mirror of
https://github.com/FEX-Emu/linux.git
synced 2025-01-12 20:31:49 +00:00
fb922b0de6
Signed-off-by: Sascha Hauer <s.hauer@pengutronix.de> Signed-off-by: David S. Miller <davem@davemloft.net>
2154 lines
55 KiB
C
2154 lines
55 KiB
C
/*
|
|
* Fast Ethernet Controller (FEC) driver for Motorola MPC8xx.
|
|
* Copyright (c) 1997 Dan Malek (dmalek@jlc.net)
|
|
*
|
|
* Right now, I am very wasteful with the buffers. I allocate memory
|
|
* pages and then divide them into 2K frame buffers. This way I know I
|
|
* have buffers large enough to hold one frame within one buffer descriptor.
|
|
* Once I get this working, I will use 64 or 128 byte CPM buffers, which
|
|
* will be much more memory efficient and will easily handle lots of
|
|
* small packets.
|
|
*
|
|
* Much better multiple PHY support by Magnus Damm.
|
|
* Copyright (c) 2000 Ericsson Radio Systems AB.
|
|
*
|
|
* Support for FEC controller of ColdFire processors.
|
|
* Copyright (c) 2001-2005 Greg Ungerer (gerg@snapgear.com)
|
|
*
|
|
* Bug fixes and cleanup by Philippe De Muyter (phdm@macqel.be)
|
|
* Copyright (c) 2004-2006 Macq Electronique SA.
|
|
*/
|
|
|
|
#include <linux/module.h>
|
|
#include <linux/kernel.h>
|
|
#include <linux/string.h>
|
|
#include <linux/ptrace.h>
|
|
#include <linux/errno.h>
|
|
#include <linux/ioport.h>
|
|
#include <linux/slab.h>
|
|
#include <linux/interrupt.h>
|
|
#include <linux/pci.h>
|
|
#include <linux/init.h>
|
|
#include <linux/delay.h>
|
|
#include <linux/netdevice.h>
|
|
#include <linux/etherdevice.h>
|
|
#include <linux/skbuff.h>
|
|
#include <linux/spinlock.h>
|
|
#include <linux/workqueue.h>
|
|
#include <linux/bitops.h>
|
|
#include <linux/io.h>
|
|
#include <linux/irq.h>
|
|
#include <linux/clk.h>
|
|
#include <linux/platform_device.h>
|
|
|
|
#include <asm/cacheflush.h>
|
|
|
|
#ifndef CONFIG_ARCH_MXC
|
|
#include <asm/coldfire.h>
|
|
#include <asm/mcfsim.h>
|
|
#endif
|
|
|
|
#include "fec.h"
|
|
|
|
#ifdef CONFIG_ARCH_MXC
|
|
#include <mach/hardware.h>
|
|
#define FEC_ALIGNMENT 0xf
|
|
#else
|
|
#define FEC_ALIGNMENT 0x3
|
|
#endif
|
|
|
|
/*
|
|
* Define the fixed address of the FEC hardware.
|
|
*/
|
|
#if defined(CONFIG_M5272)
|
|
#define HAVE_mii_link_interrupt
|
|
|
|
static unsigned char fec_mac_default[] = {
|
|
0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
|
|
};
|
|
|
|
/*
|
|
* Some hardware gets it MAC address out of local flash memory.
|
|
* if this is non-zero then assume it is the address to get MAC from.
|
|
*/
|
|
#if defined(CONFIG_NETtel)
|
|
#define FEC_FLASHMAC 0xf0006006
|
|
#elif defined(CONFIG_GILBARCONAP) || defined(CONFIG_SCALES)
|
|
#define FEC_FLASHMAC 0xf0006000
|
|
#elif defined(CONFIG_CANCam)
|
|
#define FEC_FLASHMAC 0xf0020000
|
|
#elif defined (CONFIG_M5272C3)
|
|
#define FEC_FLASHMAC (0xffe04000 + 4)
|
|
#elif defined(CONFIG_MOD5272)
|
|
#define FEC_FLASHMAC 0xffc0406b
|
|
#else
|
|
#define FEC_FLASHMAC 0
|
|
#endif
|
|
#endif /* CONFIG_M5272 */
|
|
|
|
/* Forward declarations of some structures to support different PHYs
|
|
*/
|
|
|
|
typedef struct {
|
|
uint mii_data;
|
|
void (*funct)(uint mii_reg, struct net_device *dev);
|
|
} phy_cmd_t;
|
|
|
|
typedef struct {
|
|
uint id;
|
|
char *name;
|
|
|
|
const phy_cmd_t *config;
|
|
const phy_cmd_t *startup;
|
|
const phy_cmd_t *ack_int;
|
|
const phy_cmd_t *shutdown;
|
|
} phy_info_t;
|
|
|
|
/* The number of Tx and Rx buffers. These are allocated from the page
|
|
* pool. The code may assume these are power of two, so it it best
|
|
* to keep them that size.
|
|
* We don't need to allocate pages for the transmitter. We just use
|
|
* the skbuffer directly.
|
|
*/
|
|
#define FEC_ENET_RX_PAGES 8
|
|
#define FEC_ENET_RX_FRSIZE 2048
|
|
#define FEC_ENET_RX_FRPPG (PAGE_SIZE / FEC_ENET_RX_FRSIZE)
|
|
#define RX_RING_SIZE (FEC_ENET_RX_FRPPG * FEC_ENET_RX_PAGES)
|
|
#define FEC_ENET_TX_FRSIZE 2048
|
|
#define FEC_ENET_TX_FRPPG (PAGE_SIZE / FEC_ENET_TX_FRSIZE)
|
|
#define TX_RING_SIZE 16 /* Must be power of two */
|
|
#define TX_RING_MOD_MASK 15 /* for this to work */
|
|
|
|
#if (((RX_RING_SIZE + TX_RING_SIZE) * 8) > PAGE_SIZE)
|
|
#error "FEC: descriptor ring size constants too large"
|
|
#endif
|
|
|
|
/* Interrupt events/masks.
|
|
*/
|
|
#define FEC_ENET_HBERR ((uint)0x80000000) /* Heartbeat error */
|
|
#define FEC_ENET_BABR ((uint)0x40000000) /* Babbling receiver */
|
|
#define FEC_ENET_BABT ((uint)0x20000000) /* Babbling transmitter */
|
|
#define FEC_ENET_GRA ((uint)0x10000000) /* Graceful stop complete */
|
|
#define FEC_ENET_TXF ((uint)0x08000000) /* Full frame transmitted */
|
|
#define FEC_ENET_TXB ((uint)0x04000000) /* A buffer was transmitted */
|
|
#define FEC_ENET_RXF ((uint)0x02000000) /* Full frame received */
|
|
#define FEC_ENET_RXB ((uint)0x01000000) /* A buffer was received */
|
|
#define FEC_ENET_MII ((uint)0x00800000) /* MII interrupt */
|
|
#define FEC_ENET_EBERR ((uint)0x00400000) /* SDMA bus error */
|
|
|
|
/* The FEC stores dest/src/type, data, and checksum for receive packets.
|
|
*/
|
|
#define PKT_MAXBUF_SIZE 1518
|
|
#define PKT_MINBUF_SIZE 64
|
|
#define PKT_MAXBLR_SIZE 1520
|
|
|
|
|
|
/*
|
|
* The 5270/5271/5280/5282/532x RX control register also contains maximum frame
|
|
* size bits. Other FEC hardware does not, so we need to take that into
|
|
* account when setting it.
|
|
*/
|
|
#if defined(CONFIG_M523x) || defined(CONFIG_M527x) || defined(CONFIG_M528x) || \
|
|
defined(CONFIG_M520x) || defined(CONFIG_M532x) || defined(CONFIG_ARCH_MXC)
|
|
#define OPT_FRAME_SIZE (PKT_MAXBUF_SIZE << 16)
|
|
#else
|
|
#define OPT_FRAME_SIZE 0
|
|
#endif
|
|
|
|
/* The FEC buffer descriptors track the ring buffers. The rx_bd_base and
|
|
* tx_bd_base always point to the base of the buffer descriptors. The
|
|
* cur_rx and cur_tx point to the currently available buffer.
|
|
* The dirty_tx tracks the current buffer that is being sent by the
|
|
* controller. The cur_tx and dirty_tx are equal under both completely
|
|
* empty and completely full conditions. The empty/ready indicator in
|
|
* the buffer descriptor determines the actual condition.
|
|
*/
|
|
struct fec_enet_private {
|
|
/* Hardware registers of the FEC device */
|
|
volatile fec_t *hwp;
|
|
|
|
struct net_device *netdev;
|
|
|
|
struct clk *clk;
|
|
|
|
/* The saved address of a sent-in-place packet/buffer, for skfree(). */
|
|
unsigned char *tx_bounce[TX_RING_SIZE];
|
|
struct sk_buff* tx_skbuff[TX_RING_SIZE];
|
|
ushort skb_cur;
|
|
ushort skb_dirty;
|
|
|
|
/* CPM dual port RAM relative addresses.
|
|
*/
|
|
dma_addr_t bd_dma;
|
|
cbd_t *rx_bd_base; /* Address of Rx and Tx buffers. */
|
|
cbd_t *tx_bd_base;
|
|
cbd_t *cur_rx, *cur_tx; /* The next free ring entry */
|
|
cbd_t *dirty_tx; /* The ring entries to be free()ed. */
|
|
uint tx_full;
|
|
/* hold while accessing the HW like ringbuffer for tx/rx but not MAC */
|
|
spinlock_t hw_lock;
|
|
/* hold while accessing the mii_list_t() elements */
|
|
spinlock_t mii_lock;
|
|
|
|
uint phy_id;
|
|
uint phy_id_done;
|
|
uint phy_status;
|
|
uint phy_speed;
|
|
phy_info_t const *phy;
|
|
struct work_struct phy_task;
|
|
|
|
uint sequence_done;
|
|
uint mii_phy_task_queued;
|
|
|
|
uint phy_addr;
|
|
|
|
int index;
|
|
int opened;
|
|
int link;
|
|
int old_link;
|
|
int full_duplex;
|
|
};
|
|
|
|
static int fec_enet_open(struct net_device *dev);
|
|
static int fec_enet_start_xmit(struct sk_buff *skb, struct net_device *dev);
|
|
static void fec_enet_mii(struct net_device *dev);
|
|
static irqreturn_t fec_enet_interrupt(int irq, void * dev_id);
|
|
static void fec_enet_tx(struct net_device *dev);
|
|
static void fec_enet_rx(struct net_device *dev);
|
|
static int fec_enet_close(struct net_device *dev);
|
|
static void set_multicast_list(struct net_device *dev);
|
|
static void fec_restart(struct net_device *dev, int duplex);
|
|
static void fec_stop(struct net_device *dev);
|
|
static void fec_set_mac_address(struct net_device *dev);
|
|
|
|
|
|
/* MII processing. We keep this as simple as possible. Requests are
|
|
* placed on the list (if there is room). When the request is finished
|
|
* by the MII, an optional function may be called.
|
|
*/
|
|
typedef struct mii_list {
|
|
uint mii_regval;
|
|
void (*mii_func)(uint val, struct net_device *dev);
|
|
struct mii_list *mii_next;
|
|
} mii_list_t;
|
|
|
|
#define NMII 20
|
|
static mii_list_t mii_cmds[NMII];
|
|
static mii_list_t *mii_free;
|
|
static mii_list_t *mii_head;
|
|
static mii_list_t *mii_tail;
|
|
|
|
static int mii_queue(struct net_device *dev, int request,
|
|
void (*func)(uint, struct net_device *));
|
|
|
|
/* Make MII read/write commands for the FEC.
|
|
*/
|
|
#define mk_mii_read(REG) (0x60020000 | ((REG & 0x1f) << 18))
|
|
#define mk_mii_write(REG, VAL) (0x50020000 | ((REG & 0x1f) << 18) | \
|
|
(VAL & 0xffff))
|
|
#define mk_mii_end 0
|
|
|
|
/* Transmitter timeout.
|
|
*/
|
|
#define TX_TIMEOUT (2*HZ)
|
|
|
|
/* Register definitions for the PHY.
|
|
*/
|
|
|
|
#define MII_REG_CR 0 /* Control Register */
|
|
#define MII_REG_SR 1 /* Status Register */
|
|
#define MII_REG_PHYIR1 2 /* PHY Identification Register 1 */
|
|
#define MII_REG_PHYIR2 3 /* PHY Identification Register 2 */
|
|
#define MII_REG_ANAR 4 /* A-N Advertisement Register */
|
|
#define MII_REG_ANLPAR 5 /* A-N Link Partner Ability Register */
|
|
#define MII_REG_ANER 6 /* A-N Expansion Register */
|
|
#define MII_REG_ANNPTR 7 /* A-N Next Page Transmit Register */
|
|
#define MII_REG_ANLPRNPR 8 /* A-N Link Partner Received Next Page Reg. */
|
|
|
|
/* values for phy_status */
|
|
|
|
#define PHY_CONF_ANE 0x0001 /* 1 auto-negotiation enabled */
|
|
#define PHY_CONF_LOOP 0x0002 /* 1 loopback mode enabled */
|
|
#define PHY_CONF_SPMASK 0x00f0 /* mask for speed */
|
|
#define PHY_CONF_10HDX 0x0010 /* 10 Mbit half duplex supported */
|
|
#define PHY_CONF_10FDX 0x0020 /* 10 Mbit full duplex supported */
|
|
#define PHY_CONF_100HDX 0x0040 /* 100 Mbit half duplex supported */
|
|
#define PHY_CONF_100FDX 0x0080 /* 100 Mbit full duplex supported */
|
|
|
|
#define PHY_STAT_LINK 0x0100 /* 1 up - 0 down */
|
|
#define PHY_STAT_FAULT 0x0200 /* 1 remote fault */
|
|
#define PHY_STAT_ANC 0x0400 /* 1 auto-negotiation complete */
|
|
#define PHY_STAT_SPMASK 0xf000 /* mask for speed */
|
|
#define PHY_STAT_10HDX 0x1000 /* 10 Mbit half duplex selected */
|
|
#define PHY_STAT_10FDX 0x2000 /* 10 Mbit full duplex selected */
|
|
#define PHY_STAT_100HDX 0x4000 /* 100 Mbit half duplex selected */
|
|
#define PHY_STAT_100FDX 0x8000 /* 100 Mbit full duplex selected */
|
|
|
|
|
|
static int
|
|
fec_enet_start_xmit(struct sk_buff *skb, struct net_device *dev)
|
|
{
|
|
struct fec_enet_private *fep;
|
|
volatile fec_t *fecp;
|
|
volatile cbd_t *bdp;
|
|
unsigned short status;
|
|
unsigned long flags;
|
|
|
|
fep = netdev_priv(dev);
|
|
fecp = (volatile fec_t*)dev->base_addr;
|
|
|
|
if (!fep->link) {
|
|
/* Link is down or autonegotiation is in progress. */
|
|
return 1;
|
|
}
|
|
|
|
spin_lock_irqsave(&fep->hw_lock, flags);
|
|
/* Fill in a Tx ring entry */
|
|
bdp = fep->cur_tx;
|
|
|
|
status = bdp->cbd_sc;
|
|
#ifndef final_version
|
|
if (status & BD_ENET_TX_READY) {
|
|
/* Ooops. All transmit buffers are full. Bail out.
|
|
* This should not happen, since dev->tbusy should be set.
|
|
*/
|
|
printk("%s: tx queue full!.\n", dev->name);
|
|
spin_unlock_irqrestore(&fep->hw_lock, flags);
|
|
return 1;
|
|
}
|
|
#endif
|
|
|
|
/* Clear all of the status flags.
|
|
*/
|
|
status &= ~BD_ENET_TX_STATS;
|
|
|
|
/* Set buffer length and buffer pointer.
|
|
*/
|
|
bdp->cbd_bufaddr = __pa(skb->data);
|
|
bdp->cbd_datlen = skb->len;
|
|
|
|
/*
|
|
* On some FEC implementations data must be aligned on
|
|
* 4-byte boundaries. Use bounce buffers to copy data
|
|
* and get it aligned. Ugh.
|
|
*/
|
|
if (bdp->cbd_bufaddr & FEC_ALIGNMENT) {
|
|
unsigned int index;
|
|
index = bdp - fep->tx_bd_base;
|
|
memcpy(fep->tx_bounce[index], (void *)skb->data, skb->len);
|
|
bdp->cbd_bufaddr = __pa(fep->tx_bounce[index]);
|
|
}
|
|
|
|
/* Save skb pointer.
|
|
*/
|
|
fep->tx_skbuff[fep->skb_cur] = skb;
|
|
|
|
dev->stats.tx_bytes += skb->len;
|
|
fep->skb_cur = (fep->skb_cur+1) & TX_RING_MOD_MASK;
|
|
|
|
/* Push the data cache so the CPM does not get stale memory
|
|
* data.
|
|
*/
|
|
dma_sync_single(NULL, bdp->cbd_bufaddr,
|
|
bdp->cbd_datlen, DMA_TO_DEVICE);
|
|
|
|
/* Send it on its way. Tell FEC it's ready, interrupt when done,
|
|
* it's the last BD of the frame, and to put the CRC on the end.
|
|
*/
|
|
|
|
status |= (BD_ENET_TX_READY | BD_ENET_TX_INTR
|
|
| BD_ENET_TX_LAST | BD_ENET_TX_TC);
|
|
bdp->cbd_sc = status;
|
|
|
|
dev->trans_start = jiffies;
|
|
|
|
/* Trigger transmission start */
|
|
fecp->fec_x_des_active = 0;
|
|
|
|
/* If this was the last BD in the ring, start at the beginning again.
|
|
*/
|
|
if (status & BD_ENET_TX_WRAP) {
|
|
bdp = fep->tx_bd_base;
|
|
} else {
|
|
bdp++;
|
|
}
|
|
|
|
if (bdp == fep->dirty_tx) {
|
|
fep->tx_full = 1;
|
|
netif_stop_queue(dev);
|
|
}
|
|
|
|
fep->cur_tx = (cbd_t *)bdp;
|
|
|
|
spin_unlock_irqrestore(&fep->hw_lock, flags);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static void
|
|
fec_timeout(struct net_device *dev)
|
|
{
|
|
struct fec_enet_private *fep = netdev_priv(dev);
|
|
|
|
printk("%s: transmit timed out.\n", dev->name);
|
|
dev->stats.tx_errors++;
|
|
#ifndef final_version
|
|
{
|
|
int i;
|
|
cbd_t *bdp;
|
|
|
|
printk("Ring data dump: cur_tx %lx%s, dirty_tx %lx cur_rx: %lx\n",
|
|
(unsigned long)fep->cur_tx, fep->tx_full ? " (full)" : "",
|
|
(unsigned long)fep->dirty_tx,
|
|
(unsigned long)fep->cur_rx);
|
|
|
|
bdp = fep->tx_bd_base;
|
|
printk(" tx: %u buffers\n", TX_RING_SIZE);
|
|
for (i = 0 ; i < TX_RING_SIZE; i++) {
|
|
printk(" %08x: %04x %04x %08x\n",
|
|
(uint) bdp,
|
|
bdp->cbd_sc,
|
|
bdp->cbd_datlen,
|
|
(int) bdp->cbd_bufaddr);
|
|
bdp++;
|
|
}
|
|
|
|
bdp = fep->rx_bd_base;
|
|
printk(" rx: %lu buffers\n", (unsigned long) RX_RING_SIZE);
|
|
for (i = 0 ; i < RX_RING_SIZE; i++) {
|
|
printk(" %08x: %04x %04x %08x\n",
|
|
(uint) bdp,
|
|
bdp->cbd_sc,
|
|
bdp->cbd_datlen,
|
|
(int) bdp->cbd_bufaddr);
|
|
bdp++;
|
|
}
|
|
}
|
|
#endif
|
|
fec_restart(dev, fep->full_duplex);
|
|
netif_wake_queue(dev);
|
|
}
|
|
|
|
/* The interrupt handler.
|
|
* This is called from the MPC core interrupt.
|
|
*/
|
|
static irqreturn_t
|
|
fec_enet_interrupt(int irq, void * dev_id)
|
|
{
|
|
struct net_device *dev = dev_id;
|
|
volatile fec_t *fecp;
|
|
uint int_events;
|
|
irqreturn_t ret = IRQ_NONE;
|
|
|
|
fecp = (volatile fec_t*)dev->base_addr;
|
|
|
|
/* Get the interrupt events that caused us to be here.
|
|
*/
|
|
do {
|
|
int_events = fecp->fec_ievent;
|
|
fecp->fec_ievent = int_events;
|
|
|
|
/* Handle receive event in its own function.
|
|
*/
|
|
if (int_events & FEC_ENET_RXF) {
|
|
ret = IRQ_HANDLED;
|
|
fec_enet_rx(dev);
|
|
}
|
|
|
|
/* Transmit OK, or non-fatal error. Update the buffer
|
|
descriptors. FEC handles all errors, we just discover
|
|
them as part of the transmit process.
|
|
*/
|
|
if (int_events & FEC_ENET_TXF) {
|
|
ret = IRQ_HANDLED;
|
|
fec_enet_tx(dev);
|
|
}
|
|
|
|
if (int_events & FEC_ENET_MII) {
|
|
ret = IRQ_HANDLED;
|
|
fec_enet_mii(dev);
|
|
}
|
|
|
|
} while (int_events);
|
|
|
|
return ret;
|
|
}
|
|
|
|
|
|
static void
|
|
fec_enet_tx(struct net_device *dev)
|
|
{
|
|
struct fec_enet_private *fep;
|
|
volatile cbd_t *bdp;
|
|
unsigned short status;
|
|
struct sk_buff *skb;
|
|
|
|
fep = netdev_priv(dev);
|
|
spin_lock_irq(&fep->hw_lock);
|
|
bdp = fep->dirty_tx;
|
|
|
|
while (((status = bdp->cbd_sc) & BD_ENET_TX_READY) == 0) {
|
|
if (bdp == fep->cur_tx && fep->tx_full == 0) break;
|
|
|
|
skb = fep->tx_skbuff[fep->skb_dirty];
|
|
/* Check for errors. */
|
|
if (status & (BD_ENET_TX_HB | BD_ENET_TX_LC |
|
|
BD_ENET_TX_RL | BD_ENET_TX_UN |
|
|
BD_ENET_TX_CSL)) {
|
|
dev->stats.tx_errors++;
|
|
if (status & BD_ENET_TX_HB) /* No heartbeat */
|
|
dev->stats.tx_heartbeat_errors++;
|
|
if (status & BD_ENET_TX_LC) /* Late collision */
|
|
dev->stats.tx_window_errors++;
|
|
if (status & BD_ENET_TX_RL) /* Retrans limit */
|
|
dev->stats.tx_aborted_errors++;
|
|
if (status & BD_ENET_TX_UN) /* Underrun */
|
|
dev->stats.tx_fifo_errors++;
|
|
if (status & BD_ENET_TX_CSL) /* Carrier lost */
|
|
dev->stats.tx_carrier_errors++;
|
|
} else {
|
|
dev->stats.tx_packets++;
|
|
}
|
|
|
|
#ifndef final_version
|
|
if (status & BD_ENET_TX_READY)
|
|
printk("HEY! Enet xmit interrupt and TX_READY.\n");
|
|
#endif
|
|
/* Deferred means some collisions occurred during transmit,
|
|
* but we eventually sent the packet OK.
|
|
*/
|
|
if (status & BD_ENET_TX_DEF)
|
|
dev->stats.collisions++;
|
|
|
|
/* Free the sk buffer associated with this last transmit.
|
|
*/
|
|
dev_kfree_skb_any(skb);
|
|
fep->tx_skbuff[fep->skb_dirty] = NULL;
|
|
fep->skb_dirty = (fep->skb_dirty + 1) & TX_RING_MOD_MASK;
|
|
|
|
/* Update pointer to next buffer descriptor to be transmitted.
|
|
*/
|
|
if (status & BD_ENET_TX_WRAP)
|
|
bdp = fep->tx_bd_base;
|
|
else
|
|
bdp++;
|
|
|
|
/* Since we have freed up a buffer, the ring is no longer
|
|
* full.
|
|
*/
|
|
if (fep->tx_full) {
|
|
fep->tx_full = 0;
|
|
if (netif_queue_stopped(dev))
|
|
netif_wake_queue(dev);
|
|
}
|
|
}
|
|
fep->dirty_tx = (cbd_t *)bdp;
|
|
spin_unlock_irq(&fep->hw_lock);
|
|
}
|
|
|
|
|
|
/* During a receive, the cur_rx points to the current incoming buffer.
|
|
* When we update through the ring, if the next incoming buffer has
|
|
* not been given to the system, we just set the empty indicator,
|
|
* effectively tossing the packet.
|
|
*/
|
|
static void
|
|
fec_enet_rx(struct net_device *dev)
|
|
{
|
|
struct fec_enet_private *fep;
|
|
volatile fec_t *fecp;
|
|
volatile cbd_t *bdp;
|
|
unsigned short status;
|
|
struct sk_buff *skb;
|
|
ushort pkt_len;
|
|
__u8 *data;
|
|
|
|
#ifdef CONFIG_M532x
|
|
flush_cache_all();
|
|
#endif
|
|
|
|
fep = netdev_priv(dev);
|
|
fecp = (volatile fec_t*)dev->base_addr;
|
|
|
|
spin_lock_irq(&fep->hw_lock);
|
|
|
|
/* First, grab all of the stats for the incoming packet.
|
|
* These get messed up if we get called due to a busy condition.
|
|
*/
|
|
bdp = fep->cur_rx;
|
|
|
|
while (!((status = bdp->cbd_sc) & BD_ENET_RX_EMPTY)) {
|
|
|
|
#ifndef final_version
|
|
/* Since we have allocated space to hold a complete frame,
|
|
* the last indicator should be set.
|
|
*/
|
|
if ((status & BD_ENET_RX_LAST) == 0)
|
|
printk("FEC ENET: rcv is not +last\n");
|
|
#endif
|
|
|
|
if (!fep->opened)
|
|
goto rx_processing_done;
|
|
|
|
/* Check for errors. */
|
|
if (status & (BD_ENET_RX_LG | BD_ENET_RX_SH | BD_ENET_RX_NO |
|
|
BD_ENET_RX_CR | BD_ENET_RX_OV)) {
|
|
dev->stats.rx_errors++;
|
|
if (status & (BD_ENET_RX_LG | BD_ENET_RX_SH)) {
|
|
/* Frame too long or too short. */
|
|
dev->stats.rx_length_errors++;
|
|
}
|
|
if (status & BD_ENET_RX_NO) /* Frame alignment */
|
|
dev->stats.rx_frame_errors++;
|
|
if (status & BD_ENET_RX_CR) /* CRC Error */
|
|
dev->stats.rx_crc_errors++;
|
|
if (status & BD_ENET_RX_OV) /* FIFO overrun */
|
|
dev->stats.rx_fifo_errors++;
|
|
}
|
|
|
|
/* Report late collisions as a frame error.
|
|
* On this error, the BD is closed, but we don't know what we
|
|
* have in the buffer. So, just drop this frame on the floor.
|
|
*/
|
|
if (status & BD_ENET_RX_CL) {
|
|
dev->stats.rx_errors++;
|
|
dev->stats.rx_frame_errors++;
|
|
goto rx_processing_done;
|
|
}
|
|
|
|
/* Process the incoming frame.
|
|
*/
|
|
dev->stats.rx_packets++;
|
|
pkt_len = bdp->cbd_datlen;
|
|
dev->stats.rx_bytes += pkt_len;
|
|
data = (__u8*)__va(bdp->cbd_bufaddr);
|
|
|
|
dma_sync_single(NULL, (unsigned long)__pa(data),
|
|
pkt_len - 4, DMA_FROM_DEVICE);
|
|
|
|
/* This does 16 byte alignment, exactly what we need.
|
|
* The packet length includes FCS, but we don't want to
|
|
* include that when passing upstream as it messes up
|
|
* bridging applications.
|
|
*/
|
|
skb = dev_alloc_skb(pkt_len-4);
|
|
|
|
if (skb == NULL) {
|
|
printk("%s: Memory squeeze, dropping packet.\n", dev->name);
|
|
dev->stats.rx_dropped++;
|
|
} else {
|
|
skb_put(skb,pkt_len-4); /* Make room */
|
|
skb_copy_to_linear_data(skb, data, pkt_len-4);
|
|
skb->protocol=eth_type_trans(skb,dev);
|
|
netif_rx(skb);
|
|
}
|
|
rx_processing_done:
|
|
|
|
/* Clear the status flags for this buffer.
|
|
*/
|
|
status &= ~BD_ENET_RX_STATS;
|
|
|
|
/* Mark the buffer empty.
|
|
*/
|
|
status |= BD_ENET_RX_EMPTY;
|
|
bdp->cbd_sc = status;
|
|
|
|
/* Update BD pointer to next entry.
|
|
*/
|
|
if (status & BD_ENET_RX_WRAP)
|
|
bdp = fep->rx_bd_base;
|
|
else
|
|
bdp++;
|
|
|
|
#if 1
|
|
/* Doing this here will keep the FEC running while we process
|
|
* incoming frames. On a heavily loaded network, we should be
|
|
* able to keep up at the expense of system resources.
|
|
*/
|
|
fecp->fec_r_des_active = 0;
|
|
#endif
|
|
} /* while (!((status = bdp->cbd_sc) & BD_ENET_RX_EMPTY)) */
|
|
fep->cur_rx = (cbd_t *)bdp;
|
|
|
|
#if 0
|
|
/* Doing this here will allow us to process all frames in the
|
|
* ring before the FEC is allowed to put more there. On a heavily
|
|
* loaded network, some frames may be lost. Unfortunately, this
|
|
* increases the interrupt overhead since we can potentially work
|
|
* our way back to the interrupt return only to come right back
|
|
* here.
|
|
*/
|
|
fecp->fec_r_des_active = 0;
|
|
#endif
|
|
|
|
spin_unlock_irq(&fep->hw_lock);
|
|
}
|
|
|
|
|
|
/* called from interrupt context */
|
|
static void
|
|
fec_enet_mii(struct net_device *dev)
|
|
{
|
|
struct fec_enet_private *fep;
|
|
volatile fec_t *ep;
|
|
mii_list_t *mip;
|
|
uint mii_reg;
|
|
|
|
fep = netdev_priv(dev);
|
|
spin_lock_irq(&fep->mii_lock);
|
|
|
|
ep = fep->hwp;
|
|
mii_reg = ep->fec_mii_data;
|
|
|
|
if ((mip = mii_head) == NULL) {
|
|
printk("MII and no head!\n");
|
|
goto unlock;
|
|
}
|
|
|
|
if (mip->mii_func != NULL)
|
|
(*(mip->mii_func))(mii_reg, dev);
|
|
|
|
mii_head = mip->mii_next;
|
|
mip->mii_next = mii_free;
|
|
mii_free = mip;
|
|
|
|
if ((mip = mii_head) != NULL)
|
|
ep->fec_mii_data = mip->mii_regval;
|
|
|
|
unlock:
|
|
spin_unlock_irq(&fep->mii_lock);
|
|
}
|
|
|
|
static int
|
|
mii_queue(struct net_device *dev, int regval, void (*func)(uint, struct net_device *))
|
|
{
|
|
struct fec_enet_private *fep;
|
|
unsigned long flags;
|
|
mii_list_t *mip;
|
|
int retval;
|
|
|
|
/* Add PHY address to register command.
|
|
*/
|
|
fep = netdev_priv(dev);
|
|
spin_lock_irqsave(&fep->mii_lock, flags);
|
|
|
|
regval |= fep->phy_addr << 23;
|
|
retval = 0;
|
|
|
|
if ((mip = mii_free) != NULL) {
|
|
mii_free = mip->mii_next;
|
|
mip->mii_regval = regval;
|
|
mip->mii_func = func;
|
|
mip->mii_next = NULL;
|
|
if (mii_head) {
|
|
mii_tail->mii_next = mip;
|
|
mii_tail = mip;
|
|
} else {
|
|
mii_head = mii_tail = mip;
|
|
fep->hwp->fec_mii_data = regval;
|
|
}
|
|
} else {
|
|
retval = 1;
|
|
}
|
|
|
|
spin_unlock_irqrestore(&fep->mii_lock, flags);
|
|
return retval;
|
|
}
|
|
|
|
static void mii_do_cmd(struct net_device *dev, const phy_cmd_t *c)
|
|
{
|
|
if(!c)
|
|
return;
|
|
|
|
for (; c->mii_data != mk_mii_end; c++)
|
|
mii_queue(dev, c->mii_data, c->funct);
|
|
}
|
|
|
|
static void mii_parse_sr(uint mii_reg, struct net_device *dev)
|
|
{
|
|
struct fec_enet_private *fep = netdev_priv(dev);
|
|
volatile uint *s = &(fep->phy_status);
|
|
uint status;
|
|
|
|
status = *s & ~(PHY_STAT_LINK | PHY_STAT_FAULT | PHY_STAT_ANC);
|
|
|
|
if (mii_reg & 0x0004)
|
|
status |= PHY_STAT_LINK;
|
|
if (mii_reg & 0x0010)
|
|
status |= PHY_STAT_FAULT;
|
|
if (mii_reg & 0x0020)
|
|
status |= PHY_STAT_ANC;
|
|
*s = status;
|
|
}
|
|
|
|
static void mii_parse_cr(uint mii_reg, struct net_device *dev)
|
|
{
|
|
struct fec_enet_private *fep = netdev_priv(dev);
|
|
volatile uint *s = &(fep->phy_status);
|
|
uint status;
|
|
|
|
status = *s & ~(PHY_CONF_ANE | PHY_CONF_LOOP);
|
|
|
|
if (mii_reg & 0x1000)
|
|
status |= PHY_CONF_ANE;
|
|
if (mii_reg & 0x4000)
|
|
status |= PHY_CONF_LOOP;
|
|
*s = status;
|
|
}
|
|
|
|
static void mii_parse_anar(uint mii_reg, struct net_device *dev)
|
|
{
|
|
struct fec_enet_private *fep = netdev_priv(dev);
|
|
volatile uint *s = &(fep->phy_status);
|
|
uint status;
|
|
|
|
status = *s & ~(PHY_CONF_SPMASK);
|
|
|
|
if (mii_reg & 0x0020)
|
|
status |= PHY_CONF_10HDX;
|
|
if (mii_reg & 0x0040)
|
|
status |= PHY_CONF_10FDX;
|
|
if (mii_reg & 0x0080)
|
|
status |= PHY_CONF_100HDX;
|
|
if (mii_reg & 0x00100)
|
|
status |= PHY_CONF_100FDX;
|
|
*s = status;
|
|
}
|
|
|
|
/* ------------------------------------------------------------------------- */
|
|
/* The Level one LXT970 is used by many boards */
|
|
|
|
#define MII_LXT970_MIRROR 16 /* Mirror register */
|
|
#define MII_LXT970_IER 17 /* Interrupt Enable Register */
|
|
#define MII_LXT970_ISR 18 /* Interrupt Status Register */
|
|
#define MII_LXT970_CONFIG 19 /* Configuration Register */
|
|
#define MII_LXT970_CSR 20 /* Chip Status Register */
|
|
|
|
static void mii_parse_lxt970_csr(uint mii_reg, struct net_device *dev)
|
|
{
|
|
struct fec_enet_private *fep = netdev_priv(dev);
|
|
volatile uint *s = &(fep->phy_status);
|
|
uint status;
|
|
|
|
status = *s & ~(PHY_STAT_SPMASK);
|
|
if (mii_reg & 0x0800) {
|
|
if (mii_reg & 0x1000)
|
|
status |= PHY_STAT_100FDX;
|
|
else
|
|
status |= PHY_STAT_100HDX;
|
|
} else {
|
|
if (mii_reg & 0x1000)
|
|
status |= PHY_STAT_10FDX;
|
|
else
|
|
status |= PHY_STAT_10HDX;
|
|
}
|
|
*s = status;
|
|
}
|
|
|
|
static phy_cmd_t const phy_cmd_lxt970_config[] = {
|
|
{ mk_mii_read(MII_REG_CR), mii_parse_cr },
|
|
{ mk_mii_read(MII_REG_ANAR), mii_parse_anar },
|
|
{ mk_mii_end, }
|
|
};
|
|
static phy_cmd_t const phy_cmd_lxt970_startup[] = { /* enable interrupts */
|
|
{ mk_mii_write(MII_LXT970_IER, 0x0002), NULL },
|
|
{ mk_mii_write(MII_REG_CR, 0x1200), NULL }, /* autonegotiate */
|
|
{ mk_mii_end, }
|
|
};
|
|
static phy_cmd_t const phy_cmd_lxt970_ack_int[] = {
|
|
/* read SR and ISR to acknowledge */
|
|
{ mk_mii_read(MII_REG_SR), mii_parse_sr },
|
|
{ mk_mii_read(MII_LXT970_ISR), NULL },
|
|
|
|
/* find out the current status */
|
|
{ mk_mii_read(MII_LXT970_CSR), mii_parse_lxt970_csr },
|
|
{ mk_mii_end, }
|
|
};
|
|
static phy_cmd_t const phy_cmd_lxt970_shutdown[] = { /* disable interrupts */
|
|
{ mk_mii_write(MII_LXT970_IER, 0x0000), NULL },
|
|
{ mk_mii_end, }
|
|
};
|
|
static phy_info_t const phy_info_lxt970 = {
|
|
.id = 0x07810000,
|
|
.name = "LXT970",
|
|
.config = phy_cmd_lxt970_config,
|
|
.startup = phy_cmd_lxt970_startup,
|
|
.ack_int = phy_cmd_lxt970_ack_int,
|
|
.shutdown = phy_cmd_lxt970_shutdown
|
|
};
|
|
|
|
/* ------------------------------------------------------------------------- */
|
|
/* The Level one LXT971 is used on some of my custom boards */
|
|
|
|
/* register definitions for the 971 */
|
|
|
|
#define MII_LXT971_PCR 16 /* Port Control Register */
|
|
#define MII_LXT971_SR2 17 /* Status Register 2 */
|
|
#define MII_LXT971_IER 18 /* Interrupt Enable Register */
|
|
#define MII_LXT971_ISR 19 /* Interrupt Status Register */
|
|
#define MII_LXT971_LCR 20 /* LED Control Register */
|
|
#define MII_LXT971_TCR 30 /* Transmit Control Register */
|
|
|
|
/*
|
|
* I had some nice ideas of running the MDIO faster...
|
|
* The 971 should support 8MHz and I tried it, but things acted really
|
|
* weird, so 2.5 MHz ought to be enough for anyone...
|
|
*/
|
|
|
|
static void mii_parse_lxt971_sr2(uint mii_reg, struct net_device *dev)
|
|
{
|
|
struct fec_enet_private *fep = netdev_priv(dev);
|
|
volatile uint *s = &(fep->phy_status);
|
|
uint status;
|
|
|
|
status = *s & ~(PHY_STAT_SPMASK | PHY_STAT_LINK | PHY_STAT_ANC);
|
|
|
|
if (mii_reg & 0x0400) {
|
|
fep->link = 1;
|
|
status |= PHY_STAT_LINK;
|
|
} else {
|
|
fep->link = 0;
|
|
}
|
|
if (mii_reg & 0x0080)
|
|
status |= PHY_STAT_ANC;
|
|
if (mii_reg & 0x4000) {
|
|
if (mii_reg & 0x0200)
|
|
status |= PHY_STAT_100FDX;
|
|
else
|
|
status |= PHY_STAT_100HDX;
|
|
} else {
|
|
if (mii_reg & 0x0200)
|
|
status |= PHY_STAT_10FDX;
|
|
else
|
|
status |= PHY_STAT_10HDX;
|
|
}
|
|
if (mii_reg & 0x0008)
|
|
status |= PHY_STAT_FAULT;
|
|
|
|
*s = status;
|
|
}
|
|
|
|
static phy_cmd_t const phy_cmd_lxt971_config[] = {
|
|
/* limit to 10MBit because my prototype board
|
|
* doesn't work with 100. */
|
|
{ mk_mii_read(MII_REG_CR), mii_parse_cr },
|
|
{ mk_mii_read(MII_REG_ANAR), mii_parse_anar },
|
|
{ mk_mii_read(MII_LXT971_SR2), mii_parse_lxt971_sr2 },
|
|
{ mk_mii_end, }
|
|
};
|
|
static phy_cmd_t const phy_cmd_lxt971_startup[] = { /* enable interrupts */
|
|
{ mk_mii_write(MII_LXT971_IER, 0x00f2), NULL },
|
|
{ mk_mii_write(MII_REG_CR, 0x1200), NULL }, /* autonegotiate */
|
|
{ mk_mii_write(MII_LXT971_LCR, 0xd422), NULL }, /* LED config */
|
|
/* Somehow does the 971 tell me that the link is down
|
|
* the first read after power-up.
|
|
* read here to get a valid value in ack_int */
|
|
{ mk_mii_read(MII_REG_SR), mii_parse_sr },
|
|
{ mk_mii_end, }
|
|
};
|
|
static phy_cmd_t const phy_cmd_lxt971_ack_int[] = {
|
|
/* acknowledge the int before reading status ! */
|
|
{ mk_mii_read(MII_LXT971_ISR), NULL },
|
|
/* find out the current status */
|
|
{ mk_mii_read(MII_REG_SR), mii_parse_sr },
|
|
{ mk_mii_read(MII_LXT971_SR2), mii_parse_lxt971_sr2 },
|
|
{ mk_mii_end, }
|
|
};
|
|
static phy_cmd_t const phy_cmd_lxt971_shutdown[] = { /* disable interrupts */
|
|
{ mk_mii_write(MII_LXT971_IER, 0x0000), NULL },
|
|
{ mk_mii_end, }
|
|
};
|
|
static phy_info_t const phy_info_lxt971 = {
|
|
.id = 0x0001378e,
|
|
.name = "LXT971",
|
|
.config = phy_cmd_lxt971_config,
|
|
.startup = phy_cmd_lxt971_startup,
|
|
.ack_int = phy_cmd_lxt971_ack_int,
|
|
.shutdown = phy_cmd_lxt971_shutdown
|
|
};
|
|
|
|
/* ------------------------------------------------------------------------- */
|
|
/* The Quality Semiconductor QS6612 is used on the RPX CLLF */
|
|
|
|
/* register definitions */
|
|
|
|
#define MII_QS6612_MCR 17 /* Mode Control Register */
|
|
#define MII_QS6612_FTR 27 /* Factory Test Register */
|
|
#define MII_QS6612_MCO 28 /* Misc. Control Register */
|
|
#define MII_QS6612_ISR 29 /* Interrupt Source Register */
|
|
#define MII_QS6612_IMR 30 /* Interrupt Mask Register */
|
|
#define MII_QS6612_PCR 31 /* 100BaseTx PHY Control Reg. */
|
|
|
|
static void mii_parse_qs6612_pcr(uint mii_reg, struct net_device *dev)
|
|
{
|
|
struct fec_enet_private *fep = netdev_priv(dev);
|
|
volatile uint *s = &(fep->phy_status);
|
|
uint status;
|
|
|
|
status = *s & ~(PHY_STAT_SPMASK);
|
|
|
|
switch((mii_reg >> 2) & 7) {
|
|
case 1: status |= PHY_STAT_10HDX; break;
|
|
case 2: status |= PHY_STAT_100HDX; break;
|
|
case 5: status |= PHY_STAT_10FDX; break;
|
|
case 6: status |= PHY_STAT_100FDX; break;
|
|
}
|
|
|
|
*s = status;
|
|
}
|
|
|
|
static phy_cmd_t const phy_cmd_qs6612_config[] = {
|
|
/* The PHY powers up isolated on the RPX,
|
|
* so send a command to allow operation.
|
|
*/
|
|
{ mk_mii_write(MII_QS6612_PCR, 0x0dc0), NULL },
|
|
|
|
/* parse cr and anar to get some info */
|
|
{ mk_mii_read(MII_REG_CR), mii_parse_cr },
|
|
{ mk_mii_read(MII_REG_ANAR), mii_parse_anar },
|
|
{ mk_mii_end, }
|
|
};
|
|
static phy_cmd_t const phy_cmd_qs6612_startup[] = { /* enable interrupts */
|
|
{ mk_mii_write(MII_QS6612_IMR, 0x003a), NULL },
|
|
{ mk_mii_write(MII_REG_CR, 0x1200), NULL }, /* autonegotiate */
|
|
{ mk_mii_end, }
|
|
};
|
|
static phy_cmd_t const phy_cmd_qs6612_ack_int[] = {
|
|
/* we need to read ISR, SR and ANER to acknowledge */
|
|
{ mk_mii_read(MII_QS6612_ISR), NULL },
|
|
{ mk_mii_read(MII_REG_SR), mii_parse_sr },
|
|
{ mk_mii_read(MII_REG_ANER), NULL },
|
|
|
|
/* read pcr to get info */
|
|
{ mk_mii_read(MII_QS6612_PCR), mii_parse_qs6612_pcr },
|
|
{ mk_mii_end, }
|
|
};
|
|
static phy_cmd_t const phy_cmd_qs6612_shutdown[] = { /* disable interrupts */
|
|
{ mk_mii_write(MII_QS6612_IMR, 0x0000), NULL },
|
|
{ mk_mii_end, }
|
|
};
|
|
static phy_info_t const phy_info_qs6612 = {
|
|
.id = 0x00181440,
|
|
.name = "QS6612",
|
|
.config = phy_cmd_qs6612_config,
|
|
.startup = phy_cmd_qs6612_startup,
|
|
.ack_int = phy_cmd_qs6612_ack_int,
|
|
.shutdown = phy_cmd_qs6612_shutdown
|
|
};
|
|
|
|
/* ------------------------------------------------------------------------- */
|
|
/* AMD AM79C874 phy */
|
|
|
|
/* register definitions for the 874 */
|
|
|
|
#define MII_AM79C874_MFR 16 /* Miscellaneous Feature Register */
|
|
#define MII_AM79C874_ICSR 17 /* Interrupt/Status Register */
|
|
#define MII_AM79C874_DR 18 /* Diagnostic Register */
|
|
#define MII_AM79C874_PMLR 19 /* Power and Loopback Register */
|
|
#define MII_AM79C874_MCR 21 /* ModeControl Register */
|
|
#define MII_AM79C874_DC 23 /* Disconnect Counter */
|
|
#define MII_AM79C874_REC 24 /* Recieve Error Counter */
|
|
|
|
static void mii_parse_am79c874_dr(uint mii_reg, struct net_device *dev)
|
|
{
|
|
struct fec_enet_private *fep = netdev_priv(dev);
|
|
volatile uint *s = &(fep->phy_status);
|
|
uint status;
|
|
|
|
status = *s & ~(PHY_STAT_SPMASK | PHY_STAT_ANC);
|
|
|
|
if (mii_reg & 0x0080)
|
|
status |= PHY_STAT_ANC;
|
|
if (mii_reg & 0x0400)
|
|
status |= ((mii_reg & 0x0800) ? PHY_STAT_100FDX : PHY_STAT_100HDX);
|
|
else
|
|
status |= ((mii_reg & 0x0800) ? PHY_STAT_10FDX : PHY_STAT_10HDX);
|
|
|
|
*s = status;
|
|
}
|
|
|
|
static phy_cmd_t const phy_cmd_am79c874_config[] = {
|
|
{ mk_mii_read(MII_REG_CR), mii_parse_cr },
|
|
{ mk_mii_read(MII_REG_ANAR), mii_parse_anar },
|
|
{ mk_mii_read(MII_AM79C874_DR), mii_parse_am79c874_dr },
|
|
{ mk_mii_end, }
|
|
};
|
|
static phy_cmd_t const phy_cmd_am79c874_startup[] = { /* enable interrupts */
|
|
{ mk_mii_write(MII_AM79C874_ICSR, 0xff00), NULL },
|
|
{ mk_mii_write(MII_REG_CR, 0x1200), NULL }, /* autonegotiate */
|
|
{ mk_mii_read(MII_REG_SR), mii_parse_sr },
|
|
{ mk_mii_end, }
|
|
};
|
|
static phy_cmd_t const phy_cmd_am79c874_ack_int[] = {
|
|
/* find out the current status */
|
|
{ mk_mii_read(MII_REG_SR), mii_parse_sr },
|
|
{ mk_mii_read(MII_AM79C874_DR), mii_parse_am79c874_dr },
|
|
/* we only need to read ISR to acknowledge */
|
|
{ mk_mii_read(MII_AM79C874_ICSR), NULL },
|
|
{ mk_mii_end, }
|
|
};
|
|
static phy_cmd_t const phy_cmd_am79c874_shutdown[] = { /* disable interrupts */
|
|
{ mk_mii_write(MII_AM79C874_ICSR, 0x0000), NULL },
|
|
{ mk_mii_end, }
|
|
};
|
|
static phy_info_t const phy_info_am79c874 = {
|
|
.id = 0x00022561,
|
|
.name = "AM79C874",
|
|
.config = phy_cmd_am79c874_config,
|
|
.startup = phy_cmd_am79c874_startup,
|
|
.ack_int = phy_cmd_am79c874_ack_int,
|
|
.shutdown = phy_cmd_am79c874_shutdown
|
|
};
|
|
|
|
|
|
/* ------------------------------------------------------------------------- */
|
|
/* Kendin KS8721BL phy */
|
|
|
|
/* register definitions for the 8721 */
|
|
|
|
#define MII_KS8721BL_RXERCR 21
|
|
#define MII_KS8721BL_ICSR 27
|
|
#define MII_KS8721BL_PHYCR 31
|
|
|
|
static phy_cmd_t const phy_cmd_ks8721bl_config[] = {
|
|
{ mk_mii_read(MII_REG_CR), mii_parse_cr },
|
|
{ mk_mii_read(MII_REG_ANAR), mii_parse_anar },
|
|
{ mk_mii_end, }
|
|
};
|
|
static phy_cmd_t const phy_cmd_ks8721bl_startup[] = { /* enable interrupts */
|
|
{ mk_mii_write(MII_KS8721BL_ICSR, 0xff00), NULL },
|
|
{ mk_mii_write(MII_REG_CR, 0x1200), NULL }, /* autonegotiate */
|
|
{ mk_mii_read(MII_REG_SR), mii_parse_sr },
|
|
{ mk_mii_end, }
|
|
};
|
|
static phy_cmd_t const phy_cmd_ks8721bl_ack_int[] = {
|
|
/* find out the current status */
|
|
{ mk_mii_read(MII_REG_SR), mii_parse_sr },
|
|
/* we only need to read ISR to acknowledge */
|
|
{ mk_mii_read(MII_KS8721BL_ICSR), NULL },
|
|
{ mk_mii_end, }
|
|
};
|
|
static phy_cmd_t const phy_cmd_ks8721bl_shutdown[] = { /* disable interrupts */
|
|
{ mk_mii_write(MII_KS8721BL_ICSR, 0x0000), NULL },
|
|
{ mk_mii_end, }
|
|
};
|
|
static phy_info_t const phy_info_ks8721bl = {
|
|
.id = 0x00022161,
|
|
.name = "KS8721BL",
|
|
.config = phy_cmd_ks8721bl_config,
|
|
.startup = phy_cmd_ks8721bl_startup,
|
|
.ack_int = phy_cmd_ks8721bl_ack_int,
|
|
.shutdown = phy_cmd_ks8721bl_shutdown
|
|
};
|
|
|
|
/* ------------------------------------------------------------------------- */
|
|
/* register definitions for the DP83848 */
|
|
|
|
#define MII_DP8384X_PHYSTST 16 /* PHY Status Register */
|
|
|
|
static void mii_parse_dp8384x_sr2(uint mii_reg, struct net_device *dev)
|
|
{
|
|
struct fec_enet_private *fep = netdev_priv(dev);
|
|
volatile uint *s = &(fep->phy_status);
|
|
|
|
*s &= ~(PHY_STAT_SPMASK | PHY_STAT_LINK | PHY_STAT_ANC);
|
|
|
|
/* Link up */
|
|
if (mii_reg & 0x0001) {
|
|
fep->link = 1;
|
|
*s |= PHY_STAT_LINK;
|
|
} else
|
|
fep->link = 0;
|
|
/* Status of link */
|
|
if (mii_reg & 0x0010) /* Autonegotioation complete */
|
|
*s |= PHY_STAT_ANC;
|
|
if (mii_reg & 0x0002) { /* 10MBps? */
|
|
if (mii_reg & 0x0004) /* Full Duplex? */
|
|
*s |= PHY_STAT_10FDX;
|
|
else
|
|
*s |= PHY_STAT_10HDX;
|
|
} else { /* 100 Mbps? */
|
|
if (mii_reg & 0x0004) /* Full Duplex? */
|
|
*s |= PHY_STAT_100FDX;
|
|
else
|
|
*s |= PHY_STAT_100HDX;
|
|
}
|
|
if (mii_reg & 0x0008)
|
|
*s |= PHY_STAT_FAULT;
|
|
}
|
|
|
|
static phy_info_t phy_info_dp83848= {
|
|
0x020005c9,
|
|
"DP83848",
|
|
|
|
(const phy_cmd_t []) { /* config */
|
|
{ mk_mii_read(MII_REG_CR), mii_parse_cr },
|
|
{ mk_mii_read(MII_REG_ANAR), mii_parse_anar },
|
|
{ mk_mii_read(MII_DP8384X_PHYSTST), mii_parse_dp8384x_sr2 },
|
|
{ mk_mii_end, }
|
|
},
|
|
(const phy_cmd_t []) { /* startup - enable interrupts */
|
|
{ mk_mii_write(MII_REG_CR, 0x1200), NULL }, /* autonegotiate */
|
|
{ mk_mii_read(MII_REG_SR), mii_parse_sr },
|
|
{ mk_mii_end, }
|
|
},
|
|
(const phy_cmd_t []) { /* ack_int - never happens, no interrupt */
|
|
{ mk_mii_end, }
|
|
},
|
|
(const phy_cmd_t []) { /* shutdown */
|
|
{ mk_mii_end, }
|
|
},
|
|
};
|
|
|
|
/* ------------------------------------------------------------------------- */
|
|
|
|
static phy_info_t const * const phy_info[] = {
|
|
&phy_info_lxt970,
|
|
&phy_info_lxt971,
|
|
&phy_info_qs6612,
|
|
&phy_info_am79c874,
|
|
&phy_info_ks8721bl,
|
|
&phy_info_dp83848,
|
|
NULL
|
|
};
|
|
|
|
/* ------------------------------------------------------------------------- */
|
|
#ifdef HAVE_mii_link_interrupt
|
|
static irqreturn_t
|
|
mii_link_interrupt(int irq, void * dev_id);
|
|
|
|
/*
|
|
* This is specific to the MII interrupt setup of the M5272EVB.
|
|
*/
|
|
static void __inline__ fec_request_mii_intr(struct net_device *dev)
|
|
{
|
|
if (request_irq(66, mii_link_interrupt, IRQF_DISABLED, "fec(MII)", dev) != 0)
|
|
printk("FEC: Could not allocate fec(MII) IRQ(66)!\n");
|
|
}
|
|
|
|
static void __inline__ fec_disable_phy_intr(void)
|
|
{
|
|
volatile unsigned long *icrp;
|
|
icrp = (volatile unsigned long *) (MCF_MBAR + MCFSIM_ICR1);
|
|
*icrp = 0x08000000;
|
|
}
|
|
|
|
static void __inline__ fec_phy_ack_intr(void)
|
|
{
|
|
volatile unsigned long *icrp;
|
|
/* Acknowledge the interrupt */
|
|
icrp = (volatile unsigned long *) (MCF_MBAR + MCFSIM_ICR1);
|
|
*icrp = 0x0d000000;
|
|
}
|
|
#endif
|
|
|
|
#ifdef CONFIG_M5272
|
|
static void __inline__ fec_get_mac(struct net_device *dev)
|
|
{
|
|
struct fec_enet_private *fep = netdev_priv(dev);
|
|
volatile fec_t *fecp;
|
|
unsigned char *iap, tmpaddr[ETH_ALEN];
|
|
|
|
fecp = fep->hwp;
|
|
|
|
if (FEC_FLASHMAC) {
|
|
/*
|
|
* Get MAC address from FLASH.
|
|
* If it is all 1's or 0's, use the default.
|
|
*/
|
|
iap = (unsigned char *)FEC_FLASHMAC;
|
|
if ((iap[0] == 0) && (iap[1] == 0) && (iap[2] == 0) &&
|
|
(iap[3] == 0) && (iap[4] == 0) && (iap[5] == 0))
|
|
iap = fec_mac_default;
|
|
if ((iap[0] == 0xff) && (iap[1] == 0xff) && (iap[2] == 0xff) &&
|
|
(iap[3] == 0xff) && (iap[4] == 0xff) && (iap[5] == 0xff))
|
|
iap = fec_mac_default;
|
|
} else {
|
|
*((unsigned long *) &tmpaddr[0]) = fecp->fec_addr_low;
|
|
*((unsigned short *) &tmpaddr[4]) = (fecp->fec_addr_high >> 16);
|
|
iap = &tmpaddr[0];
|
|
}
|
|
|
|
memcpy(dev->dev_addr, iap, ETH_ALEN);
|
|
|
|
/* Adjust MAC if using default MAC address */
|
|
if (iap == fec_mac_default)
|
|
dev->dev_addr[ETH_ALEN-1] = fec_mac_default[ETH_ALEN-1] + fep->index;
|
|
}
|
|
#endif
|
|
|
|
/* ------------------------------------------------------------------------- */
|
|
|
|
static void mii_display_status(struct net_device *dev)
|
|
{
|
|
struct fec_enet_private *fep = netdev_priv(dev);
|
|
volatile uint *s = &(fep->phy_status);
|
|
|
|
if (!fep->link && !fep->old_link) {
|
|
/* Link is still down - don't print anything */
|
|
return;
|
|
}
|
|
|
|
printk("%s: status: ", dev->name);
|
|
|
|
if (!fep->link) {
|
|
printk("link down");
|
|
} else {
|
|
printk("link up");
|
|
|
|
switch(*s & PHY_STAT_SPMASK) {
|
|
case PHY_STAT_100FDX: printk(", 100MBit Full Duplex"); break;
|
|
case PHY_STAT_100HDX: printk(", 100MBit Half Duplex"); break;
|
|
case PHY_STAT_10FDX: printk(", 10MBit Full Duplex"); break;
|
|
case PHY_STAT_10HDX: printk(", 10MBit Half Duplex"); break;
|
|
default:
|
|
printk(", Unknown speed/duplex");
|
|
}
|
|
|
|
if (*s & PHY_STAT_ANC)
|
|
printk(", auto-negotiation complete");
|
|
}
|
|
|
|
if (*s & PHY_STAT_FAULT)
|
|
printk(", remote fault");
|
|
|
|
printk(".\n");
|
|
}
|
|
|
|
static void mii_display_config(struct work_struct *work)
|
|
{
|
|
struct fec_enet_private *fep = container_of(work, struct fec_enet_private, phy_task);
|
|
struct net_device *dev = fep->netdev;
|
|
uint status = fep->phy_status;
|
|
|
|
/*
|
|
** When we get here, phy_task is already removed from
|
|
** the workqueue. It is thus safe to allow to reuse it.
|
|
*/
|
|
fep->mii_phy_task_queued = 0;
|
|
printk("%s: config: auto-negotiation ", dev->name);
|
|
|
|
if (status & PHY_CONF_ANE)
|
|
printk("on");
|
|
else
|
|
printk("off");
|
|
|
|
if (status & PHY_CONF_100FDX)
|
|
printk(", 100FDX");
|
|
if (status & PHY_CONF_100HDX)
|
|
printk(", 100HDX");
|
|
if (status & PHY_CONF_10FDX)
|
|
printk(", 10FDX");
|
|
if (status & PHY_CONF_10HDX)
|
|
printk(", 10HDX");
|
|
if (!(status & PHY_CONF_SPMASK))
|
|
printk(", No speed/duplex selected?");
|
|
|
|
if (status & PHY_CONF_LOOP)
|
|
printk(", loopback enabled");
|
|
|
|
printk(".\n");
|
|
|
|
fep->sequence_done = 1;
|
|
}
|
|
|
|
static void mii_relink(struct work_struct *work)
|
|
{
|
|
struct fec_enet_private *fep = container_of(work, struct fec_enet_private, phy_task);
|
|
struct net_device *dev = fep->netdev;
|
|
int duplex;
|
|
|
|
/*
|
|
** When we get here, phy_task is already removed from
|
|
** the workqueue. It is thus safe to allow to reuse it.
|
|
*/
|
|
fep->mii_phy_task_queued = 0;
|
|
fep->link = (fep->phy_status & PHY_STAT_LINK) ? 1 : 0;
|
|
mii_display_status(dev);
|
|
fep->old_link = fep->link;
|
|
|
|
if (fep->link) {
|
|
duplex = 0;
|
|
if (fep->phy_status
|
|
& (PHY_STAT_100FDX | PHY_STAT_10FDX))
|
|
duplex = 1;
|
|
fec_restart(dev, duplex);
|
|
} else
|
|
fec_stop(dev);
|
|
|
|
#if 0
|
|
enable_irq(fep->mii_irq);
|
|
#endif
|
|
|
|
}
|
|
|
|
/* mii_queue_relink is called in interrupt context from mii_link_interrupt */
|
|
static void mii_queue_relink(uint mii_reg, struct net_device *dev)
|
|
{
|
|
struct fec_enet_private *fep = netdev_priv(dev);
|
|
|
|
/*
|
|
** We cannot queue phy_task twice in the workqueue. It
|
|
** would cause an endless loop in the workqueue.
|
|
** Fortunately, if the last mii_relink entry has not yet been
|
|
** executed now, it will do the job for the current interrupt,
|
|
** which is just what we want.
|
|
*/
|
|
if (fep->mii_phy_task_queued)
|
|
return;
|
|
|
|
fep->mii_phy_task_queued = 1;
|
|
INIT_WORK(&fep->phy_task, mii_relink);
|
|
schedule_work(&fep->phy_task);
|
|
}
|
|
|
|
/* mii_queue_config is called in interrupt context from fec_enet_mii */
|
|
static void mii_queue_config(uint mii_reg, struct net_device *dev)
|
|
{
|
|
struct fec_enet_private *fep = netdev_priv(dev);
|
|
|
|
if (fep->mii_phy_task_queued)
|
|
return;
|
|
|
|
fep->mii_phy_task_queued = 1;
|
|
INIT_WORK(&fep->phy_task, mii_display_config);
|
|
schedule_work(&fep->phy_task);
|
|
}
|
|
|
|
phy_cmd_t const phy_cmd_relink[] = {
|
|
{ mk_mii_read(MII_REG_CR), mii_queue_relink },
|
|
{ mk_mii_end, }
|
|
};
|
|
phy_cmd_t const phy_cmd_config[] = {
|
|
{ mk_mii_read(MII_REG_CR), mii_queue_config },
|
|
{ mk_mii_end, }
|
|
};
|
|
|
|
/* Read remainder of PHY ID.
|
|
*/
|
|
static void
|
|
mii_discover_phy3(uint mii_reg, struct net_device *dev)
|
|
{
|
|
struct fec_enet_private *fep;
|
|
int i;
|
|
|
|
fep = netdev_priv(dev);
|
|
fep->phy_id |= (mii_reg & 0xffff);
|
|
printk("fec: PHY @ 0x%x, ID 0x%08x", fep->phy_addr, fep->phy_id);
|
|
|
|
for(i = 0; phy_info[i]; i++) {
|
|
if(phy_info[i]->id == (fep->phy_id >> 4))
|
|
break;
|
|
}
|
|
|
|
if (phy_info[i])
|
|
printk(" -- %s\n", phy_info[i]->name);
|
|
else
|
|
printk(" -- unknown PHY!\n");
|
|
|
|
fep->phy = phy_info[i];
|
|
fep->phy_id_done = 1;
|
|
}
|
|
|
|
/* Scan all of the MII PHY addresses looking for someone to respond
|
|
* with a valid ID. This usually happens quickly.
|
|
*/
|
|
static void
|
|
mii_discover_phy(uint mii_reg, struct net_device *dev)
|
|
{
|
|
struct fec_enet_private *fep;
|
|
volatile fec_t *fecp;
|
|
uint phytype;
|
|
|
|
fep = netdev_priv(dev);
|
|
fecp = fep->hwp;
|
|
|
|
if (fep->phy_addr < 32) {
|
|
if ((phytype = (mii_reg & 0xffff)) != 0xffff && phytype != 0) {
|
|
|
|
/* Got first part of ID, now get remainder.
|
|
*/
|
|
fep->phy_id = phytype << 16;
|
|
mii_queue(dev, mk_mii_read(MII_REG_PHYIR2),
|
|
mii_discover_phy3);
|
|
} else {
|
|
fep->phy_addr++;
|
|
mii_queue(dev, mk_mii_read(MII_REG_PHYIR1),
|
|
mii_discover_phy);
|
|
}
|
|
} else {
|
|
printk("FEC: No PHY device found.\n");
|
|
/* Disable external MII interface */
|
|
fecp->fec_mii_speed = fep->phy_speed = 0;
|
|
#ifdef HAVE_mii_link_interrupt
|
|
fec_disable_phy_intr();
|
|
#endif
|
|
}
|
|
}
|
|
|
|
/* This interrupt occurs when the PHY detects a link change.
|
|
*/
|
|
#ifdef HAVE_mii_link_interrupt
|
|
static irqreturn_t
|
|
mii_link_interrupt(int irq, void * dev_id)
|
|
{
|
|
struct net_device *dev = dev_id;
|
|
struct fec_enet_private *fep = netdev_priv(dev);
|
|
|
|
fec_phy_ack_intr();
|
|
|
|
#if 0
|
|
disable_irq(fep->mii_irq); /* disable now, enable later */
|
|
#endif
|
|
|
|
mii_do_cmd(dev, fep->phy->ack_int);
|
|
mii_do_cmd(dev, phy_cmd_relink); /* restart and display status */
|
|
|
|
return IRQ_HANDLED;
|
|
}
|
|
#endif
|
|
|
|
static int
|
|
fec_enet_open(struct net_device *dev)
|
|
{
|
|
struct fec_enet_private *fep = netdev_priv(dev);
|
|
|
|
/* I should reset the ring buffers here, but I don't yet know
|
|
* a simple way to do that.
|
|
*/
|
|
fec_set_mac_address(dev);
|
|
|
|
fep->sequence_done = 0;
|
|
fep->link = 0;
|
|
|
|
if (fep->phy) {
|
|
mii_do_cmd(dev, fep->phy->ack_int);
|
|
mii_do_cmd(dev, fep->phy->config);
|
|
mii_do_cmd(dev, phy_cmd_config); /* display configuration */
|
|
|
|
/* Poll until the PHY tells us its configuration
|
|
* (not link state).
|
|
* Request is initiated by mii_do_cmd above, but answer
|
|
* comes by interrupt.
|
|
* This should take about 25 usec per register at 2.5 MHz,
|
|
* and we read approximately 5 registers.
|
|
*/
|
|
while(!fep->sequence_done)
|
|
schedule();
|
|
|
|
mii_do_cmd(dev, fep->phy->startup);
|
|
|
|
/* Set the initial link state to true. A lot of hardware
|
|
* based on this device does not implement a PHY interrupt,
|
|
* so we are never notified of link change.
|
|
*/
|
|
fep->link = 1;
|
|
} else {
|
|
fep->link = 1; /* lets just try it and see */
|
|
/* no phy, go full duplex, it's most likely a hub chip */
|
|
fec_restart(dev, 1);
|
|
}
|
|
|
|
netif_start_queue(dev);
|
|
fep->opened = 1;
|
|
return 0; /* Success */
|
|
}
|
|
|
|
static int
|
|
fec_enet_close(struct net_device *dev)
|
|
{
|
|
struct fec_enet_private *fep = netdev_priv(dev);
|
|
|
|
/* Don't know what to do yet.
|
|
*/
|
|
fep->opened = 0;
|
|
netif_stop_queue(dev);
|
|
fec_stop(dev);
|
|
|
|
return 0;
|
|
}
|
|
|
|
/* Set or clear the multicast filter for this adaptor.
|
|
* Skeleton taken from sunlance driver.
|
|
* The CPM Ethernet implementation allows Multicast as well as individual
|
|
* MAC address filtering. Some of the drivers check to make sure it is
|
|
* a group multicast address, and discard those that are not. I guess I
|
|
* will do the same for now, but just remove the test if you want
|
|
* individual filtering as well (do the upper net layers want or support
|
|
* this kind of feature?).
|
|
*/
|
|
|
|
#define HASH_BITS 6 /* #bits in hash */
|
|
#define CRC32_POLY 0xEDB88320
|
|
|
|
static void set_multicast_list(struct net_device *dev)
|
|
{
|
|
struct fec_enet_private *fep;
|
|
volatile fec_t *ep;
|
|
struct dev_mc_list *dmi;
|
|
unsigned int i, j, bit, data, crc;
|
|
unsigned char hash;
|
|
|
|
fep = netdev_priv(dev);
|
|
ep = fep->hwp;
|
|
|
|
if (dev->flags&IFF_PROMISC) {
|
|
ep->fec_r_cntrl |= 0x0008;
|
|
} else {
|
|
|
|
ep->fec_r_cntrl &= ~0x0008;
|
|
|
|
if (dev->flags & IFF_ALLMULTI) {
|
|
/* Catch all multicast addresses, so set the
|
|
* filter to all 1's.
|
|
*/
|
|
ep->fec_grp_hash_table_high = 0xffffffff;
|
|
ep->fec_grp_hash_table_low = 0xffffffff;
|
|
} else {
|
|
/* Clear filter and add the addresses in hash register.
|
|
*/
|
|
ep->fec_grp_hash_table_high = 0;
|
|
ep->fec_grp_hash_table_low = 0;
|
|
|
|
dmi = dev->mc_list;
|
|
|
|
for (j = 0; j < dev->mc_count; j++, dmi = dmi->next)
|
|
{
|
|
/* Only support group multicast for now.
|
|
*/
|
|
if (!(dmi->dmi_addr[0] & 1))
|
|
continue;
|
|
|
|
/* calculate crc32 value of mac address
|
|
*/
|
|
crc = 0xffffffff;
|
|
|
|
for (i = 0; i < dmi->dmi_addrlen; i++)
|
|
{
|
|
data = dmi->dmi_addr[i];
|
|
for (bit = 0; bit < 8; bit++, data >>= 1)
|
|
{
|
|
crc = (crc >> 1) ^
|
|
(((crc ^ data) & 1) ? CRC32_POLY : 0);
|
|
}
|
|
}
|
|
|
|
/* only upper 6 bits (HASH_BITS) are used
|
|
which point to specific bit in he hash registers
|
|
*/
|
|
hash = (crc >> (32 - HASH_BITS)) & 0x3f;
|
|
|
|
if (hash > 31)
|
|
ep->fec_grp_hash_table_high |= 1 << (hash - 32);
|
|
else
|
|
ep->fec_grp_hash_table_low |= 1 << hash;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
/* Set a MAC change in hardware.
|
|
*/
|
|
static void
|
|
fec_set_mac_address(struct net_device *dev)
|
|
{
|
|
volatile fec_t *fecp;
|
|
|
|
fecp = ((struct fec_enet_private *)netdev_priv(dev))->hwp;
|
|
|
|
/* Set station address. */
|
|
fecp->fec_addr_low = dev->dev_addr[3] | (dev->dev_addr[2] << 8) |
|
|
(dev->dev_addr[1] << 16) | (dev->dev_addr[0] << 24);
|
|
fecp->fec_addr_high = (dev->dev_addr[5] << 16) |
|
|
(dev->dev_addr[4] << 24);
|
|
|
|
}
|
|
|
|
/*
|
|
* XXX: We need to clean up on failure exits here.
|
|
*
|
|
* index is only used in legacy code
|
|
*/
|
|
int __init fec_enet_init(struct net_device *dev, int index)
|
|
{
|
|
struct fec_enet_private *fep = netdev_priv(dev);
|
|
unsigned long mem_addr;
|
|
volatile cbd_t *bdp;
|
|
cbd_t *cbd_base;
|
|
volatile fec_t *fecp;
|
|
int i, j;
|
|
|
|
/* Allocate memory for buffer descriptors.
|
|
*/
|
|
mem_addr = (unsigned long)dma_alloc_coherent(NULL, PAGE_SIZE,
|
|
&fep->bd_dma, GFP_KERNEL);
|
|
if (mem_addr == 0) {
|
|
printk("FEC: allocate descriptor memory failed?\n");
|
|
return -ENOMEM;
|
|
}
|
|
|
|
spin_lock_init(&fep->hw_lock);
|
|
spin_lock_init(&fep->mii_lock);
|
|
|
|
/* Create an Ethernet device instance.
|
|
*/
|
|
fecp = (volatile fec_t *)dev->base_addr;
|
|
|
|
fep->index = index;
|
|
fep->hwp = fecp;
|
|
fep->netdev = dev;
|
|
|
|
/* Whack a reset. We should wait for this.
|
|
*/
|
|
fecp->fec_ecntrl = 1;
|
|
udelay(10);
|
|
|
|
/* Set the Ethernet address */
|
|
#ifdef CONFIG_M5272
|
|
fec_get_mac(dev);
|
|
#else
|
|
{
|
|
unsigned long l;
|
|
l = fecp->fec_addr_low;
|
|
dev->dev_addr[0] = (unsigned char)((l & 0xFF000000) >> 24);
|
|
dev->dev_addr[1] = (unsigned char)((l & 0x00FF0000) >> 16);
|
|
dev->dev_addr[2] = (unsigned char)((l & 0x0000FF00) >> 8);
|
|
dev->dev_addr[3] = (unsigned char)((l & 0x000000FF) >> 0);
|
|
l = fecp->fec_addr_high;
|
|
dev->dev_addr[4] = (unsigned char)((l & 0xFF000000) >> 24);
|
|
dev->dev_addr[5] = (unsigned char)((l & 0x00FF0000) >> 16);
|
|
}
|
|
#endif
|
|
|
|
cbd_base = (cbd_t *)mem_addr;
|
|
|
|
/* Set receive and transmit descriptor base.
|
|
*/
|
|
fep->rx_bd_base = cbd_base;
|
|
fep->tx_bd_base = cbd_base + RX_RING_SIZE;
|
|
|
|
fep->dirty_tx = fep->cur_tx = fep->tx_bd_base;
|
|
fep->cur_rx = fep->rx_bd_base;
|
|
|
|
fep->skb_cur = fep->skb_dirty = 0;
|
|
|
|
/* Initialize the receive buffer descriptors.
|
|
*/
|
|
bdp = fep->rx_bd_base;
|
|
for (i=0; i<FEC_ENET_RX_PAGES; i++) {
|
|
|
|
/* Allocate a page.
|
|
*/
|
|
mem_addr = __get_free_page(GFP_KERNEL);
|
|
/* XXX: missing check for allocation failure */
|
|
|
|
/* Initialize the BD for every fragment in the page.
|
|
*/
|
|
for (j=0; j<FEC_ENET_RX_FRPPG; j++) {
|
|
bdp->cbd_sc = BD_ENET_RX_EMPTY;
|
|
bdp->cbd_bufaddr = __pa(mem_addr);
|
|
mem_addr += FEC_ENET_RX_FRSIZE;
|
|
bdp++;
|
|
}
|
|
}
|
|
|
|
/* Set the last buffer to wrap.
|
|
*/
|
|
bdp--;
|
|
bdp->cbd_sc |= BD_SC_WRAP;
|
|
|
|
/* ...and the same for transmmit.
|
|
*/
|
|
bdp = fep->tx_bd_base;
|
|
for (i=0, j=FEC_ENET_TX_FRPPG; i<TX_RING_SIZE; i++) {
|
|
if (j >= FEC_ENET_TX_FRPPG) {
|
|
mem_addr = __get_free_page(GFP_KERNEL);
|
|
j = 1;
|
|
} else {
|
|
mem_addr += FEC_ENET_TX_FRSIZE;
|
|
j++;
|
|
}
|
|
fep->tx_bounce[i] = (unsigned char *) mem_addr;
|
|
|
|
/* Initialize the BD for every fragment in the page.
|
|
*/
|
|
bdp->cbd_sc = 0;
|
|
bdp->cbd_bufaddr = 0;
|
|
bdp++;
|
|
}
|
|
|
|
/* Set the last buffer to wrap.
|
|
*/
|
|
bdp--;
|
|
bdp->cbd_sc |= BD_SC_WRAP;
|
|
|
|
/* Set receive and transmit descriptor base.
|
|
*/
|
|
fecp->fec_r_des_start = fep->bd_dma;
|
|
fecp->fec_x_des_start = (unsigned long)fep->bd_dma + sizeof(cbd_t)
|
|
* RX_RING_SIZE;
|
|
|
|
#ifdef HAVE_mii_link_interrupt
|
|
fec_request_mii_intr(dev);
|
|
#endif
|
|
|
|
fecp->fec_grp_hash_table_high = 0;
|
|
fecp->fec_grp_hash_table_low = 0;
|
|
fecp->fec_r_buff_size = PKT_MAXBLR_SIZE;
|
|
fecp->fec_ecntrl = 2;
|
|
fecp->fec_r_des_active = 0;
|
|
#ifndef CONFIG_M5272
|
|
fecp->fec_hash_table_high = 0;
|
|
fecp->fec_hash_table_low = 0;
|
|
#endif
|
|
|
|
/* The FEC Ethernet specific entries in the device structure. */
|
|
dev->open = fec_enet_open;
|
|
dev->hard_start_xmit = fec_enet_start_xmit;
|
|
dev->tx_timeout = fec_timeout;
|
|
dev->watchdog_timeo = TX_TIMEOUT;
|
|
dev->stop = fec_enet_close;
|
|
dev->set_multicast_list = set_multicast_list;
|
|
|
|
for (i=0; i<NMII-1; i++)
|
|
mii_cmds[i].mii_next = &mii_cmds[i+1];
|
|
mii_free = mii_cmds;
|
|
|
|
/* setup MII interface */
|
|
fecp->fec_r_cntrl = OPT_FRAME_SIZE | 0x04;
|
|
fecp->fec_x_cntrl = 0x00;
|
|
|
|
/*
|
|
* Set MII speed to 2.5 MHz
|
|
*/
|
|
fep->phy_speed = ((((clk_get_rate(fep->clk) / 2 + 4999999)
|
|
/ 2500000) / 2) & 0x3F) << 1;
|
|
fecp->fec_mii_speed = fep->phy_speed;
|
|
fec_restart(dev, 0);
|
|
|
|
/* Clear and enable interrupts */
|
|
fecp->fec_ievent = 0xffc00000;
|
|
fecp->fec_imask = (FEC_ENET_TXF | FEC_ENET_RXF | FEC_ENET_MII);
|
|
|
|
/* Queue up command to detect the PHY and initialize the
|
|
* remainder of the interface.
|
|
*/
|
|
fep->phy_id_done = 0;
|
|
fep->phy_addr = 0;
|
|
mii_queue(dev, mk_mii_read(MII_REG_PHYIR1), mii_discover_phy);
|
|
|
|
return 0;
|
|
}
|
|
|
|
/* This function is called to start or restart the FEC during a link
|
|
* change. This only happens when switching between half and full
|
|
* duplex.
|
|
*/
|
|
static void
|
|
fec_restart(struct net_device *dev, int duplex)
|
|
{
|
|
struct fec_enet_private *fep;
|
|
volatile cbd_t *bdp;
|
|
volatile fec_t *fecp;
|
|
int i;
|
|
|
|
fep = netdev_priv(dev);
|
|
fecp = fep->hwp;
|
|
|
|
/* Whack a reset. We should wait for this.
|
|
*/
|
|
fecp->fec_ecntrl = 1;
|
|
udelay(10);
|
|
|
|
/* Clear any outstanding interrupt.
|
|
*/
|
|
fecp->fec_ievent = 0xffc00000;
|
|
|
|
/* Set station address.
|
|
*/
|
|
fec_set_mac_address(dev);
|
|
|
|
/* Reset all multicast.
|
|
*/
|
|
fecp->fec_grp_hash_table_high = 0;
|
|
fecp->fec_grp_hash_table_low = 0;
|
|
|
|
/* Set maximum receive buffer size.
|
|
*/
|
|
fecp->fec_r_buff_size = PKT_MAXBLR_SIZE;
|
|
|
|
/* Set receive and transmit descriptor base.
|
|
*/
|
|
fecp->fec_r_des_start = fep->bd_dma;
|
|
fecp->fec_x_des_start = (unsigned long)fep->bd_dma + sizeof(cbd_t)
|
|
* RX_RING_SIZE;
|
|
|
|
fep->dirty_tx = fep->cur_tx = fep->tx_bd_base;
|
|
fep->cur_rx = fep->rx_bd_base;
|
|
|
|
/* Reset SKB transmit buffers.
|
|
*/
|
|
fep->skb_cur = fep->skb_dirty = 0;
|
|
for (i=0; i<=TX_RING_MOD_MASK; i++) {
|
|
if (fep->tx_skbuff[i] != NULL) {
|
|
dev_kfree_skb_any(fep->tx_skbuff[i]);
|
|
fep->tx_skbuff[i] = NULL;
|
|
}
|
|
}
|
|
|
|
/* Initialize the receive buffer descriptors.
|
|
*/
|
|
bdp = fep->rx_bd_base;
|
|
for (i=0; i<RX_RING_SIZE; i++) {
|
|
|
|
/* Initialize the BD for every fragment in the page.
|
|
*/
|
|
bdp->cbd_sc = BD_ENET_RX_EMPTY;
|
|
bdp++;
|
|
}
|
|
|
|
/* Set the last buffer to wrap.
|
|
*/
|
|
bdp--;
|
|
bdp->cbd_sc |= BD_SC_WRAP;
|
|
|
|
/* ...and the same for transmmit.
|
|
*/
|
|
bdp = fep->tx_bd_base;
|
|
for (i=0; i<TX_RING_SIZE; i++) {
|
|
|
|
/* Initialize the BD for every fragment in the page.
|
|
*/
|
|
bdp->cbd_sc = 0;
|
|
bdp->cbd_bufaddr = 0;
|
|
bdp++;
|
|
}
|
|
|
|
/* Set the last buffer to wrap.
|
|
*/
|
|
bdp--;
|
|
bdp->cbd_sc |= BD_SC_WRAP;
|
|
|
|
/* Enable MII mode.
|
|
*/
|
|
if (duplex) {
|
|
fecp->fec_r_cntrl = OPT_FRAME_SIZE | 0x04;/* MII enable */
|
|
fecp->fec_x_cntrl = 0x04; /* FD enable */
|
|
} else {
|
|
/* MII enable|No Rcv on Xmit */
|
|
fecp->fec_r_cntrl = OPT_FRAME_SIZE | 0x06;
|
|
fecp->fec_x_cntrl = 0x00;
|
|
}
|
|
fep->full_duplex = duplex;
|
|
|
|
/* Set MII speed.
|
|
*/
|
|
fecp->fec_mii_speed = fep->phy_speed;
|
|
|
|
/* And last, enable the transmit and receive processing.
|
|
*/
|
|
fecp->fec_ecntrl = 2;
|
|
fecp->fec_r_des_active = 0;
|
|
|
|
/* Enable interrupts we wish to service.
|
|
*/
|
|
fecp->fec_imask = (FEC_ENET_TXF | FEC_ENET_RXF | FEC_ENET_MII);
|
|
}
|
|
|
|
static void
|
|
fec_stop(struct net_device *dev)
|
|
{
|
|
volatile fec_t *fecp;
|
|
struct fec_enet_private *fep;
|
|
|
|
fep = netdev_priv(dev);
|
|
fecp = fep->hwp;
|
|
|
|
/*
|
|
** We cannot expect a graceful transmit stop without link !!!
|
|
*/
|
|
if (fep->link)
|
|
{
|
|
fecp->fec_x_cntrl = 0x01; /* Graceful transmit stop */
|
|
udelay(10);
|
|
if (!(fecp->fec_ievent & FEC_ENET_GRA))
|
|
printk("fec_stop : Graceful transmit stop did not complete !\n");
|
|
}
|
|
|
|
/* Whack a reset. We should wait for this.
|
|
*/
|
|
fecp->fec_ecntrl = 1;
|
|
udelay(10);
|
|
|
|
/* Clear outstanding MII command interrupts.
|
|
*/
|
|
fecp->fec_ievent = FEC_ENET_MII;
|
|
|
|
fecp->fec_imask = FEC_ENET_MII;
|
|
fecp->fec_mii_speed = fep->phy_speed;
|
|
}
|
|
|
|
static int __devinit
|
|
fec_probe(struct platform_device *pdev)
|
|
{
|
|
struct fec_enet_private *fep;
|
|
struct net_device *ndev;
|
|
int i, irq, ret = 0;
|
|
struct resource *r;
|
|
|
|
r = platform_get_resource(pdev, IORESOURCE_MEM, 0);
|
|
if (!r)
|
|
return -ENXIO;
|
|
|
|
r = request_mem_region(r->start, resource_size(r), pdev->name);
|
|
if (!r)
|
|
return -EBUSY;
|
|
|
|
/* Init network device */
|
|
ndev = alloc_etherdev(sizeof(struct fec_enet_private));
|
|
if (!ndev)
|
|
return -ENOMEM;
|
|
|
|
SET_NETDEV_DEV(ndev, &pdev->dev);
|
|
|
|
/* setup board info structure */
|
|
fep = netdev_priv(ndev);
|
|
memset(fep, 0, sizeof(*fep));
|
|
|
|
ndev->base_addr = (unsigned long)ioremap(r->start, resource_size(r));
|
|
|
|
if (!ndev->base_addr) {
|
|
ret = -ENOMEM;
|
|
goto failed_ioremap;
|
|
}
|
|
|
|
platform_set_drvdata(pdev, ndev);
|
|
|
|
/* This device has up to three irqs on some platforms */
|
|
for (i = 0; i < 3; i++) {
|
|
irq = platform_get_irq(pdev, i);
|
|
if (i && irq < 0)
|
|
break;
|
|
ret = request_irq(irq, fec_enet_interrupt, IRQF_DISABLED, pdev->name, ndev);
|
|
if (ret) {
|
|
while (i >= 0) {
|
|
irq = platform_get_irq(pdev, i);
|
|
free_irq(irq, ndev);
|
|
i--;
|
|
}
|
|
goto failed_irq;
|
|
}
|
|
}
|
|
|
|
fep->clk = clk_get(&pdev->dev, "fec_clk");
|
|
if (IS_ERR(fep->clk)) {
|
|
ret = PTR_ERR(fep->clk);
|
|
goto failed_clk;
|
|
}
|
|
clk_enable(fep->clk);
|
|
|
|
ret = fec_enet_init(ndev, 0);
|
|
if (ret)
|
|
goto failed_init;
|
|
|
|
ret = register_netdev(ndev);
|
|
if (ret)
|
|
goto failed_register;
|
|
|
|
return 0;
|
|
|
|
failed_register:
|
|
failed_init:
|
|
clk_disable(fep->clk);
|
|
clk_put(fep->clk);
|
|
failed_clk:
|
|
for (i = 0; i < 3; i++) {
|
|
irq = platform_get_irq(pdev, i);
|
|
if (irq > 0)
|
|
free_irq(irq, ndev);
|
|
}
|
|
failed_irq:
|
|
iounmap((void __iomem *)ndev->base_addr);
|
|
failed_ioremap:
|
|
free_netdev(ndev);
|
|
|
|
return ret;
|
|
}
|
|
|
|
static int __devexit
|
|
fec_drv_remove(struct platform_device *pdev)
|
|
{
|
|
struct net_device *ndev = platform_get_drvdata(pdev);
|
|
struct fec_enet_private *fep = netdev_priv(ndev);
|
|
|
|
platform_set_drvdata(pdev, NULL);
|
|
|
|
fec_stop(ndev);
|
|
clk_disable(fep->clk);
|
|
clk_put(fep->clk);
|
|
iounmap((void __iomem *)ndev->base_addr);
|
|
unregister_netdev(ndev);
|
|
free_netdev(ndev);
|
|
return 0;
|
|
}
|
|
|
|
static int
|
|
fec_suspend(struct platform_device *dev, pm_message_t state)
|
|
{
|
|
struct net_device *ndev = platform_get_drvdata(dev);
|
|
struct fec_enet_private *fep;
|
|
|
|
if (ndev) {
|
|
fep = netdev_priv(ndev);
|
|
if (netif_running(ndev)) {
|
|
netif_device_detach(ndev);
|
|
fec_stop(ndev);
|
|
}
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
static int
|
|
fec_resume(struct platform_device *dev)
|
|
{
|
|
struct net_device *ndev = platform_get_drvdata(dev);
|
|
|
|
if (ndev) {
|
|
if (netif_running(ndev)) {
|
|
fec_enet_init(ndev, 0);
|
|
netif_device_attach(ndev);
|
|
}
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
static struct platform_driver fec_driver = {
|
|
.driver = {
|
|
.name = "fec",
|
|
.owner = THIS_MODULE,
|
|
},
|
|
.probe = fec_probe,
|
|
.remove = __devexit_p(fec_drv_remove),
|
|
.suspend = fec_suspend,
|
|
.resume = fec_resume,
|
|
};
|
|
|
|
static int __init
|
|
fec_enet_module_init(void)
|
|
{
|
|
printk(KERN_INFO "FEC Ethernet Driver\n");
|
|
|
|
return platform_driver_register(&fec_driver);
|
|
}
|
|
|
|
static void __exit
|
|
fec_enet_cleanup(void)
|
|
{
|
|
platform_driver_unregister(&fec_driver);
|
|
}
|
|
|
|
module_exit(fec_enet_cleanup);
|
|
module_init(fec_enet_module_init);
|
|
|
|
MODULE_LICENSE("GPL");
|