mirror of
https://github.com/FEX-Emu/linux.git
synced 2025-01-10 11:30:49 +00:00
8e31c2ac11
New implementation does not use lru for anything so there is no need to reject pages that are in the LRU. Similar for compound pages (which were checked because they also use page->lru) [ tglx@linutronix.de: removed unused variable ] Signed-off-by: Andi Kleen <ak@suse.de> Signed-off-by: Ingo Molnar <mingo@elte.hu> Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
911 lines
21 KiB
C
911 lines
21 KiB
C
/*
|
|
* Copyright 2002 Andi Kleen, SuSE Labs.
|
|
* Thanks to Ben LaHaise for precious feedback.
|
|
*/
|
|
#include <linux/highmem.h>
|
|
#include <linux/bootmem.h>
|
|
#include <linux/module.h>
|
|
#include <linux/sched.h>
|
|
#include <linux/slab.h>
|
|
#include <linux/mm.h>
|
|
#include <linux/interrupt.h>
|
|
|
|
#include <asm/e820.h>
|
|
#include <asm/processor.h>
|
|
#include <asm/tlbflush.h>
|
|
#include <asm/sections.h>
|
|
#include <asm/uaccess.h>
|
|
#include <asm/pgalloc.h>
|
|
#include <asm/proto.h>
|
|
|
|
/*
|
|
* The current flushing context - we pass it instead of 5 arguments:
|
|
*/
|
|
struct cpa_data {
|
|
unsigned long vaddr;
|
|
pgprot_t mask_set;
|
|
pgprot_t mask_clr;
|
|
int numpages;
|
|
int flushtlb;
|
|
unsigned long pfn;
|
|
};
|
|
|
|
#ifdef CONFIG_X86_64
|
|
|
|
static inline unsigned long highmap_start_pfn(void)
|
|
{
|
|
return __pa(_text) >> PAGE_SHIFT;
|
|
}
|
|
|
|
static inline unsigned long highmap_end_pfn(void)
|
|
{
|
|
return __pa(round_up((unsigned long)_end, PMD_SIZE)) >> PAGE_SHIFT;
|
|
}
|
|
|
|
#endif
|
|
|
|
static inline int
|
|
within(unsigned long addr, unsigned long start, unsigned long end)
|
|
{
|
|
return addr >= start && addr < end;
|
|
}
|
|
|
|
/*
|
|
* Flushing functions
|
|
*/
|
|
|
|
/**
|
|
* clflush_cache_range - flush a cache range with clflush
|
|
* @addr: virtual start address
|
|
* @size: number of bytes to flush
|
|
*
|
|
* clflush is an unordered instruction which needs fencing with mfence
|
|
* to avoid ordering issues.
|
|
*/
|
|
void clflush_cache_range(void *vaddr, unsigned int size)
|
|
{
|
|
void *vend = vaddr + size - 1;
|
|
|
|
mb();
|
|
|
|
for (; vaddr < vend; vaddr += boot_cpu_data.x86_clflush_size)
|
|
clflush(vaddr);
|
|
/*
|
|
* Flush any possible final partial cacheline:
|
|
*/
|
|
clflush(vend);
|
|
|
|
mb();
|
|
}
|
|
|
|
static void __cpa_flush_all(void *arg)
|
|
{
|
|
unsigned long cache = (unsigned long)arg;
|
|
|
|
/*
|
|
* Flush all to work around Errata in early athlons regarding
|
|
* large page flushing.
|
|
*/
|
|
__flush_tlb_all();
|
|
|
|
if (cache && boot_cpu_data.x86_model >= 4)
|
|
wbinvd();
|
|
}
|
|
|
|
static void cpa_flush_all(unsigned long cache)
|
|
{
|
|
BUG_ON(irqs_disabled());
|
|
|
|
on_each_cpu(__cpa_flush_all, (void *) cache, 1, 1);
|
|
}
|
|
|
|
static void __cpa_flush_range(void *arg)
|
|
{
|
|
/*
|
|
* We could optimize that further and do individual per page
|
|
* tlb invalidates for a low number of pages. Caveat: we must
|
|
* flush the high aliases on 64bit as well.
|
|
*/
|
|
__flush_tlb_all();
|
|
}
|
|
|
|
static void cpa_flush_range(unsigned long start, int numpages, int cache)
|
|
{
|
|
unsigned int i, level;
|
|
unsigned long addr;
|
|
|
|
BUG_ON(irqs_disabled());
|
|
WARN_ON(PAGE_ALIGN(start) != start);
|
|
|
|
on_each_cpu(__cpa_flush_range, NULL, 1, 1);
|
|
|
|
if (!cache)
|
|
return;
|
|
|
|
/*
|
|
* We only need to flush on one CPU,
|
|
* clflush is a MESI-coherent instruction that
|
|
* will cause all other CPUs to flush the same
|
|
* cachelines:
|
|
*/
|
|
for (i = 0, addr = start; i < numpages; i++, addr += PAGE_SIZE) {
|
|
pte_t *pte = lookup_address(addr, &level);
|
|
|
|
/*
|
|
* Only flush present addresses:
|
|
*/
|
|
if (pte && (pte_val(*pte) & _PAGE_PRESENT))
|
|
clflush_cache_range((void *) addr, PAGE_SIZE);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Certain areas of memory on x86 require very specific protection flags,
|
|
* for example the BIOS area or kernel text. Callers don't always get this
|
|
* right (again, ioremap() on BIOS memory is not uncommon) so this function
|
|
* checks and fixes these known static required protection bits.
|
|
*/
|
|
static inline pgprot_t static_protections(pgprot_t prot, unsigned long address,
|
|
unsigned long pfn)
|
|
{
|
|
pgprot_t forbidden = __pgprot(0);
|
|
|
|
/*
|
|
* The BIOS area between 640k and 1Mb needs to be executable for
|
|
* PCI BIOS based config access (CONFIG_PCI_GOBIOS) support.
|
|
*/
|
|
if (within(pfn, BIOS_BEGIN >> PAGE_SHIFT, BIOS_END >> PAGE_SHIFT))
|
|
pgprot_val(forbidden) |= _PAGE_NX;
|
|
|
|
/*
|
|
* The kernel text needs to be executable for obvious reasons
|
|
* Does not cover __inittext since that is gone later on. On
|
|
* 64bit we do not enforce !NX on the low mapping
|
|
*/
|
|
if (within(address, (unsigned long)_text, (unsigned long)_etext))
|
|
pgprot_val(forbidden) |= _PAGE_NX;
|
|
|
|
/*
|
|
* The .rodata section needs to be read-only. Using the pfn
|
|
* catches all aliases.
|
|
*/
|
|
if (within(pfn, __pa((unsigned long)__start_rodata) >> PAGE_SHIFT,
|
|
__pa((unsigned long)__end_rodata) >> PAGE_SHIFT))
|
|
pgprot_val(forbidden) |= _PAGE_RW;
|
|
|
|
prot = __pgprot(pgprot_val(prot) & ~pgprot_val(forbidden));
|
|
|
|
return prot;
|
|
}
|
|
|
|
/*
|
|
* Lookup the page table entry for a virtual address. Return a pointer
|
|
* to the entry and the level of the mapping.
|
|
*
|
|
* Note: We return pud and pmd either when the entry is marked large
|
|
* or when the present bit is not set. Otherwise we would return a
|
|
* pointer to a nonexisting mapping.
|
|
*/
|
|
pte_t *lookup_address(unsigned long address, unsigned int *level)
|
|
{
|
|
pgd_t *pgd = pgd_offset_k(address);
|
|
pud_t *pud;
|
|
pmd_t *pmd;
|
|
|
|
*level = PG_LEVEL_NONE;
|
|
|
|
if (pgd_none(*pgd))
|
|
return NULL;
|
|
|
|
pud = pud_offset(pgd, address);
|
|
if (pud_none(*pud))
|
|
return NULL;
|
|
|
|
*level = PG_LEVEL_1G;
|
|
if (pud_large(*pud) || !pud_present(*pud))
|
|
return (pte_t *)pud;
|
|
|
|
pmd = pmd_offset(pud, address);
|
|
if (pmd_none(*pmd))
|
|
return NULL;
|
|
|
|
*level = PG_LEVEL_2M;
|
|
if (pmd_large(*pmd) || !pmd_present(*pmd))
|
|
return (pte_t *)pmd;
|
|
|
|
*level = PG_LEVEL_4K;
|
|
|
|
return pte_offset_kernel(pmd, address);
|
|
}
|
|
|
|
/*
|
|
* Set the new pmd in all the pgds we know about:
|
|
*/
|
|
static void __set_pmd_pte(pte_t *kpte, unsigned long address, pte_t pte)
|
|
{
|
|
/* change init_mm */
|
|
set_pte_atomic(kpte, pte);
|
|
#ifdef CONFIG_X86_32
|
|
if (!SHARED_KERNEL_PMD) {
|
|
struct page *page;
|
|
|
|
list_for_each_entry(page, &pgd_list, lru) {
|
|
pgd_t *pgd;
|
|
pud_t *pud;
|
|
pmd_t *pmd;
|
|
|
|
pgd = (pgd_t *)page_address(page) + pgd_index(address);
|
|
pud = pud_offset(pgd, address);
|
|
pmd = pmd_offset(pud, address);
|
|
set_pte_atomic((pte_t *)pmd, pte);
|
|
}
|
|
}
|
|
#endif
|
|
}
|
|
|
|
static int
|
|
try_preserve_large_page(pte_t *kpte, unsigned long address,
|
|
struct cpa_data *cpa)
|
|
{
|
|
unsigned long nextpage_addr, numpages, pmask, psize, flags, addr, pfn;
|
|
pte_t new_pte, old_pte, *tmp;
|
|
pgprot_t old_prot, new_prot;
|
|
int i, do_split = 1;
|
|
unsigned int level;
|
|
|
|
spin_lock_irqsave(&pgd_lock, flags);
|
|
/*
|
|
* Check for races, another CPU might have split this page
|
|
* up already:
|
|
*/
|
|
tmp = lookup_address(address, &level);
|
|
if (tmp != kpte)
|
|
goto out_unlock;
|
|
|
|
switch (level) {
|
|
case PG_LEVEL_2M:
|
|
psize = PMD_PAGE_SIZE;
|
|
pmask = PMD_PAGE_MASK;
|
|
break;
|
|
#ifdef CONFIG_X86_64
|
|
case PG_LEVEL_1G:
|
|
psize = PUD_PAGE_SIZE;
|
|
pmask = PUD_PAGE_MASK;
|
|
break;
|
|
#endif
|
|
default:
|
|
do_split = -EINVAL;
|
|
goto out_unlock;
|
|
}
|
|
|
|
/*
|
|
* Calculate the number of pages, which fit into this large
|
|
* page starting at address:
|
|
*/
|
|
nextpage_addr = (address + psize) & pmask;
|
|
numpages = (nextpage_addr - address) >> PAGE_SHIFT;
|
|
if (numpages < cpa->numpages)
|
|
cpa->numpages = numpages;
|
|
|
|
/*
|
|
* We are safe now. Check whether the new pgprot is the same:
|
|
*/
|
|
old_pte = *kpte;
|
|
old_prot = new_prot = pte_pgprot(old_pte);
|
|
|
|
pgprot_val(new_prot) &= ~pgprot_val(cpa->mask_clr);
|
|
pgprot_val(new_prot) |= pgprot_val(cpa->mask_set);
|
|
|
|
/*
|
|
* old_pte points to the large page base address. So we need
|
|
* to add the offset of the virtual address:
|
|
*/
|
|
pfn = pte_pfn(old_pte) + ((address & (psize - 1)) >> PAGE_SHIFT);
|
|
cpa->pfn = pfn;
|
|
|
|
new_prot = static_protections(new_prot, address, pfn);
|
|
|
|
/*
|
|
* We need to check the full range, whether
|
|
* static_protection() requires a different pgprot for one of
|
|
* the pages in the range we try to preserve:
|
|
*/
|
|
addr = address + PAGE_SIZE;
|
|
pfn++;
|
|
for (i = 1; i < cpa->numpages; i++, addr += PAGE_SIZE, pfn++) {
|
|
pgprot_t chk_prot = static_protections(new_prot, addr, pfn);
|
|
|
|
if (pgprot_val(chk_prot) != pgprot_val(new_prot))
|
|
goto out_unlock;
|
|
}
|
|
|
|
/*
|
|
* If there are no changes, return. maxpages has been updated
|
|
* above:
|
|
*/
|
|
if (pgprot_val(new_prot) == pgprot_val(old_prot)) {
|
|
do_split = 0;
|
|
goto out_unlock;
|
|
}
|
|
|
|
/*
|
|
* We need to change the attributes. Check, whether we can
|
|
* change the large page in one go. We request a split, when
|
|
* the address is not aligned and the number of pages is
|
|
* smaller than the number of pages in the large page. Note
|
|
* that we limited the number of possible pages already to
|
|
* the number of pages in the large page.
|
|
*/
|
|
if (address == (nextpage_addr - psize) && cpa->numpages == numpages) {
|
|
/*
|
|
* The address is aligned and the number of pages
|
|
* covers the full page.
|
|
*/
|
|
new_pte = pfn_pte(pte_pfn(old_pte), canon_pgprot(new_prot));
|
|
__set_pmd_pte(kpte, address, new_pte);
|
|
cpa->flushtlb = 1;
|
|
do_split = 0;
|
|
}
|
|
|
|
out_unlock:
|
|
spin_unlock_irqrestore(&pgd_lock, flags);
|
|
|
|
return do_split;
|
|
}
|
|
|
|
static LIST_HEAD(page_pool);
|
|
static unsigned long pool_size, pool_pages, pool_low;
|
|
static unsigned long pool_used, pool_failed, pool_refill;
|
|
|
|
static void cpa_fill_pool(void)
|
|
{
|
|
struct page *p;
|
|
gfp_t gfp = GFP_KERNEL;
|
|
|
|
/* Do not allocate from interrupt context */
|
|
if (in_irq() || irqs_disabled())
|
|
return;
|
|
/*
|
|
* Check unlocked. I does not matter when we have one more
|
|
* page in the pool. The bit lock avoids recursive pool
|
|
* allocations:
|
|
*/
|
|
if (pool_pages >= pool_size || test_and_set_bit_lock(0, &pool_refill))
|
|
return;
|
|
|
|
#ifdef CONFIG_DEBUG_PAGEALLOC
|
|
/*
|
|
* We could do:
|
|
* gfp = in_atomic() ? GFP_ATOMIC : GFP_KERNEL;
|
|
* but this fails on !PREEMPT kernels
|
|
*/
|
|
gfp = GFP_ATOMIC | __GFP_NORETRY | __GFP_NOWARN;
|
|
#endif
|
|
|
|
while (pool_pages < pool_size) {
|
|
p = alloc_pages(gfp, 0);
|
|
if (!p) {
|
|
pool_failed++;
|
|
break;
|
|
}
|
|
spin_lock_irq(&pgd_lock);
|
|
list_add(&p->lru, &page_pool);
|
|
pool_pages++;
|
|
spin_unlock_irq(&pgd_lock);
|
|
}
|
|
clear_bit_unlock(0, &pool_refill);
|
|
}
|
|
|
|
#define SHIFT_MB (20 - PAGE_SHIFT)
|
|
#define ROUND_MB_GB ((1 << 10) - 1)
|
|
#define SHIFT_MB_GB 10
|
|
#define POOL_PAGES_PER_GB 16
|
|
|
|
void __init cpa_init(void)
|
|
{
|
|
struct sysinfo si;
|
|
unsigned long gb;
|
|
|
|
si_meminfo(&si);
|
|
/*
|
|
* Calculate the number of pool pages:
|
|
*
|
|
* Convert totalram (nr of pages) to MiB and round to the next
|
|
* GiB. Shift MiB to Gib and multiply the result by
|
|
* POOL_PAGES_PER_GB:
|
|
*/
|
|
gb = ((si.totalram >> SHIFT_MB) + ROUND_MB_GB) >> SHIFT_MB_GB;
|
|
pool_size = POOL_PAGES_PER_GB * gb;
|
|
pool_low = pool_size;
|
|
|
|
cpa_fill_pool();
|
|
printk(KERN_DEBUG
|
|
"CPA: page pool initialized %lu of %lu pages preallocated\n",
|
|
pool_pages, pool_size);
|
|
}
|
|
|
|
static int split_large_page(pte_t *kpte, unsigned long address)
|
|
{
|
|
unsigned long flags, pfn, pfninc = 1;
|
|
unsigned int i, level;
|
|
pte_t *pbase, *tmp;
|
|
pgprot_t ref_prot;
|
|
struct page *base;
|
|
|
|
/*
|
|
* Get a page from the pool. The pool list is protected by the
|
|
* pgd_lock, which we have to take anyway for the split
|
|
* operation:
|
|
*/
|
|
spin_lock_irqsave(&pgd_lock, flags);
|
|
if (list_empty(&page_pool)) {
|
|
spin_unlock_irqrestore(&pgd_lock, flags);
|
|
return -ENOMEM;
|
|
}
|
|
|
|
base = list_first_entry(&page_pool, struct page, lru);
|
|
list_del(&base->lru);
|
|
pool_pages--;
|
|
|
|
if (pool_pages < pool_low)
|
|
pool_low = pool_pages;
|
|
|
|
/*
|
|
* Check for races, another CPU might have split this page
|
|
* up for us already:
|
|
*/
|
|
tmp = lookup_address(address, &level);
|
|
if (tmp != kpte)
|
|
goto out_unlock;
|
|
|
|
pbase = (pte_t *)page_address(base);
|
|
#ifdef CONFIG_X86_32
|
|
paravirt_alloc_pt(&init_mm, page_to_pfn(base));
|
|
#endif
|
|
ref_prot = pte_pgprot(pte_clrhuge(*kpte));
|
|
|
|
#ifdef CONFIG_X86_64
|
|
if (level == PG_LEVEL_1G) {
|
|
pfninc = PMD_PAGE_SIZE >> PAGE_SHIFT;
|
|
pgprot_val(ref_prot) |= _PAGE_PSE;
|
|
}
|
|
#endif
|
|
|
|
/*
|
|
* Get the target pfn from the original entry:
|
|
*/
|
|
pfn = pte_pfn(*kpte);
|
|
for (i = 0; i < PTRS_PER_PTE; i++, pfn += pfninc)
|
|
set_pte(&pbase[i], pfn_pte(pfn, ref_prot));
|
|
|
|
/*
|
|
* Install the new, split up pagetable. Important details here:
|
|
*
|
|
* On Intel the NX bit of all levels must be cleared to make a
|
|
* page executable. See section 4.13.2 of Intel 64 and IA-32
|
|
* Architectures Software Developer's Manual).
|
|
*
|
|
* Mark the entry present. The current mapping might be
|
|
* set to not present, which we preserved above.
|
|
*/
|
|
ref_prot = pte_pgprot(pte_mkexec(pte_clrhuge(*kpte)));
|
|
pgprot_val(ref_prot) |= _PAGE_PRESENT;
|
|
__set_pmd_pte(kpte, address, mk_pte(base, ref_prot));
|
|
base = NULL;
|
|
|
|
out_unlock:
|
|
/*
|
|
* If we dropped out via the lookup_address check under
|
|
* pgd_lock then stick the page back into the pool:
|
|
*/
|
|
if (base) {
|
|
list_add(&base->lru, &page_pool);
|
|
pool_pages++;
|
|
} else
|
|
pool_used++;
|
|
spin_unlock_irqrestore(&pgd_lock, flags);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int __change_page_attr(struct cpa_data *cpa, int primary)
|
|
{
|
|
unsigned long address = cpa->vaddr;
|
|
int do_split, err;
|
|
unsigned int level;
|
|
pte_t *kpte, old_pte;
|
|
|
|
repeat:
|
|
kpte = lookup_address(address, &level);
|
|
if (!kpte)
|
|
return primary ? -EINVAL : 0;
|
|
|
|
old_pte = *kpte;
|
|
if (!pte_val(old_pte)) {
|
|
if (!primary)
|
|
return 0;
|
|
printk(KERN_WARNING "CPA: called for zero pte. "
|
|
"vaddr = %lx cpa->vaddr = %lx\n", address,
|
|
cpa->vaddr);
|
|
WARN_ON(1);
|
|
return -EINVAL;
|
|
}
|
|
|
|
if (level == PG_LEVEL_4K) {
|
|
pte_t new_pte;
|
|
pgprot_t new_prot = pte_pgprot(old_pte);
|
|
unsigned long pfn = pte_pfn(old_pte);
|
|
|
|
pgprot_val(new_prot) &= ~pgprot_val(cpa->mask_clr);
|
|
pgprot_val(new_prot) |= pgprot_val(cpa->mask_set);
|
|
|
|
new_prot = static_protections(new_prot, address, pfn);
|
|
|
|
/*
|
|
* We need to keep the pfn from the existing PTE,
|
|
* after all we're only going to change it's attributes
|
|
* not the memory it points to
|
|
*/
|
|
new_pte = pfn_pte(pfn, canon_pgprot(new_prot));
|
|
cpa->pfn = pfn;
|
|
/*
|
|
* Do we really change anything ?
|
|
*/
|
|
if (pte_val(old_pte) != pte_val(new_pte)) {
|
|
set_pte_atomic(kpte, new_pte);
|
|
cpa->flushtlb = 1;
|
|
}
|
|
cpa->numpages = 1;
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* Check, whether we can keep the large page intact
|
|
* and just change the pte:
|
|
*/
|
|
do_split = try_preserve_large_page(kpte, address, cpa);
|
|
/*
|
|
* When the range fits into the existing large page,
|
|
* return. cp->numpages and cpa->tlbflush have been updated in
|
|
* try_large_page:
|
|
*/
|
|
if (do_split <= 0)
|
|
return do_split;
|
|
|
|
/*
|
|
* We have to split the large page:
|
|
*/
|
|
err = split_large_page(kpte, address);
|
|
if (!err) {
|
|
cpa->flushtlb = 1;
|
|
goto repeat;
|
|
}
|
|
|
|
return err;
|
|
}
|
|
|
|
static int __change_page_attr_set_clr(struct cpa_data *cpa, int checkalias);
|
|
|
|
static int cpa_process_alias(struct cpa_data *cpa)
|
|
{
|
|
struct cpa_data alias_cpa;
|
|
int ret = 0;
|
|
|
|
if (cpa->pfn > max_pfn_mapped)
|
|
return 0;
|
|
|
|
/*
|
|
* No need to redo, when the primary call touched the direct
|
|
* mapping already:
|
|
*/
|
|
if (!within(cpa->vaddr, PAGE_OFFSET,
|
|
PAGE_OFFSET + (max_pfn_mapped << PAGE_SHIFT))) {
|
|
|
|
alias_cpa = *cpa;
|
|
alias_cpa.vaddr = (unsigned long) __va(cpa->pfn << PAGE_SHIFT);
|
|
|
|
ret = __change_page_attr_set_clr(&alias_cpa, 0);
|
|
}
|
|
|
|
#ifdef CONFIG_X86_64
|
|
if (ret)
|
|
return ret;
|
|
/*
|
|
* No need to redo, when the primary call touched the high
|
|
* mapping already:
|
|
*/
|
|
if (within(cpa->vaddr, (unsigned long) _text, (unsigned long) _end))
|
|
return 0;
|
|
|
|
/*
|
|
* If the physical address is inside the kernel map, we need
|
|
* to touch the high mapped kernel as well:
|
|
*/
|
|
if (!within(cpa->pfn, highmap_start_pfn(), highmap_end_pfn()))
|
|
return 0;
|
|
|
|
alias_cpa = *cpa;
|
|
alias_cpa.vaddr =
|
|
(cpa->pfn << PAGE_SHIFT) + __START_KERNEL_map - phys_base;
|
|
|
|
/*
|
|
* The high mapping range is imprecise, so ignore the return value.
|
|
*/
|
|
__change_page_attr_set_clr(&alias_cpa, 0);
|
|
#endif
|
|
return ret;
|
|
}
|
|
|
|
static int __change_page_attr_set_clr(struct cpa_data *cpa, int checkalias)
|
|
{
|
|
int ret, numpages = cpa->numpages;
|
|
|
|
while (numpages) {
|
|
/*
|
|
* Store the remaining nr of pages for the large page
|
|
* preservation check.
|
|
*/
|
|
cpa->numpages = numpages;
|
|
|
|
ret = __change_page_attr(cpa, checkalias);
|
|
if (ret)
|
|
return ret;
|
|
|
|
if (checkalias) {
|
|
ret = cpa_process_alias(cpa);
|
|
if (ret)
|
|
return ret;
|
|
}
|
|
|
|
/*
|
|
* Adjust the number of pages with the result of the
|
|
* CPA operation. Either a large page has been
|
|
* preserved or a single page update happened.
|
|
*/
|
|
BUG_ON(cpa->numpages > numpages);
|
|
numpages -= cpa->numpages;
|
|
cpa->vaddr += cpa->numpages * PAGE_SIZE;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
static inline int cache_attr(pgprot_t attr)
|
|
{
|
|
return pgprot_val(attr) &
|
|
(_PAGE_PAT | _PAGE_PAT_LARGE | _PAGE_PWT | _PAGE_PCD);
|
|
}
|
|
|
|
static int change_page_attr_set_clr(unsigned long addr, int numpages,
|
|
pgprot_t mask_set, pgprot_t mask_clr)
|
|
{
|
|
struct cpa_data cpa;
|
|
int ret, cache, checkalias;
|
|
|
|
/*
|
|
* Check, if we are requested to change a not supported
|
|
* feature:
|
|
*/
|
|
mask_set = canon_pgprot(mask_set);
|
|
mask_clr = canon_pgprot(mask_clr);
|
|
if (!pgprot_val(mask_set) && !pgprot_val(mask_clr))
|
|
return 0;
|
|
|
|
/* Ensure we are PAGE_SIZE aligned */
|
|
if (addr & ~PAGE_MASK) {
|
|
addr &= PAGE_MASK;
|
|
/*
|
|
* People should not be passing in unaligned addresses:
|
|
*/
|
|
WARN_ON_ONCE(1);
|
|
}
|
|
|
|
cpa.vaddr = addr;
|
|
cpa.numpages = numpages;
|
|
cpa.mask_set = mask_set;
|
|
cpa.mask_clr = mask_clr;
|
|
cpa.flushtlb = 0;
|
|
|
|
/* No alias checking for _NX bit modifications */
|
|
checkalias = (pgprot_val(mask_set) | pgprot_val(mask_clr)) != _PAGE_NX;
|
|
|
|
ret = __change_page_attr_set_clr(&cpa, checkalias);
|
|
|
|
/*
|
|
* Check whether we really changed something:
|
|
*/
|
|
if (!cpa.flushtlb)
|
|
goto out;
|
|
|
|
/*
|
|
* No need to flush, when we did not set any of the caching
|
|
* attributes:
|
|
*/
|
|
cache = cache_attr(mask_set);
|
|
|
|
/*
|
|
* On success we use clflush, when the CPU supports it to
|
|
* avoid the wbindv. If the CPU does not support it and in the
|
|
* error case we fall back to cpa_flush_all (which uses
|
|
* wbindv):
|
|
*/
|
|
if (!ret && cpu_has_clflush)
|
|
cpa_flush_range(addr, numpages, cache);
|
|
else
|
|
cpa_flush_all(cache);
|
|
|
|
out:
|
|
cpa_fill_pool();
|
|
return ret;
|
|
}
|
|
|
|
static inline int change_page_attr_set(unsigned long addr, int numpages,
|
|
pgprot_t mask)
|
|
{
|
|
return change_page_attr_set_clr(addr, numpages, mask, __pgprot(0));
|
|
}
|
|
|
|
static inline int change_page_attr_clear(unsigned long addr, int numpages,
|
|
pgprot_t mask)
|
|
{
|
|
return change_page_attr_set_clr(addr, numpages, __pgprot(0), mask);
|
|
}
|
|
|
|
int set_memory_uc(unsigned long addr, int numpages)
|
|
{
|
|
return change_page_attr_set(addr, numpages,
|
|
__pgprot(_PAGE_PCD | _PAGE_PWT));
|
|
}
|
|
EXPORT_SYMBOL(set_memory_uc);
|
|
|
|
int set_memory_wb(unsigned long addr, int numpages)
|
|
{
|
|
return change_page_attr_clear(addr, numpages,
|
|
__pgprot(_PAGE_PCD | _PAGE_PWT));
|
|
}
|
|
EXPORT_SYMBOL(set_memory_wb);
|
|
|
|
int set_memory_x(unsigned long addr, int numpages)
|
|
{
|
|
return change_page_attr_clear(addr, numpages, __pgprot(_PAGE_NX));
|
|
}
|
|
EXPORT_SYMBOL(set_memory_x);
|
|
|
|
int set_memory_nx(unsigned long addr, int numpages)
|
|
{
|
|
return change_page_attr_set(addr, numpages, __pgprot(_PAGE_NX));
|
|
}
|
|
EXPORT_SYMBOL(set_memory_nx);
|
|
|
|
int set_memory_ro(unsigned long addr, int numpages)
|
|
{
|
|
return change_page_attr_clear(addr, numpages, __pgprot(_PAGE_RW));
|
|
}
|
|
|
|
int set_memory_rw(unsigned long addr, int numpages)
|
|
{
|
|
return change_page_attr_set(addr, numpages, __pgprot(_PAGE_RW));
|
|
}
|
|
|
|
int set_memory_np(unsigned long addr, int numpages)
|
|
{
|
|
return change_page_attr_clear(addr, numpages, __pgprot(_PAGE_PRESENT));
|
|
}
|
|
|
|
int set_pages_uc(struct page *page, int numpages)
|
|
{
|
|
unsigned long addr = (unsigned long)page_address(page);
|
|
|
|
return set_memory_uc(addr, numpages);
|
|
}
|
|
EXPORT_SYMBOL(set_pages_uc);
|
|
|
|
int set_pages_wb(struct page *page, int numpages)
|
|
{
|
|
unsigned long addr = (unsigned long)page_address(page);
|
|
|
|
return set_memory_wb(addr, numpages);
|
|
}
|
|
EXPORT_SYMBOL(set_pages_wb);
|
|
|
|
int set_pages_x(struct page *page, int numpages)
|
|
{
|
|
unsigned long addr = (unsigned long)page_address(page);
|
|
|
|
return set_memory_x(addr, numpages);
|
|
}
|
|
EXPORT_SYMBOL(set_pages_x);
|
|
|
|
int set_pages_nx(struct page *page, int numpages)
|
|
{
|
|
unsigned long addr = (unsigned long)page_address(page);
|
|
|
|
return set_memory_nx(addr, numpages);
|
|
}
|
|
EXPORT_SYMBOL(set_pages_nx);
|
|
|
|
int set_pages_ro(struct page *page, int numpages)
|
|
{
|
|
unsigned long addr = (unsigned long)page_address(page);
|
|
|
|
return set_memory_ro(addr, numpages);
|
|
}
|
|
|
|
int set_pages_rw(struct page *page, int numpages)
|
|
{
|
|
unsigned long addr = (unsigned long)page_address(page);
|
|
|
|
return set_memory_rw(addr, numpages);
|
|
}
|
|
|
|
#ifdef CONFIG_DEBUG_PAGEALLOC
|
|
|
|
static int __set_pages_p(struct page *page, int numpages)
|
|
{
|
|
struct cpa_data cpa = { .vaddr = (unsigned long) page_address(page),
|
|
.numpages = numpages,
|
|
.mask_set = __pgprot(_PAGE_PRESENT | _PAGE_RW),
|
|
.mask_clr = __pgprot(0)};
|
|
|
|
return __change_page_attr_set_clr(&cpa, 1);
|
|
}
|
|
|
|
static int __set_pages_np(struct page *page, int numpages)
|
|
{
|
|
struct cpa_data cpa = { .vaddr = (unsigned long) page_address(page),
|
|
.numpages = numpages,
|
|
.mask_set = __pgprot(0),
|
|
.mask_clr = __pgprot(_PAGE_PRESENT | _PAGE_RW)};
|
|
|
|
return __change_page_attr_set_clr(&cpa, 1);
|
|
}
|
|
|
|
void kernel_map_pages(struct page *page, int numpages, int enable)
|
|
{
|
|
if (PageHighMem(page))
|
|
return;
|
|
if (!enable) {
|
|
debug_check_no_locks_freed(page_address(page),
|
|
numpages * PAGE_SIZE);
|
|
}
|
|
|
|
/*
|
|
* If page allocator is not up yet then do not call c_p_a():
|
|
*/
|
|
if (!debug_pagealloc_enabled)
|
|
return;
|
|
|
|
/*
|
|
* The return value is ignored as the calls cannot fail.
|
|
* Large pages are kept enabled at boot time, and are
|
|
* split up quickly with DEBUG_PAGEALLOC. If a splitup
|
|
* fails here (due to temporary memory shortage) no damage
|
|
* is done because we just keep the largepage intact up
|
|
* to the next attempt when it will likely be split up:
|
|
*/
|
|
if (enable)
|
|
__set_pages_p(page, numpages);
|
|
else
|
|
__set_pages_np(page, numpages);
|
|
|
|
/*
|
|
* We should perform an IPI and flush all tlbs,
|
|
* but that can deadlock->flush only current cpu:
|
|
*/
|
|
__flush_tlb_all();
|
|
|
|
/*
|
|
* Try to refill the page pool here. We can do this only after
|
|
* the tlb flush.
|
|
*/
|
|
cpa_fill_pool();
|
|
}
|
|
#endif
|
|
|
|
/*
|
|
* The testcases use internal knowledge of the implementation that shouldn't
|
|
* be exposed to the rest of the kernel. Include these directly here.
|
|
*/
|
|
#ifdef CONFIG_CPA_DEBUG
|
|
#include "pageattr-test.c"
|
|
#endif
|