mirror of
https://github.com/FEX-Emu/linux.git
synced 2025-01-26 20:58:33 +00:00
63ab1bdc3b
v4l2_tvnorm were meant to describe video standards and its names to V4L2 API. However, this were doing by some static structures at the driver. This patch changes the internals in a way that, at the driver, only a v4l2_tvnorm (a 64 bit integer) should be filled, with all supported tvnorms. videodev will dynamically generate the proper API array based on supported standards. Signed-off-by: Mauro Carvalho Chehab <mchehab@infradead.org>
1238 lines
34 KiB
C
1238 lines
34 KiB
C
/*
|
|
*
|
|
* device driver for Conexant 2388x based TV cards
|
|
* driver core
|
|
*
|
|
* (c) 2003 Gerd Knorr <kraxel@bytesex.org> [SuSE Labs]
|
|
*
|
|
* (c) 2005-2006 Mauro Carvalho Chehab <mchehab@infradead.org>
|
|
* - Multituner support
|
|
* - video_ioctl2 conversion
|
|
* - PAL/M fixes
|
|
*
|
|
* This program is free software; you can redistribute it and/or modify
|
|
* it under the terms of the GNU General Public License as published by
|
|
* the Free Software Foundation; either version 2 of the License, or
|
|
* (at your option) any later version.
|
|
*
|
|
* This program is distributed in the hope that it will be useful,
|
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
* GNU General Public License for more details.
|
|
*
|
|
* You should have received a copy of the GNU General Public License
|
|
* along with this program; if not, write to the Free Software
|
|
* Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
|
|
*/
|
|
|
|
#include <linux/init.h>
|
|
#include <linux/list.h>
|
|
#include <linux/module.h>
|
|
#include <linux/moduleparam.h>
|
|
#include <linux/kernel.h>
|
|
#include <linux/slab.h>
|
|
#include <linux/kmod.h>
|
|
#include <linux/sound.h>
|
|
#include <linux/interrupt.h>
|
|
#include <linux/pci.h>
|
|
#include <linux/delay.h>
|
|
#include <linux/videodev2.h>
|
|
#include <linux/mutex.h>
|
|
|
|
#include "cx88.h"
|
|
#include <media/v4l2-common.h>
|
|
|
|
MODULE_DESCRIPTION("v4l2 driver module for cx2388x based TV cards");
|
|
MODULE_AUTHOR("Gerd Knorr <kraxel@bytesex.org> [SuSE Labs]");
|
|
MODULE_LICENSE("GPL");
|
|
|
|
/* ------------------------------------------------------------------ */
|
|
|
|
static unsigned int core_debug = 0;
|
|
module_param(core_debug,int,0644);
|
|
MODULE_PARM_DESC(core_debug,"enable debug messages [core]");
|
|
|
|
static unsigned int latency = UNSET;
|
|
module_param(latency,int,0444);
|
|
MODULE_PARM_DESC(latency,"pci latency timer");
|
|
|
|
static unsigned int tuner[] = {[0 ... (CX88_MAXBOARDS - 1)] = UNSET };
|
|
static unsigned int radio[] = {[0 ... (CX88_MAXBOARDS - 1)] = UNSET };
|
|
static unsigned int card[] = {[0 ... (CX88_MAXBOARDS - 1)] = UNSET };
|
|
|
|
module_param_array(tuner, int, NULL, 0444);
|
|
module_param_array(radio, int, NULL, 0444);
|
|
module_param_array(card, int, NULL, 0444);
|
|
|
|
MODULE_PARM_DESC(tuner,"tuner type");
|
|
MODULE_PARM_DESC(radio,"radio tuner type");
|
|
MODULE_PARM_DESC(card,"card type");
|
|
|
|
static unsigned int nicam = 0;
|
|
module_param(nicam,int,0644);
|
|
MODULE_PARM_DESC(nicam,"tv audio is nicam");
|
|
|
|
static unsigned int nocomb = 0;
|
|
module_param(nocomb,int,0644);
|
|
MODULE_PARM_DESC(nocomb,"disable comb filter");
|
|
|
|
#define dprintk(level,fmt, arg...) if (core_debug >= level) \
|
|
printk(KERN_DEBUG "%s: " fmt, core->name , ## arg)
|
|
|
|
static unsigned int cx88_devcount;
|
|
static LIST_HEAD(cx88_devlist);
|
|
static DEFINE_MUTEX(devlist);
|
|
|
|
#define NO_SYNC_LINE (-1U)
|
|
|
|
static u32* cx88_risc_field(u32 *rp, struct scatterlist *sglist,
|
|
unsigned int offset, u32 sync_line,
|
|
unsigned int bpl, unsigned int padding,
|
|
unsigned int lines)
|
|
{
|
|
struct scatterlist *sg;
|
|
unsigned int line,todo;
|
|
|
|
/* sync instruction */
|
|
if (sync_line != NO_SYNC_LINE)
|
|
*(rp++) = cpu_to_le32(RISC_RESYNC | sync_line);
|
|
|
|
/* scan lines */
|
|
sg = sglist;
|
|
for (line = 0; line < lines; line++) {
|
|
while (offset && offset >= sg_dma_len(sg)) {
|
|
offset -= sg_dma_len(sg);
|
|
sg++;
|
|
}
|
|
if (bpl <= sg_dma_len(sg)-offset) {
|
|
/* fits into current chunk */
|
|
*(rp++)=cpu_to_le32(RISC_WRITE|RISC_SOL|RISC_EOL|bpl);
|
|
*(rp++)=cpu_to_le32(sg_dma_address(sg)+offset);
|
|
offset+=bpl;
|
|
} else {
|
|
/* scanline needs to be split */
|
|
todo = bpl;
|
|
*(rp++)=cpu_to_le32(RISC_WRITE|RISC_SOL|
|
|
(sg_dma_len(sg)-offset));
|
|
*(rp++)=cpu_to_le32(sg_dma_address(sg)+offset);
|
|
todo -= (sg_dma_len(sg)-offset);
|
|
offset = 0;
|
|
sg++;
|
|
while (todo > sg_dma_len(sg)) {
|
|
*(rp++)=cpu_to_le32(RISC_WRITE|
|
|
sg_dma_len(sg));
|
|
*(rp++)=cpu_to_le32(sg_dma_address(sg));
|
|
todo -= sg_dma_len(sg);
|
|
sg++;
|
|
}
|
|
*(rp++)=cpu_to_le32(RISC_WRITE|RISC_EOL|todo);
|
|
*(rp++)=cpu_to_le32(sg_dma_address(sg));
|
|
offset += todo;
|
|
}
|
|
offset += padding;
|
|
}
|
|
|
|
return rp;
|
|
}
|
|
|
|
int cx88_risc_buffer(struct pci_dev *pci, struct btcx_riscmem *risc,
|
|
struct scatterlist *sglist,
|
|
unsigned int top_offset, unsigned int bottom_offset,
|
|
unsigned int bpl, unsigned int padding, unsigned int lines)
|
|
{
|
|
u32 instructions,fields;
|
|
u32 *rp;
|
|
int rc;
|
|
|
|
fields = 0;
|
|
if (UNSET != top_offset)
|
|
fields++;
|
|
if (UNSET != bottom_offset)
|
|
fields++;
|
|
|
|
/* estimate risc mem: worst case is one write per page border +
|
|
one write per scan line + syncs + jump (all 2 dwords). Padding
|
|
can cause next bpl to start close to a page border. First DMA
|
|
region may be smaller than PAGE_SIZE */
|
|
instructions = fields * (1 + ((bpl + padding) * lines) / PAGE_SIZE + lines);
|
|
instructions += 2;
|
|
if ((rc = btcx_riscmem_alloc(pci,risc,instructions*8)) < 0)
|
|
return rc;
|
|
|
|
/* write risc instructions */
|
|
rp = risc->cpu;
|
|
if (UNSET != top_offset)
|
|
rp = cx88_risc_field(rp, sglist, top_offset, 0,
|
|
bpl, padding, lines);
|
|
if (UNSET != bottom_offset)
|
|
rp = cx88_risc_field(rp, sglist, bottom_offset, 0x200,
|
|
bpl, padding, lines);
|
|
|
|
/* save pointer to jmp instruction address */
|
|
risc->jmp = rp;
|
|
BUG_ON((risc->jmp - risc->cpu + 2) * sizeof (*risc->cpu) > risc->size);
|
|
return 0;
|
|
}
|
|
|
|
int cx88_risc_databuffer(struct pci_dev *pci, struct btcx_riscmem *risc,
|
|
struct scatterlist *sglist, unsigned int bpl,
|
|
unsigned int lines)
|
|
{
|
|
u32 instructions;
|
|
u32 *rp;
|
|
int rc;
|
|
|
|
/* estimate risc mem: worst case is one write per page border +
|
|
one write per scan line + syncs + jump (all 2 dwords). Here
|
|
there is no padding and no sync. First DMA region may be smaller
|
|
than PAGE_SIZE */
|
|
instructions = 1 + (bpl * lines) / PAGE_SIZE + lines;
|
|
instructions += 1;
|
|
if ((rc = btcx_riscmem_alloc(pci,risc,instructions*8)) < 0)
|
|
return rc;
|
|
|
|
/* write risc instructions */
|
|
rp = risc->cpu;
|
|
rp = cx88_risc_field(rp, sglist, 0, NO_SYNC_LINE, bpl, 0, lines);
|
|
|
|
/* save pointer to jmp instruction address */
|
|
risc->jmp = rp;
|
|
BUG_ON((risc->jmp - risc->cpu + 2) * sizeof (*risc->cpu) > risc->size);
|
|
return 0;
|
|
}
|
|
|
|
int cx88_risc_stopper(struct pci_dev *pci, struct btcx_riscmem *risc,
|
|
u32 reg, u32 mask, u32 value)
|
|
{
|
|
u32 *rp;
|
|
int rc;
|
|
|
|
if ((rc = btcx_riscmem_alloc(pci, risc, 4*16)) < 0)
|
|
return rc;
|
|
|
|
/* write risc instructions */
|
|
rp = risc->cpu;
|
|
*(rp++) = cpu_to_le32(RISC_WRITECR | RISC_IRQ2 | RISC_IMM);
|
|
*(rp++) = cpu_to_le32(reg);
|
|
*(rp++) = cpu_to_le32(value);
|
|
*(rp++) = cpu_to_le32(mask);
|
|
*(rp++) = cpu_to_le32(RISC_JUMP);
|
|
*(rp++) = cpu_to_le32(risc->dma);
|
|
return 0;
|
|
}
|
|
|
|
void
|
|
cx88_free_buffer(struct videobuf_queue *q, struct cx88_buffer *buf)
|
|
{
|
|
BUG_ON(in_interrupt());
|
|
videobuf_waiton(&buf->vb,0,0);
|
|
videobuf_dma_unmap(q, &buf->vb.dma);
|
|
videobuf_dma_free(&buf->vb.dma);
|
|
btcx_riscmem_free((struct pci_dev *)q->dev, &buf->risc);
|
|
buf->vb.state = STATE_NEEDS_INIT;
|
|
}
|
|
|
|
/* ------------------------------------------------------------------ */
|
|
/* our SRAM memory layout */
|
|
|
|
/* we are going to put all thr risc programs into host memory, so we
|
|
* can use the whole SDRAM for the DMA fifos. To simplify things, we
|
|
* use a static memory layout. That surely will waste memory in case
|
|
* we don't use all DMA channels at the same time (which will be the
|
|
* case most of the time). But that still gives us enougth FIFO space
|
|
* to be able to deal with insane long pci latencies ...
|
|
*
|
|
* FIFO space allocations:
|
|
* channel 21 (y video) - 10.0k
|
|
* channel 22 (u video) - 2.0k
|
|
* channel 23 (v video) - 2.0k
|
|
* channel 24 (vbi) - 4.0k
|
|
* channels 25+26 (audio) - 4.0k
|
|
* channel 28 (mpeg) - 4.0k
|
|
* TOTAL = 29.0k
|
|
*
|
|
* Every channel has 160 bytes control data (64 bytes instruction
|
|
* queue and 6 CDT entries), which is close to 2k total.
|
|
*
|
|
* Address layout:
|
|
* 0x0000 - 0x03ff CMDs / reserved
|
|
* 0x0400 - 0x0bff instruction queues + CDs
|
|
* 0x0c00 - FIFOs
|
|
*/
|
|
|
|
struct sram_channel cx88_sram_channels[] = {
|
|
[SRAM_CH21] = {
|
|
.name = "video y / packed",
|
|
.cmds_start = 0x180040,
|
|
.ctrl_start = 0x180400,
|
|
.cdt = 0x180400 + 64,
|
|
.fifo_start = 0x180c00,
|
|
.fifo_size = 0x002800,
|
|
.ptr1_reg = MO_DMA21_PTR1,
|
|
.ptr2_reg = MO_DMA21_PTR2,
|
|
.cnt1_reg = MO_DMA21_CNT1,
|
|
.cnt2_reg = MO_DMA21_CNT2,
|
|
},
|
|
[SRAM_CH22] = {
|
|
.name = "video u",
|
|
.cmds_start = 0x180080,
|
|
.ctrl_start = 0x1804a0,
|
|
.cdt = 0x1804a0 + 64,
|
|
.fifo_start = 0x183400,
|
|
.fifo_size = 0x000800,
|
|
.ptr1_reg = MO_DMA22_PTR1,
|
|
.ptr2_reg = MO_DMA22_PTR2,
|
|
.cnt1_reg = MO_DMA22_CNT1,
|
|
.cnt2_reg = MO_DMA22_CNT2,
|
|
},
|
|
[SRAM_CH23] = {
|
|
.name = "video v",
|
|
.cmds_start = 0x1800c0,
|
|
.ctrl_start = 0x180540,
|
|
.cdt = 0x180540 + 64,
|
|
.fifo_start = 0x183c00,
|
|
.fifo_size = 0x000800,
|
|
.ptr1_reg = MO_DMA23_PTR1,
|
|
.ptr2_reg = MO_DMA23_PTR2,
|
|
.cnt1_reg = MO_DMA23_CNT1,
|
|
.cnt2_reg = MO_DMA23_CNT2,
|
|
},
|
|
[SRAM_CH24] = {
|
|
.name = "vbi",
|
|
.cmds_start = 0x180100,
|
|
.ctrl_start = 0x1805e0,
|
|
.cdt = 0x1805e0 + 64,
|
|
.fifo_start = 0x184400,
|
|
.fifo_size = 0x001000,
|
|
.ptr1_reg = MO_DMA24_PTR1,
|
|
.ptr2_reg = MO_DMA24_PTR2,
|
|
.cnt1_reg = MO_DMA24_CNT1,
|
|
.cnt2_reg = MO_DMA24_CNT2,
|
|
},
|
|
[SRAM_CH25] = {
|
|
.name = "audio from",
|
|
.cmds_start = 0x180140,
|
|
.ctrl_start = 0x180680,
|
|
.cdt = 0x180680 + 64,
|
|
.fifo_start = 0x185400,
|
|
.fifo_size = 0x001000,
|
|
.ptr1_reg = MO_DMA25_PTR1,
|
|
.ptr2_reg = MO_DMA25_PTR2,
|
|
.cnt1_reg = MO_DMA25_CNT1,
|
|
.cnt2_reg = MO_DMA25_CNT2,
|
|
},
|
|
[SRAM_CH26] = {
|
|
.name = "audio to",
|
|
.cmds_start = 0x180180,
|
|
.ctrl_start = 0x180720,
|
|
.cdt = 0x180680 + 64, /* same as audio IN */
|
|
.fifo_start = 0x185400, /* same as audio IN */
|
|
.fifo_size = 0x001000, /* same as audio IN */
|
|
.ptr1_reg = MO_DMA26_PTR1,
|
|
.ptr2_reg = MO_DMA26_PTR2,
|
|
.cnt1_reg = MO_DMA26_CNT1,
|
|
.cnt2_reg = MO_DMA26_CNT2,
|
|
},
|
|
[SRAM_CH28] = {
|
|
.name = "mpeg",
|
|
.cmds_start = 0x180200,
|
|
.ctrl_start = 0x1807C0,
|
|
.cdt = 0x1807C0 + 64,
|
|
.fifo_start = 0x186400,
|
|
.fifo_size = 0x001000,
|
|
.ptr1_reg = MO_DMA28_PTR1,
|
|
.ptr2_reg = MO_DMA28_PTR2,
|
|
.cnt1_reg = MO_DMA28_CNT1,
|
|
.cnt2_reg = MO_DMA28_CNT2,
|
|
},
|
|
};
|
|
|
|
int cx88_sram_channel_setup(struct cx88_core *core,
|
|
struct sram_channel *ch,
|
|
unsigned int bpl, u32 risc)
|
|
{
|
|
unsigned int i,lines;
|
|
u32 cdt;
|
|
|
|
bpl = (bpl + 7) & ~7; /* alignment */
|
|
cdt = ch->cdt;
|
|
lines = ch->fifo_size / bpl;
|
|
if (lines > 6)
|
|
lines = 6;
|
|
BUG_ON(lines < 2);
|
|
|
|
/* write CDT */
|
|
for (i = 0; i < lines; i++)
|
|
cx_write(cdt + 16*i, ch->fifo_start + bpl*i);
|
|
|
|
/* write CMDS */
|
|
cx_write(ch->cmds_start + 0, risc);
|
|
cx_write(ch->cmds_start + 4, cdt);
|
|
cx_write(ch->cmds_start + 8, (lines*16) >> 3);
|
|
cx_write(ch->cmds_start + 12, ch->ctrl_start);
|
|
cx_write(ch->cmds_start + 16, 64 >> 2);
|
|
for (i = 20; i < 64; i += 4)
|
|
cx_write(ch->cmds_start + i, 0);
|
|
|
|
/* fill registers */
|
|
cx_write(ch->ptr1_reg, ch->fifo_start);
|
|
cx_write(ch->ptr2_reg, cdt);
|
|
cx_write(ch->cnt1_reg, (bpl >> 3) -1);
|
|
cx_write(ch->cnt2_reg, (lines*16) >> 3);
|
|
|
|
dprintk(2,"sram setup %s: bpl=%d lines=%d\n", ch->name, bpl, lines);
|
|
return 0;
|
|
}
|
|
|
|
/* ------------------------------------------------------------------ */
|
|
/* debug helper code */
|
|
|
|
static int cx88_risc_decode(u32 risc)
|
|
{
|
|
static char *instr[16] = {
|
|
[ RISC_SYNC >> 28 ] = "sync",
|
|
[ RISC_WRITE >> 28 ] = "write",
|
|
[ RISC_WRITEC >> 28 ] = "writec",
|
|
[ RISC_READ >> 28 ] = "read",
|
|
[ RISC_READC >> 28 ] = "readc",
|
|
[ RISC_JUMP >> 28 ] = "jump",
|
|
[ RISC_SKIP >> 28 ] = "skip",
|
|
[ RISC_WRITERM >> 28 ] = "writerm",
|
|
[ RISC_WRITECM >> 28 ] = "writecm",
|
|
[ RISC_WRITECR >> 28 ] = "writecr",
|
|
};
|
|
static int incr[16] = {
|
|
[ RISC_WRITE >> 28 ] = 2,
|
|
[ RISC_JUMP >> 28 ] = 2,
|
|
[ RISC_WRITERM >> 28 ] = 3,
|
|
[ RISC_WRITECM >> 28 ] = 3,
|
|
[ RISC_WRITECR >> 28 ] = 4,
|
|
};
|
|
static char *bits[] = {
|
|
"12", "13", "14", "resync",
|
|
"cnt0", "cnt1", "18", "19",
|
|
"20", "21", "22", "23",
|
|
"irq1", "irq2", "eol", "sol",
|
|
};
|
|
int i;
|
|
|
|
printk("0x%08x [ %s", risc,
|
|
instr[risc >> 28] ? instr[risc >> 28] : "INVALID");
|
|
for (i = ARRAY_SIZE(bits)-1; i >= 0; i--)
|
|
if (risc & (1 << (i + 12)))
|
|
printk(" %s",bits[i]);
|
|
printk(" count=%d ]\n", risc & 0xfff);
|
|
return incr[risc >> 28] ? incr[risc >> 28] : 1;
|
|
}
|
|
|
|
|
|
void cx88_sram_channel_dump(struct cx88_core *core,
|
|
struct sram_channel *ch)
|
|
{
|
|
static char *name[] = {
|
|
"initial risc",
|
|
"cdt base",
|
|
"cdt size",
|
|
"iq base",
|
|
"iq size",
|
|
"risc pc",
|
|
"iq wr ptr",
|
|
"iq rd ptr",
|
|
"cdt current",
|
|
"pci target",
|
|
"line / byte",
|
|
};
|
|
u32 risc;
|
|
unsigned int i,j,n;
|
|
|
|
printk("%s: %s - dma channel status dump\n",
|
|
core->name,ch->name);
|
|
for (i = 0; i < ARRAY_SIZE(name); i++)
|
|
printk("%s: cmds: %-12s: 0x%08x\n",
|
|
core->name,name[i],
|
|
cx_read(ch->cmds_start + 4*i));
|
|
for (i = 0; i < 4; i++) {
|
|
risc = cx_read(ch->cmds_start + 4 * (i+11));
|
|
printk("%s: risc%d: ", core->name, i);
|
|
cx88_risc_decode(risc);
|
|
}
|
|
for (i = 0; i < 16; i += n) {
|
|
risc = cx_read(ch->ctrl_start + 4 * i);
|
|
printk("%s: iq %x: ", core->name, i);
|
|
n = cx88_risc_decode(risc);
|
|
for (j = 1; j < n; j++) {
|
|
risc = cx_read(ch->ctrl_start + 4 * (i+j));
|
|
printk("%s: iq %x: 0x%08x [ arg #%d ]\n",
|
|
core->name, i+j, risc, j);
|
|
}
|
|
}
|
|
|
|
printk("%s: fifo: 0x%08x -> 0x%x\n",
|
|
core->name, ch->fifo_start, ch->fifo_start+ch->fifo_size);
|
|
printk("%s: ctrl: 0x%08x -> 0x%x\n",
|
|
core->name, ch->ctrl_start, ch->ctrl_start+6*16);
|
|
printk("%s: ptr1_reg: 0x%08x\n",
|
|
core->name,cx_read(ch->ptr1_reg));
|
|
printk("%s: ptr2_reg: 0x%08x\n",
|
|
core->name,cx_read(ch->ptr2_reg));
|
|
printk("%s: cnt1_reg: 0x%08x\n",
|
|
core->name,cx_read(ch->cnt1_reg));
|
|
printk("%s: cnt2_reg: 0x%08x\n",
|
|
core->name,cx_read(ch->cnt2_reg));
|
|
}
|
|
|
|
static char *cx88_pci_irqs[32] = {
|
|
"vid", "aud", "ts", "vip", "hst", "5", "6", "tm1",
|
|
"src_dma", "dst_dma", "risc_rd_err", "risc_wr_err",
|
|
"brdg_err", "src_dma_err", "dst_dma_err", "ipb_dma_err",
|
|
"i2c", "i2c_rack", "ir_smp", "gpio0", "gpio1"
|
|
};
|
|
|
|
void cx88_print_irqbits(char *name, char *tag, char **strings,
|
|
u32 bits, u32 mask)
|
|
{
|
|
unsigned int i;
|
|
|
|
printk(KERN_DEBUG "%s: %s [0x%x]", name, tag, bits);
|
|
for (i = 0; i < 32; i++) {
|
|
if (!(bits & (1 << i)))
|
|
continue;
|
|
if (strings[i])
|
|
printk(" %s", strings[i]);
|
|
else
|
|
printk(" %d", i);
|
|
if (!(mask & (1 << i)))
|
|
continue;
|
|
printk("*");
|
|
}
|
|
printk("\n");
|
|
}
|
|
|
|
/* ------------------------------------------------------------------ */
|
|
|
|
int cx88_core_irq(struct cx88_core *core, u32 status)
|
|
{
|
|
int handled = 0;
|
|
|
|
if (status & (1<<18)) {
|
|
cx88_ir_irq(core);
|
|
handled++;
|
|
}
|
|
if (!handled)
|
|
cx88_print_irqbits(core->name, "irq pci",
|
|
cx88_pci_irqs, status,
|
|
core->pci_irqmask);
|
|
return handled;
|
|
}
|
|
|
|
void cx88_wakeup(struct cx88_core *core,
|
|
struct cx88_dmaqueue *q, u32 count)
|
|
{
|
|
struct cx88_buffer *buf;
|
|
int bc;
|
|
|
|
for (bc = 0;; bc++) {
|
|
if (list_empty(&q->active))
|
|
break;
|
|
buf = list_entry(q->active.next,
|
|
struct cx88_buffer, vb.queue);
|
|
/* count comes from the hw and is is 16bit wide --
|
|
* this trick handles wrap-arounds correctly for
|
|
* up to 32767 buffers in flight... */
|
|
if ((s16) (count - buf->count) < 0)
|
|
break;
|
|
do_gettimeofday(&buf->vb.ts);
|
|
dprintk(2,"[%p/%d] wakeup reg=%d buf=%d\n",buf,buf->vb.i,
|
|
count, buf->count);
|
|
buf->vb.state = STATE_DONE;
|
|
list_del(&buf->vb.queue);
|
|
wake_up(&buf->vb.done);
|
|
}
|
|
if (list_empty(&q->active)) {
|
|
del_timer(&q->timeout);
|
|
} else {
|
|
mod_timer(&q->timeout, jiffies+BUFFER_TIMEOUT);
|
|
}
|
|
if (bc != 1)
|
|
printk("%s: %d buffers handled (should be 1)\n",__FUNCTION__,bc);
|
|
}
|
|
|
|
void cx88_shutdown(struct cx88_core *core)
|
|
{
|
|
/* disable RISC controller + IRQs */
|
|
cx_write(MO_DEV_CNTRL2, 0);
|
|
|
|
/* stop dma transfers */
|
|
cx_write(MO_VID_DMACNTRL, 0x0);
|
|
cx_write(MO_AUD_DMACNTRL, 0x0);
|
|
cx_write(MO_TS_DMACNTRL, 0x0);
|
|
cx_write(MO_VIP_DMACNTRL, 0x0);
|
|
cx_write(MO_GPHST_DMACNTRL, 0x0);
|
|
|
|
/* stop interrupts */
|
|
cx_write(MO_PCI_INTMSK, 0x0);
|
|
cx_write(MO_VID_INTMSK, 0x0);
|
|
cx_write(MO_AUD_INTMSK, 0x0);
|
|
cx_write(MO_TS_INTMSK, 0x0);
|
|
cx_write(MO_VIP_INTMSK, 0x0);
|
|
cx_write(MO_GPHST_INTMSK, 0x0);
|
|
|
|
/* stop capturing */
|
|
cx_write(VID_CAPTURE_CONTROL, 0);
|
|
}
|
|
|
|
int cx88_reset(struct cx88_core *core)
|
|
{
|
|
dprintk(1,"%s\n",__FUNCTION__);
|
|
cx88_shutdown(core);
|
|
|
|
/* clear irq status */
|
|
cx_write(MO_VID_INTSTAT, 0xFFFFFFFF); // Clear PIV int
|
|
cx_write(MO_PCI_INTSTAT, 0xFFFFFFFF); // Clear PCI int
|
|
cx_write(MO_INT1_STAT, 0xFFFFFFFF); // Clear RISC int
|
|
|
|
/* wait a bit */
|
|
msleep(100);
|
|
|
|
/* init sram */
|
|
cx88_sram_channel_setup(core, &cx88_sram_channels[SRAM_CH21], 720*4, 0);
|
|
cx88_sram_channel_setup(core, &cx88_sram_channels[SRAM_CH22], 128, 0);
|
|
cx88_sram_channel_setup(core, &cx88_sram_channels[SRAM_CH23], 128, 0);
|
|
cx88_sram_channel_setup(core, &cx88_sram_channels[SRAM_CH24], 128, 0);
|
|
cx88_sram_channel_setup(core, &cx88_sram_channels[SRAM_CH25], 128, 0);
|
|
cx88_sram_channel_setup(core, &cx88_sram_channels[SRAM_CH26], 128, 0);
|
|
cx88_sram_channel_setup(core, &cx88_sram_channels[SRAM_CH28], 188*4, 0);
|
|
|
|
/* misc init ... */
|
|
cx_write(MO_INPUT_FORMAT, ((1 << 13) | // agc enable
|
|
(1 << 12) | // agc gain
|
|
(1 << 11) | // adaptibe agc
|
|
(0 << 10) | // chroma agc
|
|
(0 << 9) | // ckillen
|
|
(7)));
|
|
|
|
/* setup image format */
|
|
cx_andor(MO_COLOR_CTRL, 0x4000, 0x4000);
|
|
|
|
/* setup FIFO Threshholds */
|
|
cx_write(MO_PDMA_STHRSH, 0x0807);
|
|
cx_write(MO_PDMA_DTHRSH, 0x0807);
|
|
|
|
/* fixes flashing of image */
|
|
cx_write(MO_AGC_SYNC_TIP1, 0x0380000F);
|
|
cx_write(MO_AGC_BACK_VBI, 0x00E00555);
|
|
|
|
cx_write(MO_VID_INTSTAT, 0xFFFFFFFF); // Clear PIV int
|
|
cx_write(MO_PCI_INTSTAT, 0xFFFFFFFF); // Clear PCI int
|
|
cx_write(MO_INT1_STAT, 0xFFFFFFFF); // Clear RISC int
|
|
|
|
/* Reset on-board parts */
|
|
cx_write(MO_SRST_IO, 0);
|
|
msleep(10);
|
|
cx_write(MO_SRST_IO, 1);
|
|
|
|
return 0;
|
|
}
|
|
|
|
/* ------------------------------------------------------------------ */
|
|
|
|
static unsigned int inline norm_swidth(v4l2_std_id norm)
|
|
{
|
|
return (norm & (V4L2_STD_MN & ~V4L2_STD_PAL_Nc)) ? 754 : 922;
|
|
}
|
|
|
|
static unsigned int inline norm_hdelay(v4l2_std_id norm)
|
|
{
|
|
return (norm & (V4L2_STD_MN & ~V4L2_STD_PAL_Nc)) ? 135 : 186;
|
|
}
|
|
|
|
static unsigned int inline norm_vdelay(v4l2_std_id norm)
|
|
{
|
|
return (norm & V4L2_STD_625_50) ? 0x24 : 0x18;
|
|
}
|
|
|
|
static unsigned int inline norm_fsc8(v4l2_std_id norm)
|
|
{
|
|
if (norm & V4L2_STD_PAL_M)
|
|
return 28604892; // 3.575611 MHz
|
|
|
|
if (norm & (V4L2_STD_PAL_Nc))
|
|
return 28656448; // 3.582056 MHz
|
|
|
|
if (norm & V4L2_STD_NTSC) // All NTSC/M and variants
|
|
return 28636360; // 3.57954545 MHz +/- 10 Hz
|
|
|
|
/* SECAM have also different sub carrier for chroma,
|
|
but step_db and step_dr, at cx88_set_tvnorm already handles that.
|
|
|
|
The same FSC applies to PAL/BGDKIH, PAL/60, NTSC/4.43 and PAL/N
|
|
*/
|
|
|
|
return 35468950; // 4.43361875 MHz +/- 5 Hz
|
|
}
|
|
|
|
static unsigned int inline norm_htotal(v4l2_std_id norm)
|
|
{
|
|
|
|
unsigned int fsc4=norm_fsc8(norm)/2;
|
|
|
|
/* returns 4*FSC / vtotal / frames per seconds */
|
|
return (norm & V4L2_STD_625_50) ?
|
|
((fsc4+312)/625+12)/25 :
|
|
((fsc4+262)/525*1001+15000)/30000;
|
|
}
|
|
|
|
static unsigned int inline norm_vbipack(v4l2_std_id norm)
|
|
{
|
|
return (norm & V4L2_STD_625_50) ? 511 : 400;
|
|
}
|
|
|
|
int cx88_set_scale(struct cx88_core *core, unsigned int width, unsigned int height,
|
|
enum v4l2_field field)
|
|
{
|
|
unsigned int swidth = norm_swidth(core->tvnorm);
|
|
unsigned int sheight = norm_maxh(core->tvnorm);
|
|
u32 value;
|
|
|
|
dprintk(1,"set_scale: %dx%d [%s%s,%s]\n", width, height,
|
|
V4L2_FIELD_HAS_TOP(field) ? "T" : "",
|
|
V4L2_FIELD_HAS_BOTTOM(field) ? "B" : "",
|
|
v4l2_norm_to_name(core->tvnorm));
|
|
if (!V4L2_FIELD_HAS_BOTH(field))
|
|
height *= 2;
|
|
|
|
// recalc H delay and scale registers
|
|
value = (width * norm_hdelay(core->tvnorm)) / swidth;
|
|
value &= 0x3fe;
|
|
cx_write(MO_HDELAY_EVEN, value);
|
|
cx_write(MO_HDELAY_ODD, value);
|
|
dprintk(1,"set_scale: hdelay 0x%04x (width %d)\n", value,swidth);
|
|
|
|
value = (swidth * 4096 / width) - 4096;
|
|
cx_write(MO_HSCALE_EVEN, value);
|
|
cx_write(MO_HSCALE_ODD, value);
|
|
dprintk(1,"set_scale: hscale 0x%04x\n", value);
|
|
|
|
cx_write(MO_HACTIVE_EVEN, width);
|
|
cx_write(MO_HACTIVE_ODD, width);
|
|
dprintk(1,"set_scale: hactive 0x%04x\n", width);
|
|
|
|
// recalc V scale Register (delay is constant)
|
|
cx_write(MO_VDELAY_EVEN, norm_vdelay(core->tvnorm));
|
|
cx_write(MO_VDELAY_ODD, norm_vdelay(core->tvnorm));
|
|
dprintk(1,"set_scale: vdelay 0x%04x\n", norm_vdelay(core->tvnorm));
|
|
|
|
value = (0x10000 - (sheight * 512 / height - 512)) & 0x1fff;
|
|
cx_write(MO_VSCALE_EVEN, value);
|
|
cx_write(MO_VSCALE_ODD, value);
|
|
dprintk(1,"set_scale: vscale 0x%04x\n", value);
|
|
|
|
cx_write(MO_VACTIVE_EVEN, sheight);
|
|
cx_write(MO_VACTIVE_ODD, sheight);
|
|
dprintk(1,"set_scale: vactive 0x%04x\n", sheight);
|
|
|
|
// setup filters
|
|
value = 0;
|
|
value |= (1 << 19); // CFILT (default)
|
|
if (core->tvnorm & V4L2_STD_SECAM) {
|
|
value |= (1 << 15);
|
|
value |= (1 << 16);
|
|
}
|
|
if (INPUT(core->input)->type == CX88_VMUX_SVIDEO)
|
|
value |= (1 << 13) | (1 << 5);
|
|
if (V4L2_FIELD_INTERLACED == field)
|
|
value |= (1 << 3); // VINT (interlaced vertical scaling)
|
|
if (width < 385)
|
|
value |= (1 << 0); // 3-tap interpolation
|
|
if (width < 193)
|
|
value |= (1 << 1); // 5-tap interpolation
|
|
if (nocomb)
|
|
value |= (3 << 5); // disable comb filter
|
|
|
|
cx_write(MO_FILTER_EVEN, value);
|
|
cx_write(MO_FILTER_ODD, value);
|
|
dprintk(1,"set_scale: filter 0x%04x\n", value);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static const u32 xtal = 28636363;
|
|
|
|
static int set_pll(struct cx88_core *core, int prescale, u32 ofreq)
|
|
{
|
|
static u32 pre[] = { 0, 0, 0, 3, 2, 1 };
|
|
u64 pll;
|
|
u32 reg;
|
|
int i;
|
|
|
|
if (prescale < 2)
|
|
prescale = 2;
|
|
if (prescale > 5)
|
|
prescale = 5;
|
|
|
|
pll = ofreq * 8 * prescale * (u64)(1 << 20);
|
|
do_div(pll,xtal);
|
|
reg = (pll & 0x3ffffff) | (pre[prescale] << 26);
|
|
if (((reg >> 20) & 0x3f) < 14) {
|
|
printk("%s/0: pll out of range\n",core->name);
|
|
return -1;
|
|
}
|
|
|
|
dprintk(1,"set_pll: MO_PLL_REG 0x%08x [old=0x%08x,freq=%d]\n",
|
|
reg, cx_read(MO_PLL_REG), ofreq);
|
|
cx_write(MO_PLL_REG, reg);
|
|
for (i = 0; i < 100; i++) {
|
|
reg = cx_read(MO_DEVICE_STATUS);
|
|
if (reg & (1<<2)) {
|
|
dprintk(1,"pll locked [pre=%d,ofreq=%d]\n",
|
|
prescale,ofreq);
|
|
return 0;
|
|
}
|
|
dprintk(1,"pll not locked yet, waiting ...\n");
|
|
msleep(10);
|
|
}
|
|
dprintk(1,"pll NOT locked [pre=%d,ofreq=%d]\n",prescale,ofreq);
|
|
return -1;
|
|
}
|
|
|
|
int cx88_start_audio_dma(struct cx88_core *core)
|
|
{
|
|
/* constant 128 made buzz in analog Nicam-stereo for bigger fifo_size */
|
|
int bpl = cx88_sram_channels[SRAM_CH25].fifo_size/4;
|
|
|
|
/* If downstream RISC is enabled, bail out; ALSA is managing DMA */
|
|
if (cx_read(MO_AUD_DMACNTRL) & 0x10)
|
|
return 0;
|
|
|
|
/* setup fifo + format */
|
|
cx88_sram_channel_setup(core, &cx88_sram_channels[SRAM_CH25], bpl, 0);
|
|
cx88_sram_channel_setup(core, &cx88_sram_channels[SRAM_CH26], bpl, 0);
|
|
|
|
cx_write(MO_AUDD_LNGTH, bpl); /* fifo bpl size */
|
|
cx_write(MO_AUDR_LNGTH, bpl); /* fifo bpl size */
|
|
|
|
/* start dma */
|
|
cx_write(MO_AUD_DMACNTRL, 0x0003); /* Up and Down fifo enable */
|
|
|
|
return 0;
|
|
}
|
|
|
|
int cx88_stop_audio_dma(struct cx88_core *core)
|
|
{
|
|
/* If downstream RISC is enabled, bail out; ALSA is managing DMA */
|
|
if (cx_read(MO_AUD_DMACNTRL) & 0x10)
|
|
return 0;
|
|
|
|
/* stop dma */
|
|
cx_write(MO_AUD_DMACNTRL, 0x0000);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int set_tvaudio(struct cx88_core *core)
|
|
{
|
|
v4l2_std_id norm = core->tvnorm;
|
|
|
|
if (CX88_VMUX_TELEVISION != INPUT(core->input)->type)
|
|
return 0;
|
|
|
|
if (V4L2_STD_PAL_BG & norm) {
|
|
core->tvaudio = WW_BG;
|
|
|
|
} else if (V4L2_STD_PAL_DK & norm) {
|
|
core->tvaudio = WW_DK;
|
|
|
|
} else if (V4L2_STD_PAL_I & norm) {
|
|
core->tvaudio = WW_I;
|
|
|
|
} else if (V4L2_STD_SECAM_L & norm) {
|
|
core->tvaudio = WW_L;
|
|
|
|
} else if (V4L2_STD_SECAM_DK & norm) {
|
|
core->tvaudio = WW_DK;
|
|
|
|
} else if ((V4L2_STD_NTSC_M & norm) ||
|
|
(V4L2_STD_PAL_M & norm)) {
|
|
core->tvaudio = WW_BTSC;
|
|
|
|
} else if (V4L2_STD_NTSC_M_JP & norm) {
|
|
core->tvaudio = WW_EIAJ;
|
|
|
|
} else {
|
|
printk("%s/0: tvaudio support needs work for this tv norm [%s], sorry\n",
|
|
core->name, v4l2_norm_to_name(core->tvnorm));
|
|
core->tvaudio = 0;
|
|
return 0;
|
|
}
|
|
|
|
cx_andor(MO_AFECFG_IO, 0x1f, 0x0);
|
|
cx88_set_tvaudio(core);
|
|
/* cx88_set_stereo(dev,V4L2_TUNER_MODE_STEREO); */
|
|
|
|
/*
|
|
This should be needed only on cx88-alsa. It seems that some cx88 chips have
|
|
bugs and does require DMA enabled for it to work.
|
|
*/
|
|
cx88_start_audio_dma(core);
|
|
return 0;
|
|
}
|
|
|
|
|
|
|
|
int cx88_set_tvnorm(struct cx88_core *core, v4l2_std_id norm)
|
|
{
|
|
u32 fsc8;
|
|
u32 adc_clock;
|
|
u32 vdec_clock;
|
|
u32 step_db,step_dr;
|
|
u64 tmp64;
|
|
u32 bdelay,agcdelay,htotal;
|
|
u32 cxiformat, cxoformat;
|
|
|
|
core->tvnorm = norm;
|
|
fsc8 = norm_fsc8(norm);
|
|
adc_clock = xtal;
|
|
vdec_clock = fsc8;
|
|
step_db = fsc8;
|
|
step_dr = fsc8;
|
|
|
|
if (norm & V4L2_STD_NTSC_M_JP) {
|
|
cxiformat = VideoFormatNTSCJapan;
|
|
cxoformat = 0x181f0008;
|
|
} else if (norm & V4L2_STD_NTSC_443) {
|
|
cxiformat = VideoFormatNTSC443;
|
|
cxoformat = 0x181f0008;
|
|
} else if (norm & V4L2_STD_PAL_M) {
|
|
cxiformat = VideoFormatPALM;
|
|
cxoformat = 0x1c1f0008;
|
|
} else if (norm & V4L2_STD_PAL_N) {
|
|
cxiformat = VideoFormatPALN;
|
|
cxoformat = 0x1c1f0008;
|
|
} else if (norm & V4L2_STD_PAL_Nc) {
|
|
cxiformat = VideoFormatPALNC;
|
|
cxoformat = 0x1c1f0008;
|
|
} else if (norm & V4L2_STD_PAL_60) {
|
|
cxiformat = VideoFormatPAL60;
|
|
cxoformat = 0x181f0008;
|
|
} else if (norm & V4L2_STD_NTSC) {
|
|
cxiformat = VideoFormatNTSC;
|
|
cxoformat = 0x181f0008;
|
|
} else if (norm & V4L2_STD_SECAM) {
|
|
step_db = 4250000 * 8;
|
|
step_dr = 4406250 * 8;
|
|
|
|
cxiformat = VideoFormatSECAM;
|
|
cxoformat = 0x181f0008;
|
|
} else { /* PAL */
|
|
cxiformat = VideoFormatPAL;
|
|
cxoformat = 0x181f0008;
|
|
}
|
|
|
|
dprintk(1,"set_tvnorm: \"%s\" fsc8=%d adc=%d vdec=%d db/dr=%d/%d\n",
|
|
v4l2_norm_to_name(core->tvnorm), fsc8, adc_clock, vdec_clock,
|
|
step_db, step_dr);
|
|
set_pll(core,2,vdec_clock);
|
|
|
|
dprintk(1,"set_tvnorm: MO_INPUT_FORMAT 0x%08x [old=0x%08x]\n",
|
|
cxiformat, cx_read(MO_INPUT_FORMAT) & 0x0f);
|
|
cx_andor(MO_INPUT_FORMAT, 0xf, cxiformat);
|
|
|
|
// FIXME: as-is from DScaler
|
|
dprintk(1,"set_tvnorm: MO_OUTPUT_FORMAT 0x%08x [old=0x%08x]\n",
|
|
cxoformat, cx_read(MO_OUTPUT_FORMAT));
|
|
cx_write(MO_OUTPUT_FORMAT, cxoformat);
|
|
|
|
// MO_SCONV_REG = adc clock / video dec clock * 2^17
|
|
tmp64 = adc_clock * (u64)(1 << 17);
|
|
do_div(tmp64, vdec_clock);
|
|
dprintk(1,"set_tvnorm: MO_SCONV_REG 0x%08x [old=0x%08x]\n",
|
|
(u32)tmp64, cx_read(MO_SCONV_REG));
|
|
cx_write(MO_SCONV_REG, (u32)tmp64);
|
|
|
|
// MO_SUB_STEP = 8 * fsc / video dec clock * 2^22
|
|
tmp64 = step_db * (u64)(1 << 22);
|
|
do_div(tmp64, vdec_clock);
|
|
dprintk(1,"set_tvnorm: MO_SUB_STEP 0x%08x [old=0x%08x]\n",
|
|
(u32)tmp64, cx_read(MO_SUB_STEP));
|
|
cx_write(MO_SUB_STEP, (u32)tmp64);
|
|
|
|
// MO_SUB_STEP_DR = 8 * 4406250 / video dec clock * 2^22
|
|
tmp64 = step_dr * (u64)(1 << 22);
|
|
do_div(tmp64, vdec_clock);
|
|
dprintk(1,"set_tvnorm: MO_SUB_STEP_DR 0x%08x [old=0x%08x]\n",
|
|
(u32)tmp64, cx_read(MO_SUB_STEP_DR));
|
|
cx_write(MO_SUB_STEP_DR, (u32)tmp64);
|
|
|
|
// bdelay + agcdelay
|
|
bdelay = vdec_clock * 65 / 20000000 + 21;
|
|
agcdelay = vdec_clock * 68 / 20000000 + 15;
|
|
dprintk(1,"set_tvnorm: MO_AGC_BURST 0x%08x [old=0x%08x,bdelay=%d,agcdelay=%d]\n",
|
|
(bdelay << 8) | agcdelay, cx_read(MO_AGC_BURST), bdelay, agcdelay);
|
|
cx_write(MO_AGC_BURST, (bdelay << 8) | agcdelay);
|
|
|
|
// htotal
|
|
tmp64 = norm_htotal(norm) * (u64)vdec_clock;
|
|
do_div(tmp64, fsc8);
|
|
htotal = (u32)tmp64 | (HLNotchFilter4xFsc << 11);
|
|
dprintk(1,"set_tvnorm: MO_HTOTAL 0x%08x [old=0x%08x,htotal=%d]\n",
|
|
htotal, cx_read(MO_HTOTAL), (u32)tmp64);
|
|
cx_write(MO_HTOTAL, htotal);
|
|
|
|
// vbi stuff, set vbi offset to 10 (for 20 Clk*2 pixels), this makes
|
|
// the effective vbi offset ~244 samples, the same as the Bt8x8
|
|
cx_write(MO_VBI_PACKET, (10<<11) | norm_vbipack(norm));
|
|
|
|
// this is needed as well to set all tvnorm parameter
|
|
cx88_set_scale(core, 320, 240, V4L2_FIELD_INTERLACED);
|
|
|
|
// audio
|
|
set_tvaudio(core);
|
|
|
|
// tell i2c chips
|
|
cx88_call_i2c_clients(core,VIDIOC_S_STD,&norm);
|
|
|
|
// done
|
|
return 0;
|
|
}
|
|
|
|
/* ------------------------------------------------------------------ */
|
|
|
|
static int cx88_pci_quirks(char *name, struct pci_dev *pci)
|
|
{
|
|
unsigned int lat = UNSET;
|
|
u8 ctrl = 0;
|
|
u8 value;
|
|
|
|
/* check pci quirks */
|
|
if (pci_pci_problems & PCIPCI_TRITON) {
|
|
printk(KERN_INFO "%s: quirk: PCIPCI_TRITON -- set TBFX\n",
|
|
name);
|
|
ctrl |= CX88X_EN_TBFX;
|
|
}
|
|
if (pci_pci_problems & PCIPCI_NATOMA) {
|
|
printk(KERN_INFO "%s: quirk: PCIPCI_NATOMA -- set TBFX\n",
|
|
name);
|
|
ctrl |= CX88X_EN_TBFX;
|
|
}
|
|
if (pci_pci_problems & PCIPCI_VIAETBF) {
|
|
printk(KERN_INFO "%s: quirk: PCIPCI_VIAETBF -- set TBFX\n",
|
|
name);
|
|
ctrl |= CX88X_EN_TBFX;
|
|
}
|
|
if (pci_pci_problems & PCIPCI_VSFX) {
|
|
printk(KERN_INFO "%s: quirk: PCIPCI_VSFX -- set VSFX\n",
|
|
name);
|
|
ctrl |= CX88X_EN_VSFX;
|
|
}
|
|
#ifdef PCIPCI_ALIMAGIK
|
|
if (pci_pci_problems & PCIPCI_ALIMAGIK) {
|
|
printk(KERN_INFO "%s: quirk: PCIPCI_ALIMAGIK -- latency fixup\n",
|
|
name);
|
|
lat = 0x0A;
|
|
}
|
|
#endif
|
|
|
|
/* check insmod options */
|
|
if (UNSET != latency)
|
|
lat = latency;
|
|
|
|
/* apply stuff */
|
|
if (ctrl) {
|
|
pci_read_config_byte(pci, CX88X_DEVCTRL, &value);
|
|
value |= ctrl;
|
|
pci_write_config_byte(pci, CX88X_DEVCTRL, value);
|
|
}
|
|
if (UNSET != lat) {
|
|
printk(KERN_INFO "%s: setting pci latency timer to %d\n",
|
|
name, latency);
|
|
pci_write_config_byte(pci, PCI_LATENCY_TIMER, latency);
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
/* ------------------------------------------------------------------ */
|
|
|
|
struct video_device *cx88_vdev_init(struct cx88_core *core,
|
|
struct pci_dev *pci,
|
|
struct video_device *template,
|
|
char *type)
|
|
{
|
|
struct video_device *vfd;
|
|
|
|
vfd = video_device_alloc();
|
|
if (NULL == vfd)
|
|
return NULL;
|
|
*vfd = *template;
|
|
vfd->minor = -1;
|
|
vfd->dev = &pci->dev;
|
|
vfd->release = video_device_release;
|
|
snprintf(vfd->name, sizeof(vfd->name), "%s %s (%s)",
|
|
core->name, type, cx88_boards[core->board].name);
|
|
return vfd;
|
|
}
|
|
|
|
static int get_ressources(struct cx88_core *core, struct pci_dev *pci)
|
|
{
|
|
if (request_mem_region(pci_resource_start(pci,0),
|
|
pci_resource_len(pci,0),
|
|
core->name))
|
|
return 0;
|
|
printk(KERN_ERR "%s: can't get MMIO memory @ 0x%llx\n",
|
|
core->name,(unsigned long long)pci_resource_start(pci,0));
|
|
return -EBUSY;
|
|
}
|
|
|
|
struct cx88_core* cx88_core_get(struct pci_dev *pci)
|
|
{
|
|
struct cx88_core *core;
|
|
struct list_head *item;
|
|
int i;
|
|
|
|
mutex_lock(&devlist);
|
|
list_for_each(item,&cx88_devlist) {
|
|
core = list_entry(item, struct cx88_core, devlist);
|
|
if (pci->bus->number != core->pci_bus)
|
|
continue;
|
|
if (PCI_SLOT(pci->devfn) != core->pci_slot)
|
|
continue;
|
|
|
|
if (0 != get_ressources(core,pci))
|
|
goto fail_unlock;
|
|
atomic_inc(&core->refcount);
|
|
mutex_unlock(&devlist);
|
|
return core;
|
|
}
|
|
core = kzalloc(sizeof(*core),GFP_KERNEL);
|
|
if (NULL == core)
|
|
goto fail_unlock;
|
|
|
|
atomic_inc(&core->refcount);
|
|
core->pci_bus = pci->bus->number;
|
|
core->pci_slot = PCI_SLOT(pci->devfn);
|
|
core->pci_irqmask = 0x00fc00;
|
|
mutex_init(&core->lock);
|
|
|
|
core->nr = cx88_devcount++;
|
|
sprintf(core->name,"cx88[%d]",core->nr);
|
|
if (0 != get_ressources(core,pci)) {
|
|
printk(KERN_ERR "CORE %s No more PCI ressources for "
|
|
"subsystem: %04x:%04x, board: %s\n",
|
|
core->name,pci->subsystem_vendor,
|
|
pci->subsystem_device,
|
|
cx88_boards[core->board].name);
|
|
|
|
cx88_devcount--;
|
|
goto fail_free;
|
|
}
|
|
list_add_tail(&core->devlist,&cx88_devlist);
|
|
|
|
/* PCI stuff */
|
|
cx88_pci_quirks(core->name, pci);
|
|
core->lmmio = ioremap(pci_resource_start(pci,0),
|
|
pci_resource_len(pci,0));
|
|
core->bmmio = (u8 __iomem *)core->lmmio;
|
|
|
|
/* board config */
|
|
core->board = UNSET;
|
|
if (card[core->nr] < cx88_bcount)
|
|
core->board = card[core->nr];
|
|
for (i = 0; UNSET == core->board && i < cx88_idcount; i++)
|
|
if (pci->subsystem_vendor == cx88_subids[i].subvendor &&
|
|
pci->subsystem_device == cx88_subids[i].subdevice)
|
|
core->board = cx88_subids[i].card;
|
|
if (UNSET == core->board) {
|
|
core->board = CX88_BOARD_UNKNOWN;
|
|
cx88_card_list(core,pci);
|
|
}
|
|
printk(KERN_INFO "CORE %s: subsystem: %04x:%04x, board: %s [card=%d,%s]\n",
|
|
core->name,pci->subsystem_vendor,
|
|
pci->subsystem_device,cx88_boards[core->board].name,
|
|
core->board, card[core->nr] == core->board ?
|
|
"insmod option" : "autodetected");
|
|
|
|
core->tuner_type = tuner[core->nr];
|
|
core->radio_type = radio[core->nr];
|
|
if (UNSET == core->tuner_type)
|
|
core->tuner_type = cx88_boards[core->board].tuner_type;
|
|
if (UNSET == core->radio_type)
|
|
core->radio_type = cx88_boards[core->board].radio_type;
|
|
if (!core->tuner_addr)
|
|
core->tuner_addr = cx88_boards[core->board].tuner_addr;
|
|
if (!core->radio_addr)
|
|
core->radio_addr = cx88_boards[core->board].radio_addr;
|
|
|
|
printk(KERN_INFO "TV tuner %d at 0x%02x, Radio tuner %d at 0x%02x\n",
|
|
core->tuner_type, core->tuner_addr<<1,
|
|
core->radio_type, core->radio_addr<<1);
|
|
|
|
core->tda9887_conf = cx88_boards[core->board].tda9887_conf;
|
|
|
|
/* init hardware */
|
|
cx88_reset(core);
|
|
cx88_card_setup_pre_i2c(core);
|
|
cx88_i2c_init(core,pci);
|
|
cx88_call_i2c_clients (core, TUNER_SET_STANDBY, NULL);
|
|
cx88_card_setup(core);
|
|
cx88_ir_init(core,pci);
|
|
|
|
mutex_unlock(&devlist);
|
|
return core;
|
|
|
|
fail_free:
|
|
kfree(core);
|
|
fail_unlock:
|
|
mutex_unlock(&devlist);
|
|
return NULL;
|
|
}
|
|
|
|
void cx88_core_put(struct cx88_core *core, struct pci_dev *pci)
|
|
{
|
|
release_mem_region(pci_resource_start(pci,0),
|
|
pci_resource_len(pci,0));
|
|
|
|
if (!atomic_dec_and_test(&core->refcount))
|
|
return;
|
|
|
|
mutex_lock(&devlist);
|
|
cx88_ir_fini(core);
|
|
if (0 == core->i2c_rc)
|
|
i2c_del_adapter(&core->i2c_adap);
|
|
list_del(&core->devlist);
|
|
iounmap(core->lmmio);
|
|
cx88_devcount--;
|
|
mutex_unlock(&devlist);
|
|
kfree(core);
|
|
}
|
|
|
|
/* ------------------------------------------------------------------ */
|
|
|
|
EXPORT_SYMBOL(cx88_print_irqbits);
|
|
|
|
EXPORT_SYMBOL(cx88_core_irq);
|
|
EXPORT_SYMBOL(cx88_wakeup);
|
|
EXPORT_SYMBOL(cx88_reset);
|
|
EXPORT_SYMBOL(cx88_shutdown);
|
|
|
|
EXPORT_SYMBOL(cx88_risc_buffer);
|
|
EXPORT_SYMBOL(cx88_risc_databuffer);
|
|
EXPORT_SYMBOL(cx88_risc_stopper);
|
|
EXPORT_SYMBOL(cx88_free_buffer);
|
|
|
|
EXPORT_SYMBOL(cx88_sram_channels);
|
|
EXPORT_SYMBOL(cx88_sram_channel_setup);
|
|
EXPORT_SYMBOL(cx88_sram_channel_dump);
|
|
|
|
EXPORT_SYMBOL(cx88_set_tvnorm);
|
|
EXPORT_SYMBOL(cx88_set_scale);
|
|
|
|
EXPORT_SYMBOL(cx88_vdev_init);
|
|
EXPORT_SYMBOL(cx88_core_get);
|
|
EXPORT_SYMBOL(cx88_core_put);
|
|
|
|
/*
|
|
* Local variables:
|
|
* c-basic-offset: 8
|
|
* End:
|
|
* kate: eol "unix"; indent-width 3; remove-trailing-space on; replace-trailing-space-save on; tab-width 8; replace-tabs off; space-indent off; mixed-indent off
|
|
*/
|