mirror of
https://github.com/FEX-Emu/linux.git
synced 2025-01-15 06:00:41 +00:00
c6317bc7c5
This was the second perf intr issue perf sampling on multicore requires intr to be enabled on all cores. ARC perf probe code used helper arc_request_percpu_irq() which calls - request_percpu_irq() on core0 - enable_percpu_irq() on all all cores (including core0) genirq requires that request be made ahead of enable call. However if perf probe happened on non core0 (observed on a 3.18 kernel), enable would get called ahead of request, failing obviously and rendering perf intr disabled on all such cores [ 11.120000] 1 ARC perf : 8 counters (48 bits), 113 conditions, [overflow IRQ support] [ 11.130000] 1 -----> enable_percpu_irq() IRQ 20 failed [ 11.140000] 3 -----> enable_percpu_irq() IRQ 20 failed [ 11.140000] 2 -----> enable_percpu_irq() IRQ 20 failed [ 11.140000] 0 =====> request_percpu_irq() IRQ 20 [ 11.140000] 0 -----> enable_percpu_irq() IRQ 20 Fix this fragility, by calling request_percpu_irq() on whatever core calls probe (there is no requirement on which core calls this anyways) and then calling enable on each cores. Interestingly this started as invesigation of STAR 9000838902: "sporadically IRQs enabled on perf prob" which was about occassional boot spew as request_percpu_irq got called non-locally (from an IPI), and re-enabled interrupts in following path proc_mkdir -> spin_unlock_irq() which the irq work code didn't like. | ARC perf : 8 counters (48 bits), 113 conditions, [overflow IRQ support] | | BUG: failure at ../kernel/irq_work.c:135/irq_work_run_list()! | CPU: 0 PID: 0 Comm: swapper/0 Not tainted 3.18.10-01127-g285efb8e66d1 #2 | | Stack Trace: | arc_unwind_core.constprop.1+0x94/0x104 | dump_stack+0x62/0x98 | irq_work_run_list+0xb0/0xb4 | irq_work_run+0x22/0x3c | do_IPI+0x74/0x9c | handle_irq_event_percpu+0x34/0x164 | handle_percpu_irq+0x58/0x78 | generic_handle_irq+0x1e/0x2c | arch_do_IRQ+0x3c/0x60 | ret_from_exception+0x0/0x8 Cc: Marc Zyngier <marc.zyngier@arm.com> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: linux-snps-arc@lists.infradead.org Cc: linux-kernel@vger.kernel.org Cc: Alexey Brodkin <abrodkin@synopsys.com> Cc: <stable@vger.kernel.org> #4.2+ Signed-off-by: Vineet Gupta <vgupta@synopsys.com>
559 lines
14 KiB
C
559 lines
14 KiB
C
/*
|
|
* Linux performance counter support for ARC700 series
|
|
*
|
|
* Copyright (C) 2013-2015 Synopsys, Inc. (www.synopsys.com)
|
|
*
|
|
* This code is inspired by the perf support of various other architectures.
|
|
*
|
|
* This program is free software; you can redistribute it and/or modify
|
|
* it under the terms of the GNU General Public License version 2 as
|
|
* published by the Free Software Foundation.
|
|
*
|
|
*/
|
|
#include <linux/errno.h>
|
|
#include <linux/interrupt.h>
|
|
#include <linux/module.h>
|
|
#include <linux/of.h>
|
|
#include <linux/perf_event.h>
|
|
#include <linux/platform_device.h>
|
|
#include <asm/arcregs.h>
|
|
#include <asm/stacktrace.h>
|
|
|
|
struct arc_pmu {
|
|
struct pmu pmu;
|
|
unsigned int irq;
|
|
int n_counters;
|
|
u64 max_period;
|
|
int ev_hw_idx[PERF_COUNT_ARC_HW_MAX];
|
|
};
|
|
|
|
struct arc_pmu_cpu {
|
|
/*
|
|
* A 1 bit for an index indicates that the counter is being used for
|
|
* an event. A 0 means that the counter can be used.
|
|
*/
|
|
unsigned long used_mask[BITS_TO_LONGS(ARC_PERF_MAX_COUNTERS)];
|
|
|
|
/*
|
|
* The events that are active on the PMU for the given index.
|
|
*/
|
|
struct perf_event *act_counter[ARC_PERF_MAX_COUNTERS];
|
|
};
|
|
|
|
struct arc_callchain_trace {
|
|
int depth;
|
|
void *perf_stuff;
|
|
};
|
|
|
|
static int callchain_trace(unsigned int addr, void *data)
|
|
{
|
|
struct arc_callchain_trace *ctrl = data;
|
|
struct perf_callchain_entry *entry = ctrl->perf_stuff;
|
|
perf_callchain_store(entry, addr);
|
|
|
|
if (ctrl->depth++ < 3)
|
|
return 0;
|
|
|
|
return -1;
|
|
}
|
|
|
|
void
|
|
perf_callchain_kernel(struct perf_callchain_entry *entry, struct pt_regs *regs)
|
|
{
|
|
struct arc_callchain_trace ctrl = {
|
|
.depth = 0,
|
|
.perf_stuff = entry,
|
|
};
|
|
|
|
arc_unwind_core(NULL, regs, callchain_trace, &ctrl);
|
|
}
|
|
|
|
void
|
|
perf_callchain_user(struct perf_callchain_entry *entry, struct pt_regs *regs)
|
|
{
|
|
/*
|
|
* User stack can't be unwound trivially with kernel dwarf unwinder
|
|
* So for now just record the user PC
|
|
*/
|
|
perf_callchain_store(entry, instruction_pointer(regs));
|
|
}
|
|
|
|
static struct arc_pmu *arc_pmu;
|
|
static DEFINE_PER_CPU(struct arc_pmu_cpu, arc_pmu_cpu);
|
|
|
|
/* read counter #idx; note that counter# != event# on ARC! */
|
|
static uint64_t arc_pmu_read_counter(int idx)
|
|
{
|
|
uint32_t tmp;
|
|
uint64_t result;
|
|
|
|
/*
|
|
* ARC supports making 'snapshots' of the counters, so we don't
|
|
* need to care about counters wrapping to 0 underneath our feet
|
|
*/
|
|
write_aux_reg(ARC_REG_PCT_INDEX, idx);
|
|
tmp = read_aux_reg(ARC_REG_PCT_CONTROL);
|
|
write_aux_reg(ARC_REG_PCT_CONTROL, tmp | ARC_REG_PCT_CONTROL_SN);
|
|
result = (uint64_t) (read_aux_reg(ARC_REG_PCT_SNAPH)) << 32;
|
|
result |= read_aux_reg(ARC_REG_PCT_SNAPL);
|
|
|
|
return result;
|
|
}
|
|
|
|
static void arc_perf_event_update(struct perf_event *event,
|
|
struct hw_perf_event *hwc, int idx)
|
|
{
|
|
uint64_t prev_raw_count = local64_read(&hwc->prev_count);
|
|
uint64_t new_raw_count = arc_pmu_read_counter(idx);
|
|
int64_t delta = new_raw_count - prev_raw_count;
|
|
|
|
/*
|
|
* We don't afaraid of hwc->prev_count changing beneath our feet
|
|
* because there's no way for us to re-enter this function anytime.
|
|
*/
|
|
local64_set(&hwc->prev_count, new_raw_count);
|
|
local64_add(delta, &event->count);
|
|
local64_sub(delta, &hwc->period_left);
|
|
}
|
|
|
|
static void arc_pmu_read(struct perf_event *event)
|
|
{
|
|
arc_perf_event_update(event, &event->hw, event->hw.idx);
|
|
}
|
|
|
|
static int arc_pmu_cache_event(u64 config)
|
|
{
|
|
unsigned int cache_type, cache_op, cache_result;
|
|
int ret;
|
|
|
|
cache_type = (config >> 0) & 0xff;
|
|
cache_op = (config >> 8) & 0xff;
|
|
cache_result = (config >> 16) & 0xff;
|
|
if (cache_type >= PERF_COUNT_HW_CACHE_MAX)
|
|
return -EINVAL;
|
|
if (cache_op >= PERF_COUNT_HW_CACHE_OP_MAX)
|
|
return -EINVAL;
|
|
if (cache_result >= PERF_COUNT_HW_CACHE_RESULT_MAX)
|
|
return -EINVAL;
|
|
|
|
ret = arc_pmu_cache_map[cache_type][cache_op][cache_result];
|
|
|
|
if (ret == CACHE_OP_UNSUPPORTED)
|
|
return -ENOENT;
|
|
|
|
pr_debug("init cache event: type/op/result %d/%d/%d with h/w %d \'%s\'\n",
|
|
cache_type, cache_op, cache_result, ret,
|
|
arc_pmu_ev_hw_map[ret]);
|
|
|
|
return ret;
|
|
}
|
|
|
|
/* initializes hw_perf_event structure if event is supported */
|
|
static int arc_pmu_event_init(struct perf_event *event)
|
|
{
|
|
struct hw_perf_event *hwc = &event->hw;
|
|
int ret;
|
|
|
|
if (!is_sampling_event(event)) {
|
|
hwc->sample_period = arc_pmu->max_period;
|
|
hwc->last_period = hwc->sample_period;
|
|
local64_set(&hwc->period_left, hwc->sample_period);
|
|
}
|
|
|
|
hwc->config = 0;
|
|
|
|
if (is_isa_arcv2()) {
|
|
/* "exclude user" means "count only kernel" */
|
|
if (event->attr.exclude_user)
|
|
hwc->config |= ARC_REG_PCT_CONFIG_KERN;
|
|
|
|
/* "exclude kernel" means "count only user" */
|
|
if (event->attr.exclude_kernel)
|
|
hwc->config |= ARC_REG_PCT_CONFIG_USER;
|
|
}
|
|
|
|
switch (event->attr.type) {
|
|
case PERF_TYPE_HARDWARE:
|
|
if (event->attr.config >= PERF_COUNT_HW_MAX)
|
|
return -ENOENT;
|
|
if (arc_pmu->ev_hw_idx[event->attr.config] < 0)
|
|
return -ENOENT;
|
|
hwc->config |= arc_pmu->ev_hw_idx[event->attr.config];
|
|
pr_debug("init event %d with h/w %d \'%s\'\n",
|
|
(int) event->attr.config, (int) hwc->config,
|
|
arc_pmu_ev_hw_map[event->attr.config]);
|
|
return 0;
|
|
|
|
case PERF_TYPE_HW_CACHE:
|
|
ret = arc_pmu_cache_event(event->attr.config);
|
|
if (ret < 0)
|
|
return ret;
|
|
hwc->config |= arc_pmu->ev_hw_idx[ret];
|
|
return 0;
|
|
default:
|
|
return -ENOENT;
|
|
}
|
|
}
|
|
|
|
/* starts all counters */
|
|
static void arc_pmu_enable(struct pmu *pmu)
|
|
{
|
|
uint32_t tmp;
|
|
tmp = read_aux_reg(ARC_REG_PCT_CONTROL);
|
|
write_aux_reg(ARC_REG_PCT_CONTROL, (tmp & 0xffff0000) | 0x1);
|
|
}
|
|
|
|
/* stops all counters */
|
|
static void arc_pmu_disable(struct pmu *pmu)
|
|
{
|
|
uint32_t tmp;
|
|
tmp = read_aux_reg(ARC_REG_PCT_CONTROL);
|
|
write_aux_reg(ARC_REG_PCT_CONTROL, (tmp & 0xffff0000) | 0x0);
|
|
}
|
|
|
|
static int arc_pmu_event_set_period(struct perf_event *event)
|
|
{
|
|
struct hw_perf_event *hwc = &event->hw;
|
|
s64 left = local64_read(&hwc->period_left);
|
|
s64 period = hwc->sample_period;
|
|
int idx = hwc->idx;
|
|
int overflow = 0;
|
|
u64 value;
|
|
|
|
if (unlikely(left <= -period)) {
|
|
/* left underflowed by more than period. */
|
|
left = period;
|
|
local64_set(&hwc->period_left, left);
|
|
hwc->last_period = period;
|
|
overflow = 1;
|
|
} else if (unlikely(left <= 0)) {
|
|
/* left underflowed by less than period. */
|
|
left += period;
|
|
local64_set(&hwc->period_left, left);
|
|
hwc->last_period = period;
|
|
overflow = 1;
|
|
}
|
|
|
|
if (left > arc_pmu->max_period)
|
|
left = arc_pmu->max_period;
|
|
|
|
value = arc_pmu->max_period - left;
|
|
local64_set(&hwc->prev_count, value);
|
|
|
|
/* Select counter */
|
|
write_aux_reg(ARC_REG_PCT_INDEX, idx);
|
|
|
|
/* Write value */
|
|
write_aux_reg(ARC_REG_PCT_COUNTL, (u32)value);
|
|
write_aux_reg(ARC_REG_PCT_COUNTH, (value >> 32));
|
|
|
|
perf_event_update_userpage(event);
|
|
|
|
return overflow;
|
|
}
|
|
|
|
/*
|
|
* Assigns hardware counter to hardware condition.
|
|
* Note that there is no separate start/stop mechanism;
|
|
* stopping is achieved by assigning the 'never' condition
|
|
*/
|
|
static void arc_pmu_start(struct perf_event *event, int flags)
|
|
{
|
|
struct hw_perf_event *hwc = &event->hw;
|
|
int idx = hwc->idx;
|
|
|
|
if (WARN_ON_ONCE(idx == -1))
|
|
return;
|
|
|
|
if (flags & PERF_EF_RELOAD)
|
|
WARN_ON_ONCE(!(hwc->state & PERF_HES_UPTODATE));
|
|
|
|
hwc->state = 0;
|
|
|
|
arc_pmu_event_set_period(event);
|
|
|
|
/* Enable interrupt for this counter */
|
|
if (is_sampling_event(event))
|
|
write_aux_reg(ARC_REG_PCT_INT_CTRL,
|
|
read_aux_reg(ARC_REG_PCT_INT_CTRL) | (1 << idx));
|
|
|
|
/* enable ARC pmu here */
|
|
write_aux_reg(ARC_REG_PCT_INDEX, idx); /* counter # */
|
|
write_aux_reg(ARC_REG_PCT_CONFIG, hwc->config); /* condition */
|
|
}
|
|
|
|
static void arc_pmu_stop(struct perf_event *event, int flags)
|
|
{
|
|
struct hw_perf_event *hwc = &event->hw;
|
|
int idx = hwc->idx;
|
|
|
|
/* Disable interrupt for this counter */
|
|
if (is_sampling_event(event)) {
|
|
/*
|
|
* Reset interrupt flag by writing of 1. This is required
|
|
* to make sure pending interrupt was not left.
|
|
*/
|
|
write_aux_reg(ARC_REG_PCT_INT_ACT, 1 << idx);
|
|
write_aux_reg(ARC_REG_PCT_INT_CTRL,
|
|
read_aux_reg(ARC_REG_PCT_INT_CTRL) & ~(1 << idx));
|
|
}
|
|
|
|
if (!(event->hw.state & PERF_HES_STOPPED)) {
|
|
/* stop ARC pmu here */
|
|
write_aux_reg(ARC_REG_PCT_INDEX, idx);
|
|
|
|
/* condition code #0 is always "never" */
|
|
write_aux_reg(ARC_REG_PCT_CONFIG, 0);
|
|
|
|
event->hw.state |= PERF_HES_STOPPED;
|
|
}
|
|
|
|
if ((flags & PERF_EF_UPDATE) &&
|
|
!(event->hw.state & PERF_HES_UPTODATE)) {
|
|
arc_perf_event_update(event, &event->hw, idx);
|
|
event->hw.state |= PERF_HES_UPTODATE;
|
|
}
|
|
}
|
|
|
|
static void arc_pmu_del(struct perf_event *event, int flags)
|
|
{
|
|
struct arc_pmu_cpu *pmu_cpu = this_cpu_ptr(&arc_pmu_cpu);
|
|
|
|
arc_pmu_stop(event, PERF_EF_UPDATE);
|
|
__clear_bit(event->hw.idx, pmu_cpu->used_mask);
|
|
|
|
pmu_cpu->act_counter[event->hw.idx] = 0;
|
|
|
|
perf_event_update_userpage(event);
|
|
}
|
|
|
|
/* allocate hardware counter and optionally start counting */
|
|
static int arc_pmu_add(struct perf_event *event, int flags)
|
|
{
|
|
struct arc_pmu_cpu *pmu_cpu = this_cpu_ptr(&arc_pmu_cpu);
|
|
struct hw_perf_event *hwc = &event->hw;
|
|
int idx = hwc->idx;
|
|
|
|
if (__test_and_set_bit(idx, pmu_cpu->used_mask)) {
|
|
idx = find_first_zero_bit(pmu_cpu->used_mask,
|
|
arc_pmu->n_counters);
|
|
if (idx == arc_pmu->n_counters)
|
|
return -EAGAIN;
|
|
|
|
__set_bit(idx, pmu_cpu->used_mask);
|
|
hwc->idx = idx;
|
|
}
|
|
|
|
write_aux_reg(ARC_REG_PCT_INDEX, idx);
|
|
|
|
pmu_cpu->act_counter[idx] = event;
|
|
|
|
if (is_sampling_event(event)) {
|
|
/* Mimic full counter overflow as other arches do */
|
|
write_aux_reg(ARC_REG_PCT_INT_CNTL, (u32)arc_pmu->max_period);
|
|
write_aux_reg(ARC_REG_PCT_INT_CNTH,
|
|
(arc_pmu->max_period >> 32));
|
|
}
|
|
|
|
write_aux_reg(ARC_REG_PCT_CONFIG, 0);
|
|
write_aux_reg(ARC_REG_PCT_COUNTL, 0);
|
|
write_aux_reg(ARC_REG_PCT_COUNTH, 0);
|
|
local64_set(&hwc->prev_count, 0);
|
|
|
|
hwc->state = PERF_HES_UPTODATE | PERF_HES_STOPPED;
|
|
if (flags & PERF_EF_START)
|
|
arc_pmu_start(event, PERF_EF_RELOAD);
|
|
|
|
perf_event_update_userpage(event);
|
|
|
|
return 0;
|
|
}
|
|
|
|
#ifdef CONFIG_ISA_ARCV2
|
|
static irqreturn_t arc_pmu_intr(int irq, void *dev)
|
|
{
|
|
struct perf_sample_data data;
|
|
struct arc_pmu_cpu *pmu_cpu = this_cpu_ptr(&arc_pmu_cpu);
|
|
struct pt_regs *regs;
|
|
int active_ints;
|
|
int idx;
|
|
|
|
arc_pmu_disable(&arc_pmu->pmu);
|
|
|
|
active_ints = read_aux_reg(ARC_REG_PCT_INT_ACT);
|
|
|
|
regs = get_irq_regs();
|
|
|
|
for (idx = 0; idx < arc_pmu->n_counters; idx++) {
|
|
struct perf_event *event = pmu_cpu->act_counter[idx];
|
|
struct hw_perf_event *hwc;
|
|
|
|
if (!(active_ints & (1 << idx)))
|
|
continue;
|
|
|
|
/* Reset interrupt flag by writing of 1 */
|
|
write_aux_reg(ARC_REG_PCT_INT_ACT, 1 << idx);
|
|
|
|
/*
|
|
* On reset of "interrupt active" bit corresponding
|
|
* "interrupt enable" bit gets automatically reset as well.
|
|
* Now we need to re-enable interrupt for the counter.
|
|
*/
|
|
write_aux_reg(ARC_REG_PCT_INT_CTRL,
|
|
read_aux_reg(ARC_REG_PCT_INT_CTRL) | (1 << idx));
|
|
|
|
hwc = &event->hw;
|
|
|
|
WARN_ON_ONCE(hwc->idx != idx);
|
|
|
|
arc_perf_event_update(event, &event->hw, event->hw.idx);
|
|
perf_sample_data_init(&data, 0, hwc->last_period);
|
|
if (!arc_pmu_event_set_period(event))
|
|
continue;
|
|
|
|
if (perf_event_overflow(event, &data, regs))
|
|
arc_pmu_stop(event, 0);
|
|
}
|
|
|
|
arc_pmu_enable(&arc_pmu->pmu);
|
|
|
|
return IRQ_HANDLED;
|
|
}
|
|
#else
|
|
|
|
static irqreturn_t arc_pmu_intr(int irq, void *dev)
|
|
{
|
|
return IRQ_NONE;
|
|
}
|
|
|
|
#endif /* CONFIG_ISA_ARCV2 */
|
|
|
|
static void arc_cpu_pmu_irq_init(void *data)
|
|
{
|
|
int irq = *(int *)data;
|
|
|
|
enable_percpu_irq(irq, IRQ_TYPE_NONE);
|
|
|
|
/* Clear all pending interrupt flags */
|
|
write_aux_reg(ARC_REG_PCT_INT_ACT, 0xffffffff);
|
|
}
|
|
|
|
static int arc_pmu_device_probe(struct platform_device *pdev)
|
|
{
|
|
struct arc_reg_pct_build pct_bcr;
|
|
struct arc_reg_cc_build cc_bcr;
|
|
int i, j, has_interrupts;
|
|
int counter_size; /* in bits */
|
|
|
|
union cc_name {
|
|
struct {
|
|
uint32_t word0, word1;
|
|
char sentinel;
|
|
} indiv;
|
|
char str[9];
|
|
} cc_name;
|
|
|
|
|
|
READ_BCR(ARC_REG_PCT_BUILD, pct_bcr);
|
|
if (!pct_bcr.v) {
|
|
pr_err("This core does not have performance counters!\n");
|
|
return -ENODEV;
|
|
}
|
|
BUG_ON(pct_bcr.c > ARC_PERF_MAX_COUNTERS);
|
|
|
|
READ_BCR(ARC_REG_CC_BUILD, cc_bcr);
|
|
BUG_ON(!cc_bcr.v); /* Counters exist but No countable conditions ? */
|
|
|
|
arc_pmu = devm_kzalloc(&pdev->dev, sizeof(struct arc_pmu), GFP_KERNEL);
|
|
if (!arc_pmu)
|
|
return -ENOMEM;
|
|
|
|
has_interrupts = is_isa_arcv2() ? pct_bcr.i : 0;
|
|
|
|
arc_pmu->n_counters = pct_bcr.c;
|
|
counter_size = 32 + (pct_bcr.s << 4);
|
|
|
|
arc_pmu->max_period = (1ULL << counter_size) / 2 - 1ULL;
|
|
|
|
pr_info("ARC perf\t: %d counters (%d bits), %d conditions%s\n",
|
|
arc_pmu->n_counters, counter_size, cc_bcr.c,
|
|
has_interrupts ? ", [overflow IRQ support]":"");
|
|
|
|
cc_name.str[8] = 0;
|
|
for (i = 0; i < PERF_COUNT_ARC_HW_MAX; i++)
|
|
arc_pmu->ev_hw_idx[i] = -1;
|
|
|
|
/* loop thru all available h/w condition indexes */
|
|
for (j = 0; j < cc_bcr.c; j++) {
|
|
write_aux_reg(ARC_REG_CC_INDEX, j);
|
|
cc_name.indiv.word0 = read_aux_reg(ARC_REG_CC_NAME0);
|
|
cc_name.indiv.word1 = read_aux_reg(ARC_REG_CC_NAME1);
|
|
|
|
/* See if it has been mapped to a perf event_id */
|
|
for (i = 0; i < ARRAY_SIZE(arc_pmu_ev_hw_map); i++) {
|
|
if (arc_pmu_ev_hw_map[i] &&
|
|
!strcmp(arc_pmu_ev_hw_map[i], cc_name.str) &&
|
|
strlen(arc_pmu_ev_hw_map[i])) {
|
|
pr_debug("mapping perf event %2d to h/w event \'%8s\' (idx %d)\n",
|
|
i, cc_name.str, j);
|
|
arc_pmu->ev_hw_idx[i] = j;
|
|
}
|
|
}
|
|
}
|
|
|
|
arc_pmu->pmu = (struct pmu) {
|
|
.pmu_enable = arc_pmu_enable,
|
|
.pmu_disable = arc_pmu_disable,
|
|
.event_init = arc_pmu_event_init,
|
|
.add = arc_pmu_add,
|
|
.del = arc_pmu_del,
|
|
.start = arc_pmu_start,
|
|
.stop = arc_pmu_stop,
|
|
.read = arc_pmu_read,
|
|
};
|
|
|
|
if (has_interrupts) {
|
|
int irq = platform_get_irq(pdev, 0);
|
|
|
|
if (irq < 0) {
|
|
pr_err("Cannot get IRQ number for the platform\n");
|
|
return -ENODEV;
|
|
}
|
|
|
|
arc_pmu->irq = irq;
|
|
|
|
/* intc map function ensures irq_set_percpu_devid() called */
|
|
request_percpu_irq(irq, arc_pmu_intr, "ARC perf counters",
|
|
this_cpu_ptr(&arc_pmu_cpu));
|
|
|
|
on_each_cpu(arc_cpu_pmu_irq_init, &irq, 1);
|
|
|
|
} else
|
|
arc_pmu->pmu.capabilities |= PERF_PMU_CAP_NO_INTERRUPT;
|
|
|
|
return perf_pmu_register(&arc_pmu->pmu, pdev->name, PERF_TYPE_RAW);
|
|
}
|
|
|
|
#ifdef CONFIG_OF
|
|
static const struct of_device_id arc_pmu_match[] = {
|
|
{ .compatible = "snps,arc700-pct" },
|
|
{ .compatible = "snps,archs-pct" },
|
|
{},
|
|
};
|
|
MODULE_DEVICE_TABLE(of, arc_pmu_match);
|
|
#endif
|
|
|
|
static struct platform_driver arc_pmu_driver = {
|
|
.driver = {
|
|
.name = "arc-pct",
|
|
.of_match_table = of_match_ptr(arc_pmu_match),
|
|
},
|
|
.probe = arc_pmu_device_probe,
|
|
};
|
|
|
|
module_platform_driver(arc_pmu_driver);
|
|
|
|
MODULE_LICENSE("GPL");
|
|
MODULE_AUTHOR("Mischa Jonker <mjonker@synopsys.com>");
|
|
MODULE_DESCRIPTION("ARC PMU driver");
|