mirror of
https://github.com/FEX-Emu/linux.git
synced 2024-12-21 00:42:16 +00:00
7d12e780e0
Maintain a per-CPU global "struct pt_regs *" variable which can be used instead of passing regs around manually through all ~1800 interrupt handlers in the Linux kernel. The regs pointer is used in few places, but it potentially costs both stack space and code to pass it around. On the FRV arch, removing the regs parameter from all the genirq function results in a 20% speed up of the IRQ exit path (ie: from leaving timer_interrupt() to leaving do_IRQ()). Where appropriate, an arch may override the generic storage facility and do something different with the variable. On FRV, for instance, the address is maintained in GR28 at all times inside the kernel as part of general exception handling. Having looked over the code, it appears that the parameter may be handed down through up to twenty or so layers of functions. Consider a USB character device attached to a USB hub, attached to a USB controller that posts its interrupts through a cascaded auxiliary interrupt controller. A character device driver may want to pass regs to the sysrq handler through the input layer which adds another few layers of parameter passing. I've build this code with allyesconfig for x86_64 and i386. I've runtested the main part of the code on FRV and i386, though I can't test most of the drivers. I've also done partial conversion for powerpc and MIPS - these at least compile with minimal configurations. This will affect all archs. Mostly the changes should be relatively easy. Take do_IRQ(), store the regs pointer at the beginning, saving the old one: struct pt_regs *old_regs = set_irq_regs(regs); And put the old one back at the end: set_irq_regs(old_regs); Don't pass regs through to generic_handle_irq() or __do_IRQ(). In timer_interrupt(), this sort of change will be necessary: - update_process_times(user_mode(regs)); - profile_tick(CPU_PROFILING, regs); + update_process_times(user_mode(get_irq_regs())); + profile_tick(CPU_PROFILING); I'd like to move update_process_times()'s use of get_irq_regs() into itself, except that i386, alone of the archs, uses something other than user_mode(). Some notes on the interrupt handling in the drivers: (*) input_dev() is now gone entirely. The regs pointer is no longer stored in the input_dev struct. (*) finish_unlinks() in drivers/usb/host/ohci-q.c needs checking. It does something different depending on whether it's been supplied with a regs pointer or not. (*) Various IRQ handler function pointers have been moved to type irq_handler_t. Signed-Off-By: David Howells <dhowells@redhat.com> (cherry picked from 1b16e7ac850969f38b375e511e3fa2f474a33867 commit)
1840 lines
48 KiB
C
1840 lines
48 KiB
C
/* D-Link DL2000-based Gigabit Ethernet Adapter Linux driver */
|
|
/*
|
|
Copyright (c) 2001, 2002 by D-Link Corporation
|
|
Written by Edward Peng.<edward_peng@dlink.com.tw>
|
|
Created 03-May-2001, base on Linux' sundance.c.
|
|
|
|
This program is free software; you can redistribute it and/or modify
|
|
it under the terms of the GNU General Public License as published by
|
|
the Free Software Foundation; either version 2 of the License, or
|
|
(at your option) any later version.
|
|
*/
|
|
|
|
#define DRV_NAME "D-Link DL2000-based linux driver"
|
|
#define DRV_VERSION "v1.18"
|
|
#define DRV_RELDATE "2006/06/27"
|
|
#include "dl2k.h"
|
|
#include <linux/dma-mapping.h>
|
|
|
|
static char version[] __devinitdata =
|
|
KERN_INFO DRV_NAME " " DRV_VERSION " " DRV_RELDATE "\n";
|
|
#define MAX_UNITS 8
|
|
static int mtu[MAX_UNITS];
|
|
static int vlan[MAX_UNITS];
|
|
static int jumbo[MAX_UNITS];
|
|
static char *media[MAX_UNITS];
|
|
static int tx_flow=-1;
|
|
static int rx_flow=-1;
|
|
static int copy_thresh;
|
|
static int rx_coalesce=10; /* Rx frame count each interrupt */
|
|
static int rx_timeout=200; /* Rx DMA wait time in 640ns increments */
|
|
static int tx_coalesce=16; /* HW xmit count each TxDMAComplete */
|
|
|
|
|
|
MODULE_AUTHOR ("Edward Peng");
|
|
MODULE_DESCRIPTION ("D-Link DL2000-based Gigabit Ethernet Adapter");
|
|
MODULE_LICENSE("GPL");
|
|
module_param_array(mtu, int, NULL, 0);
|
|
module_param_array(media, charp, NULL, 0);
|
|
module_param_array(vlan, int, NULL, 0);
|
|
module_param_array(jumbo, int, NULL, 0);
|
|
module_param(tx_flow, int, 0);
|
|
module_param(rx_flow, int, 0);
|
|
module_param(copy_thresh, int, 0);
|
|
module_param(rx_coalesce, int, 0); /* Rx frame count each interrupt */
|
|
module_param(rx_timeout, int, 0); /* Rx DMA wait time in 64ns increments */
|
|
module_param(tx_coalesce, int, 0); /* HW xmit count each TxDMAComplete */
|
|
|
|
|
|
/* Enable the default interrupts */
|
|
#define DEFAULT_INTR (RxDMAComplete | HostError | IntRequested | TxDMAComplete| \
|
|
UpdateStats | LinkEvent)
|
|
#define EnableInt() \
|
|
writew(DEFAULT_INTR, ioaddr + IntEnable)
|
|
|
|
static const int max_intrloop = 50;
|
|
static const int multicast_filter_limit = 0x40;
|
|
|
|
static int rio_open (struct net_device *dev);
|
|
static void rio_timer (unsigned long data);
|
|
static void rio_tx_timeout (struct net_device *dev);
|
|
static void alloc_list (struct net_device *dev);
|
|
static int start_xmit (struct sk_buff *skb, struct net_device *dev);
|
|
static irqreturn_t rio_interrupt (int irq, void *dev_instance);
|
|
static void rio_free_tx (struct net_device *dev, int irq);
|
|
static void tx_error (struct net_device *dev, int tx_status);
|
|
static int receive_packet (struct net_device *dev);
|
|
static void rio_error (struct net_device *dev, int int_status);
|
|
static int change_mtu (struct net_device *dev, int new_mtu);
|
|
static void set_multicast (struct net_device *dev);
|
|
static struct net_device_stats *get_stats (struct net_device *dev);
|
|
static int clear_stats (struct net_device *dev);
|
|
static int rio_ioctl (struct net_device *dev, struct ifreq *rq, int cmd);
|
|
static int rio_close (struct net_device *dev);
|
|
static int find_miiphy (struct net_device *dev);
|
|
static int parse_eeprom (struct net_device *dev);
|
|
static int read_eeprom (long ioaddr, int eep_addr);
|
|
static int mii_wait_link (struct net_device *dev, int wait);
|
|
static int mii_set_media (struct net_device *dev);
|
|
static int mii_get_media (struct net_device *dev);
|
|
static int mii_set_media_pcs (struct net_device *dev);
|
|
static int mii_get_media_pcs (struct net_device *dev);
|
|
static int mii_read (struct net_device *dev, int phy_addr, int reg_num);
|
|
static int mii_write (struct net_device *dev, int phy_addr, int reg_num,
|
|
u16 data);
|
|
|
|
static const struct ethtool_ops ethtool_ops;
|
|
|
|
static int __devinit
|
|
rio_probe1 (struct pci_dev *pdev, const struct pci_device_id *ent)
|
|
{
|
|
struct net_device *dev;
|
|
struct netdev_private *np;
|
|
static int card_idx;
|
|
int chip_idx = ent->driver_data;
|
|
int err, irq;
|
|
long ioaddr;
|
|
static int version_printed;
|
|
void *ring_space;
|
|
dma_addr_t ring_dma;
|
|
|
|
if (!version_printed++)
|
|
printk ("%s", version);
|
|
|
|
err = pci_enable_device (pdev);
|
|
if (err)
|
|
return err;
|
|
|
|
irq = pdev->irq;
|
|
err = pci_request_regions (pdev, "dl2k");
|
|
if (err)
|
|
goto err_out_disable;
|
|
|
|
pci_set_master (pdev);
|
|
dev = alloc_etherdev (sizeof (*np));
|
|
if (!dev) {
|
|
err = -ENOMEM;
|
|
goto err_out_res;
|
|
}
|
|
SET_MODULE_OWNER (dev);
|
|
SET_NETDEV_DEV(dev, &pdev->dev);
|
|
|
|
#ifdef MEM_MAPPING
|
|
ioaddr = pci_resource_start (pdev, 1);
|
|
ioaddr = (long) ioremap (ioaddr, RIO_IO_SIZE);
|
|
if (!ioaddr) {
|
|
err = -ENOMEM;
|
|
goto err_out_dev;
|
|
}
|
|
#else
|
|
ioaddr = pci_resource_start (pdev, 0);
|
|
#endif
|
|
dev->base_addr = ioaddr;
|
|
dev->irq = irq;
|
|
np = netdev_priv(dev);
|
|
np->chip_id = chip_idx;
|
|
np->pdev = pdev;
|
|
spin_lock_init (&np->tx_lock);
|
|
spin_lock_init (&np->rx_lock);
|
|
|
|
/* Parse manual configuration */
|
|
np->an_enable = 1;
|
|
np->tx_coalesce = 1;
|
|
if (card_idx < MAX_UNITS) {
|
|
if (media[card_idx] != NULL) {
|
|
np->an_enable = 0;
|
|
if (strcmp (media[card_idx], "auto") == 0 ||
|
|
strcmp (media[card_idx], "autosense") == 0 ||
|
|
strcmp (media[card_idx], "0") == 0 ) {
|
|
np->an_enable = 2;
|
|
} else if (strcmp (media[card_idx], "100mbps_fd") == 0 ||
|
|
strcmp (media[card_idx], "4") == 0) {
|
|
np->speed = 100;
|
|
np->full_duplex = 1;
|
|
} else if (strcmp (media[card_idx], "100mbps_hd") == 0
|
|
|| strcmp (media[card_idx], "3") == 0) {
|
|
np->speed = 100;
|
|
np->full_duplex = 0;
|
|
} else if (strcmp (media[card_idx], "10mbps_fd") == 0 ||
|
|
strcmp (media[card_idx], "2") == 0) {
|
|
np->speed = 10;
|
|
np->full_duplex = 1;
|
|
} else if (strcmp (media[card_idx], "10mbps_hd") == 0 ||
|
|
strcmp (media[card_idx], "1") == 0) {
|
|
np->speed = 10;
|
|
np->full_duplex = 0;
|
|
} else if (strcmp (media[card_idx], "1000mbps_fd") == 0 ||
|
|
strcmp (media[card_idx], "6") == 0) {
|
|
np->speed=1000;
|
|
np->full_duplex=1;
|
|
} else if (strcmp (media[card_idx], "1000mbps_hd") == 0 ||
|
|
strcmp (media[card_idx], "5") == 0) {
|
|
np->speed = 1000;
|
|
np->full_duplex = 0;
|
|
} else {
|
|
np->an_enable = 1;
|
|
}
|
|
}
|
|
if (jumbo[card_idx] != 0) {
|
|
np->jumbo = 1;
|
|
dev->mtu = MAX_JUMBO;
|
|
} else {
|
|
np->jumbo = 0;
|
|
if (mtu[card_idx] > 0 && mtu[card_idx] < PACKET_SIZE)
|
|
dev->mtu = mtu[card_idx];
|
|
}
|
|
np->vlan = (vlan[card_idx] > 0 && vlan[card_idx] < 4096) ?
|
|
vlan[card_idx] : 0;
|
|
if (rx_coalesce > 0 && rx_timeout > 0) {
|
|
np->rx_coalesce = rx_coalesce;
|
|
np->rx_timeout = rx_timeout;
|
|
np->coalesce = 1;
|
|
}
|
|
np->tx_flow = (tx_flow == 0) ? 0 : 1;
|
|
np->rx_flow = (rx_flow == 0) ? 0 : 1;
|
|
|
|
if (tx_coalesce < 1)
|
|
tx_coalesce = 1;
|
|
else if (tx_coalesce > TX_RING_SIZE-1)
|
|
tx_coalesce = TX_RING_SIZE - 1;
|
|
}
|
|
dev->open = &rio_open;
|
|
dev->hard_start_xmit = &start_xmit;
|
|
dev->stop = &rio_close;
|
|
dev->get_stats = &get_stats;
|
|
dev->set_multicast_list = &set_multicast;
|
|
dev->do_ioctl = &rio_ioctl;
|
|
dev->tx_timeout = &rio_tx_timeout;
|
|
dev->watchdog_timeo = TX_TIMEOUT;
|
|
dev->change_mtu = &change_mtu;
|
|
SET_ETHTOOL_OPS(dev, ðtool_ops);
|
|
#if 0
|
|
dev->features = NETIF_F_IP_CSUM;
|
|
#endif
|
|
pci_set_drvdata (pdev, dev);
|
|
|
|
ring_space = pci_alloc_consistent (pdev, TX_TOTAL_SIZE, &ring_dma);
|
|
if (!ring_space)
|
|
goto err_out_iounmap;
|
|
np->tx_ring = (struct netdev_desc *) ring_space;
|
|
np->tx_ring_dma = ring_dma;
|
|
|
|
ring_space = pci_alloc_consistent (pdev, RX_TOTAL_SIZE, &ring_dma);
|
|
if (!ring_space)
|
|
goto err_out_unmap_tx;
|
|
np->rx_ring = (struct netdev_desc *) ring_space;
|
|
np->rx_ring_dma = ring_dma;
|
|
|
|
/* Parse eeprom data */
|
|
parse_eeprom (dev);
|
|
|
|
/* Find PHY address */
|
|
err = find_miiphy (dev);
|
|
if (err)
|
|
goto err_out_unmap_rx;
|
|
|
|
/* Fiber device? */
|
|
np->phy_media = (readw(ioaddr + ASICCtrl) & PhyMedia) ? 1 : 0;
|
|
np->link_status = 0;
|
|
/* Set media and reset PHY */
|
|
if (np->phy_media) {
|
|
/* default Auto-Negotiation for fiber deivices */
|
|
if (np->an_enable == 2) {
|
|
np->an_enable = 1;
|
|
}
|
|
mii_set_media_pcs (dev);
|
|
} else {
|
|
/* Auto-Negotiation is mandatory for 1000BASE-T,
|
|
IEEE 802.3ab Annex 28D page 14 */
|
|
if (np->speed == 1000)
|
|
np->an_enable = 1;
|
|
mii_set_media (dev);
|
|
}
|
|
pci_read_config_byte(pdev, PCI_REVISION_ID, &np->pci_rev_id);
|
|
|
|
err = register_netdev (dev);
|
|
if (err)
|
|
goto err_out_unmap_rx;
|
|
|
|
card_idx++;
|
|
|
|
printk (KERN_INFO "%s: %s, %02x:%02x:%02x:%02x:%02x:%02x, IRQ %d\n",
|
|
dev->name, np->name,
|
|
dev->dev_addr[0], dev->dev_addr[1], dev->dev_addr[2],
|
|
dev->dev_addr[3], dev->dev_addr[4], dev->dev_addr[5], irq);
|
|
if (tx_coalesce > 1)
|
|
printk(KERN_INFO "tx_coalesce:\t%d packets\n",
|
|
tx_coalesce);
|
|
if (np->coalesce)
|
|
printk(KERN_INFO "rx_coalesce:\t%d packets\n"
|
|
KERN_INFO "rx_timeout: \t%d ns\n",
|
|
np->rx_coalesce, np->rx_timeout*640);
|
|
if (np->vlan)
|
|
printk(KERN_INFO "vlan(id):\t%d\n", np->vlan);
|
|
return 0;
|
|
|
|
err_out_unmap_rx:
|
|
pci_free_consistent (pdev, RX_TOTAL_SIZE, np->rx_ring, np->rx_ring_dma);
|
|
err_out_unmap_tx:
|
|
pci_free_consistent (pdev, TX_TOTAL_SIZE, np->tx_ring, np->tx_ring_dma);
|
|
err_out_iounmap:
|
|
#ifdef MEM_MAPPING
|
|
iounmap ((void *) ioaddr);
|
|
|
|
err_out_dev:
|
|
#endif
|
|
free_netdev (dev);
|
|
|
|
err_out_res:
|
|
pci_release_regions (pdev);
|
|
|
|
err_out_disable:
|
|
pci_disable_device (pdev);
|
|
return err;
|
|
}
|
|
|
|
int
|
|
find_miiphy (struct net_device *dev)
|
|
{
|
|
int i, phy_found = 0;
|
|
struct netdev_private *np;
|
|
long ioaddr;
|
|
np = netdev_priv(dev);
|
|
ioaddr = dev->base_addr;
|
|
np->phy_addr = 1;
|
|
|
|
for (i = 31; i >= 0; i--) {
|
|
int mii_status = mii_read (dev, i, 1);
|
|
if (mii_status != 0xffff && mii_status != 0x0000) {
|
|
np->phy_addr = i;
|
|
phy_found++;
|
|
}
|
|
}
|
|
if (!phy_found) {
|
|
printk (KERN_ERR "%s: No MII PHY found!\n", dev->name);
|
|
return -ENODEV;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
int
|
|
parse_eeprom (struct net_device *dev)
|
|
{
|
|
int i, j;
|
|
long ioaddr = dev->base_addr;
|
|
u8 sromdata[256];
|
|
u8 *psib;
|
|
u32 crc;
|
|
PSROM_t psrom = (PSROM_t) sromdata;
|
|
struct netdev_private *np = netdev_priv(dev);
|
|
|
|
int cid, next;
|
|
|
|
#ifdef MEM_MAPPING
|
|
ioaddr = pci_resource_start (np->pdev, 0);
|
|
#endif
|
|
/* Read eeprom */
|
|
for (i = 0; i < 128; i++) {
|
|
((u16 *) sromdata)[i] = le16_to_cpu (read_eeprom (ioaddr, i));
|
|
}
|
|
#ifdef MEM_MAPPING
|
|
ioaddr = dev->base_addr;
|
|
#endif
|
|
/* Check CRC */
|
|
crc = ~ether_crc_le (256 - 4, sromdata);
|
|
if (psrom->crc != crc) {
|
|
printk (KERN_ERR "%s: EEPROM data CRC error.\n", dev->name);
|
|
return -1;
|
|
}
|
|
|
|
/* Set MAC address */
|
|
for (i = 0; i < 6; i++)
|
|
dev->dev_addr[i] = psrom->mac_addr[i];
|
|
|
|
/* Parse Software Information Block */
|
|
i = 0x30;
|
|
psib = (u8 *) sromdata;
|
|
do {
|
|
cid = psib[i++];
|
|
next = psib[i++];
|
|
if ((cid == 0 && next == 0) || (cid == 0xff && next == 0xff)) {
|
|
printk (KERN_ERR "Cell data error\n");
|
|
return -1;
|
|
}
|
|
switch (cid) {
|
|
case 0: /* Format version */
|
|
break;
|
|
case 1: /* End of cell */
|
|
return 0;
|
|
case 2: /* Duplex Polarity */
|
|
np->duplex_polarity = psib[i];
|
|
writeb (readb (ioaddr + PhyCtrl) | psib[i],
|
|
ioaddr + PhyCtrl);
|
|
break;
|
|
case 3: /* Wake Polarity */
|
|
np->wake_polarity = psib[i];
|
|
break;
|
|
case 9: /* Adapter description */
|
|
j = (next - i > 255) ? 255 : next - i;
|
|
memcpy (np->name, &(psib[i]), j);
|
|
break;
|
|
case 4:
|
|
case 5:
|
|
case 6:
|
|
case 7:
|
|
case 8: /* Reversed */
|
|
break;
|
|
default: /* Unknown cell */
|
|
return -1;
|
|
}
|
|
i = next;
|
|
} while (1);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int
|
|
rio_open (struct net_device *dev)
|
|
{
|
|
struct netdev_private *np = netdev_priv(dev);
|
|
long ioaddr = dev->base_addr;
|
|
int i;
|
|
u16 macctrl;
|
|
|
|
i = request_irq (dev->irq, &rio_interrupt, IRQF_SHARED, dev->name, dev);
|
|
if (i)
|
|
return i;
|
|
|
|
/* Reset all logic functions */
|
|
writew (GlobalReset | DMAReset | FIFOReset | NetworkReset | HostReset,
|
|
ioaddr + ASICCtrl + 2);
|
|
mdelay(10);
|
|
|
|
/* DebugCtrl bit 4, 5, 9 must set */
|
|
writel (readl (ioaddr + DebugCtrl) | 0x0230, ioaddr + DebugCtrl);
|
|
|
|
/* Jumbo frame */
|
|
if (np->jumbo != 0)
|
|
writew (MAX_JUMBO+14, ioaddr + MaxFrameSize);
|
|
|
|
alloc_list (dev);
|
|
|
|
/* Get station address */
|
|
for (i = 0; i < 6; i++)
|
|
writeb (dev->dev_addr[i], ioaddr + StationAddr0 + i);
|
|
|
|
set_multicast (dev);
|
|
if (np->coalesce) {
|
|
writel (np->rx_coalesce | np->rx_timeout << 16,
|
|
ioaddr + RxDMAIntCtrl);
|
|
}
|
|
/* Set RIO to poll every N*320nsec. */
|
|
writeb (0x20, ioaddr + RxDMAPollPeriod);
|
|
writeb (0xff, ioaddr + TxDMAPollPeriod);
|
|
writeb (0x30, ioaddr + RxDMABurstThresh);
|
|
writeb (0x30, ioaddr + RxDMAUrgentThresh);
|
|
writel (0x0007ffff, ioaddr + RmonStatMask);
|
|
/* clear statistics */
|
|
clear_stats (dev);
|
|
|
|
/* VLAN supported */
|
|
if (np->vlan) {
|
|
/* priority field in RxDMAIntCtrl */
|
|
writel (readl(ioaddr + RxDMAIntCtrl) | 0x7 << 10,
|
|
ioaddr + RxDMAIntCtrl);
|
|
/* VLANId */
|
|
writew (np->vlan, ioaddr + VLANId);
|
|
/* Length/Type should be 0x8100 */
|
|
writel (0x8100 << 16 | np->vlan, ioaddr + VLANTag);
|
|
/* Enable AutoVLANuntagging, but disable AutoVLANtagging.
|
|
VLAN information tagged by TFC' VID, CFI fields. */
|
|
writel (readl (ioaddr + MACCtrl) | AutoVLANuntagging,
|
|
ioaddr + MACCtrl);
|
|
}
|
|
|
|
init_timer (&np->timer);
|
|
np->timer.expires = jiffies + 1*HZ;
|
|
np->timer.data = (unsigned long) dev;
|
|
np->timer.function = &rio_timer;
|
|
add_timer (&np->timer);
|
|
|
|
/* Start Tx/Rx */
|
|
writel (readl (ioaddr + MACCtrl) | StatsEnable | RxEnable | TxEnable,
|
|
ioaddr + MACCtrl);
|
|
|
|
macctrl = 0;
|
|
macctrl |= (np->vlan) ? AutoVLANuntagging : 0;
|
|
macctrl |= (np->full_duplex) ? DuplexSelect : 0;
|
|
macctrl |= (np->tx_flow) ? TxFlowControlEnable : 0;
|
|
macctrl |= (np->rx_flow) ? RxFlowControlEnable : 0;
|
|
writew(macctrl, ioaddr + MACCtrl);
|
|
|
|
netif_start_queue (dev);
|
|
|
|
/* Enable default interrupts */
|
|
EnableInt ();
|
|
return 0;
|
|
}
|
|
|
|
static void
|
|
rio_timer (unsigned long data)
|
|
{
|
|
struct net_device *dev = (struct net_device *)data;
|
|
struct netdev_private *np = netdev_priv(dev);
|
|
unsigned int entry;
|
|
int next_tick = 1*HZ;
|
|
unsigned long flags;
|
|
|
|
spin_lock_irqsave(&np->rx_lock, flags);
|
|
/* Recover rx ring exhausted error */
|
|
if (np->cur_rx - np->old_rx >= RX_RING_SIZE) {
|
|
printk(KERN_INFO "Try to recover rx ring exhausted...\n");
|
|
/* Re-allocate skbuffs to fill the descriptor ring */
|
|
for (; np->cur_rx - np->old_rx > 0; np->old_rx++) {
|
|
struct sk_buff *skb;
|
|
entry = np->old_rx % RX_RING_SIZE;
|
|
/* Dropped packets don't need to re-allocate */
|
|
if (np->rx_skbuff[entry] == NULL) {
|
|
skb = dev_alloc_skb (np->rx_buf_sz);
|
|
if (skb == NULL) {
|
|
np->rx_ring[entry].fraginfo = 0;
|
|
printk (KERN_INFO
|
|
"%s: Still unable to re-allocate Rx skbuff.#%d\n",
|
|
dev->name, entry);
|
|
break;
|
|
}
|
|
np->rx_skbuff[entry] = skb;
|
|
skb->dev = dev;
|
|
/* 16 byte align the IP header */
|
|
skb_reserve (skb, 2);
|
|
np->rx_ring[entry].fraginfo =
|
|
cpu_to_le64 (pci_map_single
|
|
(np->pdev, skb->data, np->rx_buf_sz,
|
|
PCI_DMA_FROMDEVICE));
|
|
}
|
|
np->rx_ring[entry].fraginfo |=
|
|
cpu_to_le64 (np->rx_buf_sz) << 48;
|
|
np->rx_ring[entry].status = 0;
|
|
} /* end for */
|
|
} /* end if */
|
|
spin_unlock_irqrestore (&np->rx_lock, flags);
|
|
np->timer.expires = jiffies + next_tick;
|
|
add_timer(&np->timer);
|
|
}
|
|
|
|
static void
|
|
rio_tx_timeout (struct net_device *dev)
|
|
{
|
|
long ioaddr = dev->base_addr;
|
|
|
|
printk (KERN_INFO "%s: Tx timed out (%4.4x), is buffer full?\n",
|
|
dev->name, readl (ioaddr + TxStatus));
|
|
rio_free_tx(dev, 0);
|
|
dev->if_port = 0;
|
|
dev->trans_start = jiffies;
|
|
}
|
|
|
|
/* allocate and initialize Tx and Rx descriptors */
|
|
static void
|
|
alloc_list (struct net_device *dev)
|
|
{
|
|
struct netdev_private *np = netdev_priv(dev);
|
|
int i;
|
|
|
|
np->cur_rx = np->cur_tx = 0;
|
|
np->old_rx = np->old_tx = 0;
|
|
np->rx_buf_sz = (dev->mtu <= 1500 ? PACKET_SIZE : dev->mtu + 32);
|
|
|
|
/* Initialize Tx descriptors, TFDListPtr leaves in start_xmit(). */
|
|
for (i = 0; i < TX_RING_SIZE; i++) {
|
|
np->tx_skbuff[i] = NULL;
|
|
np->tx_ring[i].status = cpu_to_le64 (TFDDone);
|
|
np->tx_ring[i].next_desc = cpu_to_le64 (np->tx_ring_dma +
|
|
((i+1)%TX_RING_SIZE) *
|
|
sizeof (struct netdev_desc));
|
|
}
|
|
|
|
/* Initialize Rx descriptors */
|
|
for (i = 0; i < RX_RING_SIZE; i++) {
|
|
np->rx_ring[i].next_desc = cpu_to_le64 (np->rx_ring_dma +
|
|
((i + 1) % RX_RING_SIZE) *
|
|
sizeof (struct netdev_desc));
|
|
np->rx_ring[i].status = 0;
|
|
np->rx_ring[i].fraginfo = 0;
|
|
np->rx_skbuff[i] = NULL;
|
|
}
|
|
|
|
/* Allocate the rx buffers */
|
|
for (i = 0; i < RX_RING_SIZE; i++) {
|
|
/* Allocated fixed size of skbuff */
|
|
struct sk_buff *skb = dev_alloc_skb (np->rx_buf_sz);
|
|
np->rx_skbuff[i] = skb;
|
|
if (skb == NULL) {
|
|
printk (KERN_ERR
|
|
"%s: alloc_list: allocate Rx buffer error! ",
|
|
dev->name);
|
|
break;
|
|
}
|
|
skb->dev = dev; /* Mark as being used by this device. */
|
|
skb_reserve (skb, 2); /* 16 byte align the IP header. */
|
|
/* Rubicon now supports 40 bits of addressing space. */
|
|
np->rx_ring[i].fraginfo =
|
|
cpu_to_le64 ( pci_map_single (
|
|
np->pdev, skb->data, np->rx_buf_sz,
|
|
PCI_DMA_FROMDEVICE));
|
|
np->rx_ring[i].fraginfo |= cpu_to_le64 (np->rx_buf_sz) << 48;
|
|
}
|
|
|
|
/* Set RFDListPtr */
|
|
writel (cpu_to_le32 (np->rx_ring_dma), dev->base_addr + RFDListPtr0);
|
|
writel (0, dev->base_addr + RFDListPtr1);
|
|
|
|
return;
|
|
}
|
|
|
|
static int
|
|
start_xmit (struct sk_buff *skb, struct net_device *dev)
|
|
{
|
|
struct netdev_private *np = netdev_priv(dev);
|
|
struct netdev_desc *txdesc;
|
|
unsigned entry;
|
|
u32 ioaddr;
|
|
u64 tfc_vlan_tag = 0;
|
|
|
|
if (np->link_status == 0) { /* Link Down */
|
|
dev_kfree_skb(skb);
|
|
return 0;
|
|
}
|
|
ioaddr = dev->base_addr;
|
|
entry = np->cur_tx % TX_RING_SIZE;
|
|
np->tx_skbuff[entry] = skb;
|
|
txdesc = &np->tx_ring[entry];
|
|
|
|
#if 0
|
|
if (skb->ip_summed == CHECKSUM_PARTIAL) {
|
|
txdesc->status |=
|
|
cpu_to_le64 (TCPChecksumEnable | UDPChecksumEnable |
|
|
IPChecksumEnable);
|
|
}
|
|
#endif
|
|
if (np->vlan) {
|
|
tfc_vlan_tag =
|
|
cpu_to_le64 (VLANTagInsert) |
|
|
(cpu_to_le64 (np->vlan) << 32) |
|
|
(cpu_to_le64 (skb->priority) << 45);
|
|
}
|
|
txdesc->fraginfo = cpu_to_le64 (pci_map_single (np->pdev, skb->data,
|
|
skb->len,
|
|
PCI_DMA_TODEVICE));
|
|
txdesc->fraginfo |= cpu_to_le64 (skb->len) << 48;
|
|
|
|
/* DL2K bug: DMA fails to get next descriptor ptr in 10Mbps mode
|
|
* Work around: Always use 1 descriptor in 10Mbps mode */
|
|
if (entry % np->tx_coalesce == 0 || np->speed == 10)
|
|
txdesc->status = cpu_to_le64 (entry | tfc_vlan_tag |
|
|
WordAlignDisable |
|
|
TxDMAIndicate |
|
|
(1 << FragCountShift));
|
|
else
|
|
txdesc->status = cpu_to_le64 (entry | tfc_vlan_tag |
|
|
WordAlignDisable |
|
|
(1 << FragCountShift));
|
|
|
|
/* TxDMAPollNow */
|
|
writel (readl (ioaddr + DMACtrl) | 0x00001000, ioaddr + DMACtrl);
|
|
/* Schedule ISR */
|
|
writel(10000, ioaddr + CountDown);
|
|
np->cur_tx = (np->cur_tx + 1) % TX_RING_SIZE;
|
|
if ((np->cur_tx - np->old_tx + TX_RING_SIZE) % TX_RING_SIZE
|
|
< TX_QUEUE_LEN - 1 && np->speed != 10) {
|
|
/* do nothing */
|
|
} else if (!netif_queue_stopped(dev)) {
|
|
netif_stop_queue (dev);
|
|
}
|
|
|
|
/* The first TFDListPtr */
|
|
if (readl (dev->base_addr + TFDListPtr0) == 0) {
|
|
writel (np->tx_ring_dma + entry * sizeof (struct netdev_desc),
|
|
dev->base_addr + TFDListPtr0);
|
|
writel (0, dev->base_addr + TFDListPtr1);
|
|
}
|
|
|
|
/* NETDEV WATCHDOG timer */
|
|
dev->trans_start = jiffies;
|
|
return 0;
|
|
}
|
|
|
|
static irqreturn_t
|
|
rio_interrupt (int irq, void *dev_instance)
|
|
{
|
|
struct net_device *dev = dev_instance;
|
|
struct netdev_private *np;
|
|
unsigned int_status;
|
|
long ioaddr;
|
|
int cnt = max_intrloop;
|
|
int handled = 0;
|
|
|
|
ioaddr = dev->base_addr;
|
|
np = netdev_priv(dev);
|
|
while (1) {
|
|
int_status = readw (ioaddr + IntStatus);
|
|
writew (int_status, ioaddr + IntStatus);
|
|
int_status &= DEFAULT_INTR;
|
|
if (int_status == 0 || --cnt < 0)
|
|
break;
|
|
handled = 1;
|
|
/* Processing received packets */
|
|
if (int_status & RxDMAComplete)
|
|
receive_packet (dev);
|
|
/* TxDMAComplete interrupt */
|
|
if ((int_status & (TxDMAComplete|IntRequested))) {
|
|
int tx_status;
|
|
tx_status = readl (ioaddr + TxStatus);
|
|
if (tx_status & 0x01)
|
|
tx_error (dev, tx_status);
|
|
/* Free used tx skbuffs */
|
|
rio_free_tx (dev, 1);
|
|
}
|
|
|
|
/* Handle uncommon events */
|
|
if (int_status &
|
|
(HostError | LinkEvent | UpdateStats))
|
|
rio_error (dev, int_status);
|
|
}
|
|
if (np->cur_tx != np->old_tx)
|
|
writel (100, ioaddr + CountDown);
|
|
return IRQ_RETVAL(handled);
|
|
}
|
|
|
|
static void
|
|
rio_free_tx (struct net_device *dev, int irq)
|
|
{
|
|
struct netdev_private *np = netdev_priv(dev);
|
|
int entry = np->old_tx % TX_RING_SIZE;
|
|
int tx_use = 0;
|
|
unsigned long flag = 0;
|
|
|
|
if (irq)
|
|
spin_lock(&np->tx_lock);
|
|
else
|
|
spin_lock_irqsave(&np->tx_lock, flag);
|
|
|
|
/* Free used tx skbuffs */
|
|
while (entry != np->cur_tx) {
|
|
struct sk_buff *skb;
|
|
|
|
if (!(np->tx_ring[entry].status & TFDDone))
|
|
break;
|
|
skb = np->tx_skbuff[entry];
|
|
pci_unmap_single (np->pdev,
|
|
np->tx_ring[entry].fraginfo & DMA_48BIT_MASK,
|
|
skb->len, PCI_DMA_TODEVICE);
|
|
if (irq)
|
|
dev_kfree_skb_irq (skb);
|
|
else
|
|
dev_kfree_skb (skb);
|
|
|
|
np->tx_skbuff[entry] = NULL;
|
|
entry = (entry + 1) % TX_RING_SIZE;
|
|
tx_use++;
|
|
}
|
|
if (irq)
|
|
spin_unlock(&np->tx_lock);
|
|
else
|
|
spin_unlock_irqrestore(&np->tx_lock, flag);
|
|
np->old_tx = entry;
|
|
|
|
/* If the ring is no longer full, clear tx_full and
|
|
call netif_wake_queue() */
|
|
|
|
if (netif_queue_stopped(dev) &&
|
|
((np->cur_tx - np->old_tx + TX_RING_SIZE) % TX_RING_SIZE
|
|
< TX_QUEUE_LEN - 1 || np->speed == 10)) {
|
|
netif_wake_queue (dev);
|
|
}
|
|
}
|
|
|
|
static void
|
|
tx_error (struct net_device *dev, int tx_status)
|
|
{
|
|
struct netdev_private *np;
|
|
long ioaddr = dev->base_addr;
|
|
int frame_id;
|
|
int i;
|
|
|
|
np = netdev_priv(dev);
|
|
|
|
frame_id = (tx_status & 0xffff0000);
|
|
printk (KERN_ERR "%s: Transmit error, TxStatus %4.4x, FrameId %d.\n",
|
|
dev->name, tx_status, frame_id);
|
|
np->stats.tx_errors++;
|
|
/* Ttransmit Underrun */
|
|
if (tx_status & 0x10) {
|
|
np->stats.tx_fifo_errors++;
|
|
writew (readw (ioaddr + TxStartThresh) + 0x10,
|
|
ioaddr + TxStartThresh);
|
|
/* Transmit Underrun need to set TxReset, DMARest, FIFOReset */
|
|
writew (TxReset | DMAReset | FIFOReset | NetworkReset,
|
|
ioaddr + ASICCtrl + 2);
|
|
/* Wait for ResetBusy bit clear */
|
|
for (i = 50; i > 0; i--) {
|
|
if ((readw (ioaddr + ASICCtrl + 2) & ResetBusy) == 0)
|
|
break;
|
|
mdelay (1);
|
|
}
|
|
rio_free_tx (dev, 1);
|
|
/* Reset TFDListPtr */
|
|
writel (np->tx_ring_dma +
|
|
np->old_tx * sizeof (struct netdev_desc),
|
|
dev->base_addr + TFDListPtr0);
|
|
writel (0, dev->base_addr + TFDListPtr1);
|
|
|
|
/* Let TxStartThresh stay default value */
|
|
}
|
|
/* Late Collision */
|
|
if (tx_status & 0x04) {
|
|
np->stats.tx_fifo_errors++;
|
|
/* TxReset and clear FIFO */
|
|
writew (TxReset | FIFOReset, ioaddr + ASICCtrl + 2);
|
|
/* Wait reset done */
|
|
for (i = 50; i > 0; i--) {
|
|
if ((readw (ioaddr + ASICCtrl + 2) & ResetBusy) == 0)
|
|
break;
|
|
mdelay (1);
|
|
}
|
|
/* Let TxStartThresh stay default value */
|
|
}
|
|
/* Maximum Collisions */
|
|
#ifdef ETHER_STATS
|
|
if (tx_status & 0x08)
|
|
np->stats.collisions16++;
|
|
#else
|
|
if (tx_status & 0x08)
|
|
np->stats.collisions++;
|
|
#endif
|
|
/* Restart the Tx */
|
|
writel (readw (dev->base_addr + MACCtrl) | TxEnable, ioaddr + MACCtrl);
|
|
}
|
|
|
|
static int
|
|
receive_packet (struct net_device *dev)
|
|
{
|
|
struct netdev_private *np = netdev_priv(dev);
|
|
int entry = np->cur_rx % RX_RING_SIZE;
|
|
int cnt = 30;
|
|
|
|
/* If RFDDone, FrameStart and FrameEnd set, there is a new packet in. */
|
|
while (1) {
|
|
struct netdev_desc *desc = &np->rx_ring[entry];
|
|
int pkt_len;
|
|
u64 frame_status;
|
|
|
|
if (!(desc->status & RFDDone) ||
|
|
!(desc->status & FrameStart) || !(desc->status & FrameEnd))
|
|
break;
|
|
|
|
/* Chip omits the CRC. */
|
|
pkt_len = le64_to_cpu (desc->status & 0xffff);
|
|
frame_status = le64_to_cpu (desc->status);
|
|
if (--cnt < 0)
|
|
break;
|
|
/* Update rx error statistics, drop packet. */
|
|
if (frame_status & RFS_Errors) {
|
|
np->stats.rx_errors++;
|
|
if (frame_status & (RxRuntFrame | RxLengthError))
|
|
np->stats.rx_length_errors++;
|
|
if (frame_status & RxFCSError)
|
|
np->stats.rx_crc_errors++;
|
|
if (frame_status & RxAlignmentError && np->speed != 1000)
|
|
np->stats.rx_frame_errors++;
|
|
if (frame_status & RxFIFOOverrun)
|
|
np->stats.rx_fifo_errors++;
|
|
} else {
|
|
struct sk_buff *skb;
|
|
|
|
/* Small skbuffs for short packets */
|
|
if (pkt_len > copy_thresh) {
|
|
pci_unmap_single (np->pdev,
|
|
desc->fraginfo & DMA_48BIT_MASK,
|
|
np->rx_buf_sz,
|
|
PCI_DMA_FROMDEVICE);
|
|
skb_put (skb = np->rx_skbuff[entry], pkt_len);
|
|
np->rx_skbuff[entry] = NULL;
|
|
} else if ((skb = dev_alloc_skb (pkt_len + 2)) != NULL) {
|
|
pci_dma_sync_single_for_cpu(np->pdev,
|
|
desc->fraginfo &
|
|
DMA_48BIT_MASK,
|
|
np->rx_buf_sz,
|
|
PCI_DMA_FROMDEVICE);
|
|
skb->dev = dev;
|
|
/* 16 byte align the IP header */
|
|
skb_reserve (skb, 2);
|
|
eth_copy_and_sum (skb,
|
|
np->rx_skbuff[entry]->data,
|
|
pkt_len, 0);
|
|
skb_put (skb, pkt_len);
|
|
pci_dma_sync_single_for_device(np->pdev,
|
|
desc->fraginfo &
|
|
DMA_48BIT_MASK,
|
|
np->rx_buf_sz,
|
|
PCI_DMA_FROMDEVICE);
|
|
}
|
|
skb->protocol = eth_type_trans (skb, dev);
|
|
#if 0
|
|
/* Checksum done by hw, but csum value unavailable. */
|
|
if (np->pci_rev_id >= 0x0c &&
|
|
!(frame_status & (TCPError | UDPError | IPError))) {
|
|
skb->ip_summed = CHECKSUM_UNNECESSARY;
|
|
}
|
|
#endif
|
|
netif_rx (skb);
|
|
dev->last_rx = jiffies;
|
|
}
|
|
entry = (entry + 1) % RX_RING_SIZE;
|
|
}
|
|
spin_lock(&np->rx_lock);
|
|
np->cur_rx = entry;
|
|
/* Re-allocate skbuffs to fill the descriptor ring */
|
|
entry = np->old_rx;
|
|
while (entry != np->cur_rx) {
|
|
struct sk_buff *skb;
|
|
/* Dropped packets don't need to re-allocate */
|
|
if (np->rx_skbuff[entry] == NULL) {
|
|
skb = dev_alloc_skb (np->rx_buf_sz);
|
|
if (skb == NULL) {
|
|
np->rx_ring[entry].fraginfo = 0;
|
|
printk (KERN_INFO
|
|
"%s: receive_packet: "
|
|
"Unable to re-allocate Rx skbuff.#%d\n",
|
|
dev->name, entry);
|
|
break;
|
|
}
|
|
np->rx_skbuff[entry] = skb;
|
|
skb->dev = dev;
|
|
/* 16 byte align the IP header */
|
|
skb_reserve (skb, 2);
|
|
np->rx_ring[entry].fraginfo =
|
|
cpu_to_le64 (pci_map_single
|
|
(np->pdev, skb->data, np->rx_buf_sz,
|
|
PCI_DMA_FROMDEVICE));
|
|
}
|
|
np->rx_ring[entry].fraginfo |=
|
|
cpu_to_le64 (np->rx_buf_sz) << 48;
|
|
np->rx_ring[entry].status = 0;
|
|
entry = (entry + 1) % RX_RING_SIZE;
|
|
}
|
|
np->old_rx = entry;
|
|
spin_unlock(&np->rx_lock);
|
|
return 0;
|
|
}
|
|
|
|
static void
|
|
rio_error (struct net_device *dev, int int_status)
|
|
{
|
|
long ioaddr = dev->base_addr;
|
|
struct netdev_private *np = netdev_priv(dev);
|
|
u16 macctrl;
|
|
|
|
/* Link change event */
|
|
if (int_status & LinkEvent) {
|
|
if (mii_wait_link (dev, 10) == 0) {
|
|
printk (KERN_INFO "%s: Link up\n", dev->name);
|
|
if (np->phy_media)
|
|
mii_get_media_pcs (dev);
|
|
else
|
|
mii_get_media (dev);
|
|
if (np->speed == 1000)
|
|
np->tx_coalesce = tx_coalesce;
|
|
else
|
|
np->tx_coalesce = 1;
|
|
macctrl = 0;
|
|
macctrl |= (np->vlan) ? AutoVLANuntagging : 0;
|
|
macctrl |= (np->full_duplex) ? DuplexSelect : 0;
|
|
macctrl |= (np->tx_flow) ?
|
|
TxFlowControlEnable : 0;
|
|
macctrl |= (np->rx_flow) ?
|
|
RxFlowControlEnable : 0;
|
|
writew(macctrl, ioaddr + MACCtrl);
|
|
np->link_status = 1;
|
|
netif_carrier_on(dev);
|
|
} else {
|
|
printk (KERN_INFO "%s: Link off\n", dev->name);
|
|
np->link_status = 0;
|
|
netif_carrier_off(dev);
|
|
}
|
|
}
|
|
|
|
/* UpdateStats statistics registers */
|
|
if (int_status & UpdateStats) {
|
|
get_stats (dev);
|
|
}
|
|
|
|
/* PCI Error, a catastronphic error related to the bus interface
|
|
occurs, set GlobalReset and HostReset to reset. */
|
|
if (int_status & HostError) {
|
|
printk (KERN_ERR "%s: HostError! IntStatus %4.4x.\n",
|
|
dev->name, int_status);
|
|
writew (GlobalReset | HostReset, ioaddr + ASICCtrl + 2);
|
|
mdelay (500);
|
|
}
|
|
}
|
|
|
|
static struct net_device_stats *
|
|
get_stats (struct net_device *dev)
|
|
{
|
|
long ioaddr = dev->base_addr;
|
|
struct netdev_private *np = netdev_priv(dev);
|
|
#ifdef MEM_MAPPING
|
|
int i;
|
|
#endif
|
|
unsigned int stat_reg;
|
|
|
|
/* All statistics registers need to be acknowledged,
|
|
else statistic overflow could cause problems */
|
|
|
|
np->stats.rx_packets += readl (ioaddr + FramesRcvOk);
|
|
np->stats.tx_packets += readl (ioaddr + FramesXmtOk);
|
|
np->stats.rx_bytes += readl (ioaddr + OctetRcvOk);
|
|
np->stats.tx_bytes += readl (ioaddr + OctetXmtOk);
|
|
|
|
np->stats.multicast = readl (ioaddr + McstFramesRcvdOk);
|
|
np->stats.collisions += readl (ioaddr + SingleColFrames)
|
|
+ readl (ioaddr + MultiColFrames);
|
|
|
|
/* detailed tx errors */
|
|
stat_reg = readw (ioaddr + FramesAbortXSColls);
|
|
np->stats.tx_aborted_errors += stat_reg;
|
|
np->stats.tx_errors += stat_reg;
|
|
|
|
stat_reg = readw (ioaddr + CarrierSenseErrors);
|
|
np->stats.tx_carrier_errors += stat_reg;
|
|
np->stats.tx_errors += stat_reg;
|
|
|
|
/* Clear all other statistic register. */
|
|
readl (ioaddr + McstOctetXmtOk);
|
|
readw (ioaddr + BcstFramesXmtdOk);
|
|
readl (ioaddr + McstFramesXmtdOk);
|
|
readw (ioaddr + BcstFramesRcvdOk);
|
|
readw (ioaddr + MacControlFramesRcvd);
|
|
readw (ioaddr + FrameTooLongErrors);
|
|
readw (ioaddr + InRangeLengthErrors);
|
|
readw (ioaddr + FramesCheckSeqErrors);
|
|
readw (ioaddr + FramesLostRxErrors);
|
|
readl (ioaddr + McstOctetXmtOk);
|
|
readl (ioaddr + BcstOctetXmtOk);
|
|
readl (ioaddr + McstFramesXmtdOk);
|
|
readl (ioaddr + FramesWDeferredXmt);
|
|
readl (ioaddr + LateCollisions);
|
|
readw (ioaddr + BcstFramesXmtdOk);
|
|
readw (ioaddr + MacControlFramesXmtd);
|
|
readw (ioaddr + FramesWEXDeferal);
|
|
|
|
#ifdef MEM_MAPPING
|
|
for (i = 0x100; i <= 0x150; i += 4)
|
|
readl (ioaddr + i);
|
|
#endif
|
|
readw (ioaddr + TxJumboFrames);
|
|
readw (ioaddr + RxJumboFrames);
|
|
readw (ioaddr + TCPCheckSumErrors);
|
|
readw (ioaddr + UDPCheckSumErrors);
|
|
readw (ioaddr + IPCheckSumErrors);
|
|
return &np->stats;
|
|
}
|
|
|
|
static int
|
|
clear_stats (struct net_device *dev)
|
|
{
|
|
long ioaddr = dev->base_addr;
|
|
#ifdef MEM_MAPPING
|
|
int i;
|
|
#endif
|
|
|
|
/* All statistics registers need to be acknowledged,
|
|
else statistic overflow could cause problems */
|
|
readl (ioaddr + FramesRcvOk);
|
|
readl (ioaddr + FramesXmtOk);
|
|
readl (ioaddr + OctetRcvOk);
|
|
readl (ioaddr + OctetXmtOk);
|
|
|
|
readl (ioaddr + McstFramesRcvdOk);
|
|
readl (ioaddr + SingleColFrames);
|
|
readl (ioaddr + MultiColFrames);
|
|
readl (ioaddr + LateCollisions);
|
|
/* detailed rx errors */
|
|
readw (ioaddr + FrameTooLongErrors);
|
|
readw (ioaddr + InRangeLengthErrors);
|
|
readw (ioaddr + FramesCheckSeqErrors);
|
|
readw (ioaddr + FramesLostRxErrors);
|
|
|
|
/* detailed tx errors */
|
|
readw (ioaddr + FramesAbortXSColls);
|
|
readw (ioaddr + CarrierSenseErrors);
|
|
|
|
/* Clear all other statistic register. */
|
|
readl (ioaddr + McstOctetXmtOk);
|
|
readw (ioaddr + BcstFramesXmtdOk);
|
|
readl (ioaddr + McstFramesXmtdOk);
|
|
readw (ioaddr + BcstFramesRcvdOk);
|
|
readw (ioaddr + MacControlFramesRcvd);
|
|
readl (ioaddr + McstOctetXmtOk);
|
|
readl (ioaddr + BcstOctetXmtOk);
|
|
readl (ioaddr + McstFramesXmtdOk);
|
|
readl (ioaddr + FramesWDeferredXmt);
|
|
readw (ioaddr + BcstFramesXmtdOk);
|
|
readw (ioaddr + MacControlFramesXmtd);
|
|
readw (ioaddr + FramesWEXDeferal);
|
|
#ifdef MEM_MAPPING
|
|
for (i = 0x100; i <= 0x150; i += 4)
|
|
readl (ioaddr + i);
|
|
#endif
|
|
readw (ioaddr + TxJumboFrames);
|
|
readw (ioaddr + RxJumboFrames);
|
|
readw (ioaddr + TCPCheckSumErrors);
|
|
readw (ioaddr + UDPCheckSumErrors);
|
|
readw (ioaddr + IPCheckSumErrors);
|
|
return 0;
|
|
}
|
|
|
|
|
|
int
|
|
change_mtu (struct net_device *dev, int new_mtu)
|
|
{
|
|
struct netdev_private *np = netdev_priv(dev);
|
|
int max = (np->jumbo) ? MAX_JUMBO : 1536;
|
|
|
|
if ((new_mtu < 68) || (new_mtu > max)) {
|
|
return -EINVAL;
|
|
}
|
|
|
|
dev->mtu = new_mtu;
|
|
|
|
return 0;
|
|
}
|
|
|
|
static void
|
|
set_multicast (struct net_device *dev)
|
|
{
|
|
long ioaddr = dev->base_addr;
|
|
u32 hash_table[2];
|
|
u16 rx_mode = 0;
|
|
struct netdev_private *np = netdev_priv(dev);
|
|
|
|
hash_table[0] = hash_table[1] = 0;
|
|
/* RxFlowcontrol DA: 01-80-C2-00-00-01. Hash index=0x39 */
|
|
hash_table[1] |= cpu_to_le32(0x02000000);
|
|
if (dev->flags & IFF_PROMISC) {
|
|
/* Receive all frames promiscuously. */
|
|
rx_mode = ReceiveAllFrames;
|
|
} else if ((dev->flags & IFF_ALLMULTI) ||
|
|
(dev->mc_count > multicast_filter_limit)) {
|
|
/* Receive broadcast and multicast frames */
|
|
rx_mode = ReceiveBroadcast | ReceiveMulticast | ReceiveUnicast;
|
|
} else if (dev->mc_count > 0) {
|
|
int i;
|
|
struct dev_mc_list *mclist;
|
|
/* Receive broadcast frames and multicast frames filtering
|
|
by Hashtable */
|
|
rx_mode =
|
|
ReceiveBroadcast | ReceiveMulticastHash | ReceiveUnicast;
|
|
for (i=0, mclist = dev->mc_list; mclist && i < dev->mc_count;
|
|
i++, mclist=mclist->next)
|
|
{
|
|
int bit, index = 0;
|
|
int crc = ether_crc_le (ETH_ALEN, mclist->dmi_addr);
|
|
/* The inverted high significant 6 bits of CRC are
|
|
used as an index to hashtable */
|
|
for (bit = 0; bit < 6; bit++)
|
|
if (crc & (1 << (31 - bit)))
|
|
index |= (1 << bit);
|
|
hash_table[index / 32] |= (1 << (index % 32));
|
|
}
|
|
} else {
|
|
rx_mode = ReceiveBroadcast | ReceiveUnicast;
|
|
}
|
|
if (np->vlan) {
|
|
/* ReceiveVLANMatch field in ReceiveMode */
|
|
rx_mode |= ReceiveVLANMatch;
|
|
}
|
|
|
|
writel (hash_table[0], ioaddr + HashTable0);
|
|
writel (hash_table[1], ioaddr + HashTable1);
|
|
writew (rx_mode, ioaddr + ReceiveMode);
|
|
}
|
|
|
|
static void rio_get_drvinfo(struct net_device *dev, struct ethtool_drvinfo *info)
|
|
{
|
|
struct netdev_private *np = netdev_priv(dev);
|
|
strcpy(info->driver, "dl2k");
|
|
strcpy(info->version, DRV_VERSION);
|
|
strcpy(info->bus_info, pci_name(np->pdev));
|
|
}
|
|
|
|
static int rio_get_settings(struct net_device *dev, struct ethtool_cmd *cmd)
|
|
{
|
|
struct netdev_private *np = netdev_priv(dev);
|
|
if (np->phy_media) {
|
|
/* fiber device */
|
|
cmd->supported = SUPPORTED_Autoneg | SUPPORTED_FIBRE;
|
|
cmd->advertising= ADVERTISED_Autoneg | ADVERTISED_FIBRE;
|
|
cmd->port = PORT_FIBRE;
|
|
cmd->transceiver = XCVR_INTERNAL;
|
|
} else {
|
|
/* copper device */
|
|
cmd->supported = SUPPORTED_10baseT_Half |
|
|
SUPPORTED_10baseT_Full | SUPPORTED_100baseT_Half
|
|
| SUPPORTED_100baseT_Full | SUPPORTED_1000baseT_Full |
|
|
SUPPORTED_Autoneg | SUPPORTED_MII;
|
|
cmd->advertising = ADVERTISED_10baseT_Half |
|
|
ADVERTISED_10baseT_Full | ADVERTISED_100baseT_Half |
|
|
ADVERTISED_100baseT_Full | ADVERTISED_1000baseT_Full|
|
|
ADVERTISED_Autoneg | ADVERTISED_MII;
|
|
cmd->port = PORT_MII;
|
|
cmd->transceiver = XCVR_INTERNAL;
|
|
}
|
|
if ( np->link_status ) {
|
|
cmd->speed = np->speed;
|
|
cmd->duplex = np->full_duplex ? DUPLEX_FULL : DUPLEX_HALF;
|
|
} else {
|
|
cmd->speed = -1;
|
|
cmd->duplex = -1;
|
|
}
|
|
if ( np->an_enable)
|
|
cmd->autoneg = AUTONEG_ENABLE;
|
|
else
|
|
cmd->autoneg = AUTONEG_DISABLE;
|
|
|
|
cmd->phy_address = np->phy_addr;
|
|
return 0;
|
|
}
|
|
|
|
static int rio_set_settings(struct net_device *dev, struct ethtool_cmd *cmd)
|
|
{
|
|
struct netdev_private *np = netdev_priv(dev);
|
|
netif_carrier_off(dev);
|
|
if (cmd->autoneg == AUTONEG_ENABLE) {
|
|
if (np->an_enable)
|
|
return 0;
|
|
else {
|
|
np->an_enable = 1;
|
|
mii_set_media(dev);
|
|
return 0;
|
|
}
|
|
} else {
|
|
np->an_enable = 0;
|
|
if (np->speed == 1000) {
|
|
cmd->speed = SPEED_100;
|
|
cmd->duplex = DUPLEX_FULL;
|
|
printk("Warning!! Can't disable Auto negotiation in 1000Mbps, change to Manual 100Mbps, Full duplex.\n");
|
|
}
|
|
switch(cmd->speed + cmd->duplex) {
|
|
|
|
case SPEED_10 + DUPLEX_HALF:
|
|
np->speed = 10;
|
|
np->full_duplex = 0;
|
|
break;
|
|
|
|
case SPEED_10 + DUPLEX_FULL:
|
|
np->speed = 10;
|
|
np->full_duplex = 1;
|
|
break;
|
|
case SPEED_100 + DUPLEX_HALF:
|
|
np->speed = 100;
|
|
np->full_duplex = 0;
|
|
break;
|
|
case SPEED_100 + DUPLEX_FULL:
|
|
np->speed = 100;
|
|
np->full_duplex = 1;
|
|
break;
|
|
case SPEED_1000 + DUPLEX_HALF:/* not supported */
|
|
case SPEED_1000 + DUPLEX_FULL:/* not supported */
|
|
default:
|
|
return -EINVAL;
|
|
}
|
|
mii_set_media(dev);
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
static u32 rio_get_link(struct net_device *dev)
|
|
{
|
|
struct netdev_private *np = netdev_priv(dev);
|
|
return np->link_status;
|
|
}
|
|
|
|
static const struct ethtool_ops ethtool_ops = {
|
|
.get_drvinfo = rio_get_drvinfo,
|
|
.get_settings = rio_get_settings,
|
|
.set_settings = rio_set_settings,
|
|
.get_link = rio_get_link,
|
|
};
|
|
|
|
static int
|
|
rio_ioctl (struct net_device *dev, struct ifreq *rq, int cmd)
|
|
{
|
|
int phy_addr;
|
|
struct netdev_private *np = netdev_priv(dev);
|
|
struct mii_data *miidata = (struct mii_data *) &rq->ifr_ifru;
|
|
|
|
struct netdev_desc *desc;
|
|
int i;
|
|
|
|
phy_addr = np->phy_addr;
|
|
switch (cmd) {
|
|
case SIOCDEVPRIVATE:
|
|
break;
|
|
|
|
case SIOCDEVPRIVATE + 1:
|
|
miidata->out_value = mii_read (dev, phy_addr, miidata->reg_num);
|
|
break;
|
|
case SIOCDEVPRIVATE + 2:
|
|
mii_write (dev, phy_addr, miidata->reg_num, miidata->in_value);
|
|
break;
|
|
case SIOCDEVPRIVATE + 3:
|
|
break;
|
|
case SIOCDEVPRIVATE + 4:
|
|
break;
|
|
case SIOCDEVPRIVATE + 5:
|
|
netif_stop_queue (dev);
|
|
break;
|
|
case SIOCDEVPRIVATE + 6:
|
|
netif_wake_queue (dev);
|
|
break;
|
|
case SIOCDEVPRIVATE + 7:
|
|
printk
|
|
("tx_full=%x cur_tx=%lx old_tx=%lx cur_rx=%lx old_rx=%lx\n",
|
|
netif_queue_stopped(dev), np->cur_tx, np->old_tx, np->cur_rx,
|
|
np->old_rx);
|
|
break;
|
|
case SIOCDEVPRIVATE + 8:
|
|
printk("TX ring:\n");
|
|
for (i = 0; i < TX_RING_SIZE; i++) {
|
|
desc = &np->tx_ring[i];
|
|
printk
|
|
("%02x:cur:%08x next:%08x status:%08x frag1:%08x frag0:%08x",
|
|
i,
|
|
(u32) (np->tx_ring_dma + i * sizeof (*desc)),
|
|
(u32) desc->next_desc,
|
|
(u32) desc->status, (u32) (desc->fraginfo >> 32),
|
|
(u32) desc->fraginfo);
|
|
printk ("\n");
|
|
}
|
|
printk ("\n");
|
|
break;
|
|
|
|
default:
|
|
return -EOPNOTSUPP;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
#define EEP_READ 0x0200
|
|
#define EEP_BUSY 0x8000
|
|
/* Read the EEPROM word */
|
|
/* We use I/O instruction to read/write eeprom to avoid fail on some machines */
|
|
int
|
|
read_eeprom (long ioaddr, int eep_addr)
|
|
{
|
|
int i = 1000;
|
|
outw (EEP_READ | (eep_addr & 0xff), ioaddr + EepromCtrl);
|
|
while (i-- > 0) {
|
|
if (!(inw (ioaddr + EepromCtrl) & EEP_BUSY)) {
|
|
return inw (ioaddr + EepromData);
|
|
}
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
enum phy_ctrl_bits {
|
|
MII_READ = 0x00, MII_CLK = 0x01, MII_DATA1 = 0x02, MII_WRITE = 0x04,
|
|
MII_DUPLEX = 0x08,
|
|
};
|
|
|
|
#define mii_delay() readb(ioaddr)
|
|
static void
|
|
mii_sendbit (struct net_device *dev, u32 data)
|
|
{
|
|
long ioaddr = dev->base_addr + PhyCtrl;
|
|
data = (data) ? MII_DATA1 : 0;
|
|
data |= MII_WRITE;
|
|
data |= (readb (ioaddr) & 0xf8) | MII_WRITE;
|
|
writeb (data, ioaddr);
|
|
mii_delay ();
|
|
writeb (data | MII_CLK, ioaddr);
|
|
mii_delay ();
|
|
}
|
|
|
|
static int
|
|
mii_getbit (struct net_device *dev)
|
|
{
|
|
long ioaddr = dev->base_addr + PhyCtrl;
|
|
u8 data;
|
|
|
|
data = (readb (ioaddr) & 0xf8) | MII_READ;
|
|
writeb (data, ioaddr);
|
|
mii_delay ();
|
|
writeb (data | MII_CLK, ioaddr);
|
|
mii_delay ();
|
|
return ((readb (ioaddr) >> 1) & 1);
|
|
}
|
|
|
|
static void
|
|
mii_send_bits (struct net_device *dev, u32 data, int len)
|
|
{
|
|
int i;
|
|
for (i = len - 1; i >= 0; i--) {
|
|
mii_sendbit (dev, data & (1 << i));
|
|
}
|
|
}
|
|
|
|
static int
|
|
mii_read (struct net_device *dev, int phy_addr, int reg_num)
|
|
{
|
|
u32 cmd;
|
|
int i;
|
|
u32 retval = 0;
|
|
|
|
/* Preamble */
|
|
mii_send_bits (dev, 0xffffffff, 32);
|
|
/* ST(2), OP(2), ADDR(5), REG#(5), TA(2), Data(16) total 32 bits */
|
|
/* ST,OP = 0110'b for read operation */
|
|
cmd = (0x06 << 10 | phy_addr << 5 | reg_num);
|
|
mii_send_bits (dev, cmd, 14);
|
|
/* Turnaround */
|
|
if (mii_getbit (dev))
|
|
goto err_out;
|
|
/* Read data */
|
|
for (i = 0; i < 16; i++) {
|
|
retval |= mii_getbit (dev);
|
|
retval <<= 1;
|
|
}
|
|
/* End cycle */
|
|
mii_getbit (dev);
|
|
return (retval >> 1) & 0xffff;
|
|
|
|
err_out:
|
|
return 0;
|
|
}
|
|
static int
|
|
mii_write (struct net_device *dev, int phy_addr, int reg_num, u16 data)
|
|
{
|
|
u32 cmd;
|
|
|
|
/* Preamble */
|
|
mii_send_bits (dev, 0xffffffff, 32);
|
|
/* ST(2), OP(2), ADDR(5), REG#(5), TA(2), Data(16) total 32 bits */
|
|
/* ST,OP,AAAAA,RRRRR,TA = 0101xxxxxxxxxx10'b = 0x5002 for write */
|
|
cmd = (0x5002 << 16) | (phy_addr << 23) | (reg_num << 18) | data;
|
|
mii_send_bits (dev, cmd, 32);
|
|
/* End cycle */
|
|
mii_getbit (dev);
|
|
return 0;
|
|
}
|
|
static int
|
|
mii_wait_link (struct net_device *dev, int wait)
|
|
{
|
|
BMSR_t bmsr;
|
|
int phy_addr;
|
|
struct netdev_private *np;
|
|
|
|
np = netdev_priv(dev);
|
|
phy_addr = np->phy_addr;
|
|
|
|
do {
|
|
bmsr.image = mii_read (dev, phy_addr, MII_BMSR);
|
|
if (bmsr.bits.link_status)
|
|
return 0;
|
|
mdelay (1);
|
|
} while (--wait > 0);
|
|
return -1;
|
|
}
|
|
static int
|
|
mii_get_media (struct net_device *dev)
|
|
{
|
|
ANAR_t negotiate;
|
|
BMSR_t bmsr;
|
|
BMCR_t bmcr;
|
|
MSCR_t mscr;
|
|
MSSR_t mssr;
|
|
int phy_addr;
|
|
struct netdev_private *np;
|
|
|
|
np = netdev_priv(dev);
|
|
phy_addr = np->phy_addr;
|
|
|
|
bmsr.image = mii_read (dev, phy_addr, MII_BMSR);
|
|
if (np->an_enable) {
|
|
if (!bmsr.bits.an_complete) {
|
|
/* Auto-Negotiation not completed */
|
|
return -1;
|
|
}
|
|
negotiate.image = mii_read (dev, phy_addr, MII_ANAR) &
|
|
mii_read (dev, phy_addr, MII_ANLPAR);
|
|
mscr.image = mii_read (dev, phy_addr, MII_MSCR);
|
|
mssr.image = mii_read (dev, phy_addr, MII_MSSR);
|
|
if (mscr.bits.media_1000BT_FD & mssr.bits.lp_1000BT_FD) {
|
|
np->speed = 1000;
|
|
np->full_duplex = 1;
|
|
printk (KERN_INFO "Auto 1000 Mbps, Full duplex\n");
|
|
} else if (mscr.bits.media_1000BT_HD & mssr.bits.lp_1000BT_HD) {
|
|
np->speed = 1000;
|
|
np->full_duplex = 0;
|
|
printk (KERN_INFO "Auto 1000 Mbps, Half duplex\n");
|
|
} else if (negotiate.bits.media_100BX_FD) {
|
|
np->speed = 100;
|
|
np->full_duplex = 1;
|
|
printk (KERN_INFO "Auto 100 Mbps, Full duplex\n");
|
|
} else if (negotiate.bits.media_100BX_HD) {
|
|
np->speed = 100;
|
|
np->full_duplex = 0;
|
|
printk (KERN_INFO "Auto 100 Mbps, Half duplex\n");
|
|
} else if (negotiate.bits.media_10BT_FD) {
|
|
np->speed = 10;
|
|
np->full_duplex = 1;
|
|
printk (KERN_INFO "Auto 10 Mbps, Full duplex\n");
|
|
} else if (negotiate.bits.media_10BT_HD) {
|
|
np->speed = 10;
|
|
np->full_duplex = 0;
|
|
printk (KERN_INFO "Auto 10 Mbps, Half duplex\n");
|
|
}
|
|
if (negotiate.bits.pause) {
|
|
np->tx_flow &= 1;
|
|
np->rx_flow &= 1;
|
|
} else if (negotiate.bits.asymmetric) {
|
|
np->tx_flow = 0;
|
|
np->rx_flow &= 1;
|
|
}
|
|
/* else tx_flow, rx_flow = user select */
|
|
} else {
|
|
bmcr.image = mii_read (dev, phy_addr, MII_BMCR);
|
|
if (bmcr.bits.speed100 == 1 && bmcr.bits.speed1000 == 0) {
|
|
printk (KERN_INFO "Operating at 100 Mbps, ");
|
|
} else if (bmcr.bits.speed100 == 0 && bmcr.bits.speed1000 == 0) {
|
|
printk (KERN_INFO "Operating at 10 Mbps, ");
|
|
} else if (bmcr.bits.speed100 == 0 && bmcr.bits.speed1000 == 1) {
|
|
printk (KERN_INFO "Operating at 1000 Mbps, ");
|
|
}
|
|
if (bmcr.bits.duplex_mode) {
|
|
printk ("Full duplex\n");
|
|
} else {
|
|
printk ("Half duplex\n");
|
|
}
|
|
}
|
|
if (np->tx_flow)
|
|
printk(KERN_INFO "Enable Tx Flow Control\n");
|
|
else
|
|
printk(KERN_INFO "Disable Tx Flow Control\n");
|
|
if (np->rx_flow)
|
|
printk(KERN_INFO "Enable Rx Flow Control\n");
|
|
else
|
|
printk(KERN_INFO "Disable Rx Flow Control\n");
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int
|
|
mii_set_media (struct net_device *dev)
|
|
{
|
|
PHY_SCR_t pscr;
|
|
BMCR_t bmcr;
|
|
BMSR_t bmsr;
|
|
ANAR_t anar;
|
|
int phy_addr;
|
|
struct netdev_private *np;
|
|
np = netdev_priv(dev);
|
|
phy_addr = np->phy_addr;
|
|
|
|
/* Does user set speed? */
|
|
if (np->an_enable) {
|
|
/* Advertise capabilities */
|
|
bmsr.image = mii_read (dev, phy_addr, MII_BMSR);
|
|
anar.image = mii_read (dev, phy_addr, MII_ANAR);
|
|
anar.bits.media_100BX_FD = bmsr.bits.media_100BX_FD;
|
|
anar.bits.media_100BX_HD = bmsr.bits.media_100BX_HD;
|
|
anar.bits.media_100BT4 = bmsr.bits.media_100BT4;
|
|
anar.bits.media_10BT_FD = bmsr.bits.media_10BT_FD;
|
|
anar.bits.media_10BT_HD = bmsr.bits.media_10BT_HD;
|
|
anar.bits.pause = 1;
|
|
anar.bits.asymmetric = 1;
|
|
mii_write (dev, phy_addr, MII_ANAR, anar.image);
|
|
|
|
/* Enable Auto crossover */
|
|
pscr.image = mii_read (dev, phy_addr, MII_PHY_SCR);
|
|
pscr.bits.mdi_crossover_mode = 3; /* 11'b */
|
|
mii_write (dev, phy_addr, MII_PHY_SCR, pscr.image);
|
|
|
|
/* Soft reset PHY */
|
|
mii_write (dev, phy_addr, MII_BMCR, MII_BMCR_RESET);
|
|
bmcr.image = 0;
|
|
bmcr.bits.an_enable = 1;
|
|
bmcr.bits.restart_an = 1;
|
|
bmcr.bits.reset = 1;
|
|
mii_write (dev, phy_addr, MII_BMCR, bmcr.image);
|
|
mdelay(1);
|
|
} else {
|
|
/* Force speed setting */
|
|
/* 1) Disable Auto crossover */
|
|
pscr.image = mii_read (dev, phy_addr, MII_PHY_SCR);
|
|
pscr.bits.mdi_crossover_mode = 0;
|
|
mii_write (dev, phy_addr, MII_PHY_SCR, pscr.image);
|
|
|
|
/* 2) PHY Reset */
|
|
bmcr.image = mii_read (dev, phy_addr, MII_BMCR);
|
|
bmcr.bits.reset = 1;
|
|
mii_write (dev, phy_addr, MII_BMCR, bmcr.image);
|
|
|
|
/* 3) Power Down */
|
|
bmcr.image = 0x1940; /* must be 0x1940 */
|
|
mii_write (dev, phy_addr, MII_BMCR, bmcr.image);
|
|
mdelay (100); /* wait a certain time */
|
|
|
|
/* 4) Advertise nothing */
|
|
mii_write (dev, phy_addr, MII_ANAR, 0);
|
|
|
|
/* 5) Set media and Power Up */
|
|
bmcr.image = 0;
|
|
bmcr.bits.power_down = 1;
|
|
if (np->speed == 100) {
|
|
bmcr.bits.speed100 = 1;
|
|
bmcr.bits.speed1000 = 0;
|
|
printk (KERN_INFO "Manual 100 Mbps, ");
|
|
} else if (np->speed == 10) {
|
|
bmcr.bits.speed100 = 0;
|
|
bmcr.bits.speed1000 = 0;
|
|
printk (KERN_INFO "Manual 10 Mbps, ");
|
|
}
|
|
if (np->full_duplex) {
|
|
bmcr.bits.duplex_mode = 1;
|
|
printk ("Full duplex\n");
|
|
} else {
|
|
bmcr.bits.duplex_mode = 0;
|
|
printk ("Half duplex\n");
|
|
}
|
|
#if 0
|
|
/* Set 1000BaseT Master/Slave setting */
|
|
mscr.image = mii_read (dev, phy_addr, MII_MSCR);
|
|
mscr.bits.cfg_enable = 1;
|
|
mscr.bits.cfg_value = 0;
|
|
#endif
|
|
mii_write (dev, phy_addr, MII_BMCR, bmcr.image);
|
|
mdelay(10);
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
static int
|
|
mii_get_media_pcs (struct net_device *dev)
|
|
{
|
|
ANAR_PCS_t negotiate;
|
|
BMSR_t bmsr;
|
|
BMCR_t bmcr;
|
|
int phy_addr;
|
|
struct netdev_private *np;
|
|
|
|
np = netdev_priv(dev);
|
|
phy_addr = np->phy_addr;
|
|
|
|
bmsr.image = mii_read (dev, phy_addr, PCS_BMSR);
|
|
if (np->an_enable) {
|
|
if (!bmsr.bits.an_complete) {
|
|
/* Auto-Negotiation not completed */
|
|
return -1;
|
|
}
|
|
negotiate.image = mii_read (dev, phy_addr, PCS_ANAR) &
|
|
mii_read (dev, phy_addr, PCS_ANLPAR);
|
|
np->speed = 1000;
|
|
if (negotiate.bits.full_duplex) {
|
|
printk (KERN_INFO "Auto 1000 Mbps, Full duplex\n");
|
|
np->full_duplex = 1;
|
|
} else {
|
|
printk (KERN_INFO "Auto 1000 Mbps, half duplex\n");
|
|
np->full_duplex = 0;
|
|
}
|
|
if (negotiate.bits.pause) {
|
|
np->tx_flow &= 1;
|
|
np->rx_flow &= 1;
|
|
} else if (negotiate.bits.asymmetric) {
|
|
np->tx_flow = 0;
|
|
np->rx_flow &= 1;
|
|
}
|
|
/* else tx_flow, rx_flow = user select */
|
|
} else {
|
|
bmcr.image = mii_read (dev, phy_addr, PCS_BMCR);
|
|
printk (KERN_INFO "Operating at 1000 Mbps, ");
|
|
if (bmcr.bits.duplex_mode) {
|
|
printk ("Full duplex\n");
|
|
} else {
|
|
printk ("Half duplex\n");
|
|
}
|
|
}
|
|
if (np->tx_flow)
|
|
printk(KERN_INFO "Enable Tx Flow Control\n");
|
|
else
|
|
printk(KERN_INFO "Disable Tx Flow Control\n");
|
|
if (np->rx_flow)
|
|
printk(KERN_INFO "Enable Rx Flow Control\n");
|
|
else
|
|
printk(KERN_INFO "Disable Rx Flow Control\n");
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int
|
|
mii_set_media_pcs (struct net_device *dev)
|
|
{
|
|
BMCR_t bmcr;
|
|
ESR_t esr;
|
|
ANAR_PCS_t anar;
|
|
int phy_addr;
|
|
struct netdev_private *np;
|
|
np = netdev_priv(dev);
|
|
phy_addr = np->phy_addr;
|
|
|
|
/* Auto-Negotiation? */
|
|
if (np->an_enable) {
|
|
/* Advertise capabilities */
|
|
esr.image = mii_read (dev, phy_addr, PCS_ESR);
|
|
anar.image = mii_read (dev, phy_addr, MII_ANAR);
|
|
anar.bits.half_duplex =
|
|
esr.bits.media_1000BT_HD | esr.bits.media_1000BX_HD;
|
|
anar.bits.full_duplex =
|
|
esr.bits.media_1000BT_FD | esr.bits.media_1000BX_FD;
|
|
anar.bits.pause = 1;
|
|
anar.bits.asymmetric = 1;
|
|
mii_write (dev, phy_addr, MII_ANAR, anar.image);
|
|
|
|
/* Soft reset PHY */
|
|
mii_write (dev, phy_addr, MII_BMCR, MII_BMCR_RESET);
|
|
bmcr.image = 0;
|
|
bmcr.bits.an_enable = 1;
|
|
bmcr.bits.restart_an = 1;
|
|
bmcr.bits.reset = 1;
|
|
mii_write (dev, phy_addr, MII_BMCR, bmcr.image);
|
|
mdelay(1);
|
|
} else {
|
|
/* Force speed setting */
|
|
/* PHY Reset */
|
|
bmcr.image = 0;
|
|
bmcr.bits.reset = 1;
|
|
mii_write (dev, phy_addr, MII_BMCR, bmcr.image);
|
|
mdelay(10);
|
|
bmcr.image = 0;
|
|
bmcr.bits.an_enable = 0;
|
|
if (np->full_duplex) {
|
|
bmcr.bits.duplex_mode = 1;
|
|
printk (KERN_INFO "Manual full duplex\n");
|
|
} else {
|
|
bmcr.bits.duplex_mode = 0;
|
|
printk (KERN_INFO "Manual half duplex\n");
|
|
}
|
|
mii_write (dev, phy_addr, MII_BMCR, bmcr.image);
|
|
mdelay(10);
|
|
|
|
/* Advertise nothing */
|
|
mii_write (dev, phy_addr, MII_ANAR, 0);
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
|
|
static int
|
|
rio_close (struct net_device *dev)
|
|
{
|
|
long ioaddr = dev->base_addr;
|
|
struct netdev_private *np = netdev_priv(dev);
|
|
struct sk_buff *skb;
|
|
int i;
|
|
|
|
netif_stop_queue (dev);
|
|
|
|
/* Disable interrupts */
|
|
writew (0, ioaddr + IntEnable);
|
|
|
|
/* Stop Tx and Rx logics */
|
|
writel (TxDisable | RxDisable | StatsDisable, ioaddr + MACCtrl);
|
|
synchronize_irq (dev->irq);
|
|
free_irq (dev->irq, dev);
|
|
del_timer_sync (&np->timer);
|
|
|
|
/* Free all the skbuffs in the queue. */
|
|
for (i = 0; i < RX_RING_SIZE; i++) {
|
|
np->rx_ring[i].status = 0;
|
|
np->rx_ring[i].fraginfo = 0;
|
|
skb = np->rx_skbuff[i];
|
|
if (skb) {
|
|
pci_unmap_single(np->pdev,
|
|
np->rx_ring[i].fraginfo & DMA_48BIT_MASK,
|
|
skb->len, PCI_DMA_FROMDEVICE);
|
|
dev_kfree_skb (skb);
|
|
np->rx_skbuff[i] = NULL;
|
|
}
|
|
}
|
|
for (i = 0; i < TX_RING_SIZE; i++) {
|
|
skb = np->tx_skbuff[i];
|
|
if (skb) {
|
|
pci_unmap_single(np->pdev,
|
|
np->tx_ring[i].fraginfo & DMA_48BIT_MASK,
|
|
skb->len, PCI_DMA_TODEVICE);
|
|
dev_kfree_skb (skb);
|
|
np->tx_skbuff[i] = NULL;
|
|
}
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static void __devexit
|
|
rio_remove1 (struct pci_dev *pdev)
|
|
{
|
|
struct net_device *dev = pci_get_drvdata (pdev);
|
|
|
|
if (dev) {
|
|
struct netdev_private *np = netdev_priv(dev);
|
|
|
|
unregister_netdev (dev);
|
|
pci_free_consistent (pdev, RX_TOTAL_SIZE, np->rx_ring,
|
|
np->rx_ring_dma);
|
|
pci_free_consistent (pdev, TX_TOTAL_SIZE, np->tx_ring,
|
|
np->tx_ring_dma);
|
|
#ifdef MEM_MAPPING
|
|
iounmap ((char *) (dev->base_addr));
|
|
#endif
|
|
free_netdev (dev);
|
|
pci_release_regions (pdev);
|
|
pci_disable_device (pdev);
|
|
}
|
|
pci_set_drvdata (pdev, NULL);
|
|
}
|
|
|
|
static struct pci_driver rio_driver = {
|
|
.name = "dl2k",
|
|
.id_table = rio_pci_tbl,
|
|
.probe = rio_probe1,
|
|
.remove = __devexit_p(rio_remove1),
|
|
};
|
|
|
|
static int __init
|
|
rio_init (void)
|
|
{
|
|
return pci_register_driver(&rio_driver);
|
|
}
|
|
|
|
static void __exit
|
|
rio_exit (void)
|
|
{
|
|
pci_unregister_driver (&rio_driver);
|
|
}
|
|
|
|
module_init (rio_init);
|
|
module_exit (rio_exit);
|
|
|
|
/*
|
|
|
|
Compile command:
|
|
|
|
gcc -D__KERNEL__ -DMODULE -I/usr/src/linux/include -Wall -Wstrict-prototypes -O2 -c dl2k.c
|
|
|
|
Read Documentation/networking/dl2k.txt for details.
|
|
|
|
*/
|
|
|