linux/fs/xfs/xfs_super.c
Dave Chinner 9bb54cb56a xfs: clean up MIN/MAX
Get rid of the MIN/MAX macros and just use the native min/max macros
directly in the XFS code.

Signed-Off-By: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Brian Foster <bfoster@redhat.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Darrick J. Wong <darrick.wong@oracle.com>
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
2018-06-08 10:07:52 -07:00

2203 lines
56 KiB
C

// SPDX-License-Identifier: GPL-2.0
/*
* Copyright (c) 2000-2006 Silicon Graphics, Inc.
* All Rights Reserved.
*/
#include "xfs.h"
#include "xfs_shared.h"
#include "xfs_format.h"
#include "xfs_log_format.h"
#include "xfs_trans_resv.h"
#include "xfs_sb.h"
#include "xfs_mount.h"
#include "xfs_da_format.h"
#include "xfs_inode.h"
#include "xfs_btree.h"
#include "xfs_bmap.h"
#include "xfs_alloc.h"
#include "xfs_error.h"
#include "xfs_fsops.h"
#include "xfs_trans.h"
#include "xfs_buf_item.h"
#include "xfs_log.h"
#include "xfs_log_priv.h"
#include "xfs_da_btree.h"
#include "xfs_dir2.h"
#include "xfs_extfree_item.h"
#include "xfs_mru_cache.h"
#include "xfs_inode_item.h"
#include "xfs_icache.h"
#include "xfs_trace.h"
#include "xfs_icreate_item.h"
#include "xfs_filestream.h"
#include "xfs_quota.h"
#include "xfs_sysfs.h"
#include "xfs_ondisk.h"
#include "xfs_rmap_item.h"
#include "xfs_refcount_item.h"
#include "xfs_bmap_item.h"
#include "xfs_reflink.h"
#include <linux/namei.h>
#include <linux/dax.h>
#include <linux/init.h>
#include <linux/slab.h>
#include <linux/mount.h>
#include <linux/mempool.h>
#include <linux/writeback.h>
#include <linux/kthread.h>
#include <linux/freezer.h>
#include <linux/parser.h>
static const struct super_operations xfs_super_operations;
struct bio_set *xfs_ioend_bioset;
static struct kset *xfs_kset; /* top-level xfs sysfs dir */
#ifdef DEBUG
static struct xfs_kobj xfs_dbg_kobj; /* global debug sysfs attrs */
#endif
/*
* Table driven mount option parser.
*/
enum {
Opt_logbufs, Opt_logbsize, Opt_logdev, Opt_rtdev, Opt_biosize,
Opt_wsync, Opt_noalign, Opt_swalloc, Opt_sunit, Opt_swidth, Opt_nouuid,
Opt_mtpt, Opt_grpid, Opt_nogrpid, Opt_bsdgroups, Opt_sysvgroups,
Opt_allocsize, Opt_norecovery, Opt_barrier, Opt_nobarrier,
Opt_inode64, Opt_inode32, Opt_ikeep, Opt_noikeep,
Opt_largeio, Opt_nolargeio, Opt_attr2, Opt_noattr2, Opt_filestreams,
Opt_quota, Opt_noquota, Opt_usrquota, Opt_grpquota, Opt_prjquota,
Opt_uquota, Opt_gquota, Opt_pquota,
Opt_uqnoenforce, Opt_gqnoenforce, Opt_pqnoenforce, Opt_qnoenforce,
Opt_discard, Opt_nodiscard, Opt_dax, Opt_err,
};
static const match_table_t tokens = {
{Opt_logbufs, "logbufs=%u"}, /* number of XFS log buffers */
{Opt_logbsize, "logbsize=%s"}, /* size of XFS log buffers */
{Opt_logdev, "logdev=%s"}, /* log device */
{Opt_rtdev, "rtdev=%s"}, /* realtime I/O device */
{Opt_biosize, "biosize=%u"}, /* log2 of preferred buffered io size */
{Opt_wsync, "wsync"}, /* safe-mode nfs compatible mount */
{Opt_noalign, "noalign"}, /* turn off stripe alignment */
{Opt_swalloc, "swalloc"}, /* turn on stripe width allocation */
{Opt_sunit, "sunit=%u"}, /* data volume stripe unit */
{Opt_swidth, "swidth=%u"}, /* data volume stripe width */
{Opt_nouuid, "nouuid"}, /* ignore filesystem UUID */
{Opt_mtpt, "mtpt"}, /* filesystem mount point */
{Opt_grpid, "grpid"}, /* group-ID from parent directory */
{Opt_nogrpid, "nogrpid"}, /* group-ID from current process */
{Opt_bsdgroups, "bsdgroups"}, /* group-ID from parent directory */
{Opt_sysvgroups,"sysvgroups"}, /* group-ID from current process */
{Opt_allocsize, "allocsize=%s"},/* preferred allocation size */
{Opt_norecovery,"norecovery"}, /* don't run XFS recovery */
{Opt_inode64, "inode64"}, /* inodes can be allocated anywhere */
{Opt_inode32, "inode32"}, /* inode allocation limited to
* XFS_MAXINUMBER_32 */
{Opt_ikeep, "ikeep"}, /* do not free empty inode clusters */
{Opt_noikeep, "noikeep"}, /* free empty inode clusters */
{Opt_largeio, "largeio"}, /* report large I/O sizes in stat() */
{Opt_nolargeio, "nolargeio"}, /* do not report large I/O sizes
* in stat(). */
{Opt_attr2, "attr2"}, /* do use attr2 attribute format */
{Opt_noattr2, "noattr2"}, /* do not use attr2 attribute format */
{Opt_filestreams,"filestreams"},/* use filestreams allocator */
{Opt_quota, "quota"}, /* disk quotas (user) */
{Opt_noquota, "noquota"}, /* no quotas */
{Opt_usrquota, "usrquota"}, /* user quota enabled */
{Opt_grpquota, "grpquota"}, /* group quota enabled */
{Opt_prjquota, "prjquota"}, /* project quota enabled */
{Opt_uquota, "uquota"}, /* user quota (IRIX variant) */
{Opt_gquota, "gquota"}, /* group quota (IRIX variant) */
{Opt_pquota, "pquota"}, /* project quota (IRIX variant) */
{Opt_uqnoenforce,"uqnoenforce"},/* user quota limit enforcement */
{Opt_gqnoenforce,"gqnoenforce"},/* group quota limit enforcement */
{Opt_pqnoenforce,"pqnoenforce"},/* project quota limit enforcement */
{Opt_qnoenforce, "qnoenforce"}, /* same as uqnoenforce */
{Opt_discard, "discard"}, /* Discard unused blocks */
{Opt_nodiscard, "nodiscard"}, /* Do not discard unused blocks */
{Opt_dax, "dax"}, /* Enable direct access to bdev pages */
/* Deprecated mount options scheduled for removal */
{Opt_barrier, "barrier"}, /* use writer barriers for log write and
* unwritten extent conversion */
{Opt_nobarrier, "nobarrier"}, /* .. disable */
{Opt_err, NULL},
};
STATIC int
suffix_kstrtoint(const substring_t *s, unsigned int base, int *res)
{
int last, shift_left_factor = 0, _res;
char *value;
int ret = 0;
value = match_strdup(s);
if (!value)
return -ENOMEM;
last = strlen(value) - 1;
if (value[last] == 'K' || value[last] == 'k') {
shift_left_factor = 10;
value[last] = '\0';
}
if (value[last] == 'M' || value[last] == 'm') {
shift_left_factor = 20;
value[last] = '\0';
}
if (value[last] == 'G' || value[last] == 'g') {
shift_left_factor = 30;
value[last] = '\0';
}
if (kstrtoint(value, base, &_res))
ret = -EINVAL;
kfree(value);
*res = _res << shift_left_factor;
return ret;
}
/*
* This function fills in xfs_mount_t fields based on mount args.
* Note: the superblock has _not_ yet been read in.
*
* Note that this function leaks the various device name allocations on
* failure. The caller takes care of them.
*
* *sb is const because this is also used to test options on the remount
* path, and we don't want this to have any side effects at remount time.
* Today this function does not change *sb, but just to future-proof...
*/
STATIC int
xfs_parseargs(
struct xfs_mount *mp,
char *options)
{
const struct super_block *sb = mp->m_super;
char *p;
substring_t args[MAX_OPT_ARGS];
int dsunit = 0;
int dswidth = 0;
int iosize = 0;
uint8_t iosizelog = 0;
/*
* set up the mount name first so all the errors will refer to the
* correct device.
*/
mp->m_fsname = kstrndup(sb->s_id, MAXNAMELEN, GFP_KERNEL);
if (!mp->m_fsname)
return -ENOMEM;
mp->m_fsname_len = strlen(mp->m_fsname) + 1;
/*
* Copy binary VFS mount flags we are interested in.
*/
if (sb_rdonly(sb))
mp->m_flags |= XFS_MOUNT_RDONLY;
if (sb->s_flags & SB_DIRSYNC)
mp->m_flags |= XFS_MOUNT_DIRSYNC;
if (sb->s_flags & SB_SYNCHRONOUS)
mp->m_flags |= XFS_MOUNT_WSYNC;
/*
* Set some default flags that could be cleared by the mount option
* parsing.
*/
mp->m_flags |= XFS_MOUNT_BARRIER;
mp->m_flags |= XFS_MOUNT_COMPAT_IOSIZE;
/*
* These can be overridden by the mount option parsing.
*/
mp->m_logbufs = -1;
mp->m_logbsize = -1;
if (!options)
goto done;
while ((p = strsep(&options, ",")) != NULL) {
int token;
if (!*p)
continue;
token = match_token(p, tokens, args);
switch (token) {
case Opt_logbufs:
if (match_int(args, &mp->m_logbufs))
return -EINVAL;
break;
case Opt_logbsize:
if (suffix_kstrtoint(args, 10, &mp->m_logbsize))
return -EINVAL;
break;
case Opt_logdev:
kfree(mp->m_logname);
mp->m_logname = match_strdup(args);
if (!mp->m_logname)
return -ENOMEM;
break;
case Opt_mtpt:
xfs_warn(mp, "%s option not allowed on this system", p);
return -EINVAL;
case Opt_rtdev:
kfree(mp->m_rtname);
mp->m_rtname = match_strdup(args);
if (!mp->m_rtname)
return -ENOMEM;
break;
case Opt_allocsize:
case Opt_biosize:
if (suffix_kstrtoint(args, 10, &iosize))
return -EINVAL;
iosizelog = ffs(iosize) - 1;
break;
case Opt_grpid:
case Opt_bsdgroups:
mp->m_flags |= XFS_MOUNT_GRPID;
break;
case Opt_nogrpid:
case Opt_sysvgroups:
mp->m_flags &= ~XFS_MOUNT_GRPID;
break;
case Opt_wsync:
mp->m_flags |= XFS_MOUNT_WSYNC;
break;
case Opt_norecovery:
mp->m_flags |= XFS_MOUNT_NORECOVERY;
break;
case Opt_noalign:
mp->m_flags |= XFS_MOUNT_NOALIGN;
break;
case Opt_swalloc:
mp->m_flags |= XFS_MOUNT_SWALLOC;
break;
case Opt_sunit:
if (match_int(args, &dsunit))
return -EINVAL;
break;
case Opt_swidth:
if (match_int(args, &dswidth))
return -EINVAL;
break;
case Opt_inode32:
mp->m_flags |= XFS_MOUNT_SMALL_INUMS;
break;
case Opt_inode64:
mp->m_flags &= ~XFS_MOUNT_SMALL_INUMS;
break;
case Opt_nouuid:
mp->m_flags |= XFS_MOUNT_NOUUID;
break;
case Opt_ikeep:
mp->m_flags |= XFS_MOUNT_IKEEP;
break;
case Opt_noikeep:
mp->m_flags &= ~XFS_MOUNT_IKEEP;
break;
case Opt_largeio:
mp->m_flags &= ~XFS_MOUNT_COMPAT_IOSIZE;
break;
case Opt_nolargeio:
mp->m_flags |= XFS_MOUNT_COMPAT_IOSIZE;
break;
case Opt_attr2:
mp->m_flags |= XFS_MOUNT_ATTR2;
break;
case Opt_noattr2:
mp->m_flags &= ~XFS_MOUNT_ATTR2;
mp->m_flags |= XFS_MOUNT_NOATTR2;
break;
case Opt_filestreams:
mp->m_flags |= XFS_MOUNT_FILESTREAMS;
break;
case Opt_noquota:
mp->m_qflags &= ~XFS_ALL_QUOTA_ACCT;
mp->m_qflags &= ~XFS_ALL_QUOTA_ENFD;
mp->m_qflags &= ~XFS_ALL_QUOTA_ACTIVE;
break;
case Opt_quota:
case Opt_uquota:
case Opt_usrquota:
mp->m_qflags |= (XFS_UQUOTA_ACCT | XFS_UQUOTA_ACTIVE |
XFS_UQUOTA_ENFD);
break;
case Opt_qnoenforce:
case Opt_uqnoenforce:
mp->m_qflags |= (XFS_UQUOTA_ACCT | XFS_UQUOTA_ACTIVE);
mp->m_qflags &= ~XFS_UQUOTA_ENFD;
break;
case Opt_pquota:
case Opt_prjquota:
mp->m_qflags |= (XFS_PQUOTA_ACCT | XFS_PQUOTA_ACTIVE |
XFS_PQUOTA_ENFD);
break;
case Opt_pqnoenforce:
mp->m_qflags |= (XFS_PQUOTA_ACCT | XFS_PQUOTA_ACTIVE);
mp->m_qflags &= ~XFS_PQUOTA_ENFD;
break;
case Opt_gquota:
case Opt_grpquota:
mp->m_qflags |= (XFS_GQUOTA_ACCT | XFS_GQUOTA_ACTIVE |
XFS_GQUOTA_ENFD);
break;
case Opt_gqnoenforce:
mp->m_qflags |= (XFS_GQUOTA_ACCT | XFS_GQUOTA_ACTIVE);
mp->m_qflags &= ~XFS_GQUOTA_ENFD;
break;
case Opt_discard:
mp->m_flags |= XFS_MOUNT_DISCARD;
break;
case Opt_nodiscard:
mp->m_flags &= ~XFS_MOUNT_DISCARD;
break;
#ifdef CONFIG_FS_DAX
case Opt_dax:
mp->m_flags |= XFS_MOUNT_DAX;
break;
#endif
case Opt_barrier:
xfs_warn(mp, "%s option is deprecated, ignoring.", p);
mp->m_flags |= XFS_MOUNT_BARRIER;
break;
case Opt_nobarrier:
xfs_warn(mp, "%s option is deprecated, ignoring.", p);
mp->m_flags &= ~XFS_MOUNT_BARRIER;
break;
default:
xfs_warn(mp, "unknown mount option [%s].", p);
return -EINVAL;
}
}
/*
* no recovery flag requires a read-only mount
*/
if ((mp->m_flags & XFS_MOUNT_NORECOVERY) &&
!(mp->m_flags & XFS_MOUNT_RDONLY)) {
xfs_warn(mp, "no-recovery mounts must be read-only.");
return -EINVAL;
}
if ((mp->m_flags & XFS_MOUNT_NOALIGN) && (dsunit || dswidth)) {
xfs_warn(mp,
"sunit and swidth options incompatible with the noalign option");
return -EINVAL;
}
#ifndef CONFIG_XFS_QUOTA
if (XFS_IS_QUOTA_RUNNING(mp)) {
xfs_warn(mp, "quota support not available in this kernel.");
return -EINVAL;
}
#endif
if ((dsunit && !dswidth) || (!dsunit && dswidth)) {
xfs_warn(mp, "sunit and swidth must be specified together");
return -EINVAL;
}
if (dsunit && (dswidth % dsunit != 0)) {
xfs_warn(mp,
"stripe width (%d) must be a multiple of the stripe unit (%d)",
dswidth, dsunit);
return -EINVAL;
}
done:
if (dsunit && !(mp->m_flags & XFS_MOUNT_NOALIGN)) {
/*
* At this point the superblock has not been read
* in, therefore we do not know the block size.
* Before the mount call ends we will convert
* these to FSBs.
*/
mp->m_dalign = dsunit;
mp->m_swidth = dswidth;
}
if (mp->m_logbufs != -1 &&
mp->m_logbufs != 0 &&
(mp->m_logbufs < XLOG_MIN_ICLOGS ||
mp->m_logbufs > XLOG_MAX_ICLOGS)) {
xfs_warn(mp, "invalid logbufs value: %d [not %d-%d]",
mp->m_logbufs, XLOG_MIN_ICLOGS, XLOG_MAX_ICLOGS);
return -EINVAL;
}
if (mp->m_logbsize != -1 &&
mp->m_logbsize != 0 &&
(mp->m_logbsize < XLOG_MIN_RECORD_BSIZE ||
mp->m_logbsize > XLOG_MAX_RECORD_BSIZE ||
!is_power_of_2(mp->m_logbsize))) {
xfs_warn(mp,
"invalid logbufsize: %d [not 16k,32k,64k,128k or 256k]",
mp->m_logbsize);
return -EINVAL;
}
if (iosizelog) {
if (iosizelog > XFS_MAX_IO_LOG ||
iosizelog < XFS_MIN_IO_LOG) {
xfs_warn(mp, "invalid log iosize: %d [not %d-%d]",
iosizelog, XFS_MIN_IO_LOG,
XFS_MAX_IO_LOG);
return -EINVAL;
}
mp->m_flags |= XFS_MOUNT_DFLT_IOSIZE;
mp->m_readio_log = iosizelog;
mp->m_writeio_log = iosizelog;
}
return 0;
}
struct proc_xfs_info {
uint64_t flag;
char *str;
};
STATIC int
xfs_showargs(
struct xfs_mount *mp,
struct seq_file *m)
{
static struct proc_xfs_info xfs_info_set[] = {
/* the few simple ones we can get from the mount struct */
{ XFS_MOUNT_IKEEP, ",ikeep" },
{ XFS_MOUNT_WSYNC, ",wsync" },
{ XFS_MOUNT_NOALIGN, ",noalign" },
{ XFS_MOUNT_SWALLOC, ",swalloc" },
{ XFS_MOUNT_NOUUID, ",nouuid" },
{ XFS_MOUNT_NORECOVERY, ",norecovery" },
{ XFS_MOUNT_ATTR2, ",attr2" },
{ XFS_MOUNT_FILESTREAMS, ",filestreams" },
{ XFS_MOUNT_GRPID, ",grpid" },
{ XFS_MOUNT_DISCARD, ",discard" },
{ XFS_MOUNT_SMALL_INUMS, ",inode32" },
{ XFS_MOUNT_DAX, ",dax" },
{ 0, NULL }
};
static struct proc_xfs_info xfs_info_unset[] = {
/* the few simple ones we can get from the mount struct */
{ XFS_MOUNT_COMPAT_IOSIZE, ",largeio" },
{ XFS_MOUNT_BARRIER, ",nobarrier" },
{ XFS_MOUNT_SMALL_INUMS, ",inode64" },
{ 0, NULL }
};
struct proc_xfs_info *xfs_infop;
for (xfs_infop = xfs_info_set; xfs_infop->flag; xfs_infop++) {
if (mp->m_flags & xfs_infop->flag)
seq_puts(m, xfs_infop->str);
}
for (xfs_infop = xfs_info_unset; xfs_infop->flag; xfs_infop++) {
if (!(mp->m_flags & xfs_infop->flag))
seq_puts(m, xfs_infop->str);
}
if (mp->m_flags & XFS_MOUNT_DFLT_IOSIZE)
seq_printf(m, ",allocsize=%dk",
(int)(1 << mp->m_writeio_log) >> 10);
if (mp->m_logbufs > 0)
seq_printf(m, ",logbufs=%d", mp->m_logbufs);
if (mp->m_logbsize > 0)
seq_printf(m, ",logbsize=%dk", mp->m_logbsize >> 10);
if (mp->m_logname)
seq_show_option(m, "logdev", mp->m_logname);
if (mp->m_rtname)
seq_show_option(m, "rtdev", mp->m_rtname);
if (mp->m_dalign > 0)
seq_printf(m, ",sunit=%d",
(int)XFS_FSB_TO_BB(mp, mp->m_dalign));
if (mp->m_swidth > 0)
seq_printf(m, ",swidth=%d",
(int)XFS_FSB_TO_BB(mp, mp->m_swidth));
if (mp->m_qflags & (XFS_UQUOTA_ACCT|XFS_UQUOTA_ENFD))
seq_puts(m, ",usrquota");
else if (mp->m_qflags & XFS_UQUOTA_ACCT)
seq_puts(m, ",uqnoenforce");
if (mp->m_qflags & XFS_PQUOTA_ACCT) {
if (mp->m_qflags & XFS_PQUOTA_ENFD)
seq_puts(m, ",prjquota");
else
seq_puts(m, ",pqnoenforce");
}
if (mp->m_qflags & XFS_GQUOTA_ACCT) {
if (mp->m_qflags & XFS_GQUOTA_ENFD)
seq_puts(m, ",grpquota");
else
seq_puts(m, ",gqnoenforce");
}
if (!(mp->m_qflags & XFS_ALL_QUOTA_ACCT))
seq_puts(m, ",noquota");
return 0;
}
static uint64_t
xfs_max_file_offset(
unsigned int blockshift)
{
unsigned int pagefactor = 1;
unsigned int bitshift = BITS_PER_LONG - 1;
/* Figure out maximum filesize, on Linux this can depend on
* the filesystem blocksize (on 32 bit platforms).
* __block_write_begin does this in an [unsigned] long...
* page->index << (PAGE_SHIFT - bbits)
* So, for page sized blocks (4K on 32 bit platforms),
* this wraps at around 8Tb (hence MAX_LFS_FILESIZE which is
* (((u64)PAGE_SIZE << (BITS_PER_LONG-1))-1)
* but for smaller blocksizes it is less (bbits = log2 bsize).
* Note1: get_block_t takes a long (implicit cast from above)
* Note2: The Large Block Device (LBD and HAVE_SECTOR_T) patch
* can optionally convert the [unsigned] long from above into
* an [unsigned] long long.
*/
#if BITS_PER_LONG == 32
# if defined(CONFIG_LBDAF)
ASSERT(sizeof(sector_t) == 8);
pagefactor = PAGE_SIZE;
bitshift = BITS_PER_LONG;
# else
pagefactor = PAGE_SIZE >> (PAGE_SHIFT - blockshift);
# endif
#endif
return (((uint64_t)pagefactor) << bitshift) - 1;
}
/*
* Set parameters for inode allocation heuristics, taking into account
* filesystem size and inode32/inode64 mount options; i.e. specifically
* whether or not XFS_MOUNT_SMALL_INUMS is set.
*
* Inode allocation patterns are altered only if inode32 is requested
* (XFS_MOUNT_SMALL_INUMS), and the filesystem is sufficiently large.
* If altered, XFS_MOUNT_32BITINODES is set as well.
*
* An agcount independent of that in the mount structure is provided
* because in the growfs case, mp->m_sb.sb_agcount is not yet updated
* to the potentially higher ag count.
*
* Returns the maximum AG index which may contain inodes.
*/
xfs_agnumber_t
xfs_set_inode_alloc(
struct xfs_mount *mp,
xfs_agnumber_t agcount)
{
xfs_agnumber_t index;
xfs_agnumber_t maxagi = 0;
xfs_sb_t *sbp = &mp->m_sb;
xfs_agnumber_t max_metadata;
xfs_agino_t agino;
xfs_ino_t ino;
/*
* Calculate how much should be reserved for inodes to meet
* the max inode percentage. Used only for inode32.
*/
if (mp->m_maxicount) {
uint64_t icount;
icount = sbp->sb_dblocks * sbp->sb_imax_pct;
do_div(icount, 100);
icount += sbp->sb_agblocks - 1;
do_div(icount, sbp->sb_agblocks);
max_metadata = icount;
} else {
max_metadata = agcount;
}
/* Get the last possible inode in the filesystem */
agino = XFS_OFFBNO_TO_AGINO(mp, sbp->sb_agblocks - 1, 0);
ino = XFS_AGINO_TO_INO(mp, agcount - 1, agino);
/*
* If user asked for no more than 32-bit inodes, and the fs is
* sufficiently large, set XFS_MOUNT_32BITINODES if we must alter
* the allocator to accommodate the request.
*/
if ((mp->m_flags & XFS_MOUNT_SMALL_INUMS) && ino > XFS_MAXINUMBER_32)
mp->m_flags |= XFS_MOUNT_32BITINODES;
else
mp->m_flags &= ~XFS_MOUNT_32BITINODES;
for (index = 0; index < agcount; index++) {
struct xfs_perag *pag;
ino = XFS_AGINO_TO_INO(mp, index, agino);
pag = xfs_perag_get(mp, index);
if (mp->m_flags & XFS_MOUNT_32BITINODES) {
if (ino > XFS_MAXINUMBER_32) {
pag->pagi_inodeok = 0;
pag->pagf_metadata = 0;
} else {
pag->pagi_inodeok = 1;
maxagi++;
if (index < max_metadata)
pag->pagf_metadata = 1;
else
pag->pagf_metadata = 0;
}
} else {
pag->pagi_inodeok = 1;
pag->pagf_metadata = 0;
}
xfs_perag_put(pag);
}
return (mp->m_flags & XFS_MOUNT_32BITINODES) ? maxagi : agcount;
}
STATIC int
xfs_blkdev_get(
xfs_mount_t *mp,
const char *name,
struct block_device **bdevp)
{
int error = 0;
*bdevp = blkdev_get_by_path(name, FMODE_READ|FMODE_WRITE|FMODE_EXCL,
mp);
if (IS_ERR(*bdevp)) {
error = PTR_ERR(*bdevp);
xfs_warn(mp, "Invalid device [%s], error=%d", name, error);
}
return error;
}
STATIC void
xfs_blkdev_put(
struct block_device *bdev)
{
if (bdev)
blkdev_put(bdev, FMODE_READ|FMODE_WRITE|FMODE_EXCL);
}
void
xfs_blkdev_issue_flush(
xfs_buftarg_t *buftarg)
{
blkdev_issue_flush(buftarg->bt_bdev, GFP_NOFS, NULL);
}
STATIC void
xfs_close_devices(
struct xfs_mount *mp)
{
struct dax_device *dax_ddev = mp->m_ddev_targp->bt_daxdev;
if (mp->m_logdev_targp && mp->m_logdev_targp != mp->m_ddev_targp) {
struct block_device *logdev = mp->m_logdev_targp->bt_bdev;
struct dax_device *dax_logdev = mp->m_logdev_targp->bt_daxdev;
xfs_free_buftarg(mp->m_logdev_targp);
xfs_blkdev_put(logdev);
fs_put_dax(dax_logdev);
}
if (mp->m_rtdev_targp) {
struct block_device *rtdev = mp->m_rtdev_targp->bt_bdev;
struct dax_device *dax_rtdev = mp->m_rtdev_targp->bt_daxdev;
xfs_free_buftarg(mp->m_rtdev_targp);
xfs_blkdev_put(rtdev);
fs_put_dax(dax_rtdev);
}
xfs_free_buftarg(mp->m_ddev_targp);
fs_put_dax(dax_ddev);
}
/*
* The file system configurations are:
* (1) device (partition) with data and internal log
* (2) logical volume with data and log subvolumes.
* (3) logical volume with data, log, and realtime subvolumes.
*
* We only have to handle opening the log and realtime volumes here if
* they are present. The data subvolume has already been opened by
* get_sb_bdev() and is stored in sb->s_bdev.
*/
STATIC int
xfs_open_devices(
struct xfs_mount *mp)
{
struct block_device *ddev = mp->m_super->s_bdev;
struct dax_device *dax_ddev = fs_dax_get_by_bdev(ddev);
struct dax_device *dax_logdev = NULL, *dax_rtdev = NULL;
struct block_device *logdev = NULL, *rtdev = NULL;
int error;
/*
* Open real time and log devices - order is important.
*/
if (mp->m_logname) {
error = xfs_blkdev_get(mp, mp->m_logname, &logdev);
if (error)
goto out;
dax_logdev = fs_dax_get_by_bdev(logdev);
}
if (mp->m_rtname) {
error = xfs_blkdev_get(mp, mp->m_rtname, &rtdev);
if (error)
goto out_close_logdev;
if (rtdev == ddev || rtdev == logdev) {
xfs_warn(mp,
"Cannot mount filesystem with identical rtdev and ddev/logdev.");
error = -EINVAL;
goto out_close_rtdev;
}
dax_rtdev = fs_dax_get_by_bdev(rtdev);
}
/*
* Setup xfs_mount buffer target pointers
*/
error = -ENOMEM;
mp->m_ddev_targp = xfs_alloc_buftarg(mp, ddev, dax_ddev);
if (!mp->m_ddev_targp)
goto out_close_rtdev;
if (rtdev) {
mp->m_rtdev_targp = xfs_alloc_buftarg(mp, rtdev, dax_rtdev);
if (!mp->m_rtdev_targp)
goto out_free_ddev_targ;
}
if (logdev && logdev != ddev) {
mp->m_logdev_targp = xfs_alloc_buftarg(mp, logdev, dax_logdev);
if (!mp->m_logdev_targp)
goto out_free_rtdev_targ;
} else {
mp->m_logdev_targp = mp->m_ddev_targp;
}
return 0;
out_free_rtdev_targ:
if (mp->m_rtdev_targp)
xfs_free_buftarg(mp->m_rtdev_targp);
out_free_ddev_targ:
xfs_free_buftarg(mp->m_ddev_targp);
out_close_rtdev:
xfs_blkdev_put(rtdev);
fs_put_dax(dax_rtdev);
out_close_logdev:
if (logdev && logdev != ddev) {
xfs_blkdev_put(logdev);
fs_put_dax(dax_logdev);
}
out:
fs_put_dax(dax_ddev);
return error;
}
/*
* Setup xfs_mount buffer target pointers based on superblock
*/
STATIC int
xfs_setup_devices(
struct xfs_mount *mp)
{
int error;
error = xfs_setsize_buftarg(mp->m_ddev_targp, mp->m_sb.sb_sectsize);
if (error)
return error;
if (mp->m_logdev_targp && mp->m_logdev_targp != mp->m_ddev_targp) {
unsigned int log_sector_size = BBSIZE;
if (xfs_sb_version_hassector(&mp->m_sb))
log_sector_size = mp->m_sb.sb_logsectsize;
error = xfs_setsize_buftarg(mp->m_logdev_targp,
log_sector_size);
if (error)
return error;
}
if (mp->m_rtdev_targp) {
error = xfs_setsize_buftarg(mp->m_rtdev_targp,
mp->m_sb.sb_sectsize);
if (error)
return error;
}
return 0;
}
STATIC int
xfs_init_mount_workqueues(
struct xfs_mount *mp)
{
mp->m_buf_workqueue = alloc_workqueue("xfs-buf/%s",
WQ_MEM_RECLAIM|WQ_FREEZABLE, 1, mp->m_fsname);
if (!mp->m_buf_workqueue)
goto out;
mp->m_data_workqueue = alloc_workqueue("xfs-data/%s",
WQ_MEM_RECLAIM|WQ_FREEZABLE, 0, mp->m_fsname);
if (!mp->m_data_workqueue)
goto out_destroy_buf;
mp->m_unwritten_workqueue = alloc_workqueue("xfs-conv/%s",
WQ_MEM_RECLAIM|WQ_FREEZABLE, 0, mp->m_fsname);
if (!mp->m_unwritten_workqueue)
goto out_destroy_data_iodone_queue;
mp->m_cil_workqueue = alloc_workqueue("xfs-cil/%s",
WQ_MEM_RECLAIM|WQ_FREEZABLE, 0, mp->m_fsname);
if (!mp->m_cil_workqueue)
goto out_destroy_unwritten;
mp->m_reclaim_workqueue = alloc_workqueue("xfs-reclaim/%s",
WQ_MEM_RECLAIM|WQ_FREEZABLE, 0, mp->m_fsname);
if (!mp->m_reclaim_workqueue)
goto out_destroy_cil;
mp->m_log_workqueue = alloc_workqueue("xfs-log/%s",
WQ_MEM_RECLAIM|WQ_FREEZABLE|WQ_HIGHPRI, 0,
mp->m_fsname);
if (!mp->m_log_workqueue)
goto out_destroy_reclaim;
mp->m_eofblocks_workqueue = alloc_workqueue("xfs-eofblocks/%s",
WQ_MEM_RECLAIM|WQ_FREEZABLE, 0, mp->m_fsname);
if (!mp->m_eofblocks_workqueue)
goto out_destroy_log;
mp->m_sync_workqueue = alloc_workqueue("xfs-sync/%s", WQ_FREEZABLE, 0,
mp->m_fsname);
if (!mp->m_sync_workqueue)
goto out_destroy_eofb;
return 0;
out_destroy_eofb:
destroy_workqueue(mp->m_eofblocks_workqueue);
out_destroy_log:
destroy_workqueue(mp->m_log_workqueue);
out_destroy_reclaim:
destroy_workqueue(mp->m_reclaim_workqueue);
out_destroy_cil:
destroy_workqueue(mp->m_cil_workqueue);
out_destroy_unwritten:
destroy_workqueue(mp->m_unwritten_workqueue);
out_destroy_data_iodone_queue:
destroy_workqueue(mp->m_data_workqueue);
out_destroy_buf:
destroy_workqueue(mp->m_buf_workqueue);
out:
return -ENOMEM;
}
STATIC void
xfs_destroy_mount_workqueues(
struct xfs_mount *mp)
{
destroy_workqueue(mp->m_sync_workqueue);
destroy_workqueue(mp->m_eofblocks_workqueue);
destroy_workqueue(mp->m_log_workqueue);
destroy_workqueue(mp->m_reclaim_workqueue);
destroy_workqueue(mp->m_cil_workqueue);
destroy_workqueue(mp->m_data_workqueue);
destroy_workqueue(mp->m_unwritten_workqueue);
destroy_workqueue(mp->m_buf_workqueue);
}
/*
* Flush all dirty data to disk. Must not be called while holding an XFS_ILOCK
* or a page lock. We use sync_inodes_sb() here to ensure we block while waiting
* for IO to complete so that we effectively throttle multiple callers to the
* rate at which IO is completing.
*/
void
xfs_flush_inodes(
struct xfs_mount *mp)
{
struct super_block *sb = mp->m_super;
if (down_read_trylock(&sb->s_umount)) {
sync_inodes_sb(sb);
up_read(&sb->s_umount);
}
}
/* Catch misguided souls that try to use this interface on XFS */
STATIC struct inode *
xfs_fs_alloc_inode(
struct super_block *sb)
{
BUG();
return NULL;
}
/*
* Now that the generic code is guaranteed not to be accessing
* the linux inode, we can inactivate and reclaim the inode.
*/
STATIC void
xfs_fs_destroy_inode(
struct inode *inode)
{
struct xfs_inode *ip = XFS_I(inode);
trace_xfs_destroy_inode(ip);
ASSERT(!rwsem_is_locked(&inode->i_rwsem));
XFS_STATS_INC(ip->i_mount, vn_rele);
XFS_STATS_INC(ip->i_mount, vn_remove);
xfs_inactive(ip);
ASSERT(XFS_FORCED_SHUTDOWN(ip->i_mount) || ip->i_delayed_blks == 0);
XFS_STATS_INC(ip->i_mount, vn_reclaim);
/*
* We should never get here with one of the reclaim flags already set.
*/
ASSERT_ALWAYS(!xfs_iflags_test(ip, XFS_IRECLAIMABLE));
ASSERT_ALWAYS(!xfs_iflags_test(ip, XFS_IRECLAIM));
/*
* We always use background reclaim here because even if the
* inode is clean, it still may be under IO and hence we have
* to take the flush lock. The background reclaim path handles
* this more efficiently than we can here, so simply let background
* reclaim tear down all inodes.
*/
xfs_inode_set_reclaim_tag(ip);
}
static void
xfs_fs_dirty_inode(
struct inode *inode,
int flag)
{
struct xfs_inode *ip = XFS_I(inode);
struct xfs_mount *mp = ip->i_mount;
struct xfs_trans *tp;
if (!(inode->i_sb->s_flags & SB_LAZYTIME))
return;
if (flag != I_DIRTY_SYNC || !(inode->i_state & I_DIRTY_TIME))
return;
if (xfs_trans_alloc(mp, &M_RES(mp)->tr_fsyncts, 0, 0, 0, &tp))
return;
xfs_ilock(ip, XFS_ILOCK_EXCL);
xfs_trans_ijoin(tp, ip, XFS_ILOCK_EXCL);
xfs_trans_log_inode(tp, ip, XFS_ILOG_TIMESTAMP);
xfs_trans_commit(tp);
}
/*
* Slab object creation initialisation for the XFS inode.
* This covers only the idempotent fields in the XFS inode;
* all other fields need to be initialised on allocation
* from the slab. This avoids the need to repeatedly initialise
* fields in the xfs inode that left in the initialise state
* when freeing the inode.
*/
STATIC void
xfs_fs_inode_init_once(
void *inode)
{
struct xfs_inode *ip = inode;
memset(ip, 0, sizeof(struct xfs_inode));
/* vfs inode */
inode_init_once(VFS_I(ip));
/* xfs inode */
atomic_set(&ip->i_pincount, 0);
spin_lock_init(&ip->i_flags_lock);
mrlock_init(&ip->i_mmaplock, MRLOCK_ALLOW_EQUAL_PRI|MRLOCK_BARRIER,
"xfsino", ip->i_ino);
mrlock_init(&ip->i_lock, MRLOCK_ALLOW_EQUAL_PRI|MRLOCK_BARRIER,
"xfsino", ip->i_ino);
}
/*
* We do an unlocked check for XFS_IDONTCACHE here because we are already
* serialised against cache hits here via the inode->i_lock and igrab() in
* xfs_iget_cache_hit(). Hence a lookup that might clear this flag will not be
* racing with us, and it avoids needing to grab a spinlock here for every inode
* we drop the final reference on.
*/
STATIC int
xfs_fs_drop_inode(
struct inode *inode)
{
struct xfs_inode *ip = XFS_I(inode);
/*
* If this unlinked inode is in the middle of recovery, don't
* drop the inode just yet; log recovery will take care of
* that. See the comment for this inode flag.
*/
if (ip->i_flags & XFS_IRECOVERY) {
ASSERT(ip->i_mount->m_log->l_flags & XLOG_RECOVERY_NEEDED);
return 0;
}
return generic_drop_inode(inode) || (ip->i_flags & XFS_IDONTCACHE);
}
STATIC void
xfs_free_fsname(
struct xfs_mount *mp)
{
kfree(mp->m_fsname);
kfree(mp->m_rtname);
kfree(mp->m_logname);
}
STATIC int
xfs_fs_sync_fs(
struct super_block *sb,
int wait)
{
struct xfs_mount *mp = XFS_M(sb);
/*
* Doing anything during the async pass would be counterproductive.
*/
if (!wait)
return 0;
xfs_log_force(mp, XFS_LOG_SYNC);
if (laptop_mode) {
/*
* The disk must be active because we're syncing.
* We schedule log work now (now that the disk is
* active) instead of later (when it might not be).
*/
flush_delayed_work(&mp->m_log->l_work);
}
return 0;
}
STATIC int
xfs_fs_statfs(
struct dentry *dentry,
struct kstatfs *statp)
{
struct xfs_mount *mp = XFS_M(dentry->d_sb);
xfs_sb_t *sbp = &mp->m_sb;
struct xfs_inode *ip = XFS_I(d_inode(dentry));
uint64_t fakeinos, id;
uint64_t icount;
uint64_t ifree;
uint64_t fdblocks;
xfs_extlen_t lsize;
int64_t ffree;
statp->f_type = XFS_SB_MAGIC;
statp->f_namelen = MAXNAMELEN - 1;
id = huge_encode_dev(mp->m_ddev_targp->bt_dev);
statp->f_fsid.val[0] = (u32)id;
statp->f_fsid.val[1] = (u32)(id >> 32);
icount = percpu_counter_sum(&mp->m_icount);
ifree = percpu_counter_sum(&mp->m_ifree);
fdblocks = percpu_counter_sum(&mp->m_fdblocks);
spin_lock(&mp->m_sb_lock);
statp->f_bsize = sbp->sb_blocksize;
lsize = sbp->sb_logstart ? sbp->sb_logblocks : 0;
statp->f_blocks = sbp->sb_dblocks - lsize;
spin_unlock(&mp->m_sb_lock);
statp->f_bfree = fdblocks - mp->m_alloc_set_aside;
statp->f_bavail = statp->f_bfree;
fakeinos = statp->f_bfree << sbp->sb_inopblog;
statp->f_files = min(icount + fakeinos, (uint64_t)XFS_MAXINUMBER);
if (mp->m_maxicount)
statp->f_files = min_t(typeof(statp->f_files),
statp->f_files,
mp->m_maxicount);
/* If sb_icount overshot maxicount, report actual allocation */
statp->f_files = max_t(typeof(statp->f_files),
statp->f_files,
sbp->sb_icount);
/* make sure statp->f_ffree does not underflow */
ffree = statp->f_files - (icount - ifree);
statp->f_ffree = max_t(int64_t, ffree, 0);
if ((ip->i_d.di_flags & XFS_DIFLAG_PROJINHERIT) &&
((mp->m_qflags & (XFS_PQUOTA_ACCT|XFS_PQUOTA_ENFD))) ==
(XFS_PQUOTA_ACCT|XFS_PQUOTA_ENFD))
xfs_qm_statvfs(ip, statp);
if (XFS_IS_REALTIME_MOUNT(mp) &&
(ip->i_d.di_flags & (XFS_DIFLAG_RTINHERIT | XFS_DIFLAG_REALTIME))) {
statp->f_blocks = sbp->sb_rblocks;
statp->f_bavail = statp->f_bfree =
sbp->sb_frextents * sbp->sb_rextsize;
}
return 0;
}
STATIC void
xfs_save_resvblks(struct xfs_mount *mp)
{
uint64_t resblks = 0;
mp->m_resblks_save = mp->m_resblks;
xfs_reserve_blocks(mp, &resblks, NULL);
}
STATIC void
xfs_restore_resvblks(struct xfs_mount *mp)
{
uint64_t resblks;
if (mp->m_resblks_save) {
resblks = mp->m_resblks_save;
mp->m_resblks_save = 0;
} else
resblks = xfs_default_resblks(mp);
xfs_reserve_blocks(mp, &resblks, NULL);
}
/*
* Trigger writeback of all the dirty metadata in the file system.
*
* This ensures that the metadata is written to their location on disk rather
* than just existing in transactions in the log. This means after a quiesce
* there is no log replay required to write the inodes to disk - this is the
* primary difference between a sync and a quiesce.
*
* Note: xfs_log_quiesce() stops background log work - the callers must ensure
* it is started again when appropriate.
*/
void
xfs_quiesce_attr(
struct xfs_mount *mp)
{
int error = 0;
/* wait for all modifications to complete */
while (atomic_read(&mp->m_active_trans) > 0)
delay(100);
/* force the log to unpin objects from the now complete transactions */
xfs_log_force(mp, XFS_LOG_SYNC);
/* reclaim inodes to do any IO before the freeze completes */
xfs_reclaim_inodes(mp, 0);
xfs_reclaim_inodes(mp, SYNC_WAIT);
/* Push the superblock and write an unmount record */
error = xfs_log_sbcount(mp);
if (error)
xfs_warn(mp, "xfs_attr_quiesce: failed to log sb changes. "
"Frozen image may not be consistent.");
/*
* Just warn here till VFS can correctly support
* read-only remount without racing.
*/
WARN_ON(atomic_read(&mp->m_active_trans) != 0);
xfs_log_quiesce(mp);
}
STATIC int
xfs_test_remount_options(
struct super_block *sb,
char *options)
{
int error = 0;
struct xfs_mount *tmp_mp;
tmp_mp = kmem_zalloc(sizeof(*tmp_mp), KM_MAYFAIL);
if (!tmp_mp)
return -ENOMEM;
tmp_mp->m_super = sb;
error = xfs_parseargs(tmp_mp, options);
xfs_free_fsname(tmp_mp);
kmem_free(tmp_mp);
return error;
}
STATIC int
xfs_fs_remount(
struct super_block *sb,
int *flags,
char *options)
{
struct xfs_mount *mp = XFS_M(sb);
xfs_sb_t *sbp = &mp->m_sb;
substring_t args[MAX_OPT_ARGS];
char *p;
int error;
/* First, check for complete junk; i.e. invalid options */
error = xfs_test_remount_options(sb, options);
if (error)
return error;
sync_filesystem(sb);
while ((p = strsep(&options, ",")) != NULL) {
int token;
if (!*p)
continue;
token = match_token(p, tokens, args);
switch (token) {
case Opt_barrier:
xfs_warn(mp, "%s option is deprecated, ignoring.", p);
mp->m_flags |= XFS_MOUNT_BARRIER;
break;
case Opt_nobarrier:
xfs_warn(mp, "%s option is deprecated, ignoring.", p);
mp->m_flags &= ~XFS_MOUNT_BARRIER;
break;
case Opt_inode64:
mp->m_flags &= ~XFS_MOUNT_SMALL_INUMS;
mp->m_maxagi = xfs_set_inode_alloc(mp, sbp->sb_agcount);
break;
case Opt_inode32:
mp->m_flags |= XFS_MOUNT_SMALL_INUMS;
mp->m_maxagi = xfs_set_inode_alloc(mp, sbp->sb_agcount);
break;
default:
/*
* Logically we would return an error here to prevent
* users from believing they might have changed
* mount options using remount which can't be changed.
*
* But unfortunately mount(8) adds all options from
* mtab and fstab to the mount arguments in some cases
* so we can't blindly reject options, but have to
* check for each specified option if it actually
* differs from the currently set option and only
* reject it if that's the case.
*
* Until that is implemented we return success for
* every remount request, and silently ignore all
* options that we can't actually change.
*/
#if 0
xfs_info(mp,
"mount option \"%s\" not supported for remount", p);
return -EINVAL;
#else
break;
#endif
}
}
/* ro -> rw */
if ((mp->m_flags & XFS_MOUNT_RDONLY) && !(*flags & SB_RDONLY)) {
if (mp->m_flags & XFS_MOUNT_NORECOVERY) {
xfs_warn(mp,
"ro->rw transition prohibited on norecovery mount");
return -EINVAL;
}
if (XFS_SB_VERSION_NUM(sbp) == XFS_SB_VERSION_5 &&
xfs_sb_has_ro_compat_feature(sbp,
XFS_SB_FEAT_RO_COMPAT_UNKNOWN)) {
xfs_warn(mp,
"ro->rw transition prohibited on unknown (0x%x) ro-compat filesystem",
(sbp->sb_features_ro_compat &
XFS_SB_FEAT_RO_COMPAT_UNKNOWN));
return -EINVAL;
}
mp->m_flags &= ~XFS_MOUNT_RDONLY;
/*
* If this is the first remount to writeable state we
* might have some superblock changes to update.
*/
if (mp->m_update_sb) {
error = xfs_sync_sb(mp, false);
if (error) {
xfs_warn(mp, "failed to write sb changes");
return error;
}
mp->m_update_sb = false;
}
/*
* Fill out the reserve pool if it is empty. Use the stashed
* value if it is non-zero, otherwise go with the default.
*/
xfs_restore_resvblks(mp);
xfs_log_work_queue(mp);
/* Recover any CoW blocks that never got remapped. */
error = xfs_reflink_recover_cow(mp);
if (error) {
xfs_err(mp,
"Error %d recovering leftover CoW allocations.", error);
xfs_force_shutdown(mp, SHUTDOWN_CORRUPT_INCORE);
return error;
}
xfs_icache_enable_reclaim(mp);
/* Create the per-AG metadata reservation pool .*/
error = xfs_fs_reserve_ag_blocks(mp);
if (error && error != -ENOSPC)
return error;
}
/* rw -> ro */
if (!(mp->m_flags & XFS_MOUNT_RDONLY) && (*flags & SB_RDONLY)) {
/*
* Cancel background eofb scanning so it cannot race with the
* final log force+buftarg wait and deadlock the remount.
*/
xfs_icache_disable_reclaim(mp);
/* Get rid of any leftover CoW reservations... */
error = xfs_icache_free_cowblocks(mp, NULL);
if (error) {
xfs_force_shutdown(mp, SHUTDOWN_CORRUPT_INCORE);
return error;
}
/* Free the per-AG metadata reservation pool. */
error = xfs_fs_unreserve_ag_blocks(mp);
if (error) {
xfs_force_shutdown(mp, SHUTDOWN_CORRUPT_INCORE);
return error;
}
/*
* Before we sync the metadata, we need to free up the reserve
* block pool so that the used block count in the superblock on
* disk is correct at the end of the remount. Stash the current
* reserve pool size so that if we get remounted rw, we can
* return it to the same size.
*/
xfs_save_resvblks(mp);
xfs_quiesce_attr(mp);
mp->m_flags |= XFS_MOUNT_RDONLY;
}
return 0;
}
/*
* Second stage of a freeze. The data is already frozen so we only
* need to take care of the metadata. Once that's done sync the superblock
* to the log to dirty it in case of a crash while frozen. This ensures that we
* will recover the unlinked inode lists on the next mount.
*/
STATIC int
xfs_fs_freeze(
struct super_block *sb)
{
struct xfs_mount *mp = XFS_M(sb);
xfs_icache_disable_reclaim(mp);
xfs_save_resvblks(mp);
xfs_quiesce_attr(mp);
return xfs_sync_sb(mp, true);
}
STATIC int
xfs_fs_unfreeze(
struct super_block *sb)
{
struct xfs_mount *mp = XFS_M(sb);
xfs_restore_resvblks(mp);
xfs_log_work_queue(mp);
xfs_icache_enable_reclaim(mp);
return 0;
}
STATIC int
xfs_fs_show_options(
struct seq_file *m,
struct dentry *root)
{
return xfs_showargs(XFS_M(root->d_sb), m);
}
/*
* This function fills in xfs_mount_t fields based on mount args.
* Note: the superblock _has_ now been read in.
*/
STATIC int
xfs_finish_flags(
struct xfs_mount *mp)
{
int ronly = (mp->m_flags & XFS_MOUNT_RDONLY);
/* Fail a mount where the logbuf is smaller than the log stripe */
if (xfs_sb_version_haslogv2(&mp->m_sb)) {
if (mp->m_logbsize <= 0 &&
mp->m_sb.sb_logsunit > XLOG_BIG_RECORD_BSIZE) {
mp->m_logbsize = mp->m_sb.sb_logsunit;
} else if (mp->m_logbsize > 0 &&
mp->m_logbsize < mp->m_sb.sb_logsunit) {
xfs_warn(mp,
"logbuf size must be greater than or equal to log stripe size");
return -EINVAL;
}
} else {
/* Fail a mount if the logbuf is larger than 32K */
if (mp->m_logbsize > XLOG_BIG_RECORD_BSIZE) {
xfs_warn(mp,
"logbuf size for version 1 logs must be 16K or 32K");
return -EINVAL;
}
}
/*
* V5 filesystems always use attr2 format for attributes.
*/
if (xfs_sb_version_hascrc(&mp->m_sb) &&
(mp->m_flags & XFS_MOUNT_NOATTR2)) {
xfs_warn(mp, "Cannot mount a V5 filesystem as noattr2. "
"attr2 is always enabled for V5 filesystems.");
return -EINVAL;
}
/*
* mkfs'ed attr2 will turn on attr2 mount unless explicitly
* told by noattr2 to turn it off
*/
if (xfs_sb_version_hasattr2(&mp->m_sb) &&
!(mp->m_flags & XFS_MOUNT_NOATTR2))
mp->m_flags |= XFS_MOUNT_ATTR2;
/*
* prohibit r/w mounts of read-only filesystems
*/
if ((mp->m_sb.sb_flags & XFS_SBF_READONLY) && !ronly) {
xfs_warn(mp,
"cannot mount a read-only filesystem as read-write");
return -EROFS;
}
if ((mp->m_qflags & (XFS_GQUOTA_ACCT | XFS_GQUOTA_ACTIVE)) &&
(mp->m_qflags & (XFS_PQUOTA_ACCT | XFS_PQUOTA_ACTIVE)) &&
!xfs_sb_version_has_pquotino(&mp->m_sb)) {
xfs_warn(mp,
"Super block does not support project and group quota together");
return -EINVAL;
}
return 0;
}
static int
xfs_init_percpu_counters(
struct xfs_mount *mp)
{
int error;
error = percpu_counter_init(&mp->m_icount, 0, GFP_KERNEL);
if (error)
return -ENOMEM;
error = percpu_counter_init(&mp->m_ifree, 0, GFP_KERNEL);
if (error)
goto free_icount;
error = percpu_counter_init(&mp->m_fdblocks, 0, GFP_KERNEL);
if (error)
goto free_ifree;
return 0;
free_ifree:
percpu_counter_destroy(&mp->m_ifree);
free_icount:
percpu_counter_destroy(&mp->m_icount);
return -ENOMEM;
}
void
xfs_reinit_percpu_counters(
struct xfs_mount *mp)
{
percpu_counter_set(&mp->m_icount, mp->m_sb.sb_icount);
percpu_counter_set(&mp->m_ifree, mp->m_sb.sb_ifree);
percpu_counter_set(&mp->m_fdblocks, mp->m_sb.sb_fdblocks);
}
static void
xfs_destroy_percpu_counters(
struct xfs_mount *mp)
{
percpu_counter_destroy(&mp->m_icount);
percpu_counter_destroy(&mp->m_ifree);
percpu_counter_destroy(&mp->m_fdblocks);
}
static struct xfs_mount *
xfs_mount_alloc(
struct super_block *sb)
{
struct xfs_mount *mp;
mp = kzalloc(sizeof(struct xfs_mount), GFP_KERNEL);
if (!mp)
return NULL;
mp->m_super = sb;
spin_lock_init(&mp->m_sb_lock);
spin_lock_init(&mp->m_agirotor_lock);
INIT_RADIX_TREE(&mp->m_perag_tree, GFP_ATOMIC);
spin_lock_init(&mp->m_perag_lock);
mutex_init(&mp->m_growlock);
atomic_set(&mp->m_active_trans, 0);
INIT_DELAYED_WORK(&mp->m_reclaim_work, xfs_reclaim_worker);
INIT_DELAYED_WORK(&mp->m_eofblocks_work, xfs_eofblocks_worker);
INIT_DELAYED_WORK(&mp->m_cowblocks_work, xfs_cowblocks_worker);
mp->m_kobj.kobject.kset = xfs_kset;
return mp;
}
STATIC int
xfs_fs_fill_super(
struct super_block *sb,
void *data,
int silent)
{
struct inode *root;
struct xfs_mount *mp = NULL;
int flags = 0, error = -ENOMEM;
/*
* allocate mp and do all low-level struct initializations before we
* attach it to the super
*/
mp = xfs_mount_alloc(sb);
if (!mp)
goto out;
sb->s_fs_info = mp;
error = xfs_parseargs(mp, (char *)data);
if (error)
goto out_free_fsname;
sb_min_blocksize(sb, BBSIZE);
sb->s_xattr = xfs_xattr_handlers;
sb->s_export_op = &xfs_export_operations;
#ifdef CONFIG_XFS_QUOTA
sb->s_qcop = &xfs_quotactl_operations;
sb->s_quota_types = QTYPE_MASK_USR | QTYPE_MASK_GRP | QTYPE_MASK_PRJ;
#endif
sb->s_op = &xfs_super_operations;
/*
* Delay mount work if the debug hook is set. This is debug
* instrumention to coordinate simulation of xfs mount failures with
* VFS superblock operations
*/
if (xfs_globals.mount_delay) {
xfs_notice(mp, "Delaying mount for %d seconds.",
xfs_globals.mount_delay);
msleep(xfs_globals.mount_delay * 1000);
}
if (silent)
flags |= XFS_MFSI_QUIET;
error = xfs_open_devices(mp);
if (error)
goto out_free_fsname;
error = xfs_init_mount_workqueues(mp);
if (error)
goto out_close_devices;
error = xfs_init_percpu_counters(mp);
if (error)
goto out_destroy_workqueues;
/* Allocate stats memory before we do operations that might use it */
mp->m_stats.xs_stats = alloc_percpu(struct xfsstats);
if (!mp->m_stats.xs_stats) {
error = -ENOMEM;
goto out_destroy_counters;
}
error = xfs_readsb(mp, flags);
if (error)
goto out_free_stats;
error = xfs_finish_flags(mp);
if (error)
goto out_free_sb;
error = xfs_setup_devices(mp);
if (error)
goto out_free_sb;
error = xfs_filestream_mount(mp);
if (error)
goto out_free_sb;
/*
* we must configure the block size in the superblock before we run the
* full mount process as the mount process can lookup and cache inodes.
*/
sb->s_magic = XFS_SB_MAGIC;
sb->s_blocksize = mp->m_sb.sb_blocksize;
sb->s_blocksize_bits = ffs(sb->s_blocksize) - 1;
sb->s_maxbytes = xfs_max_file_offset(sb->s_blocksize_bits);
sb->s_max_links = XFS_MAXLINK;
sb->s_time_gran = 1;
set_posix_acl_flag(sb);
/* version 5 superblocks support inode version counters. */
if (XFS_SB_VERSION_NUM(&mp->m_sb) == XFS_SB_VERSION_5)
sb->s_flags |= SB_I_VERSION;
if (mp->m_flags & XFS_MOUNT_DAX) {
bool rtdev_is_dax = false, datadev_is_dax;
xfs_warn(mp,
"DAX enabled. Warning: EXPERIMENTAL, use at your own risk");
datadev_is_dax = bdev_dax_supported(mp->m_ddev_targp->bt_bdev,
sb->s_blocksize);
if (mp->m_rtdev_targp)
rtdev_is_dax = bdev_dax_supported(
mp->m_rtdev_targp->bt_bdev, sb->s_blocksize);
if (!rtdev_is_dax && !datadev_is_dax) {
xfs_alert(mp,
"DAX unsupported by block device. Turning off DAX.");
mp->m_flags &= ~XFS_MOUNT_DAX;
}
if (xfs_sb_version_hasreflink(&mp->m_sb)) {
xfs_alert(mp,
"DAX and reflink cannot be used together!");
error = -EINVAL;
goto out_filestream_unmount;
}
}
if (mp->m_flags & XFS_MOUNT_DISCARD) {
struct request_queue *q = bdev_get_queue(sb->s_bdev);
if (!blk_queue_discard(q)) {
xfs_warn(mp, "mounting with \"discard\" option, but "
"the device does not support discard");
mp->m_flags &= ~XFS_MOUNT_DISCARD;
}
}
if (xfs_sb_version_hasreflink(&mp->m_sb) && mp->m_sb.sb_rblocks) {
xfs_alert(mp,
"reflink not compatible with realtime device!");
error = -EINVAL;
goto out_filestream_unmount;
}
if (xfs_sb_version_hasrmapbt(&mp->m_sb) && mp->m_sb.sb_rblocks) {
xfs_alert(mp,
"reverse mapping btree not compatible with realtime device!");
error = -EINVAL;
goto out_filestream_unmount;
}
error = xfs_mountfs(mp);
if (error)
goto out_filestream_unmount;
root = igrab(VFS_I(mp->m_rootip));
if (!root) {
error = -ENOENT;
goto out_unmount;
}
sb->s_root = d_make_root(root);
if (!sb->s_root) {
error = -ENOMEM;
goto out_unmount;
}
return 0;
out_filestream_unmount:
xfs_filestream_unmount(mp);
out_free_sb:
xfs_freesb(mp);
out_free_stats:
free_percpu(mp->m_stats.xs_stats);
out_destroy_counters:
xfs_destroy_percpu_counters(mp);
out_destroy_workqueues:
xfs_destroy_mount_workqueues(mp);
out_close_devices:
xfs_close_devices(mp);
out_free_fsname:
sb->s_fs_info = NULL;
xfs_free_fsname(mp);
kfree(mp);
out:
return error;
out_unmount:
xfs_filestream_unmount(mp);
xfs_unmountfs(mp);
goto out_free_sb;
}
STATIC void
xfs_fs_put_super(
struct super_block *sb)
{
struct xfs_mount *mp = XFS_M(sb);
/* if ->fill_super failed, we have no mount to tear down */
if (!sb->s_fs_info)
return;
xfs_notice(mp, "Unmounting Filesystem");
xfs_filestream_unmount(mp);
xfs_unmountfs(mp);
xfs_freesb(mp);
free_percpu(mp->m_stats.xs_stats);
xfs_destroy_percpu_counters(mp);
xfs_destroy_mount_workqueues(mp);
xfs_close_devices(mp);
sb->s_fs_info = NULL;
xfs_free_fsname(mp);
kfree(mp);
}
STATIC struct dentry *
xfs_fs_mount(
struct file_system_type *fs_type,
int flags,
const char *dev_name,
void *data)
{
return mount_bdev(fs_type, flags, dev_name, data, xfs_fs_fill_super);
}
static long
xfs_fs_nr_cached_objects(
struct super_block *sb,
struct shrink_control *sc)
{
/* Paranoia: catch incorrect calls during mount setup or teardown */
if (WARN_ON_ONCE(!sb->s_fs_info))
return 0;
return xfs_reclaim_inodes_count(XFS_M(sb));
}
static long
xfs_fs_free_cached_objects(
struct super_block *sb,
struct shrink_control *sc)
{
return xfs_reclaim_inodes_nr(XFS_M(sb), sc->nr_to_scan);
}
static const struct super_operations xfs_super_operations = {
.alloc_inode = xfs_fs_alloc_inode,
.destroy_inode = xfs_fs_destroy_inode,
.dirty_inode = xfs_fs_dirty_inode,
.drop_inode = xfs_fs_drop_inode,
.put_super = xfs_fs_put_super,
.sync_fs = xfs_fs_sync_fs,
.freeze_fs = xfs_fs_freeze,
.unfreeze_fs = xfs_fs_unfreeze,
.statfs = xfs_fs_statfs,
.remount_fs = xfs_fs_remount,
.show_options = xfs_fs_show_options,
.nr_cached_objects = xfs_fs_nr_cached_objects,
.free_cached_objects = xfs_fs_free_cached_objects,
};
static struct file_system_type xfs_fs_type = {
.owner = THIS_MODULE,
.name = "xfs",
.mount = xfs_fs_mount,
.kill_sb = kill_block_super,
.fs_flags = FS_REQUIRES_DEV,
};
MODULE_ALIAS_FS("xfs");
STATIC int __init
xfs_init_zones(void)
{
xfs_ioend_bioset = bioset_create(4 * MAX_BUF_PER_PAGE,
offsetof(struct xfs_ioend, io_inline_bio),
BIOSET_NEED_BVECS);
if (!xfs_ioend_bioset)
goto out;
xfs_log_ticket_zone = kmem_zone_init(sizeof(xlog_ticket_t),
"xfs_log_ticket");
if (!xfs_log_ticket_zone)
goto out_free_ioend_bioset;
xfs_bmap_free_item_zone = kmem_zone_init(
sizeof(struct xfs_extent_free_item),
"xfs_bmap_free_item");
if (!xfs_bmap_free_item_zone)
goto out_destroy_log_ticket_zone;
xfs_btree_cur_zone = kmem_zone_init(sizeof(xfs_btree_cur_t),
"xfs_btree_cur");
if (!xfs_btree_cur_zone)
goto out_destroy_bmap_free_item_zone;
xfs_da_state_zone = kmem_zone_init(sizeof(xfs_da_state_t),
"xfs_da_state");
if (!xfs_da_state_zone)
goto out_destroy_btree_cur_zone;
xfs_ifork_zone = kmem_zone_init(sizeof(xfs_ifork_t), "xfs_ifork");
if (!xfs_ifork_zone)
goto out_destroy_da_state_zone;
xfs_trans_zone = kmem_zone_init(sizeof(xfs_trans_t), "xfs_trans");
if (!xfs_trans_zone)
goto out_destroy_ifork_zone;
/*
* The size of the zone allocated buf log item is the maximum
* size possible under XFS. This wastes a little bit of memory,
* but it is much faster.
*/
xfs_buf_item_zone = kmem_zone_init(sizeof(struct xfs_buf_log_item),
"xfs_buf_item");
if (!xfs_buf_item_zone)
goto out_destroy_trans_zone;
xfs_efd_zone = kmem_zone_init((sizeof(xfs_efd_log_item_t) +
((XFS_EFD_MAX_FAST_EXTENTS - 1) *
sizeof(xfs_extent_t))), "xfs_efd_item");
if (!xfs_efd_zone)
goto out_destroy_buf_item_zone;
xfs_efi_zone = kmem_zone_init((sizeof(xfs_efi_log_item_t) +
((XFS_EFI_MAX_FAST_EXTENTS - 1) *
sizeof(xfs_extent_t))), "xfs_efi_item");
if (!xfs_efi_zone)
goto out_destroy_efd_zone;
xfs_inode_zone =
kmem_zone_init_flags(sizeof(xfs_inode_t), "xfs_inode",
KM_ZONE_HWALIGN | KM_ZONE_RECLAIM | KM_ZONE_SPREAD |
KM_ZONE_ACCOUNT, xfs_fs_inode_init_once);
if (!xfs_inode_zone)
goto out_destroy_efi_zone;
xfs_ili_zone =
kmem_zone_init_flags(sizeof(xfs_inode_log_item_t), "xfs_ili",
KM_ZONE_SPREAD, NULL);
if (!xfs_ili_zone)
goto out_destroy_inode_zone;
xfs_icreate_zone = kmem_zone_init(sizeof(struct xfs_icreate_item),
"xfs_icr");
if (!xfs_icreate_zone)
goto out_destroy_ili_zone;
xfs_rud_zone = kmem_zone_init(sizeof(struct xfs_rud_log_item),
"xfs_rud_item");
if (!xfs_rud_zone)
goto out_destroy_icreate_zone;
xfs_rui_zone = kmem_zone_init(
xfs_rui_log_item_sizeof(XFS_RUI_MAX_FAST_EXTENTS),
"xfs_rui_item");
if (!xfs_rui_zone)
goto out_destroy_rud_zone;
xfs_cud_zone = kmem_zone_init(sizeof(struct xfs_cud_log_item),
"xfs_cud_item");
if (!xfs_cud_zone)
goto out_destroy_rui_zone;
xfs_cui_zone = kmem_zone_init(
xfs_cui_log_item_sizeof(XFS_CUI_MAX_FAST_EXTENTS),
"xfs_cui_item");
if (!xfs_cui_zone)
goto out_destroy_cud_zone;
xfs_bud_zone = kmem_zone_init(sizeof(struct xfs_bud_log_item),
"xfs_bud_item");
if (!xfs_bud_zone)
goto out_destroy_cui_zone;
xfs_bui_zone = kmem_zone_init(
xfs_bui_log_item_sizeof(XFS_BUI_MAX_FAST_EXTENTS),
"xfs_bui_item");
if (!xfs_bui_zone)
goto out_destroy_bud_zone;
return 0;
out_destroy_bud_zone:
kmem_zone_destroy(xfs_bud_zone);
out_destroy_cui_zone:
kmem_zone_destroy(xfs_cui_zone);
out_destroy_cud_zone:
kmem_zone_destroy(xfs_cud_zone);
out_destroy_rui_zone:
kmem_zone_destroy(xfs_rui_zone);
out_destroy_rud_zone:
kmem_zone_destroy(xfs_rud_zone);
out_destroy_icreate_zone:
kmem_zone_destroy(xfs_icreate_zone);
out_destroy_ili_zone:
kmem_zone_destroy(xfs_ili_zone);
out_destroy_inode_zone:
kmem_zone_destroy(xfs_inode_zone);
out_destroy_efi_zone:
kmem_zone_destroy(xfs_efi_zone);
out_destroy_efd_zone:
kmem_zone_destroy(xfs_efd_zone);
out_destroy_buf_item_zone:
kmem_zone_destroy(xfs_buf_item_zone);
out_destroy_trans_zone:
kmem_zone_destroy(xfs_trans_zone);
out_destroy_ifork_zone:
kmem_zone_destroy(xfs_ifork_zone);
out_destroy_da_state_zone:
kmem_zone_destroy(xfs_da_state_zone);
out_destroy_btree_cur_zone:
kmem_zone_destroy(xfs_btree_cur_zone);
out_destroy_bmap_free_item_zone:
kmem_zone_destroy(xfs_bmap_free_item_zone);
out_destroy_log_ticket_zone:
kmem_zone_destroy(xfs_log_ticket_zone);
out_free_ioend_bioset:
bioset_free(xfs_ioend_bioset);
out:
return -ENOMEM;
}
STATIC void
xfs_destroy_zones(void)
{
/*
* Make sure all delayed rcu free are flushed before we
* destroy caches.
*/
rcu_barrier();
kmem_zone_destroy(xfs_bui_zone);
kmem_zone_destroy(xfs_bud_zone);
kmem_zone_destroy(xfs_cui_zone);
kmem_zone_destroy(xfs_cud_zone);
kmem_zone_destroy(xfs_rui_zone);
kmem_zone_destroy(xfs_rud_zone);
kmem_zone_destroy(xfs_icreate_zone);
kmem_zone_destroy(xfs_ili_zone);
kmem_zone_destroy(xfs_inode_zone);
kmem_zone_destroy(xfs_efi_zone);
kmem_zone_destroy(xfs_efd_zone);
kmem_zone_destroy(xfs_buf_item_zone);
kmem_zone_destroy(xfs_trans_zone);
kmem_zone_destroy(xfs_ifork_zone);
kmem_zone_destroy(xfs_da_state_zone);
kmem_zone_destroy(xfs_btree_cur_zone);
kmem_zone_destroy(xfs_bmap_free_item_zone);
kmem_zone_destroy(xfs_log_ticket_zone);
bioset_free(xfs_ioend_bioset);
}
STATIC int __init
xfs_init_workqueues(void)
{
/*
* The allocation workqueue can be used in memory reclaim situations
* (writepage path), and parallelism is only limited by the number of
* AGs in all the filesystems mounted. Hence use the default large
* max_active value for this workqueue.
*/
xfs_alloc_wq = alloc_workqueue("xfsalloc",
WQ_MEM_RECLAIM|WQ_FREEZABLE, 0);
if (!xfs_alloc_wq)
return -ENOMEM;
xfs_discard_wq = alloc_workqueue("xfsdiscard", WQ_UNBOUND, 0);
if (!xfs_discard_wq)
goto out_free_alloc_wq;
return 0;
out_free_alloc_wq:
destroy_workqueue(xfs_alloc_wq);
return -ENOMEM;
}
STATIC void
xfs_destroy_workqueues(void)
{
destroy_workqueue(xfs_discard_wq);
destroy_workqueue(xfs_alloc_wq);
}
STATIC int __init
init_xfs_fs(void)
{
int error;
xfs_check_ondisk_structs();
printk(KERN_INFO XFS_VERSION_STRING " with "
XFS_BUILD_OPTIONS " enabled\n");
xfs_extent_free_init_defer_op();
xfs_rmap_update_init_defer_op();
xfs_refcount_update_init_defer_op();
xfs_bmap_update_init_defer_op();
xfs_dir_startup();
error = xfs_init_zones();
if (error)
goto out;
error = xfs_init_workqueues();
if (error)
goto out_destroy_zones;
error = xfs_mru_cache_init();
if (error)
goto out_destroy_wq;
error = xfs_buf_init();
if (error)
goto out_mru_cache_uninit;
error = xfs_init_procfs();
if (error)
goto out_buf_terminate;
error = xfs_sysctl_register();
if (error)
goto out_cleanup_procfs;
xfs_kset = kset_create_and_add("xfs", NULL, fs_kobj);
if (!xfs_kset) {
error = -ENOMEM;
goto out_sysctl_unregister;
}
xfsstats.xs_kobj.kobject.kset = xfs_kset;
xfsstats.xs_stats = alloc_percpu(struct xfsstats);
if (!xfsstats.xs_stats) {
error = -ENOMEM;
goto out_kset_unregister;
}
error = xfs_sysfs_init(&xfsstats.xs_kobj, &xfs_stats_ktype, NULL,
"stats");
if (error)
goto out_free_stats;
#ifdef DEBUG
xfs_dbg_kobj.kobject.kset = xfs_kset;
error = xfs_sysfs_init(&xfs_dbg_kobj, &xfs_dbg_ktype, NULL, "debug");
if (error)
goto out_remove_stats_kobj;
#endif
error = xfs_qm_init();
if (error)
goto out_remove_dbg_kobj;
error = register_filesystem(&xfs_fs_type);
if (error)
goto out_qm_exit;
return 0;
out_qm_exit:
xfs_qm_exit();
out_remove_dbg_kobj:
#ifdef DEBUG
xfs_sysfs_del(&xfs_dbg_kobj);
out_remove_stats_kobj:
#endif
xfs_sysfs_del(&xfsstats.xs_kobj);
out_free_stats:
free_percpu(xfsstats.xs_stats);
out_kset_unregister:
kset_unregister(xfs_kset);
out_sysctl_unregister:
xfs_sysctl_unregister();
out_cleanup_procfs:
xfs_cleanup_procfs();
out_buf_terminate:
xfs_buf_terminate();
out_mru_cache_uninit:
xfs_mru_cache_uninit();
out_destroy_wq:
xfs_destroy_workqueues();
out_destroy_zones:
xfs_destroy_zones();
out:
return error;
}
STATIC void __exit
exit_xfs_fs(void)
{
xfs_qm_exit();
unregister_filesystem(&xfs_fs_type);
#ifdef DEBUG
xfs_sysfs_del(&xfs_dbg_kobj);
#endif
xfs_sysfs_del(&xfsstats.xs_kobj);
free_percpu(xfsstats.xs_stats);
kset_unregister(xfs_kset);
xfs_sysctl_unregister();
xfs_cleanup_procfs();
xfs_buf_terminate();
xfs_mru_cache_uninit();
xfs_destroy_workqueues();
xfs_destroy_zones();
xfs_uuid_table_free();
}
module_init(init_xfs_fs);
module_exit(exit_xfs_fs);
MODULE_AUTHOR("Silicon Graphics, Inc.");
MODULE_DESCRIPTION(XFS_VERSION_STRING " with " XFS_BUILD_OPTIONS " enabled");
MODULE_LICENSE("GPL");