mirror of
https://github.com/FEX-Emu/linux.git
synced 2025-01-02 07:11:12 +00:00
cf9b111c17
Remove old comments that include the old arch/i386 directory. Signed-off-by: WANG Cong <xiyou.wangcong@gmail.com> Acked-by: H. Peter Anvin <hpa@zytor.com> Signed-off-by: Ingo Molnar <mingo@elte.hu> Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
386 lines
9.4 KiB
C
386 lines
9.4 KiB
C
#include <linux/sched.h>
|
|
#include <linux/kernel.h>
|
|
#include <linux/errno.h>
|
|
#include <linux/mm.h>
|
|
#include <linux/nmi.h>
|
|
#include <linux/swap.h>
|
|
#include <linux/smp.h>
|
|
#include <linux/highmem.h>
|
|
#include <linux/slab.h>
|
|
#include <linux/pagemap.h>
|
|
#include <linux/spinlock.h>
|
|
#include <linux/module.h>
|
|
#include <linux/quicklist.h>
|
|
|
|
#include <asm/system.h>
|
|
#include <asm/pgtable.h>
|
|
#include <asm/pgalloc.h>
|
|
#include <asm/fixmap.h>
|
|
#include <asm/e820.h>
|
|
#include <asm/tlb.h>
|
|
#include <asm/tlbflush.h>
|
|
|
|
void show_mem(void)
|
|
{
|
|
int total = 0, reserved = 0;
|
|
int shared = 0, cached = 0;
|
|
int highmem = 0;
|
|
struct page *page;
|
|
pg_data_t *pgdat;
|
|
unsigned long i;
|
|
unsigned long flags;
|
|
|
|
printk(KERN_INFO "Mem-info:\n");
|
|
show_free_areas();
|
|
for_each_online_pgdat(pgdat) {
|
|
pgdat_resize_lock(pgdat, &flags);
|
|
for (i = 0; i < pgdat->node_spanned_pages; ++i) {
|
|
if (unlikely(i % MAX_ORDER_NR_PAGES == 0))
|
|
touch_nmi_watchdog();
|
|
page = pgdat_page_nr(pgdat, i);
|
|
total++;
|
|
if (PageHighMem(page))
|
|
highmem++;
|
|
if (PageReserved(page))
|
|
reserved++;
|
|
else if (PageSwapCache(page))
|
|
cached++;
|
|
else if (page_count(page))
|
|
shared += page_count(page) - 1;
|
|
}
|
|
pgdat_resize_unlock(pgdat, &flags);
|
|
}
|
|
printk(KERN_INFO "%d pages of RAM\n", total);
|
|
printk(KERN_INFO "%d pages of HIGHMEM\n", highmem);
|
|
printk(KERN_INFO "%d reserved pages\n", reserved);
|
|
printk(KERN_INFO "%d pages shared\n", shared);
|
|
printk(KERN_INFO "%d pages swap cached\n", cached);
|
|
|
|
printk(KERN_INFO "%lu pages dirty\n", global_page_state(NR_FILE_DIRTY));
|
|
printk(KERN_INFO "%lu pages writeback\n",
|
|
global_page_state(NR_WRITEBACK));
|
|
printk(KERN_INFO "%lu pages mapped\n", global_page_state(NR_FILE_MAPPED));
|
|
printk(KERN_INFO "%lu pages slab\n",
|
|
global_page_state(NR_SLAB_RECLAIMABLE) +
|
|
global_page_state(NR_SLAB_UNRECLAIMABLE));
|
|
printk(KERN_INFO "%lu pages pagetables\n",
|
|
global_page_state(NR_PAGETABLE));
|
|
}
|
|
|
|
/*
|
|
* Associate a virtual page frame with a given physical page frame
|
|
* and protection flags for that frame.
|
|
*/
|
|
static void set_pte_pfn(unsigned long vaddr, unsigned long pfn, pgprot_t flags)
|
|
{
|
|
pgd_t *pgd;
|
|
pud_t *pud;
|
|
pmd_t *pmd;
|
|
pte_t *pte;
|
|
|
|
pgd = swapper_pg_dir + pgd_index(vaddr);
|
|
if (pgd_none(*pgd)) {
|
|
BUG();
|
|
return;
|
|
}
|
|
pud = pud_offset(pgd, vaddr);
|
|
if (pud_none(*pud)) {
|
|
BUG();
|
|
return;
|
|
}
|
|
pmd = pmd_offset(pud, vaddr);
|
|
if (pmd_none(*pmd)) {
|
|
BUG();
|
|
return;
|
|
}
|
|
pte = pte_offset_kernel(pmd, vaddr);
|
|
if (pgprot_val(flags))
|
|
set_pte_present(&init_mm, vaddr, pte, pfn_pte(pfn, flags));
|
|
else
|
|
pte_clear(&init_mm, vaddr, pte);
|
|
|
|
/*
|
|
* It's enough to flush this one mapping.
|
|
* (PGE mappings get flushed as well)
|
|
*/
|
|
__flush_tlb_one(vaddr);
|
|
}
|
|
|
|
/*
|
|
* Associate a large virtual page frame with a given physical page frame
|
|
* and protection flags for that frame. pfn is for the base of the page,
|
|
* vaddr is what the page gets mapped to - both must be properly aligned.
|
|
* The pmd must already be instantiated. Assumes PAE mode.
|
|
*/
|
|
void set_pmd_pfn(unsigned long vaddr, unsigned long pfn, pgprot_t flags)
|
|
{
|
|
pgd_t *pgd;
|
|
pud_t *pud;
|
|
pmd_t *pmd;
|
|
|
|
if (vaddr & (PMD_SIZE-1)) { /* vaddr is misaligned */
|
|
printk(KERN_WARNING "set_pmd_pfn: vaddr misaligned\n");
|
|
return; /* BUG(); */
|
|
}
|
|
if (pfn & (PTRS_PER_PTE-1)) { /* pfn is misaligned */
|
|
printk(KERN_WARNING "set_pmd_pfn: pfn misaligned\n");
|
|
return; /* BUG(); */
|
|
}
|
|
pgd = swapper_pg_dir + pgd_index(vaddr);
|
|
if (pgd_none(*pgd)) {
|
|
printk(KERN_WARNING "set_pmd_pfn: pgd_none\n");
|
|
return; /* BUG(); */
|
|
}
|
|
pud = pud_offset(pgd, vaddr);
|
|
pmd = pmd_offset(pud, vaddr);
|
|
set_pmd(pmd, pfn_pmd(pfn, flags));
|
|
/*
|
|
* It's enough to flush this one mapping.
|
|
* (PGE mappings get flushed as well)
|
|
*/
|
|
__flush_tlb_one(vaddr);
|
|
}
|
|
|
|
static int fixmaps;
|
|
unsigned long __FIXADDR_TOP = 0xfffff000;
|
|
EXPORT_SYMBOL(__FIXADDR_TOP);
|
|
|
|
void __set_fixmap (enum fixed_addresses idx, unsigned long phys, pgprot_t flags)
|
|
{
|
|
unsigned long address = __fix_to_virt(idx);
|
|
|
|
if (idx >= __end_of_fixed_addresses) {
|
|
BUG();
|
|
return;
|
|
}
|
|
set_pte_pfn(address, phys >> PAGE_SHIFT, flags);
|
|
fixmaps++;
|
|
}
|
|
|
|
/**
|
|
* reserve_top_address - reserves a hole in the top of kernel address space
|
|
* @reserve - size of hole to reserve
|
|
*
|
|
* Can be used to relocate the fixmap area and poke a hole in the top
|
|
* of kernel address space to make room for a hypervisor.
|
|
*/
|
|
void reserve_top_address(unsigned long reserve)
|
|
{
|
|
BUG_ON(fixmaps > 0);
|
|
printk(KERN_INFO "Reserving virtual address space above 0x%08x\n",
|
|
(int)-reserve);
|
|
__FIXADDR_TOP = -reserve - PAGE_SIZE;
|
|
__VMALLOC_RESERVE += reserve;
|
|
}
|
|
|
|
pte_t *pte_alloc_one_kernel(struct mm_struct *mm, unsigned long address)
|
|
{
|
|
return (pte_t *)__get_free_page(GFP_KERNEL|__GFP_REPEAT|__GFP_ZERO);
|
|
}
|
|
|
|
pgtable_t pte_alloc_one(struct mm_struct *mm, unsigned long address)
|
|
{
|
|
struct page *pte;
|
|
|
|
#ifdef CONFIG_HIGHPTE
|
|
pte = alloc_pages(GFP_KERNEL|__GFP_HIGHMEM|__GFP_REPEAT|__GFP_ZERO, 0);
|
|
#else
|
|
pte = alloc_pages(GFP_KERNEL|__GFP_REPEAT|__GFP_ZERO, 0);
|
|
#endif
|
|
if (pte)
|
|
pgtable_page_ctor(pte);
|
|
return pte;
|
|
}
|
|
|
|
/*
|
|
* List of all pgd's needed for non-PAE so it can invalidate entries
|
|
* in both cached and uncached pgd's; not needed for PAE since the
|
|
* kernel pmd is shared. If PAE were not to share the pmd a similar
|
|
* tactic would be needed. This is essentially codepath-based locking
|
|
* against pageattr.c; it is the unique case in which a valid change
|
|
* of kernel pagetables can't be lazily synchronized by vmalloc faults.
|
|
* vmalloc faults work because attached pagetables are never freed.
|
|
* -- wli
|
|
*/
|
|
static inline void pgd_list_add(pgd_t *pgd)
|
|
{
|
|
struct page *page = virt_to_page(pgd);
|
|
|
|
list_add(&page->lru, &pgd_list);
|
|
}
|
|
|
|
static inline void pgd_list_del(pgd_t *pgd)
|
|
{
|
|
struct page *page = virt_to_page(pgd);
|
|
|
|
list_del(&page->lru);
|
|
}
|
|
|
|
#define UNSHARED_PTRS_PER_PGD \
|
|
(SHARED_KERNEL_PMD ? USER_PTRS_PER_PGD : PTRS_PER_PGD)
|
|
|
|
static void pgd_ctor(void *p)
|
|
{
|
|
pgd_t *pgd = p;
|
|
unsigned long flags;
|
|
|
|
/* Clear usermode parts of PGD */
|
|
memset(pgd, 0, USER_PTRS_PER_PGD*sizeof(pgd_t));
|
|
|
|
spin_lock_irqsave(&pgd_lock, flags);
|
|
|
|
/* If the pgd points to a shared pagetable level (either the
|
|
ptes in non-PAE, or shared PMD in PAE), then just copy the
|
|
references from swapper_pg_dir. */
|
|
if (PAGETABLE_LEVELS == 2 ||
|
|
(PAGETABLE_LEVELS == 3 && SHARED_KERNEL_PMD)) {
|
|
clone_pgd_range(pgd + USER_PTRS_PER_PGD,
|
|
swapper_pg_dir + USER_PTRS_PER_PGD,
|
|
KERNEL_PGD_PTRS);
|
|
paravirt_alloc_pd_clone(__pa(pgd) >> PAGE_SHIFT,
|
|
__pa(swapper_pg_dir) >> PAGE_SHIFT,
|
|
USER_PTRS_PER_PGD,
|
|
KERNEL_PGD_PTRS);
|
|
}
|
|
|
|
/* list required to sync kernel mapping updates */
|
|
if (!SHARED_KERNEL_PMD)
|
|
pgd_list_add(pgd);
|
|
|
|
spin_unlock_irqrestore(&pgd_lock, flags);
|
|
}
|
|
|
|
static void pgd_dtor(void *pgd)
|
|
{
|
|
unsigned long flags; /* can be called from interrupt context */
|
|
|
|
if (SHARED_KERNEL_PMD)
|
|
return;
|
|
|
|
spin_lock_irqsave(&pgd_lock, flags);
|
|
pgd_list_del(pgd);
|
|
spin_unlock_irqrestore(&pgd_lock, flags);
|
|
}
|
|
|
|
#ifdef CONFIG_X86_PAE
|
|
/*
|
|
* Mop up any pmd pages which may still be attached to the pgd.
|
|
* Normally they will be freed by munmap/exit_mmap, but any pmd we
|
|
* preallocate which never got a corresponding vma will need to be
|
|
* freed manually.
|
|
*/
|
|
static void pgd_mop_up_pmds(struct mm_struct *mm, pgd_t *pgdp)
|
|
{
|
|
int i;
|
|
|
|
for(i = 0; i < UNSHARED_PTRS_PER_PGD; i++) {
|
|
pgd_t pgd = pgdp[i];
|
|
|
|
if (pgd_val(pgd) != 0) {
|
|
pmd_t *pmd = (pmd_t *)pgd_page_vaddr(pgd);
|
|
|
|
pgdp[i] = native_make_pgd(0);
|
|
|
|
paravirt_release_pd(pgd_val(pgd) >> PAGE_SHIFT);
|
|
pmd_free(mm, pmd);
|
|
}
|
|
}
|
|
}
|
|
|
|
/*
|
|
* In PAE mode, we need to do a cr3 reload (=tlb flush) when
|
|
* updating the top-level pagetable entries to guarantee the
|
|
* processor notices the update. Since this is expensive, and
|
|
* all 4 top-level entries are used almost immediately in a
|
|
* new process's life, we just pre-populate them here.
|
|
*
|
|
* Also, if we're in a paravirt environment where the kernel pmd is
|
|
* not shared between pagetables (!SHARED_KERNEL_PMDS), we allocate
|
|
* and initialize the kernel pmds here.
|
|
*/
|
|
static int pgd_prepopulate_pmd(struct mm_struct *mm, pgd_t *pgd)
|
|
{
|
|
pud_t *pud;
|
|
unsigned long addr;
|
|
int i;
|
|
|
|
pud = pud_offset(pgd, 0);
|
|
for (addr = i = 0; i < UNSHARED_PTRS_PER_PGD;
|
|
i++, pud++, addr += PUD_SIZE) {
|
|
pmd_t *pmd = pmd_alloc_one(mm, addr);
|
|
|
|
if (!pmd) {
|
|
pgd_mop_up_pmds(mm, pgd);
|
|
return 0;
|
|
}
|
|
|
|
if (i >= USER_PTRS_PER_PGD)
|
|
memcpy(pmd, (pmd_t *)pgd_page_vaddr(swapper_pg_dir[i]),
|
|
sizeof(pmd_t) * PTRS_PER_PMD);
|
|
|
|
pud_populate(mm, pud, pmd);
|
|
}
|
|
|
|
return 1;
|
|
}
|
|
#else /* !CONFIG_X86_PAE */
|
|
/* No need to prepopulate any pagetable entries in non-PAE modes. */
|
|
static int pgd_prepopulate_pmd(struct mm_struct *mm, pgd_t *pgd)
|
|
{
|
|
return 1;
|
|
}
|
|
|
|
static void pgd_mop_up_pmds(struct mm_struct *mm, pgd_t *pgdp)
|
|
{
|
|
}
|
|
#endif /* CONFIG_X86_PAE */
|
|
|
|
pgd_t *pgd_alloc(struct mm_struct *mm)
|
|
{
|
|
pgd_t *pgd = (pgd_t *)__get_free_page(GFP_KERNEL | __GFP_ZERO);
|
|
|
|
/* so that alloc_pd can use it */
|
|
mm->pgd = pgd;
|
|
if (pgd)
|
|
pgd_ctor(pgd);
|
|
|
|
if (pgd && !pgd_prepopulate_pmd(mm, pgd)) {
|
|
pgd_dtor(pgd);
|
|
free_page((unsigned long)pgd);
|
|
pgd = NULL;
|
|
}
|
|
|
|
return pgd;
|
|
}
|
|
|
|
void pgd_free(struct mm_struct *mm, pgd_t *pgd)
|
|
{
|
|
pgd_mop_up_pmds(mm, pgd);
|
|
pgd_dtor(pgd);
|
|
free_page((unsigned long)pgd);
|
|
}
|
|
|
|
void __pte_free_tlb(struct mmu_gather *tlb, struct page *pte)
|
|
{
|
|
pgtable_page_dtor(pte);
|
|
paravirt_release_pt(page_to_pfn(pte));
|
|
tlb_remove_page(tlb, pte);
|
|
}
|
|
|
|
#ifdef CONFIG_X86_PAE
|
|
|
|
void __pmd_free_tlb(struct mmu_gather *tlb, pmd_t *pmd)
|
|
{
|
|
paravirt_release_pd(__pa(pmd) >> PAGE_SHIFT);
|
|
tlb_remove_page(tlb, virt_to_page(pmd));
|
|
}
|
|
|
|
#endif
|
|
|
|
int pmd_bad(pmd_t pmd)
|
|
{
|
|
WARN_ON_ONCE(pmd_bad_v1(pmd) != pmd_bad_v2(pmd));
|
|
|
|
return pmd_bad_v1(pmd);
|
|
}
|