
|
|
ndelay(400);
|
|
hwgroup->poll_timeout = jiffies + WAIT_WORSTCASE;
|
|
hwgroup->polling = 1;
|
|
__ide_set_handler(drive, &atapi_reset_pollfunc, HZ/20, NULL);
|
|
spin_unlock_irqrestore(&ide_lock, flags);
|
|
return ide_started;
|
|
}
|
|
|
|
/*
|
|
* First, reset any device state data we were maintaining
|
|
* for any of the drives on this interface.
|
|
*/
|
|
for (unit = 0; unit < MAX_DRIVES; ++unit)
|
|
pre_reset(&hwif->drives[unit]);
|
|
|
|
#if OK_TO_RESET_CONTROLLER
|
|
if (!IDE_CONTROL_REG) {
|
|
spin_unlock_irqrestore(&ide_lock, flags);
|
|
return ide_stopped;
|
|
}
|
|
|
|
hwgroup->resetting = 1;
|
|
/*
|
|
* Note that we also set nIEN while resetting the device,
|
|
* to mask unwanted interrupts from the interface during the reset.
|
|
* However, due to the design of PC hardware, this will cause an
|
|
* immediate interrupt due to the edge transition it produces.
|
|
* This single interrupt gives us a "fast poll" for drives that
|
|
* recover from reset very quickly, saving us the first 50ms wait time.
|
|
*/
|
|
/* set SRST and nIEN */
|
|
hwif->OUTBSYNC(drive, drive->ctl|6,IDE_CONTROL_REG);
|
|
/* more than enough time */
|
|
udelay(10);
|
|
if (drive->quirk_list == 2) {
|
|
/* clear SRST and nIEN */
|
|
hwif->OUTBSYNC(drive, drive->ctl, IDE_CONTROL_REG);
|
|
} else {
|
|
/* clear SRST, leave nIEN */
|
|
hwif->OUTBSYNC(drive, drive->ctl|2, IDE_CONTROL_REG);
|
|
}
|
|
/* more than enough time */
|
|
udelay(10);
|
|
hwgroup->poll_timeout = jiffies + WAIT_WORSTCASE;
|
|
hwgroup->polling = 1;
|
|
__ide_set_handler(drive, &reset_pollfunc, HZ/20, NULL);
|
|
|
|
/*
|
|
* Some weird controller like resetting themselves to a strange
|
|
* state when the disks are reset this way. At least, the Winbond
|
|
* 553 documentation says that
|
|
*/
|
|
if (hwif->resetproc != NULL) {
|
|
hwif->resetproc(drive);
|
|
}
|
|
|
|
#endif /* OK_TO_RESET_CONTROLLER */
|
|
|
|
spin_unlock_irqrestore(&ide_lock, flags);
|
|
return ide_started;
|
|
}
|
|
|
|
/*
|
|
* ide_do_reset() is the entry point to the drive/interface reset code.
|
|
*/
|
|
|
|
ide_startstop_t ide_do_reset (ide_drive_t *drive)
|
|
{
|
|
return do_reset1(drive, 0);
|
|
}
|
|
|
|
EXPORT_SYMBOL(ide_do_reset);
|
|
|
|
/*
|
|
* ide_wait_not_busy() waits for the currently selected device on the hwif
|
|
* to report a non-busy status, see comments in probe_hwif().
|
|
*/
|
|
int ide_wait_not_busy(ide_hwif_t *hwif, unsigned long timeout)
|
|
{
|
|
u8 stat = 0;
|
|
|
|
while(timeout--) {
|
|
/*
|
|
* Turn this into a schedule() sleep once I'm sure
|
|
* about locking issues (2.5 work ?).
|
|
*/
|
|
mdelay(1);
|
|
stat = hwif->INB(hwif->io_ports[IDE_STATUS_OFFSET]);
|
|
if ((stat & BUSY_STAT) == 0)
|
|
return 0;
|
|
/*
|
|
* Assume a value of 0xff means nothing is connected to
|
|
* the interface and it doesn't implement the pull-down
|
|
* resistor on D7.
|
|
*/
|
|
if (stat == 0xff)
|
|
return -ENODEV;
|
|
touch_softlockup_watchdog();
|
|
touch_nmi_watchdog();
|
|
}
|
|
return -EBUSY;
|
|
}
|
|
|
|
EXPORT_SYMBOL_GPL(ide_wait_not_busy);
|
|
|