mirror of
https://github.com/FEX-Emu/linux.git
synced 2024-12-25 10:59:05 +00:00
59018b6d2a
Once upon a time, the MTD repository was using CVS. This patch therefore removes all usages of the no longer updated CVS keywords from the MTD code. This also includes code that printed them to the user. Signed-off-by: Adrian Bunk <bunk@kernel.org> Signed-off-by: David Woodhouse <dwmw2@infradead.org>
625 lines
18 KiB
C
625 lines
18 KiB
C
/*
|
|
* drivers/mtd/nand/rtc_from4.c
|
|
*
|
|
* Copyright (C) 2004 Red Hat, Inc.
|
|
*
|
|
* Derived from drivers/mtd/nand/spia.c
|
|
* Copyright (C) 2000 Steven J. Hill (sjhill@realitydiluted.com)
|
|
*
|
|
* This program is free software; you can redistribute it and/or modify
|
|
* it under the terms of the GNU General Public License version 2 as
|
|
* published by the Free Software Foundation.
|
|
*
|
|
* Overview:
|
|
* This is a device driver for the AG-AND flash device found on the
|
|
* Renesas Technology Corp. Flash ROM 4-slot interface board (FROM_BOARD4),
|
|
* which utilizes the Renesas HN29V1G91T-30 part.
|
|
* This chip is a 1 GBibit (128MiB x 8 bits) AG-AND flash device.
|
|
*/
|
|
|
|
#include <linux/delay.h>
|
|
#include <linux/kernel.h>
|
|
#include <linux/init.h>
|
|
#include <linux/slab.h>
|
|
#include <linux/rslib.h>
|
|
#include <linux/bitrev.h>
|
|
#include <linux/module.h>
|
|
#include <linux/mtd/compatmac.h>
|
|
#include <linux/mtd/mtd.h>
|
|
#include <linux/mtd/nand.h>
|
|
#include <linux/mtd/partitions.h>
|
|
#include <asm/io.h>
|
|
|
|
/*
|
|
* MTD structure for Renesas board
|
|
*/
|
|
static struct mtd_info *rtc_from4_mtd = NULL;
|
|
|
|
#define RTC_FROM4_MAX_CHIPS 2
|
|
|
|
/* HS77x9 processor register defines */
|
|
#define SH77X9_BCR1 ((volatile unsigned short *)(0xFFFFFF60))
|
|
#define SH77X9_BCR2 ((volatile unsigned short *)(0xFFFFFF62))
|
|
#define SH77X9_WCR1 ((volatile unsigned short *)(0xFFFFFF64))
|
|
#define SH77X9_WCR2 ((volatile unsigned short *)(0xFFFFFF66))
|
|
#define SH77X9_MCR ((volatile unsigned short *)(0xFFFFFF68))
|
|
#define SH77X9_PCR ((volatile unsigned short *)(0xFFFFFF6C))
|
|
#define SH77X9_FRQCR ((volatile unsigned short *)(0xFFFFFF80))
|
|
|
|
/*
|
|
* Values specific to the Renesas Technology Corp. FROM_BOARD4 (used with HS77x9 processor)
|
|
*/
|
|
/* Address where flash is mapped */
|
|
#define RTC_FROM4_FIO_BASE 0x14000000
|
|
|
|
/* CLE and ALE are tied to address lines 5 & 4, respectively */
|
|
#define RTC_FROM4_CLE (1 << 5)
|
|
#define RTC_FROM4_ALE (1 << 4)
|
|
|
|
/* address lines A24-A22 used for chip selection */
|
|
#define RTC_FROM4_NAND_ADDR_SLOT3 (0x00800000)
|
|
#define RTC_FROM4_NAND_ADDR_SLOT4 (0x00C00000)
|
|
#define RTC_FROM4_NAND_ADDR_FPGA (0x01000000)
|
|
/* mask address lines A24-A22 used for chip selection */
|
|
#define RTC_FROM4_NAND_ADDR_MASK (RTC_FROM4_NAND_ADDR_SLOT3 | RTC_FROM4_NAND_ADDR_SLOT4 | RTC_FROM4_NAND_ADDR_FPGA)
|
|
|
|
/* FPGA status register for checking device ready (bit zero) */
|
|
#define RTC_FROM4_FPGA_SR (RTC_FROM4_NAND_ADDR_FPGA | 0x00000002)
|
|
#define RTC_FROM4_DEVICE_READY 0x0001
|
|
|
|
/* FPGA Reed-Solomon ECC Control register */
|
|
|
|
#define RTC_FROM4_RS_ECC_CTL (RTC_FROM4_NAND_ADDR_FPGA | 0x00000050)
|
|
#define RTC_FROM4_RS_ECC_CTL_CLR (1 << 7)
|
|
#define RTC_FROM4_RS_ECC_CTL_GEN (1 << 6)
|
|
#define RTC_FROM4_RS_ECC_CTL_FD_E (1 << 5)
|
|
|
|
/* FPGA Reed-Solomon ECC code base */
|
|
#define RTC_FROM4_RS_ECC (RTC_FROM4_NAND_ADDR_FPGA | 0x00000060)
|
|
#define RTC_FROM4_RS_ECCN (RTC_FROM4_NAND_ADDR_FPGA | 0x00000080)
|
|
|
|
/* FPGA Reed-Solomon ECC check register */
|
|
#define RTC_FROM4_RS_ECC_CHK (RTC_FROM4_NAND_ADDR_FPGA | 0x00000070)
|
|
#define RTC_FROM4_RS_ECC_CHK_ERROR (1 << 7)
|
|
|
|
#define ERR_STAT_ECC_AVAILABLE 0x20
|
|
|
|
/* Undefine for software ECC */
|
|
#define RTC_FROM4_HWECC 1
|
|
|
|
/* Define as 1 for no virtual erase blocks (in JFFS2) */
|
|
#define RTC_FROM4_NO_VIRTBLOCKS 0
|
|
|
|
/*
|
|
* Module stuff
|
|
*/
|
|
static void __iomem *rtc_from4_fio_base = (void *)P2SEGADDR(RTC_FROM4_FIO_BASE);
|
|
|
|
static const struct mtd_partition partition_info[] = {
|
|
{
|
|
.name = "Renesas flash partition 1",
|
|
.offset = 0,
|
|
.size = MTDPART_SIZ_FULL},
|
|
};
|
|
|
|
#define NUM_PARTITIONS 1
|
|
|
|
/*
|
|
* hardware specific flash bbt decriptors
|
|
* Note: this is to allow debugging by disabling
|
|
* NAND_BBT_CREATE and/or NAND_BBT_WRITE
|
|
*
|
|
*/
|
|
static uint8_t bbt_pattern[] = { 'B', 'b', 't', '0' };
|
|
static uint8_t mirror_pattern[] = { '1', 't', 'b', 'B' };
|
|
|
|
static struct nand_bbt_descr rtc_from4_bbt_main_descr = {
|
|
.options = NAND_BBT_LASTBLOCK | NAND_BBT_CREATE | NAND_BBT_WRITE
|
|
| NAND_BBT_2BIT | NAND_BBT_VERSION | NAND_BBT_PERCHIP,
|
|
.offs = 40,
|
|
.len = 4,
|
|
.veroffs = 44,
|
|
.maxblocks = 4,
|
|
.pattern = bbt_pattern
|
|
};
|
|
|
|
static struct nand_bbt_descr rtc_from4_bbt_mirror_descr = {
|
|
.options = NAND_BBT_LASTBLOCK | NAND_BBT_CREATE | NAND_BBT_WRITE
|
|
| NAND_BBT_2BIT | NAND_BBT_VERSION | NAND_BBT_PERCHIP,
|
|
.offs = 40,
|
|
.len = 4,
|
|
.veroffs = 44,
|
|
.maxblocks = 4,
|
|
.pattern = mirror_pattern
|
|
};
|
|
|
|
#ifdef RTC_FROM4_HWECC
|
|
|
|
/* the Reed Solomon control structure */
|
|
static struct rs_control *rs_decoder;
|
|
|
|
/*
|
|
* hardware specific Out Of Band information
|
|
*/
|
|
static struct nand_ecclayout rtc_from4_nand_oobinfo = {
|
|
.eccbytes = 32,
|
|
.eccpos = {
|
|
0, 1, 2, 3, 4, 5, 6, 7,
|
|
8, 9, 10, 11, 12, 13, 14, 15,
|
|
16, 17, 18, 19, 20, 21, 22, 23,
|
|
24, 25, 26, 27, 28, 29, 30, 31},
|
|
.oobfree = {{32, 32}}
|
|
};
|
|
|
|
#endif
|
|
|
|
/*
|
|
* rtc_from4_hwcontrol - hardware specific access to control-lines
|
|
* @mtd: MTD device structure
|
|
* @cmd: hardware control command
|
|
*
|
|
* Address lines (A5 and A4) are used to control Command and Address Latch
|
|
* Enable on this board, so set the read/write address appropriately.
|
|
*
|
|
* Chip Enable is also controlled by the Chip Select (CS5) and
|
|
* Address lines (A24-A22), so no action is required here.
|
|
*
|
|
*/
|
|
static void rtc_from4_hwcontrol(struct mtd_info *mtd, int cmd,
|
|
unsigned int ctrl)
|
|
{
|
|
struct nand_chip *chip = (mtd->priv);
|
|
|
|
if (cmd == NAND_CMD_NONE)
|
|
return;
|
|
|
|
if (ctrl & NAND_CLE)
|
|
writeb(cmd, chip->IO_ADDR_W | RTC_FROM4_CLE);
|
|
else
|
|
writeb(cmd, chip->IO_ADDR_W | RTC_FROM4_ALE);
|
|
}
|
|
|
|
/*
|
|
* rtc_from4_nand_select_chip - hardware specific chip select
|
|
* @mtd: MTD device structure
|
|
* @chip: Chip to select (0 == slot 3, 1 == slot 4)
|
|
*
|
|
* The chip select is based on address lines A24-A22.
|
|
* This driver uses flash slots 3 and 4 (A23-A22).
|
|
*
|
|
*/
|
|
static void rtc_from4_nand_select_chip(struct mtd_info *mtd, int chip)
|
|
{
|
|
struct nand_chip *this = mtd->priv;
|
|
|
|
this->IO_ADDR_R = (void __iomem *)((unsigned long)this->IO_ADDR_R & ~RTC_FROM4_NAND_ADDR_MASK);
|
|
this->IO_ADDR_W = (void __iomem *)((unsigned long)this->IO_ADDR_W & ~RTC_FROM4_NAND_ADDR_MASK);
|
|
|
|
switch (chip) {
|
|
|
|
case 0: /* select slot 3 chip */
|
|
this->IO_ADDR_R = (void __iomem *)((unsigned long)this->IO_ADDR_R | RTC_FROM4_NAND_ADDR_SLOT3);
|
|
this->IO_ADDR_W = (void __iomem *)((unsigned long)this->IO_ADDR_W | RTC_FROM4_NAND_ADDR_SLOT3);
|
|
break;
|
|
case 1: /* select slot 4 chip */
|
|
this->IO_ADDR_R = (void __iomem *)((unsigned long)this->IO_ADDR_R | RTC_FROM4_NAND_ADDR_SLOT4);
|
|
this->IO_ADDR_W = (void __iomem *)((unsigned long)this->IO_ADDR_W | RTC_FROM4_NAND_ADDR_SLOT4);
|
|
break;
|
|
|
|
}
|
|
}
|
|
|
|
/*
|
|
* rtc_from4_nand_device_ready - hardware specific ready/busy check
|
|
* @mtd: MTD device structure
|
|
*
|
|
* This board provides the Ready/Busy state in the status register
|
|
* of the FPGA. Bit zero indicates the RDY(1)/BSY(0) signal.
|
|
*
|
|
*/
|
|
static int rtc_from4_nand_device_ready(struct mtd_info *mtd)
|
|
{
|
|
unsigned short status;
|
|
|
|
status = *((volatile unsigned short *)(rtc_from4_fio_base + RTC_FROM4_FPGA_SR));
|
|
|
|
return (status & RTC_FROM4_DEVICE_READY);
|
|
|
|
}
|
|
|
|
/*
|
|
* deplete - code to perform device recovery in case there was a power loss
|
|
* @mtd: MTD device structure
|
|
* @chip: Chip to select (0 == slot 3, 1 == slot 4)
|
|
*
|
|
* If there was a sudden loss of power during an erase operation, a
|
|
* "device recovery" operation must be performed when power is restored
|
|
* to ensure correct operation. This routine performs the required steps
|
|
* for the requested chip.
|
|
*
|
|
* See page 86 of the data sheet for details.
|
|
*
|
|
*/
|
|
static void deplete(struct mtd_info *mtd, int chip)
|
|
{
|
|
struct nand_chip *this = mtd->priv;
|
|
|
|
/* wait until device is ready */
|
|
while (!this->dev_ready(mtd)) ;
|
|
|
|
this->select_chip(mtd, chip);
|
|
|
|
/* Send the commands for device recovery, phase 1 */
|
|
this->cmdfunc(mtd, NAND_CMD_DEPLETE1, 0x0000, 0x0000);
|
|
this->cmdfunc(mtd, NAND_CMD_DEPLETE2, -1, -1);
|
|
|
|
/* Send the commands for device recovery, phase 2 */
|
|
this->cmdfunc(mtd, NAND_CMD_DEPLETE1, 0x0000, 0x0004);
|
|
this->cmdfunc(mtd, NAND_CMD_DEPLETE2, -1, -1);
|
|
|
|
}
|
|
|
|
#ifdef RTC_FROM4_HWECC
|
|
/*
|
|
* rtc_from4_enable_hwecc - hardware specific hardware ECC enable function
|
|
* @mtd: MTD device structure
|
|
* @mode: I/O mode; read or write
|
|
*
|
|
* enable hardware ECC for data read or write
|
|
*
|
|
*/
|
|
static void rtc_from4_enable_hwecc(struct mtd_info *mtd, int mode)
|
|
{
|
|
volatile unsigned short *rs_ecc_ctl = (volatile unsigned short *)(rtc_from4_fio_base + RTC_FROM4_RS_ECC_CTL);
|
|
unsigned short status;
|
|
|
|
switch (mode) {
|
|
case NAND_ECC_READ:
|
|
status = RTC_FROM4_RS_ECC_CTL_CLR | RTC_FROM4_RS_ECC_CTL_FD_E;
|
|
|
|
*rs_ecc_ctl = status;
|
|
break;
|
|
|
|
case NAND_ECC_READSYN:
|
|
status = 0x00;
|
|
|
|
*rs_ecc_ctl = status;
|
|
break;
|
|
|
|
case NAND_ECC_WRITE:
|
|
status = RTC_FROM4_RS_ECC_CTL_CLR | RTC_FROM4_RS_ECC_CTL_GEN | RTC_FROM4_RS_ECC_CTL_FD_E;
|
|
|
|
*rs_ecc_ctl = status;
|
|
break;
|
|
|
|
default:
|
|
BUG();
|
|
break;
|
|
}
|
|
|
|
}
|
|
|
|
/*
|
|
* rtc_from4_calculate_ecc - hardware specific code to read ECC code
|
|
* @mtd: MTD device structure
|
|
* @dat: buffer containing the data to generate ECC codes
|
|
* @ecc_code ECC codes calculated
|
|
*
|
|
* The ECC code is calculated by the FPGA. All we have to do is read the values
|
|
* from the FPGA registers.
|
|
*
|
|
* Note: We read from the inverted registers, since data is inverted before
|
|
* the code is calculated. So all 0xff data (blank page) results in all 0xff rs code
|
|
*
|
|
*/
|
|
static void rtc_from4_calculate_ecc(struct mtd_info *mtd, const u_char *dat, u_char *ecc_code)
|
|
{
|
|
volatile unsigned short *rs_eccn = (volatile unsigned short *)(rtc_from4_fio_base + RTC_FROM4_RS_ECCN);
|
|
unsigned short value;
|
|
int i;
|
|
|
|
for (i = 0; i < 8; i++) {
|
|
value = *rs_eccn;
|
|
ecc_code[i] = (unsigned char)value;
|
|
rs_eccn++;
|
|
}
|
|
ecc_code[7] |= 0x0f; /* set the last four bits (not used) */
|
|
}
|
|
|
|
/*
|
|
* rtc_from4_correct_data - hardware specific code to correct data using ECC code
|
|
* @mtd: MTD device structure
|
|
* @buf: buffer containing the data to generate ECC codes
|
|
* @ecc1 ECC codes read
|
|
* @ecc2 ECC codes calculated
|
|
*
|
|
* The FPGA tells us fast, if there's an error or not. If no, we go back happy
|
|
* else we read the ecc results from the fpga and call the rs library to decode
|
|
* and hopefully correct the error.
|
|
*
|
|
*/
|
|
static int rtc_from4_correct_data(struct mtd_info *mtd, const u_char *buf, u_char *ecc1, u_char *ecc2)
|
|
{
|
|
int i, j, res;
|
|
unsigned short status;
|
|
uint16_t par[6], syn[6];
|
|
uint8_t ecc[8];
|
|
volatile unsigned short *rs_ecc;
|
|
|
|
status = *((volatile unsigned short *)(rtc_from4_fio_base + RTC_FROM4_RS_ECC_CHK));
|
|
|
|
if (!(status & RTC_FROM4_RS_ECC_CHK_ERROR)) {
|
|
return 0;
|
|
}
|
|
|
|
/* Read the syndrom pattern from the FPGA and correct the bitorder */
|
|
rs_ecc = (volatile unsigned short *)(rtc_from4_fio_base + RTC_FROM4_RS_ECC);
|
|
for (i = 0; i < 8; i++) {
|
|
ecc[i] = bitrev8(*rs_ecc);
|
|
rs_ecc++;
|
|
}
|
|
|
|
/* convert into 6 10bit syndrome fields */
|
|
par[5] = rs_decoder->index_of[(((uint16_t) ecc[0] >> 0) & 0x0ff) | (((uint16_t) ecc[1] << 8) & 0x300)];
|
|
par[4] = rs_decoder->index_of[(((uint16_t) ecc[1] >> 2) & 0x03f) | (((uint16_t) ecc[2] << 6) & 0x3c0)];
|
|
par[3] = rs_decoder->index_of[(((uint16_t) ecc[2] >> 4) & 0x00f) | (((uint16_t) ecc[3] << 4) & 0x3f0)];
|
|
par[2] = rs_decoder->index_of[(((uint16_t) ecc[3] >> 6) & 0x003) | (((uint16_t) ecc[4] << 2) & 0x3fc)];
|
|
par[1] = rs_decoder->index_of[(((uint16_t) ecc[5] >> 0) & 0x0ff) | (((uint16_t) ecc[6] << 8) & 0x300)];
|
|
par[0] = (((uint16_t) ecc[6] >> 2) & 0x03f) | (((uint16_t) ecc[7] << 6) & 0x3c0);
|
|
|
|
/* Convert to computable syndrome */
|
|
for (i = 0; i < 6; i++) {
|
|
syn[i] = par[0];
|
|
for (j = 1; j < 6; j++)
|
|
if (par[j] != rs_decoder->nn)
|
|
syn[i] ^= rs_decoder->alpha_to[rs_modnn(rs_decoder, par[j] + i * j)];
|
|
|
|
/* Convert to index form */
|
|
syn[i] = rs_decoder->index_of[syn[i]];
|
|
}
|
|
|
|
/* Let the library code do its magic. */
|
|
res = decode_rs8(rs_decoder, (uint8_t *) buf, par, 512, syn, 0, NULL, 0xff, NULL);
|
|
if (res > 0) {
|
|
DEBUG(MTD_DEBUG_LEVEL0, "rtc_from4_correct_data: " "ECC corrected %d errors on read\n", res);
|
|
}
|
|
return res;
|
|
}
|
|
|
|
/**
|
|
* rtc_from4_errstat - perform additional error status checks
|
|
* @mtd: MTD device structure
|
|
* @this: NAND chip structure
|
|
* @state: state or the operation
|
|
* @status: status code returned from read status
|
|
* @page: startpage inside the chip, must be called with (page & this->pagemask)
|
|
*
|
|
* Perform additional error status checks on erase and write failures
|
|
* to determine if errors are correctable. For this device, correctable
|
|
* 1-bit errors on erase and write are considered acceptable.
|
|
*
|
|
* note: see pages 34..37 of data sheet for details.
|
|
*
|
|
*/
|
|
static int rtc_from4_errstat(struct mtd_info *mtd, struct nand_chip *this,
|
|
int state, int status, int page)
|
|
{
|
|
int er_stat = 0;
|
|
int rtn, retlen;
|
|
size_t len;
|
|
uint8_t *buf;
|
|
int i;
|
|
|
|
this->cmdfunc(mtd, NAND_CMD_STATUS_CLEAR, -1, -1);
|
|
|
|
if (state == FL_ERASING) {
|
|
|
|
for (i = 0; i < 4; i++) {
|
|
if (!(status & 1 << (i + 1)))
|
|
continue;
|
|
this->cmdfunc(mtd, (NAND_CMD_STATUS_ERROR + i + 1),
|
|
-1, -1);
|
|
rtn = this->read_byte(mtd);
|
|
this->cmdfunc(mtd, NAND_CMD_STATUS_RESET, -1, -1);
|
|
|
|
/* err_ecc_not_avail */
|
|
if (!(rtn & ERR_STAT_ECC_AVAILABLE))
|
|
er_stat |= 1 << (i + 1);
|
|
}
|
|
|
|
} else if (state == FL_WRITING) {
|
|
|
|
unsigned long corrected = mtd->ecc_stats.corrected;
|
|
|
|
/* single bank write logic */
|
|
this->cmdfunc(mtd, NAND_CMD_STATUS_ERROR, -1, -1);
|
|
rtn = this->read_byte(mtd);
|
|
this->cmdfunc(mtd, NAND_CMD_STATUS_RESET, -1, -1);
|
|
|
|
if (!(rtn & ERR_STAT_ECC_AVAILABLE)) {
|
|
/* err_ecc_not_avail */
|
|
er_stat |= 1 << 1;
|
|
goto out;
|
|
}
|
|
|
|
len = mtd->writesize;
|
|
buf = kmalloc(len, GFP_KERNEL);
|
|
if (!buf) {
|
|
printk(KERN_ERR "rtc_from4_errstat: Out of memory!\n");
|
|
er_stat = 1;
|
|
goto out;
|
|
}
|
|
|
|
/* recovery read */
|
|
rtn = nand_do_read(mtd, page, len, &retlen, buf);
|
|
|
|
/* if read failed or > 1-bit error corrected */
|
|
if (rtn || (mtd->ecc_stats.corrected - corrected) > 1)
|
|
er_stat |= 1 << 1;
|
|
kfree(buf);
|
|
}
|
|
out:
|
|
rtn = status;
|
|
if (er_stat == 0) { /* if ECC is available */
|
|
rtn = (status & ~NAND_STATUS_FAIL); /* clear the error bit */
|
|
}
|
|
|
|
return rtn;
|
|
}
|
|
#endif
|
|
|
|
/*
|
|
* Main initialization routine
|
|
*/
|
|
static int __init rtc_from4_init(void)
|
|
{
|
|
struct nand_chip *this;
|
|
unsigned short bcr1, bcr2, wcr2;
|
|
int i;
|
|
int ret;
|
|
|
|
/* Allocate memory for MTD device structure and private data */
|
|
rtc_from4_mtd = kmalloc(sizeof(struct mtd_info) + sizeof(struct nand_chip), GFP_KERNEL);
|
|
if (!rtc_from4_mtd) {
|
|
printk("Unable to allocate Renesas NAND MTD device structure.\n");
|
|
return -ENOMEM;
|
|
}
|
|
|
|
/* Get pointer to private data */
|
|
this = (struct nand_chip *)(&rtc_from4_mtd[1]);
|
|
|
|
/* Initialize structures */
|
|
memset(rtc_from4_mtd, 0, sizeof(struct mtd_info));
|
|
memset(this, 0, sizeof(struct nand_chip));
|
|
|
|
/* Link the private data with the MTD structure */
|
|
rtc_from4_mtd->priv = this;
|
|
rtc_from4_mtd->owner = THIS_MODULE;
|
|
|
|
/* set area 5 as PCMCIA mode to clear the spec of tDH(Data hold time;9ns min) */
|
|
bcr1 = *SH77X9_BCR1 & ~0x0002;
|
|
bcr1 |= 0x0002;
|
|
*SH77X9_BCR1 = bcr1;
|
|
|
|
/* set */
|
|
bcr2 = *SH77X9_BCR2 & ~0x0c00;
|
|
bcr2 |= 0x0800;
|
|
*SH77X9_BCR2 = bcr2;
|
|
|
|
/* set area 5 wait states */
|
|
wcr2 = *SH77X9_WCR2 & ~0x1c00;
|
|
wcr2 |= 0x1c00;
|
|
*SH77X9_WCR2 = wcr2;
|
|
|
|
/* Set address of NAND IO lines */
|
|
this->IO_ADDR_R = rtc_from4_fio_base;
|
|
this->IO_ADDR_W = rtc_from4_fio_base;
|
|
/* Set address of hardware control function */
|
|
this->cmd_ctrl = rtc_from4_hwcontrol;
|
|
/* Set address of chip select function */
|
|
this->select_chip = rtc_from4_nand_select_chip;
|
|
/* command delay time (in us) */
|
|
this->chip_delay = 100;
|
|
/* return the status of the Ready/Busy line */
|
|
this->dev_ready = rtc_from4_nand_device_ready;
|
|
|
|
#ifdef RTC_FROM4_HWECC
|
|
printk(KERN_INFO "rtc_from4_init: using hardware ECC detection.\n");
|
|
|
|
this->ecc.mode = NAND_ECC_HW_SYNDROME;
|
|
this->ecc.size = 512;
|
|
this->ecc.bytes = 8;
|
|
/* return the status of extra status and ECC checks */
|
|
this->errstat = rtc_from4_errstat;
|
|
/* set the nand_oobinfo to support FPGA H/W error detection */
|
|
this->ecc.layout = &rtc_from4_nand_oobinfo;
|
|
this->ecc.hwctl = rtc_from4_enable_hwecc;
|
|
this->ecc.calculate = rtc_from4_calculate_ecc;
|
|
this->ecc.correct = rtc_from4_correct_data;
|
|
|
|
/* We could create the decoder on demand, if memory is a concern.
|
|
* This way we have it handy, if an error happens
|
|
*
|
|
* Symbolsize is 10 (bits)
|
|
* Primitve polynomial is x^10+x^3+1
|
|
* first consecutive root is 0
|
|
* primitve element to generate roots = 1
|
|
* generator polinomial degree = 6
|
|
*/
|
|
rs_decoder = init_rs(10, 0x409, 0, 1, 6);
|
|
if (!rs_decoder) {
|
|
printk(KERN_ERR "Could not create a RS decoder\n");
|
|
ret = -ENOMEM;
|
|
goto err_1;
|
|
}
|
|
#else
|
|
printk(KERN_INFO "rtc_from4_init: using software ECC detection.\n");
|
|
|
|
this->ecc.mode = NAND_ECC_SOFT;
|
|
#endif
|
|
|
|
/* set the bad block tables to support debugging */
|
|
this->bbt_td = &rtc_from4_bbt_main_descr;
|
|
this->bbt_md = &rtc_from4_bbt_mirror_descr;
|
|
|
|
/* Scan to find existence of the device */
|
|
if (nand_scan(rtc_from4_mtd, RTC_FROM4_MAX_CHIPS)) {
|
|
ret = -ENXIO;
|
|
goto err_2;
|
|
}
|
|
|
|
/* Perform 'device recovery' for each chip in case there was a power loss. */
|
|
for (i = 0; i < this->numchips; i++) {
|
|
deplete(rtc_from4_mtd, i);
|
|
}
|
|
|
|
#if RTC_FROM4_NO_VIRTBLOCKS
|
|
/* use a smaller erase block to minimize wasted space when a block is bad */
|
|
/* note: this uses eight times as much RAM as using the default and makes */
|
|
/* mounts take four times as long. */
|
|
rtc_from4_mtd->flags |= MTD_NO_VIRTBLOCKS;
|
|
#endif
|
|
|
|
/* Register the partitions */
|
|
ret = add_mtd_partitions(rtc_from4_mtd, partition_info, NUM_PARTITIONS);
|
|
if (ret)
|
|
goto err_3;
|
|
|
|
/* Return happy */
|
|
return 0;
|
|
err_3:
|
|
nand_release(rtc_from4_mtd);
|
|
err_2:
|
|
free_rs(rs_decoder);
|
|
err_1:
|
|
kfree(rtc_from4_mtd);
|
|
return ret;
|
|
}
|
|
|
|
module_init(rtc_from4_init);
|
|
|
|
/*
|
|
* Clean up routine
|
|
*/
|
|
static void __exit rtc_from4_cleanup(void)
|
|
{
|
|
/* Release resource, unregister partitions */
|
|
nand_release(rtc_from4_mtd);
|
|
|
|
/* Free the MTD device structure */
|
|
kfree(rtc_from4_mtd);
|
|
|
|
#ifdef RTC_FROM4_HWECC
|
|
/* Free the reed solomon resources */
|
|
if (rs_decoder) {
|
|
free_rs(rs_decoder);
|
|
}
|
|
#endif
|
|
}
|
|
|
|
module_exit(rtc_from4_cleanup);
|
|
|
|
MODULE_LICENSE("GPL");
|
|
MODULE_AUTHOR("d.marlin <dmarlin@redhat.com");
|
|
MODULE_DESCRIPTION("Board-specific glue layer for AG-AND flash on Renesas FROM_BOARD4");
|