mirror of
https://github.com/FEX-Emu/linux.git
synced 2025-01-07 10:03:24 +00:00
286dbb8d5d
This is the first step of renaming async commit to nonblocking commit. The flag passed by userspace is NONBLOCKING, and async has a different meaning for page flips, where it means as soon as possible. Fixing up comments in drm core is done manually, to make sure I didn't miss anything. For drivers, the following cocci script is used to rename bool async to bool nonblock: @@ identifier I =~ "^async"; identifier func; @@ func(..., bool - I + nonblock , ...) { <... - I + nonblock ...> } @@ identifier func; type T; identifier I =~ "^async"; @@ T func(..., bool - I + nonblock , ...); Thanks to Tvrtko Ursulin for the cocci script. Cc: Tvrtko Ursulin <tvrtko.ursulin@linux.intel.com> Signed-off-by: Maarten Lankhorst <maarten.lankhorst@linux.intel.com> Signed-off-by: Daniel Vetter <daniel.vetter@ffwll.ch> Link: http://patchwork.freedesktop.org/patch/msgid/1461679905-30177-2-git-send-email-maarten.lankhorst@linux.intel.com
2686 lines
96 KiB
C
2686 lines
96 KiB
C
/*
|
|
* Copyright © 2006 Keith Packard
|
|
* Copyright © 2007-2008 Dave Airlie
|
|
* Copyright © 2007-2008 Intel Corporation
|
|
* Jesse Barnes <jesse.barnes@intel.com>
|
|
*
|
|
* Permission is hereby granted, free of charge, to any person obtaining a
|
|
* copy of this software and associated documentation files (the "Software"),
|
|
* to deal in the Software without restriction, including without limitation
|
|
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
|
|
* and/or sell copies of the Software, and to permit persons to whom the
|
|
* Software is furnished to do so, subject to the following conditions:
|
|
*
|
|
* The above copyright notice and this permission notice shall be included in
|
|
* all copies or substantial portions of the Software.
|
|
*
|
|
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
|
|
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
|
|
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
|
|
* THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
|
|
* OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
|
|
* ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
|
|
* OTHER DEALINGS IN THE SOFTWARE.
|
|
*/
|
|
#ifndef __DRM_CRTC_H__
|
|
#define __DRM_CRTC_H__
|
|
|
|
#include <linux/i2c.h>
|
|
#include <linux/spinlock.h>
|
|
#include <linux/types.h>
|
|
#include <linux/idr.h>
|
|
#include <linux/fb.h>
|
|
#include <linux/hdmi.h>
|
|
#include <linux/media-bus-format.h>
|
|
#include <uapi/drm/drm_mode.h>
|
|
#include <uapi/drm/drm_fourcc.h>
|
|
#include <drm/drm_modeset_lock.h>
|
|
|
|
struct drm_device;
|
|
struct drm_mode_set;
|
|
struct drm_framebuffer;
|
|
struct drm_object_properties;
|
|
struct drm_file;
|
|
struct drm_clip_rect;
|
|
struct device_node;
|
|
struct fence;
|
|
|
|
struct drm_mode_object {
|
|
uint32_t id;
|
|
uint32_t type;
|
|
struct drm_object_properties *properties;
|
|
struct kref refcount;
|
|
void (*free_cb)(struct kref *kref);
|
|
};
|
|
|
|
#define DRM_OBJECT_MAX_PROPERTY 24
|
|
struct drm_object_properties {
|
|
int count, atomic_count;
|
|
/* NOTE: if we ever start dynamically destroying properties (ie.
|
|
* not at drm_mode_config_cleanup() time), then we'd have to do
|
|
* a better job of detaching property from mode objects to avoid
|
|
* dangling property pointers:
|
|
*/
|
|
struct drm_property *properties[DRM_OBJECT_MAX_PROPERTY];
|
|
/* do not read/write values directly, but use drm_object_property_get_value()
|
|
* and drm_object_property_set_value():
|
|
*/
|
|
uint64_t values[DRM_OBJECT_MAX_PROPERTY];
|
|
};
|
|
|
|
static inline int64_t U642I64(uint64_t val)
|
|
{
|
|
return (int64_t)*((int64_t *)&val);
|
|
}
|
|
static inline uint64_t I642U64(int64_t val)
|
|
{
|
|
return (uint64_t)*((uint64_t *)&val);
|
|
}
|
|
|
|
/*
|
|
* Rotation property bits. DRM_ROTATE_<degrees> rotates the image by the
|
|
* specified amount in degrees in counter clockwise direction. DRM_REFLECT_X and
|
|
* DRM_REFLECT_Y reflects the image along the specified axis prior to rotation
|
|
*/
|
|
#define DRM_ROTATE_MASK 0x0f
|
|
#define DRM_ROTATE_0 0
|
|
#define DRM_ROTATE_90 1
|
|
#define DRM_ROTATE_180 2
|
|
#define DRM_ROTATE_270 3
|
|
#define DRM_REFLECT_MASK (~DRM_ROTATE_MASK)
|
|
#define DRM_REFLECT_X 4
|
|
#define DRM_REFLECT_Y 5
|
|
|
|
enum drm_connector_force {
|
|
DRM_FORCE_UNSPECIFIED,
|
|
DRM_FORCE_OFF,
|
|
DRM_FORCE_ON, /* force on analog part normally */
|
|
DRM_FORCE_ON_DIGITAL, /* for DVI-I use digital connector */
|
|
};
|
|
|
|
#include <drm/drm_modes.h>
|
|
|
|
enum drm_connector_status {
|
|
connector_status_connected = 1,
|
|
connector_status_disconnected = 2,
|
|
connector_status_unknown = 3,
|
|
};
|
|
|
|
enum subpixel_order {
|
|
SubPixelUnknown = 0,
|
|
SubPixelHorizontalRGB,
|
|
SubPixelHorizontalBGR,
|
|
SubPixelVerticalRGB,
|
|
SubPixelVerticalBGR,
|
|
SubPixelNone,
|
|
};
|
|
|
|
#define DRM_COLOR_FORMAT_RGB444 (1<<0)
|
|
#define DRM_COLOR_FORMAT_YCRCB444 (1<<1)
|
|
#define DRM_COLOR_FORMAT_YCRCB422 (1<<2)
|
|
/*
|
|
* Describes a given display (e.g. CRT or flat panel) and its limitations.
|
|
*/
|
|
struct drm_display_info {
|
|
char name[DRM_DISPLAY_INFO_LEN];
|
|
|
|
/* Physical size */
|
|
unsigned int width_mm;
|
|
unsigned int height_mm;
|
|
|
|
/* Clock limits FIXME: storage format */
|
|
unsigned int min_vfreq, max_vfreq;
|
|
unsigned int min_hfreq, max_hfreq;
|
|
unsigned int pixel_clock;
|
|
unsigned int bpc;
|
|
|
|
enum subpixel_order subpixel_order;
|
|
u32 color_formats;
|
|
|
|
const u32 *bus_formats;
|
|
unsigned int num_bus_formats;
|
|
|
|
/* Mask of supported hdmi deep color modes */
|
|
u8 edid_hdmi_dc_modes;
|
|
|
|
u8 cea_rev;
|
|
};
|
|
|
|
/* data corresponds to displayid vend/prod/serial */
|
|
struct drm_tile_group {
|
|
struct kref refcount;
|
|
struct drm_device *dev;
|
|
int id;
|
|
u8 group_data[8];
|
|
};
|
|
|
|
/**
|
|
* struct drm_framebuffer_funcs - framebuffer hooks
|
|
*/
|
|
struct drm_framebuffer_funcs {
|
|
/**
|
|
* @destroy:
|
|
*
|
|
* Clean up framebuffer resources, specifically also unreference the
|
|
* backing storage. The core guarantees to call this function for every
|
|
* framebuffer successfully created by ->fb_create() in
|
|
* &drm_mode_config_funcs. Drivers must also call
|
|
* drm_framebuffer_cleanup() to release DRM core resources for this
|
|
* framebuffer.
|
|
*/
|
|
void (*destroy)(struct drm_framebuffer *framebuffer);
|
|
|
|
/**
|
|
* @create_handle:
|
|
*
|
|
* Create a buffer handle in the driver-specific buffer manager (either
|
|
* GEM or TTM) valid for the passed-in struct &drm_file. This is used by
|
|
* the core to implement the GETFB IOCTL, which returns (for
|
|
* sufficiently priviledged user) also a native buffer handle. This can
|
|
* be used for seamless transitions between modesetting clients by
|
|
* copying the current screen contents to a private buffer and blending
|
|
* between that and the new contents.
|
|
*
|
|
* GEM based drivers should call drm_gem_handle_create() to create the
|
|
* handle.
|
|
*
|
|
* RETURNS:
|
|
*
|
|
* 0 on success or a negative error code on failure.
|
|
*/
|
|
int (*create_handle)(struct drm_framebuffer *fb,
|
|
struct drm_file *file_priv,
|
|
unsigned int *handle);
|
|
/**
|
|
* @dirty:
|
|
*
|
|
* Optional callback for the dirty fb IOCTL.
|
|
*
|
|
* Userspace can notify the driver via this callback that an area of the
|
|
* framebuffer has changed and should be flushed to the display
|
|
* hardware. This can also be used internally, e.g. by the fbdev
|
|
* emulation, though that's not the case currently.
|
|
*
|
|
* See documentation in drm_mode.h for the struct drm_mode_fb_dirty_cmd
|
|
* for more information as all the semantics and arguments have a one to
|
|
* one mapping on this function.
|
|
*
|
|
* RETURNS:
|
|
*
|
|
* 0 on success or a negative error code on failure.
|
|
*/
|
|
int (*dirty)(struct drm_framebuffer *framebuffer,
|
|
struct drm_file *file_priv, unsigned flags,
|
|
unsigned color, struct drm_clip_rect *clips,
|
|
unsigned num_clips);
|
|
};
|
|
|
|
struct drm_framebuffer {
|
|
struct drm_device *dev;
|
|
/*
|
|
* Note that the fb is refcounted for the benefit of driver internals,
|
|
* for example some hw, disabling a CRTC/plane is asynchronous, and
|
|
* scanout does not actually complete until the next vblank. So some
|
|
* cleanup (like releasing the reference(s) on the backing GEM bo(s))
|
|
* should be deferred. In cases like this, the driver would like to
|
|
* hold a ref to the fb even though it has already been removed from
|
|
* userspace perspective.
|
|
* The refcount is stored inside the mode object.
|
|
*/
|
|
/*
|
|
* Place on the dev->mode_config.fb_list, access protected by
|
|
* dev->mode_config.fb_lock.
|
|
*/
|
|
struct list_head head;
|
|
struct drm_mode_object base;
|
|
const struct drm_framebuffer_funcs *funcs;
|
|
unsigned int pitches[4];
|
|
unsigned int offsets[4];
|
|
uint64_t modifier[4];
|
|
unsigned int width;
|
|
unsigned int height;
|
|
/* depth can be 15 or 16 */
|
|
unsigned int depth;
|
|
int bits_per_pixel;
|
|
int flags;
|
|
uint32_t pixel_format; /* fourcc format */
|
|
struct list_head filp_head;
|
|
};
|
|
|
|
struct drm_property_blob {
|
|
struct drm_mode_object base;
|
|
struct drm_device *dev;
|
|
struct kref refcount;
|
|
struct list_head head_global;
|
|
struct list_head head_file;
|
|
size_t length;
|
|
unsigned char data[];
|
|
};
|
|
|
|
struct drm_property_enum {
|
|
uint64_t value;
|
|
struct list_head head;
|
|
char name[DRM_PROP_NAME_LEN];
|
|
};
|
|
|
|
struct drm_property {
|
|
struct list_head head;
|
|
struct drm_mode_object base;
|
|
uint32_t flags;
|
|
char name[DRM_PROP_NAME_LEN];
|
|
uint32_t num_values;
|
|
uint64_t *values;
|
|
struct drm_device *dev;
|
|
|
|
struct list_head enum_list;
|
|
};
|
|
|
|
struct drm_crtc;
|
|
struct drm_connector;
|
|
struct drm_encoder;
|
|
struct drm_pending_vblank_event;
|
|
struct drm_plane;
|
|
struct drm_bridge;
|
|
struct drm_atomic_state;
|
|
|
|
struct drm_crtc_helper_funcs;
|
|
struct drm_encoder_helper_funcs;
|
|
struct drm_connector_helper_funcs;
|
|
struct drm_plane_helper_funcs;
|
|
|
|
/**
|
|
* struct drm_crtc_state - mutable CRTC state
|
|
* @crtc: backpointer to the CRTC
|
|
* @enable: whether the CRTC should be enabled, gates all other state
|
|
* @active: whether the CRTC is actively displaying (used for DPMS)
|
|
* @planes_changed: planes on this crtc are updated
|
|
* @mode_changed: crtc_state->mode or crtc_state->enable has been changed
|
|
* @active_changed: crtc_state->active has been toggled.
|
|
* @connectors_changed: connectors to this crtc have been updated
|
|
* @color_mgmt_changed: color management properties have changed (degamma or
|
|
* gamma LUT or CSC matrix)
|
|
* @plane_mask: bitmask of (1 << drm_plane_index(plane)) of attached planes
|
|
* @connector_mask: bitmask of (1 << drm_connector_index(connector)) of attached connectors
|
|
* @encoder_mask: bitmask of (1 << drm_encoder_index(encoder)) of attached encoders
|
|
* @last_vblank_count: for helpers and drivers to capture the vblank of the
|
|
* update to ensure framebuffer cleanup isn't done too early
|
|
* @adjusted_mode: for use by helpers and drivers to compute adjusted mode timings
|
|
* @mode: current mode timings
|
|
* @degamma_lut: Lookup table for converting framebuffer pixel data
|
|
* before apply the conversion matrix
|
|
* @ctm: Transformation matrix
|
|
* @gamma_lut: Lookup table for converting pixel data after the
|
|
* conversion matrix
|
|
* @event: optional pointer to a DRM event to signal upon completion of the
|
|
* state update
|
|
* @state: backpointer to global drm_atomic_state
|
|
*
|
|
* Note that the distinction between @enable and @active is rather subtile:
|
|
* Flipping @active while @enable is set without changing anything else may
|
|
* never return in a failure from the ->atomic_check callback. Userspace assumes
|
|
* that a DPMS On will always succeed. In other words: @enable controls resource
|
|
* assignment, @active controls the actual hardware state.
|
|
*/
|
|
struct drm_crtc_state {
|
|
struct drm_crtc *crtc;
|
|
|
|
bool enable;
|
|
bool active;
|
|
|
|
/* computed state bits used by helpers and drivers */
|
|
bool planes_changed : 1;
|
|
bool mode_changed : 1;
|
|
bool active_changed : 1;
|
|
bool connectors_changed : 1;
|
|
bool color_mgmt_changed : 1;
|
|
|
|
/* attached planes bitmask:
|
|
* WARNING: transitional helpers do not maintain plane_mask so
|
|
* drivers not converted over to atomic helpers should not rely
|
|
* on plane_mask being accurate!
|
|
*/
|
|
u32 plane_mask;
|
|
|
|
u32 connector_mask;
|
|
u32 encoder_mask;
|
|
|
|
/* last_vblank_count: for vblank waits before cleanup */
|
|
u32 last_vblank_count;
|
|
|
|
/* adjusted_mode: for use by helpers and drivers */
|
|
struct drm_display_mode adjusted_mode;
|
|
|
|
struct drm_display_mode mode;
|
|
|
|
/* blob property to expose current mode to atomic userspace */
|
|
struct drm_property_blob *mode_blob;
|
|
|
|
/* blob property to expose color management to userspace */
|
|
struct drm_property_blob *degamma_lut;
|
|
struct drm_property_blob *ctm;
|
|
struct drm_property_blob *gamma_lut;
|
|
|
|
struct drm_pending_vblank_event *event;
|
|
|
|
struct drm_atomic_state *state;
|
|
};
|
|
|
|
/**
|
|
* struct drm_crtc_funcs - control CRTCs for a given device
|
|
*
|
|
* The drm_crtc_funcs structure is the central CRTC management structure
|
|
* in the DRM. Each CRTC controls one or more connectors (note that the name
|
|
* CRTC is simply historical, a CRTC may control LVDS, VGA, DVI, TV out, etc.
|
|
* connectors, not just CRTs).
|
|
*
|
|
* Each driver is responsible for filling out this structure at startup time,
|
|
* in addition to providing other modesetting features, like i2c and DDC
|
|
* bus accessors.
|
|
*/
|
|
struct drm_crtc_funcs {
|
|
/**
|
|
* @reset:
|
|
*
|
|
* Reset CRTC hardware and software state to off. This function isn't
|
|
* called by the core directly, only through drm_mode_config_reset().
|
|
* It's not a helper hook only for historical reasons.
|
|
*
|
|
* Atomic drivers can use drm_atomic_helper_crtc_reset() to reset
|
|
* atomic state using this hook.
|
|
*/
|
|
void (*reset)(struct drm_crtc *crtc);
|
|
|
|
/**
|
|
* @cursor_set:
|
|
*
|
|
* Update the cursor image. The cursor position is relative to the CRTC
|
|
* and can be partially or fully outside of the visible area.
|
|
*
|
|
* Note that contrary to all other KMS functions the legacy cursor entry
|
|
* points don't take a framebuffer object, but instead take directly a
|
|
* raw buffer object id from the driver's buffer manager (which is
|
|
* either GEM or TTM for current drivers).
|
|
*
|
|
* This entry point is deprecated, drivers should instead implement
|
|
* universal plane support and register a proper cursor plane using
|
|
* drm_crtc_init_with_planes().
|
|
*
|
|
* This callback is optional
|
|
*
|
|
* RETURNS:
|
|
*
|
|
* 0 on success or a negative error code on failure.
|
|
*/
|
|
int (*cursor_set)(struct drm_crtc *crtc, struct drm_file *file_priv,
|
|
uint32_t handle, uint32_t width, uint32_t height);
|
|
|
|
/**
|
|
* @cursor_set2:
|
|
*
|
|
* Update the cursor image, including hotspot information. The hotspot
|
|
* must not affect the cursor position in CRTC coordinates, but is only
|
|
* meant as a hint for virtualized display hardware to coordinate the
|
|
* guests and hosts cursor position. The cursor hotspot is relative to
|
|
* the cursor image. Otherwise this works exactly like @cursor_set.
|
|
*
|
|
* This entry point is deprecated, drivers should instead implement
|
|
* universal plane support and register a proper cursor plane using
|
|
* drm_crtc_init_with_planes().
|
|
*
|
|
* This callback is optional.
|
|
*
|
|
* RETURNS:
|
|
*
|
|
* 0 on success or a negative error code on failure.
|
|
*/
|
|
int (*cursor_set2)(struct drm_crtc *crtc, struct drm_file *file_priv,
|
|
uint32_t handle, uint32_t width, uint32_t height,
|
|
int32_t hot_x, int32_t hot_y);
|
|
|
|
/**
|
|
* @cursor_move:
|
|
*
|
|
* Update the cursor position. The cursor does not need to be visible
|
|
* when this hook is called.
|
|
*
|
|
* This entry point is deprecated, drivers should instead implement
|
|
* universal plane support and register a proper cursor plane using
|
|
* drm_crtc_init_with_planes().
|
|
*
|
|
* This callback is optional.
|
|
*
|
|
* RETURNS:
|
|
*
|
|
* 0 on success or a negative error code on failure.
|
|
*/
|
|
int (*cursor_move)(struct drm_crtc *crtc, int x, int y);
|
|
|
|
/**
|
|
* @gamma_set:
|
|
*
|
|
* Set gamma on the CRTC.
|
|
*
|
|
* This callback is optional.
|
|
*
|
|
* NOTE:
|
|
*
|
|
* Drivers that support gamma tables and also fbdev emulation through
|
|
* the provided helper library need to take care to fill out the gamma
|
|
* hooks for both. Currently there's a bit an unfortunate duplication
|
|
* going on, which should eventually be unified to just one set of
|
|
* hooks.
|
|
*/
|
|
void (*gamma_set)(struct drm_crtc *crtc, u16 *r, u16 *g, u16 *b,
|
|
uint32_t start, uint32_t size);
|
|
|
|
/**
|
|
* @destroy:
|
|
*
|
|
* Clean up plane resources. This is only called at driver unload time
|
|
* through drm_mode_config_cleanup() since a CRTC cannot be hotplugged
|
|
* in DRM.
|
|
*/
|
|
void (*destroy)(struct drm_crtc *crtc);
|
|
|
|
/**
|
|
* @set_config:
|
|
*
|
|
* This is the main legacy entry point to change the modeset state on a
|
|
* CRTC. All the details of the desired configuration are passed in a
|
|
* struct &drm_mode_set - see there for details.
|
|
*
|
|
* Drivers implementing atomic modeset should use
|
|
* drm_atomic_helper_set_config() to implement this hook.
|
|
*
|
|
* RETURNS:
|
|
*
|
|
* 0 on success or a negative error code on failure.
|
|
*/
|
|
int (*set_config)(struct drm_mode_set *set);
|
|
|
|
/**
|
|
* @page_flip:
|
|
*
|
|
* Legacy entry point to schedule a flip to the given framebuffer.
|
|
*
|
|
* Page flipping is a synchronization mechanism that replaces the frame
|
|
* buffer being scanned out by the CRTC with a new frame buffer during
|
|
* vertical blanking, avoiding tearing (except when requested otherwise
|
|
* through the DRM_MODE_PAGE_FLIP_ASYNC flag). When an application
|
|
* requests a page flip the DRM core verifies that the new frame buffer
|
|
* is large enough to be scanned out by the CRTC in the currently
|
|
* configured mode and then calls the CRTC ->page_flip() operation with a
|
|
* pointer to the new frame buffer.
|
|
*
|
|
* The driver must wait for any pending rendering to the new framebuffer
|
|
* to complete before executing the flip. It should also wait for any
|
|
* pending rendering from other drivers if the underlying buffer is a
|
|
* shared dma-buf.
|
|
*
|
|
* An application can request to be notified when the page flip has
|
|
* completed. The drm core will supply a struct &drm_event in the event
|
|
* parameter in this case. This can be handled by the
|
|
* drm_crtc_send_vblank_event() function, which the driver should call on
|
|
* the provided event upon completion of the flip. Note that if
|
|
* the driver supports vblank signalling and timestamping the vblank
|
|
* counters and timestamps must agree with the ones returned from page
|
|
* flip events. With the current vblank helper infrastructure this can
|
|
* be achieved by holding a vblank reference while the page flip is
|
|
* pending, acquired through drm_crtc_vblank_get() and released with
|
|
* drm_crtc_vblank_put(). Drivers are free to implement their own vblank
|
|
* counter and timestamp tracking though, e.g. if they have accurate
|
|
* timestamp registers in hardware.
|
|
*
|
|
* FIXME:
|
|
*
|
|
* Up to that point drivers need to manage events themselves and can use
|
|
* even->base.list freely for that. Specifically they need to ensure
|
|
* that they don't send out page flip (or vblank) events for which the
|
|
* corresponding drm file has been closed already. The drm core
|
|
* unfortunately does not (yet) take care of that. Therefore drivers
|
|
* currently must clean up and release pending events in their
|
|
* ->preclose driver function.
|
|
*
|
|
* This callback is optional.
|
|
*
|
|
* NOTE:
|
|
*
|
|
* Very early versions of the KMS ABI mandated that the driver must
|
|
* block (but not reject) any rendering to the old framebuffer until the
|
|
* flip operation has completed and the old framebuffer is no longer
|
|
* visible. This requirement has been lifted, and userspace is instead
|
|
* expected to request delivery of an event and wait with recycling old
|
|
* buffers until such has been received.
|
|
*
|
|
* RETURNS:
|
|
*
|
|
* 0 on success or a negative error code on failure. Note that if a
|
|
* ->page_flip() operation is already pending the callback should return
|
|
* -EBUSY. Pageflips on a disabled CRTC (either by setting a NULL mode
|
|
* or just runtime disabled through DPMS respectively the new atomic
|
|
* "ACTIVE" state) should result in an -EINVAL error code. Note that
|
|
* drm_atomic_helper_page_flip() checks this already for atomic drivers.
|
|
*/
|
|
int (*page_flip)(struct drm_crtc *crtc,
|
|
struct drm_framebuffer *fb,
|
|
struct drm_pending_vblank_event *event,
|
|
uint32_t flags);
|
|
|
|
/**
|
|
* @set_property:
|
|
*
|
|
* This is the legacy entry point to update a property attached to the
|
|
* CRTC.
|
|
*
|
|
* Drivers implementing atomic modeset should use
|
|
* drm_atomic_helper_crtc_set_property() to implement this hook.
|
|
*
|
|
* This callback is optional if the driver does not support any legacy
|
|
* driver-private properties.
|
|
*
|
|
* RETURNS:
|
|
*
|
|
* 0 on success or a negative error code on failure.
|
|
*/
|
|
int (*set_property)(struct drm_crtc *crtc,
|
|
struct drm_property *property, uint64_t val);
|
|
|
|
/**
|
|
* @atomic_duplicate_state:
|
|
*
|
|
* Duplicate the current atomic state for this CRTC and return it.
|
|
* The core and helpers gurantee that any atomic state duplicated with
|
|
* this hook and still owned by the caller (i.e. not transferred to the
|
|
* driver by calling ->atomic_commit() from struct
|
|
* &drm_mode_config_funcs) will be cleaned up by calling the
|
|
* @atomic_destroy_state hook in this structure.
|
|
*
|
|
* Atomic drivers which don't subclass struct &drm_crtc should use
|
|
* drm_atomic_helper_crtc_duplicate_state(). Drivers that subclass the
|
|
* state structure to extend it with driver-private state should use
|
|
* __drm_atomic_helper_crtc_duplicate_state() to make sure shared state is
|
|
* duplicated in a consistent fashion across drivers.
|
|
*
|
|
* It is an error to call this hook before crtc->state has been
|
|
* initialized correctly.
|
|
*
|
|
* NOTE:
|
|
*
|
|
* If the duplicate state references refcounted resources this hook must
|
|
* acquire a reference for each of them. The driver must release these
|
|
* references again in @atomic_destroy_state.
|
|
*
|
|
* RETURNS:
|
|
*
|
|
* Duplicated atomic state or NULL when the allocation failed.
|
|
*/
|
|
struct drm_crtc_state *(*atomic_duplicate_state)(struct drm_crtc *crtc);
|
|
|
|
/**
|
|
* @atomic_destroy_state:
|
|
*
|
|
* Destroy a state duplicated with @atomic_duplicate_state and release
|
|
* or unreference all resources it references
|
|
*/
|
|
void (*atomic_destroy_state)(struct drm_crtc *crtc,
|
|
struct drm_crtc_state *state);
|
|
|
|
/**
|
|
* @atomic_set_property:
|
|
*
|
|
* Decode a driver-private property value and store the decoded value
|
|
* into the passed-in state structure. Since the atomic core decodes all
|
|
* standardized properties (even for extensions beyond the core set of
|
|
* properties which might not be implemented by all drivers) this
|
|
* requires drivers to subclass the state structure.
|
|
*
|
|
* Such driver-private properties should really only be implemented for
|
|
* truly hardware/vendor specific state. Instead it is preferred to
|
|
* standardize atomic extension and decode the properties used to expose
|
|
* such an extension in the core.
|
|
*
|
|
* Do not call this function directly, use
|
|
* drm_atomic_crtc_set_property() instead.
|
|
*
|
|
* This callback is optional if the driver does not support any
|
|
* driver-private atomic properties.
|
|
*
|
|
* NOTE:
|
|
*
|
|
* This function is called in the state assembly phase of atomic
|
|
* modesets, which can be aborted for any reason (including on
|
|
* userspace's request to just check whether a configuration would be
|
|
* possible). Drivers MUST NOT touch any persistent state (hardware or
|
|
* software) or data structures except the passed in @state parameter.
|
|
*
|
|
* Also since userspace controls in which order properties are set this
|
|
* function must not do any input validation (since the state update is
|
|
* incomplete and hence likely inconsistent). Instead any such input
|
|
* validation must be done in the various atomic_check callbacks.
|
|
*
|
|
* RETURNS:
|
|
*
|
|
* 0 if the property has been found, -EINVAL if the property isn't
|
|
* implemented by the driver (which should never happen, the core only
|
|
* asks for properties attached to this CRTC). No other validation is
|
|
* allowed by the driver. The core already checks that the property
|
|
* value is within the range (integer, valid enum value, ...) the driver
|
|
* set when registering the property.
|
|
*/
|
|
int (*atomic_set_property)(struct drm_crtc *crtc,
|
|
struct drm_crtc_state *state,
|
|
struct drm_property *property,
|
|
uint64_t val);
|
|
/**
|
|
* @atomic_get_property:
|
|
*
|
|
* Reads out the decoded driver-private property. This is used to
|
|
* implement the GETCRTC IOCTL.
|
|
*
|
|
* Do not call this function directly, use
|
|
* drm_atomic_crtc_get_property() instead.
|
|
*
|
|
* This callback is optional if the driver does not support any
|
|
* driver-private atomic properties.
|
|
*
|
|
* RETURNS:
|
|
*
|
|
* 0 on success, -EINVAL if the property isn't implemented by the
|
|
* driver (which should never happen, the core only asks for
|
|
* properties attached to this CRTC).
|
|
*/
|
|
int (*atomic_get_property)(struct drm_crtc *crtc,
|
|
const struct drm_crtc_state *state,
|
|
struct drm_property *property,
|
|
uint64_t *val);
|
|
};
|
|
|
|
/**
|
|
* struct drm_crtc - central CRTC control structure
|
|
* @dev: parent DRM device
|
|
* @port: OF node used by drm_of_find_possible_crtcs()
|
|
* @head: list management
|
|
* @mutex: per-CRTC locking
|
|
* @base: base KMS object for ID tracking etc.
|
|
* @primary: primary plane for this CRTC
|
|
* @cursor: cursor plane for this CRTC
|
|
* @cursor_x: current x position of the cursor, used for universal cursor planes
|
|
* @cursor_y: current y position of the cursor, used for universal cursor planes
|
|
* @enabled: is this CRTC enabled?
|
|
* @mode: current mode timings
|
|
* @hwmode: mode timings as programmed to hw regs
|
|
* @x: x position on screen
|
|
* @y: y position on screen
|
|
* @funcs: CRTC control functions
|
|
* @gamma_size: size of gamma ramp
|
|
* @gamma_store: gamma ramp values
|
|
* @helper_private: mid-layer private data
|
|
* @properties: property tracking for this CRTC
|
|
* @state: current atomic state for this CRTC
|
|
* @acquire_ctx: per-CRTC implicit acquire context used by atomic drivers for
|
|
* legacy IOCTLs
|
|
*
|
|
* Each CRTC may have one or more connectors associated with it. This structure
|
|
* allows the CRTC to be controlled.
|
|
*/
|
|
struct drm_crtc {
|
|
struct drm_device *dev;
|
|
struct device_node *port;
|
|
struct list_head head;
|
|
|
|
char *name;
|
|
|
|
/*
|
|
* crtc mutex
|
|
*
|
|
* This provides a read lock for the overall crtc state (mode, dpms
|
|
* state, ...) and a write lock for everything which can be update
|
|
* without a full modeset (fb, cursor data, ...)
|
|
*/
|
|
struct drm_modeset_lock mutex;
|
|
|
|
struct drm_mode_object base;
|
|
|
|
/* primary and cursor planes for CRTC */
|
|
struct drm_plane *primary;
|
|
struct drm_plane *cursor;
|
|
|
|
/* position of cursor plane on crtc */
|
|
int cursor_x;
|
|
int cursor_y;
|
|
|
|
bool enabled;
|
|
|
|
/* Requested mode from modesetting. */
|
|
struct drm_display_mode mode;
|
|
|
|
/* Programmed mode in hw, after adjustments for encoders,
|
|
* crtc, panel scaling etc. Needed for timestamping etc.
|
|
*/
|
|
struct drm_display_mode hwmode;
|
|
|
|
int x, y;
|
|
const struct drm_crtc_funcs *funcs;
|
|
|
|
/* Legacy FB CRTC gamma size for reporting to userspace */
|
|
uint32_t gamma_size;
|
|
uint16_t *gamma_store;
|
|
|
|
/* if you are using the helper */
|
|
const struct drm_crtc_helper_funcs *helper_private;
|
|
|
|
struct drm_object_properties properties;
|
|
|
|
struct drm_crtc_state *state;
|
|
|
|
/*
|
|
* For legacy crtc IOCTLs so that atomic drivers can get at the locking
|
|
* acquire context.
|
|
*/
|
|
struct drm_modeset_acquire_ctx *acquire_ctx;
|
|
};
|
|
|
|
/**
|
|
* struct drm_connector_state - mutable connector state
|
|
* @connector: backpointer to the connector
|
|
* @crtc: CRTC to connect connector to, NULL if disabled
|
|
* @best_encoder: can be used by helpers and drivers to select the encoder
|
|
* @state: backpointer to global drm_atomic_state
|
|
*/
|
|
struct drm_connector_state {
|
|
struct drm_connector *connector;
|
|
|
|
struct drm_crtc *crtc; /* do not write directly, use drm_atomic_set_crtc_for_connector() */
|
|
|
|
struct drm_encoder *best_encoder;
|
|
|
|
struct drm_atomic_state *state;
|
|
};
|
|
|
|
/**
|
|
* struct drm_connector_funcs - control connectors on a given device
|
|
*
|
|
* Each CRTC may have one or more connectors attached to it. The functions
|
|
* below allow the core DRM code to control connectors, enumerate available modes,
|
|
* etc.
|
|
*/
|
|
struct drm_connector_funcs {
|
|
/**
|
|
* @dpms:
|
|
*
|
|
* Legacy entry point to set the per-connector DPMS state. Legacy DPMS
|
|
* is exposed as a standard property on the connector, but diverted to
|
|
* this callback in the drm core. Note that atomic drivers don't
|
|
* implement the 4 level DPMS support on the connector any more, but
|
|
* instead only have an on/off "ACTIVE" property on the CRTC object.
|
|
*
|
|
* Drivers implementing atomic modeset should use
|
|
* drm_atomic_helper_connector_dpms() to implement this hook.
|
|
*
|
|
* RETURNS:
|
|
*
|
|
* 0 on success or a negative error code on failure.
|
|
*/
|
|
int (*dpms)(struct drm_connector *connector, int mode);
|
|
|
|
/**
|
|
* @reset:
|
|
*
|
|
* Reset connector hardware and software state to off. This function isn't
|
|
* called by the core directly, only through drm_mode_config_reset().
|
|
* It's not a helper hook only for historical reasons.
|
|
*
|
|
* Atomic drivers can use drm_atomic_helper_connector_reset() to reset
|
|
* atomic state using this hook.
|
|
*/
|
|
void (*reset)(struct drm_connector *connector);
|
|
|
|
/**
|
|
* @detect:
|
|
*
|
|
* Check to see if anything is attached to the connector. The parameter
|
|
* force is set to false whilst polling, true when checking the
|
|
* connector due to a user request. force can be used by the driver to
|
|
* avoid expensive, destructive operations during automated probing.
|
|
*
|
|
* FIXME:
|
|
*
|
|
* Note that this hook is only called by the probe helper. It's not in
|
|
* the helper library vtable purely for historical reasons. The only DRM
|
|
* core entry point to probe connector state is @fill_modes.
|
|
*
|
|
* RETURNS:
|
|
*
|
|
* drm_connector_status indicating the connector's status.
|
|
*/
|
|
enum drm_connector_status (*detect)(struct drm_connector *connector,
|
|
bool force);
|
|
|
|
/**
|
|
* @force:
|
|
*
|
|
* This function is called to update internal encoder state when the
|
|
* connector is forced to a certain state by userspace, either through
|
|
* the sysfs interfaces or on the kernel cmdline. In that case the
|
|
* @detect callback isn't called.
|
|
*
|
|
* FIXME:
|
|
*
|
|
* Note that this hook is only called by the probe helper. It's not in
|
|
* the helper library vtable purely for historical reasons. The only DRM
|
|
* core entry point to probe connector state is @fill_modes.
|
|
*/
|
|
void (*force)(struct drm_connector *connector);
|
|
|
|
/**
|
|
* @fill_modes:
|
|
*
|
|
* Entry point for output detection and basic mode validation. The
|
|
* driver should reprobe the output if needed (e.g. when hotplug
|
|
* handling is unreliable), add all detected modes to connector->modes
|
|
* and filter out any the device can't support in any configuration. It
|
|
* also needs to filter out any modes wider or higher than the
|
|
* parameters max_width and max_height indicate.
|
|
*
|
|
* The drivers must also prune any modes no longer valid from
|
|
* connector->modes. Furthermore it must update connector->status and
|
|
* connector->edid. If no EDID has been received for this output
|
|
* connector->edid must be NULL.
|
|
*
|
|
* Drivers using the probe helpers should use
|
|
* drm_helper_probe_single_connector_modes() or
|
|
* drm_helper_probe_single_connector_modes_nomerge() to implement this
|
|
* function.
|
|
*
|
|
* RETURNS:
|
|
*
|
|
* The number of modes detected and filled into connector->modes.
|
|
*/
|
|
int (*fill_modes)(struct drm_connector *connector, uint32_t max_width, uint32_t max_height);
|
|
|
|
/**
|
|
* @set_property:
|
|
*
|
|
* This is the legacy entry point to update a property attached to the
|
|
* connector.
|
|
*
|
|
* Drivers implementing atomic modeset should use
|
|
* drm_atomic_helper_connector_set_property() to implement this hook.
|
|
*
|
|
* This callback is optional if the driver does not support any legacy
|
|
* driver-private properties.
|
|
*
|
|
* RETURNS:
|
|
*
|
|
* 0 on success or a negative error code on failure.
|
|
*/
|
|
int (*set_property)(struct drm_connector *connector, struct drm_property *property,
|
|
uint64_t val);
|
|
|
|
/**
|
|
* @destroy:
|
|
*
|
|
* Clean up connector resources. This is called at driver unload time
|
|
* through drm_mode_config_cleanup(). It can also be called at runtime
|
|
* when a connector is being hot-unplugged for drivers that support
|
|
* connector hotplugging (e.g. DisplayPort MST).
|
|
*/
|
|
void (*destroy)(struct drm_connector *connector);
|
|
|
|
/**
|
|
* @atomic_duplicate_state:
|
|
*
|
|
* Duplicate the current atomic state for this connector and return it.
|
|
* The core and helpers gurantee that any atomic state duplicated with
|
|
* this hook and still owned by the caller (i.e. not transferred to the
|
|
* driver by calling ->atomic_commit() from struct
|
|
* &drm_mode_config_funcs) will be cleaned up by calling the
|
|
* @atomic_destroy_state hook in this structure.
|
|
*
|
|
* Atomic drivers which don't subclass struct &drm_connector_state should use
|
|
* drm_atomic_helper_connector_duplicate_state(). Drivers that subclass the
|
|
* state structure to extend it with driver-private state should use
|
|
* __drm_atomic_helper_connector_duplicate_state() to make sure shared state is
|
|
* duplicated in a consistent fashion across drivers.
|
|
*
|
|
* It is an error to call this hook before connector->state has been
|
|
* initialized correctly.
|
|
*
|
|
* NOTE:
|
|
*
|
|
* If the duplicate state references refcounted resources this hook must
|
|
* acquire a reference for each of them. The driver must release these
|
|
* references again in @atomic_destroy_state.
|
|
*
|
|
* RETURNS:
|
|
*
|
|
* Duplicated atomic state or NULL when the allocation failed.
|
|
*/
|
|
struct drm_connector_state *(*atomic_duplicate_state)(struct drm_connector *connector);
|
|
|
|
/**
|
|
* @atomic_destroy_state:
|
|
*
|
|
* Destroy a state duplicated with @atomic_duplicate_state and release
|
|
* or unreference all resources it references
|
|
*/
|
|
void (*atomic_destroy_state)(struct drm_connector *connector,
|
|
struct drm_connector_state *state);
|
|
|
|
/**
|
|
* @atomic_set_property:
|
|
*
|
|
* Decode a driver-private property value and store the decoded value
|
|
* into the passed-in state structure. Since the atomic core decodes all
|
|
* standardized properties (even for extensions beyond the core set of
|
|
* properties which might not be implemented by all drivers) this
|
|
* requires drivers to subclass the state structure.
|
|
*
|
|
* Such driver-private properties should really only be implemented for
|
|
* truly hardware/vendor specific state. Instead it is preferred to
|
|
* standardize atomic extension and decode the properties used to expose
|
|
* such an extension in the core.
|
|
*
|
|
* Do not call this function directly, use
|
|
* drm_atomic_connector_set_property() instead.
|
|
*
|
|
* This callback is optional if the driver does not support any
|
|
* driver-private atomic properties.
|
|
*
|
|
* NOTE:
|
|
*
|
|
* This function is called in the state assembly phase of atomic
|
|
* modesets, which can be aborted for any reason (including on
|
|
* userspace's request to just check whether a configuration would be
|
|
* possible). Drivers MUST NOT touch any persistent state (hardware or
|
|
* software) or data structures except the passed in @state parameter.
|
|
*
|
|
* Also since userspace controls in which order properties are set this
|
|
* function must not do any input validation (since the state update is
|
|
* incomplete and hence likely inconsistent). Instead any such input
|
|
* validation must be done in the various atomic_check callbacks.
|
|
*
|
|
* RETURNS:
|
|
*
|
|
* 0 if the property has been found, -EINVAL if the property isn't
|
|
* implemented by the driver (which shouldn't ever happen, the core only
|
|
* asks for properties attached to this connector). No other validation
|
|
* is allowed by the driver. The core already checks that the property
|
|
* value is within the range (integer, valid enum value, ...) the driver
|
|
* set when registering the property.
|
|
*/
|
|
int (*atomic_set_property)(struct drm_connector *connector,
|
|
struct drm_connector_state *state,
|
|
struct drm_property *property,
|
|
uint64_t val);
|
|
|
|
/**
|
|
* @atomic_get_property:
|
|
*
|
|
* Reads out the decoded driver-private property. This is used to
|
|
* implement the GETCONNECTOR IOCTL.
|
|
*
|
|
* Do not call this function directly, use
|
|
* drm_atomic_connector_get_property() instead.
|
|
*
|
|
* This callback is optional if the driver does not support any
|
|
* driver-private atomic properties.
|
|
*
|
|
* RETURNS:
|
|
*
|
|
* 0 on success, -EINVAL if the property isn't implemented by the
|
|
* driver (which shouldn't ever happen, the core only asks for
|
|
* properties attached to this connector).
|
|
*/
|
|
int (*atomic_get_property)(struct drm_connector *connector,
|
|
const struct drm_connector_state *state,
|
|
struct drm_property *property,
|
|
uint64_t *val);
|
|
};
|
|
|
|
/**
|
|
* struct drm_encoder_funcs - encoder controls
|
|
*
|
|
* Encoders sit between CRTCs and connectors.
|
|
*/
|
|
struct drm_encoder_funcs {
|
|
/**
|
|
* @reset:
|
|
*
|
|
* Reset encoder hardware and software state to off. This function isn't
|
|
* called by the core directly, only through drm_mode_config_reset().
|
|
* It's not a helper hook only for historical reasons.
|
|
*/
|
|
void (*reset)(struct drm_encoder *encoder);
|
|
|
|
/**
|
|
* @destroy:
|
|
*
|
|
* Clean up encoder resources. This is only called at driver unload time
|
|
* through drm_mode_config_cleanup() since an encoder cannot be
|
|
* hotplugged in DRM.
|
|
*/
|
|
void (*destroy)(struct drm_encoder *encoder);
|
|
};
|
|
|
|
#define DRM_CONNECTOR_MAX_ENCODER 3
|
|
|
|
/**
|
|
* struct drm_encoder - central DRM encoder structure
|
|
* @dev: parent DRM device
|
|
* @head: list management
|
|
* @base: base KMS object
|
|
* @name: encoder name
|
|
* @encoder_type: one of the %DRM_MODE_ENCODER_<foo> types in drm_mode.h
|
|
* @possible_crtcs: bitmask of potential CRTC bindings
|
|
* @possible_clones: bitmask of potential sibling encoders for cloning
|
|
* @crtc: currently bound CRTC
|
|
* @bridge: bridge associated to the encoder
|
|
* @funcs: control functions
|
|
* @helper_private: mid-layer private data
|
|
*
|
|
* CRTCs drive pixels to encoders, which convert them into signals
|
|
* appropriate for a given connector or set of connectors.
|
|
*/
|
|
struct drm_encoder {
|
|
struct drm_device *dev;
|
|
struct list_head head;
|
|
|
|
struct drm_mode_object base;
|
|
char *name;
|
|
int encoder_type;
|
|
uint32_t possible_crtcs;
|
|
uint32_t possible_clones;
|
|
|
|
struct drm_crtc *crtc;
|
|
struct drm_bridge *bridge;
|
|
const struct drm_encoder_funcs *funcs;
|
|
const struct drm_encoder_helper_funcs *helper_private;
|
|
};
|
|
|
|
/* should we poll this connector for connects and disconnects */
|
|
/* hot plug detectable */
|
|
#define DRM_CONNECTOR_POLL_HPD (1 << 0)
|
|
/* poll for connections */
|
|
#define DRM_CONNECTOR_POLL_CONNECT (1 << 1)
|
|
/* can cleanly poll for disconnections without flickering the screen */
|
|
/* DACs should rarely do this without a lot of testing */
|
|
#define DRM_CONNECTOR_POLL_DISCONNECT (1 << 2)
|
|
|
|
#define MAX_ELD_BYTES 128
|
|
|
|
/**
|
|
* struct drm_connector - central DRM connector control structure
|
|
* @dev: parent DRM device
|
|
* @kdev: kernel device for sysfs attributes
|
|
* @attr: sysfs attributes
|
|
* @head: list management
|
|
* @base: base KMS object
|
|
* @name: connector name
|
|
* @connector_type: one of the %DRM_MODE_CONNECTOR_<foo> types from drm_mode.h
|
|
* @connector_type_id: index into connector type enum
|
|
* @interlace_allowed: can this connector handle interlaced modes?
|
|
* @doublescan_allowed: can this connector handle doublescan?
|
|
* @stereo_allowed: can this connector handle stereo modes?
|
|
* @modes: modes available on this connector (from fill_modes() + user)
|
|
* @status: one of the drm_connector_status enums (connected, not, or unknown)
|
|
* @probed_modes: list of modes derived directly from the display
|
|
* @display_info: information about attached display (e.g. from EDID)
|
|
* @funcs: connector control functions
|
|
* @edid_blob_ptr: DRM property containing EDID if present
|
|
* @properties: property tracking for this connector
|
|
* @path_blob_ptr: DRM blob property data for the DP MST path property
|
|
* @polled: a %DRM_CONNECTOR_POLL_<foo> value for core driven polling
|
|
* @dpms: current dpms state
|
|
* @helper_private: mid-layer private data
|
|
* @cmdline_mode: mode line parsed from the kernel cmdline for this connector
|
|
* @force: a %DRM_FORCE_<foo> state for forced mode sets
|
|
* @override_edid: has the EDID been overwritten through debugfs for testing?
|
|
* @encoder_ids: valid encoders for this connector
|
|
* @encoder: encoder driving this connector, if any
|
|
* @eld: EDID-like data, if present
|
|
* @dvi_dual: dual link DVI, if found
|
|
* @max_tmds_clock: max clock rate, if found
|
|
* @latency_present: AV delay info from ELD, if found
|
|
* @video_latency: video latency info from ELD, if found
|
|
* @audio_latency: audio latency info from ELD, if found
|
|
* @null_edid_counter: track sinks that give us all zeros for the EDID
|
|
* @bad_edid_counter: track sinks that give us an EDID with invalid checksum
|
|
* @edid_corrupt: indicates whether the last read EDID was corrupt
|
|
* @debugfs_entry: debugfs directory for this connector
|
|
* @state: current atomic state for this connector
|
|
* @has_tile: is this connector connected to a tiled monitor
|
|
* @tile_group: tile group for the connected monitor
|
|
* @tile_is_single_monitor: whether the tile is one monitor housing
|
|
* @num_h_tile: number of horizontal tiles in the tile group
|
|
* @num_v_tile: number of vertical tiles in the tile group
|
|
* @tile_h_loc: horizontal location of this tile
|
|
* @tile_v_loc: vertical location of this tile
|
|
* @tile_h_size: horizontal size of this tile.
|
|
* @tile_v_size: vertical size of this tile.
|
|
*
|
|
* Each connector may be connected to one or more CRTCs, or may be clonable by
|
|
* another connector if they can share a CRTC. Each connector also has a specific
|
|
* position in the broader display (referred to as a 'screen' though it could
|
|
* span multiple monitors).
|
|
*/
|
|
struct drm_connector {
|
|
struct drm_device *dev;
|
|
struct device *kdev;
|
|
struct device_attribute *attr;
|
|
struct list_head head;
|
|
|
|
struct drm_mode_object base;
|
|
|
|
char *name;
|
|
int connector_id;
|
|
int connector_type;
|
|
int connector_type_id;
|
|
bool interlace_allowed;
|
|
bool doublescan_allowed;
|
|
bool stereo_allowed;
|
|
struct list_head modes; /* list of modes on this connector */
|
|
|
|
enum drm_connector_status status;
|
|
|
|
/* these are modes added by probing with DDC or the BIOS */
|
|
struct list_head probed_modes;
|
|
|
|
struct drm_display_info display_info;
|
|
const struct drm_connector_funcs *funcs;
|
|
|
|
struct drm_property_blob *edid_blob_ptr;
|
|
struct drm_object_properties properties;
|
|
|
|
struct drm_property_blob *path_blob_ptr;
|
|
|
|
struct drm_property_blob *tile_blob_ptr;
|
|
|
|
uint8_t polled; /* DRM_CONNECTOR_POLL_* */
|
|
|
|
/* requested DPMS state */
|
|
int dpms;
|
|
|
|
const struct drm_connector_helper_funcs *helper_private;
|
|
|
|
/* forced on connector */
|
|
struct drm_cmdline_mode cmdline_mode;
|
|
enum drm_connector_force force;
|
|
bool override_edid;
|
|
uint32_t encoder_ids[DRM_CONNECTOR_MAX_ENCODER];
|
|
struct drm_encoder *encoder; /* currently active encoder */
|
|
|
|
/* EDID bits */
|
|
uint8_t eld[MAX_ELD_BYTES];
|
|
bool dvi_dual;
|
|
int max_tmds_clock; /* in MHz */
|
|
bool latency_present[2];
|
|
int video_latency[2]; /* [0]: progressive, [1]: interlaced */
|
|
int audio_latency[2];
|
|
int null_edid_counter; /* needed to workaround some HW bugs where we get all 0s */
|
|
unsigned bad_edid_counter;
|
|
|
|
/* Flag for raw EDID header corruption - used in Displayport
|
|
* compliance testing - * Displayport Link CTS Core 1.2 rev1.1 4.2.2.6
|
|
*/
|
|
bool edid_corrupt;
|
|
|
|
struct dentry *debugfs_entry;
|
|
|
|
struct drm_connector_state *state;
|
|
|
|
/* DisplayID bits */
|
|
bool has_tile;
|
|
struct drm_tile_group *tile_group;
|
|
bool tile_is_single_monitor;
|
|
|
|
uint8_t num_h_tile, num_v_tile;
|
|
uint8_t tile_h_loc, tile_v_loc;
|
|
uint16_t tile_h_size, tile_v_size;
|
|
};
|
|
|
|
/**
|
|
* struct drm_plane_state - mutable plane state
|
|
* @plane: backpointer to the plane
|
|
* @crtc: currently bound CRTC, NULL if disabled
|
|
* @fb: currently bound framebuffer
|
|
* @fence: optional fence to wait for before scanning out @fb
|
|
* @crtc_x: left position of visible portion of plane on crtc
|
|
* @crtc_y: upper position of visible portion of plane on crtc
|
|
* @crtc_w: width of visible portion of plane on crtc
|
|
* @crtc_h: height of visible portion of plane on crtc
|
|
* @src_x: left position of visible portion of plane within
|
|
* plane (in 16.16)
|
|
* @src_y: upper position of visible portion of plane within
|
|
* plane (in 16.16)
|
|
* @src_w: width of visible portion of plane (in 16.16)
|
|
* @src_h: height of visible portion of plane (in 16.16)
|
|
* @state: backpointer to global drm_atomic_state
|
|
*/
|
|
struct drm_plane_state {
|
|
struct drm_plane *plane;
|
|
|
|
struct drm_crtc *crtc; /* do not write directly, use drm_atomic_set_crtc_for_plane() */
|
|
struct drm_framebuffer *fb; /* do not write directly, use drm_atomic_set_fb_for_plane() */
|
|
struct fence *fence;
|
|
|
|
/* Signed dest location allows it to be partially off screen */
|
|
int32_t crtc_x, crtc_y;
|
|
uint32_t crtc_w, crtc_h;
|
|
|
|
/* Source values are 16.16 fixed point */
|
|
uint32_t src_x, src_y;
|
|
uint32_t src_h, src_w;
|
|
|
|
/* Plane rotation */
|
|
unsigned int rotation;
|
|
|
|
struct drm_atomic_state *state;
|
|
};
|
|
|
|
|
|
/**
|
|
* struct drm_plane_funcs - driver plane control functions
|
|
*/
|
|
struct drm_plane_funcs {
|
|
/**
|
|
* @update_plane:
|
|
*
|
|
* This is the legacy entry point to enable and configure the plane for
|
|
* the given CRTC and framebuffer. It is never called to disable the
|
|
* plane, i.e. the passed-in crtc and fb paramters are never NULL.
|
|
*
|
|
* The source rectangle in frame buffer memory coordinates is given by
|
|
* the src_x, src_y, src_w and src_h parameters (as 16.16 fixed point
|
|
* values). Devices that don't support subpixel plane coordinates can
|
|
* ignore the fractional part.
|
|
*
|
|
* The destination rectangle in CRTC coordinates is given by the
|
|
* crtc_x, crtc_y, crtc_w and crtc_h parameters (as integer values).
|
|
* Devices scale the source rectangle to the destination rectangle. If
|
|
* scaling is not supported, and the source rectangle size doesn't match
|
|
* the destination rectangle size, the driver must return a
|
|
* -<errorname>EINVAL</errorname> error.
|
|
*
|
|
* Drivers implementing atomic modeset should use
|
|
* drm_atomic_helper_update_plane() to implement this hook.
|
|
*
|
|
* RETURNS:
|
|
*
|
|
* 0 on success or a negative error code on failure.
|
|
*/
|
|
int (*update_plane)(struct drm_plane *plane,
|
|
struct drm_crtc *crtc, struct drm_framebuffer *fb,
|
|
int crtc_x, int crtc_y,
|
|
unsigned int crtc_w, unsigned int crtc_h,
|
|
uint32_t src_x, uint32_t src_y,
|
|
uint32_t src_w, uint32_t src_h);
|
|
|
|
/**
|
|
* @disable_plane:
|
|
*
|
|
* This is the legacy entry point to disable the plane. The DRM core
|
|
* calls this method in response to a DRM_IOCTL_MODE_SETPLANE IOCTL call
|
|
* with the frame buffer ID set to 0. Disabled planes must not be
|
|
* processed by the CRTC.
|
|
*
|
|
* Drivers implementing atomic modeset should use
|
|
* drm_atomic_helper_disable_plane() to implement this hook.
|
|
*
|
|
* RETURNS:
|
|
*
|
|
* 0 on success or a negative error code on failure.
|
|
*/
|
|
int (*disable_plane)(struct drm_plane *plane);
|
|
|
|
/**
|
|
* @destroy:
|
|
*
|
|
* Clean up plane resources. This is only called at driver unload time
|
|
* through drm_mode_config_cleanup() since a plane cannot be hotplugged
|
|
* in DRM.
|
|
*/
|
|
void (*destroy)(struct drm_plane *plane);
|
|
|
|
/**
|
|
* @reset:
|
|
*
|
|
* Reset plane hardware and software state to off. This function isn't
|
|
* called by the core directly, only through drm_mode_config_reset().
|
|
* It's not a helper hook only for historical reasons.
|
|
*
|
|
* Atomic drivers can use drm_atomic_helper_plane_reset() to reset
|
|
* atomic state using this hook.
|
|
*/
|
|
void (*reset)(struct drm_plane *plane);
|
|
|
|
/**
|
|
* @set_property:
|
|
*
|
|
* This is the legacy entry point to update a property attached to the
|
|
* plane.
|
|
*
|
|
* Drivers implementing atomic modeset should use
|
|
* drm_atomic_helper_plane_set_property() to implement this hook.
|
|
*
|
|
* This callback is optional if the driver does not support any legacy
|
|
* driver-private properties.
|
|
*
|
|
* RETURNS:
|
|
*
|
|
* 0 on success or a negative error code on failure.
|
|
*/
|
|
int (*set_property)(struct drm_plane *plane,
|
|
struct drm_property *property, uint64_t val);
|
|
|
|
/**
|
|
* @atomic_duplicate_state:
|
|
*
|
|
* Duplicate the current atomic state for this plane and return it.
|
|
* The core and helpers gurantee that any atomic state duplicated with
|
|
* this hook and still owned by the caller (i.e. not transferred to the
|
|
* driver by calling ->atomic_commit() from struct
|
|
* &drm_mode_config_funcs) will be cleaned up by calling the
|
|
* @atomic_destroy_state hook in this structure.
|
|
*
|
|
* Atomic drivers which don't subclass struct &drm_plane_state should use
|
|
* drm_atomic_helper_plane_duplicate_state(). Drivers that subclass the
|
|
* state structure to extend it with driver-private state should use
|
|
* __drm_atomic_helper_plane_duplicate_state() to make sure shared state is
|
|
* duplicated in a consistent fashion across drivers.
|
|
*
|
|
* It is an error to call this hook before plane->state has been
|
|
* initialized correctly.
|
|
*
|
|
* NOTE:
|
|
*
|
|
* If the duplicate state references refcounted resources this hook must
|
|
* acquire a reference for each of them. The driver must release these
|
|
* references again in @atomic_destroy_state.
|
|
*
|
|
* RETURNS:
|
|
*
|
|
* Duplicated atomic state or NULL when the allocation failed.
|
|
*/
|
|
struct drm_plane_state *(*atomic_duplicate_state)(struct drm_plane *plane);
|
|
|
|
/**
|
|
* @atomic_destroy_state:
|
|
*
|
|
* Destroy a state duplicated with @atomic_duplicate_state and release
|
|
* or unreference all resources it references
|
|
*/
|
|
void (*atomic_destroy_state)(struct drm_plane *plane,
|
|
struct drm_plane_state *state);
|
|
|
|
/**
|
|
* @atomic_set_property:
|
|
*
|
|
* Decode a driver-private property value and store the decoded value
|
|
* into the passed-in state structure. Since the atomic core decodes all
|
|
* standardized properties (even for extensions beyond the core set of
|
|
* properties which might not be implemented by all drivers) this
|
|
* requires drivers to subclass the state structure.
|
|
*
|
|
* Such driver-private properties should really only be implemented for
|
|
* truly hardware/vendor specific state. Instead it is preferred to
|
|
* standardize atomic extension and decode the properties used to expose
|
|
* such an extension in the core.
|
|
*
|
|
* Do not call this function directly, use
|
|
* drm_atomic_plane_set_property() instead.
|
|
*
|
|
* This callback is optional if the driver does not support any
|
|
* driver-private atomic properties.
|
|
*
|
|
* NOTE:
|
|
*
|
|
* This function is called in the state assembly phase of atomic
|
|
* modesets, which can be aborted for any reason (including on
|
|
* userspace's request to just check whether a configuration would be
|
|
* possible). Drivers MUST NOT touch any persistent state (hardware or
|
|
* software) or data structures except the passed in @state parameter.
|
|
*
|
|
* Also since userspace controls in which order properties are set this
|
|
* function must not do any input validation (since the state update is
|
|
* incomplete and hence likely inconsistent). Instead any such input
|
|
* validation must be done in the various atomic_check callbacks.
|
|
*
|
|
* RETURNS:
|
|
*
|
|
* 0 if the property has been found, -EINVAL if the property isn't
|
|
* implemented by the driver (which shouldn't ever happen, the core only
|
|
* asks for properties attached to this plane). No other validation is
|
|
* allowed by the driver. The core already checks that the property
|
|
* value is within the range (integer, valid enum value, ...) the driver
|
|
* set when registering the property.
|
|
*/
|
|
int (*atomic_set_property)(struct drm_plane *plane,
|
|
struct drm_plane_state *state,
|
|
struct drm_property *property,
|
|
uint64_t val);
|
|
|
|
/**
|
|
* @atomic_get_property:
|
|
*
|
|
* Reads out the decoded driver-private property. This is used to
|
|
* implement the GETPLANE IOCTL.
|
|
*
|
|
* Do not call this function directly, use
|
|
* drm_atomic_plane_get_property() instead.
|
|
*
|
|
* This callback is optional if the driver does not support any
|
|
* driver-private atomic properties.
|
|
*
|
|
* RETURNS:
|
|
*
|
|
* 0 on success, -EINVAL if the property isn't implemented by the
|
|
* driver (which should never happen, the core only asks for
|
|
* properties attached to this plane).
|
|
*/
|
|
int (*atomic_get_property)(struct drm_plane *plane,
|
|
const struct drm_plane_state *state,
|
|
struct drm_property *property,
|
|
uint64_t *val);
|
|
};
|
|
|
|
enum drm_plane_type {
|
|
DRM_PLANE_TYPE_OVERLAY,
|
|
DRM_PLANE_TYPE_PRIMARY,
|
|
DRM_PLANE_TYPE_CURSOR,
|
|
};
|
|
|
|
|
|
/**
|
|
* struct drm_plane - central DRM plane control structure
|
|
* @dev: DRM device this plane belongs to
|
|
* @head: for list management
|
|
* @base: base mode object
|
|
* @possible_crtcs: pipes this plane can be bound to
|
|
* @format_types: array of formats supported by this plane
|
|
* @format_count: number of formats supported
|
|
* @format_default: driver hasn't supplied supported formats for the plane
|
|
* @crtc: currently bound CRTC
|
|
* @fb: currently bound fb
|
|
* @old_fb: Temporary tracking of the old fb while a modeset is ongoing. Used by
|
|
* drm_mode_set_config_internal() to implement correct refcounting.
|
|
* @funcs: helper functions
|
|
* @properties: property tracking for this plane
|
|
* @type: type of plane (overlay, primary, cursor)
|
|
* @state: current atomic state for this plane
|
|
*/
|
|
struct drm_plane {
|
|
struct drm_device *dev;
|
|
struct list_head head;
|
|
|
|
char *name;
|
|
|
|
struct drm_modeset_lock mutex;
|
|
|
|
struct drm_mode_object base;
|
|
|
|
uint32_t possible_crtcs;
|
|
uint32_t *format_types;
|
|
unsigned int format_count;
|
|
bool format_default;
|
|
|
|
struct drm_crtc *crtc;
|
|
struct drm_framebuffer *fb;
|
|
|
|
struct drm_framebuffer *old_fb;
|
|
|
|
const struct drm_plane_funcs *funcs;
|
|
|
|
struct drm_object_properties properties;
|
|
|
|
enum drm_plane_type type;
|
|
|
|
const struct drm_plane_helper_funcs *helper_private;
|
|
|
|
struct drm_plane_state *state;
|
|
};
|
|
|
|
/**
|
|
* struct drm_bridge_funcs - drm_bridge control functions
|
|
* @attach: Called during drm_bridge_attach
|
|
*/
|
|
struct drm_bridge_funcs {
|
|
int (*attach)(struct drm_bridge *bridge);
|
|
|
|
/**
|
|
* @mode_fixup:
|
|
*
|
|
* This callback is used to validate and adjust a mode. The paramater
|
|
* mode is the display mode that should be fed to the next element in
|
|
* the display chain, either the final &drm_connector or the next
|
|
* &drm_bridge. The parameter adjusted_mode is the input mode the bridge
|
|
* requires. It can be modified by this callback and does not need to
|
|
* match mode.
|
|
*
|
|
* This is the only hook that allows a bridge to reject a modeset. If
|
|
* this function passes all other callbacks must succeed for this
|
|
* configuration.
|
|
*
|
|
* NOTE:
|
|
*
|
|
* This function is called in the check phase of atomic modesets, which
|
|
* can be aborted for any reason (including on userspace's request to
|
|
* just check whether a configuration would be possible). Drivers MUST
|
|
* NOT touch any persistent state (hardware or software) or data
|
|
* structures except the passed in @state parameter.
|
|
*
|
|
* RETURNS:
|
|
*
|
|
* True if an acceptable configuration is possible, false if the modeset
|
|
* operation should be rejected.
|
|
*/
|
|
bool (*mode_fixup)(struct drm_bridge *bridge,
|
|
const struct drm_display_mode *mode,
|
|
struct drm_display_mode *adjusted_mode);
|
|
/**
|
|
* @disable:
|
|
*
|
|
* This callback should disable the bridge. It is called right before
|
|
* the preceding element in the display pipe is disabled. If the
|
|
* preceding element is a bridge this means it's called before that
|
|
* bridge's ->disable() function. If the preceding element is a
|
|
* &drm_encoder it's called right before the encoder's ->disable(),
|
|
* ->prepare() or ->dpms() hook from struct &drm_encoder_helper_funcs.
|
|
*
|
|
* The bridge can assume that the display pipe (i.e. clocks and timing
|
|
* signals) feeding it is still running when this callback is called.
|
|
*
|
|
* The disable callback is optional.
|
|
*/
|
|
void (*disable)(struct drm_bridge *bridge);
|
|
|
|
/**
|
|
* @post_disable:
|
|
*
|
|
* This callback should disable the bridge. It is called right after
|
|
* the preceding element in the display pipe is disabled. If the
|
|
* preceding element is a bridge this means it's called after that
|
|
* bridge's ->post_disable() function. If the preceding element is a
|
|
* &drm_encoder it's called right after the encoder's ->disable(),
|
|
* ->prepare() or ->dpms() hook from struct &drm_encoder_helper_funcs.
|
|
*
|
|
* The bridge must assume that the display pipe (i.e. clocks and timing
|
|
* singals) feeding it is no longer running when this callback is
|
|
* called.
|
|
*
|
|
* The post_disable callback is optional.
|
|
*/
|
|
void (*post_disable)(struct drm_bridge *bridge);
|
|
|
|
/**
|
|
* @mode_set:
|
|
*
|
|
* This callback should set the given mode on the bridge. It is called
|
|
* after the ->mode_set() callback for the preceding element in the
|
|
* display pipeline has been called already. The display pipe (i.e.
|
|
* clocks and timing signals) is off when this function is called.
|
|
*/
|
|
void (*mode_set)(struct drm_bridge *bridge,
|
|
struct drm_display_mode *mode,
|
|
struct drm_display_mode *adjusted_mode);
|
|
/**
|
|
* @pre_enable:
|
|
*
|
|
* This callback should enable the bridge. It is called right before
|
|
* the preceding element in the display pipe is enabled. If the
|
|
* preceding element is a bridge this means it's called before that
|
|
* bridge's ->pre_enable() function. If the preceding element is a
|
|
* &drm_encoder it's called right before the encoder's ->enable(),
|
|
* ->commit() or ->dpms() hook from struct &drm_encoder_helper_funcs.
|
|
*
|
|
* The display pipe (i.e. clocks and timing signals) feeding this bridge
|
|
* will not yet be running when this callback is called. The bridge must
|
|
* not enable the display link feeding the next bridge in the chain (if
|
|
* there is one) when this callback is called.
|
|
*
|
|
* The pre_enable callback is optional.
|
|
*/
|
|
void (*pre_enable)(struct drm_bridge *bridge);
|
|
|
|
/**
|
|
* @enable:
|
|
*
|
|
* This callback should enable the bridge. It is called right after
|
|
* the preceding element in the display pipe is enabled. If the
|
|
* preceding element is a bridge this means it's called after that
|
|
* bridge's ->enable() function. If the preceding element is a
|
|
* &drm_encoder it's called right after the encoder's ->enable(),
|
|
* ->commit() or ->dpms() hook from struct &drm_encoder_helper_funcs.
|
|
*
|
|
* The bridge can assume that the display pipe (i.e. clocks and timing
|
|
* signals) feeding it is running when this callback is called. This
|
|
* callback must enable the display link feeding the next bridge in the
|
|
* chain if there is one.
|
|
*
|
|
* The enable callback is optional.
|
|
*/
|
|
void (*enable)(struct drm_bridge *bridge);
|
|
};
|
|
|
|
/**
|
|
* struct drm_bridge - central DRM bridge control structure
|
|
* @dev: DRM device this bridge belongs to
|
|
* @encoder: encoder to which this bridge is connected
|
|
* @next: the next bridge in the encoder chain
|
|
* @of_node: device node pointer to the bridge
|
|
* @list: to keep track of all added bridges
|
|
* @funcs: control functions
|
|
* @driver_private: pointer to the bridge driver's internal context
|
|
*/
|
|
struct drm_bridge {
|
|
struct drm_device *dev;
|
|
struct drm_encoder *encoder;
|
|
struct drm_bridge *next;
|
|
#ifdef CONFIG_OF
|
|
struct device_node *of_node;
|
|
#endif
|
|
struct list_head list;
|
|
|
|
const struct drm_bridge_funcs *funcs;
|
|
void *driver_private;
|
|
};
|
|
|
|
/**
|
|
* struct drm_atomic_state - the global state object for atomic updates
|
|
* @dev: parent DRM device
|
|
* @allow_modeset: allow full modeset
|
|
* @legacy_cursor_update: hint to enforce legacy cursor IOCTL semantics
|
|
* @legacy_set_config: Disable conflicting encoders instead of failing with -EINVAL.
|
|
* @planes: pointer to array of plane pointers
|
|
* @plane_states: pointer to array of plane states pointers
|
|
* @crtcs: pointer to array of CRTC pointers
|
|
* @crtc_states: pointer to array of CRTC states pointers
|
|
* @num_connector: size of the @connectors and @connector_states arrays
|
|
* @connectors: pointer to array of connector pointers
|
|
* @connector_states: pointer to array of connector states pointers
|
|
* @acquire_ctx: acquire context for this atomic modeset state update
|
|
*/
|
|
struct drm_atomic_state {
|
|
struct drm_device *dev;
|
|
bool allow_modeset : 1;
|
|
bool legacy_cursor_update : 1;
|
|
bool legacy_set_config : 1;
|
|
struct drm_plane **planes;
|
|
struct drm_plane_state **plane_states;
|
|
struct drm_crtc **crtcs;
|
|
struct drm_crtc_state **crtc_states;
|
|
int num_connector;
|
|
struct drm_connector **connectors;
|
|
struct drm_connector_state **connector_states;
|
|
|
|
struct drm_modeset_acquire_ctx *acquire_ctx;
|
|
};
|
|
|
|
|
|
/**
|
|
* struct drm_mode_set - new values for a CRTC config change
|
|
* @fb: framebuffer to use for new config
|
|
* @crtc: CRTC whose configuration we're about to change
|
|
* @mode: mode timings to use
|
|
* @x: position of this CRTC relative to @fb
|
|
* @y: position of this CRTC relative to @fb
|
|
* @connectors: array of connectors to drive with this CRTC if possible
|
|
* @num_connectors: size of @connectors array
|
|
*
|
|
* Represents a single crtc the connectors that it drives with what mode
|
|
* and from which framebuffer it scans out from.
|
|
*
|
|
* This is used to set modes.
|
|
*/
|
|
struct drm_mode_set {
|
|
struct drm_framebuffer *fb;
|
|
struct drm_crtc *crtc;
|
|
struct drm_display_mode *mode;
|
|
|
|
uint32_t x;
|
|
uint32_t y;
|
|
|
|
struct drm_connector **connectors;
|
|
size_t num_connectors;
|
|
};
|
|
|
|
/**
|
|
* struct drm_mode_config_funcs - basic driver provided mode setting functions
|
|
*
|
|
* Some global (i.e. not per-CRTC, connector, etc) mode setting functions that
|
|
* involve drivers.
|
|
*/
|
|
struct drm_mode_config_funcs {
|
|
/**
|
|
* @fb_create:
|
|
*
|
|
* Create a new framebuffer object. The core does basic checks on the
|
|
* requested metadata, but most of that is left to the driver. See
|
|
* struct &drm_mode_fb_cmd2 for details.
|
|
*
|
|
* If the parameters are deemed valid and the backing storage objects in
|
|
* the underlying memory manager all exist, then the driver allocates
|
|
* a new &drm_framebuffer structure, subclassed to contain
|
|
* driver-specific information (like the internal native buffer object
|
|
* references). It also needs to fill out all relevant metadata, which
|
|
* should be done by calling drm_helper_mode_fill_fb_struct().
|
|
*
|
|
* The initialization is finalized by calling drm_framebuffer_init(),
|
|
* which registers the framebuffer and makes it accessible to other
|
|
* threads.
|
|
*
|
|
* RETURNS:
|
|
*
|
|
* A new framebuffer with an initial reference count of 1 or a negative
|
|
* error code encoded with ERR_PTR().
|
|
*/
|
|
struct drm_framebuffer *(*fb_create)(struct drm_device *dev,
|
|
struct drm_file *file_priv,
|
|
const struct drm_mode_fb_cmd2 *mode_cmd);
|
|
|
|
/**
|
|
* @output_poll_changed:
|
|
*
|
|
* Callback used by helpers to inform the driver of output configuration
|
|
* changes.
|
|
*
|
|
* Drivers implementing fbdev emulation with the helpers can call
|
|
* drm_fb_helper_hotplug_changed from this hook to inform the fbdev
|
|
* helper of output changes.
|
|
*
|
|
* FIXME:
|
|
*
|
|
* Except that there's no vtable for device-level helper callbacks
|
|
* there's no reason this is a core function.
|
|
*/
|
|
void (*output_poll_changed)(struct drm_device *dev);
|
|
|
|
/**
|
|
* @atomic_check:
|
|
*
|
|
* This is the only hook to validate an atomic modeset update. This
|
|
* function must reject any modeset and state changes which the hardware
|
|
* or driver doesn't support. This includes but is of course not limited
|
|
* to:
|
|
*
|
|
* - Checking that the modes, framebuffers, scaling and placement
|
|
* requirements and so on are within the limits of the hardware.
|
|
*
|
|
* - Checking that any hidden shared resources are not oversubscribed.
|
|
* This can be shared PLLs, shared lanes, overall memory bandwidth,
|
|
* display fifo space (where shared between planes or maybe even
|
|
* CRTCs).
|
|
*
|
|
* - Checking that virtualized resources exported to userspace are not
|
|
* oversubscribed. For various reasons it can make sense to expose
|
|
* more planes, crtcs or encoders than which are physically there. One
|
|
* example is dual-pipe operations (which generally should be hidden
|
|
* from userspace if when lockstepped in hardware, exposed otherwise),
|
|
* where a plane might need 1 hardware plane (if it's just on one
|
|
* pipe), 2 hardware planes (when it spans both pipes) or maybe even
|
|
* shared a hardware plane with a 2nd plane (if there's a compatible
|
|
* plane requested on the area handled by the other pipe).
|
|
*
|
|
* - Check that any transitional state is possible and that if
|
|
* requested, the update can indeed be done in the vblank period
|
|
* without temporarily disabling some functions.
|
|
*
|
|
* - Check any other constraints the driver or hardware might have.
|
|
*
|
|
* - This callback also needs to correctly fill out the &drm_crtc_state
|
|
* in this update to make sure that drm_atomic_crtc_needs_modeset()
|
|
* reflects the nature of the possible update and returns true if and
|
|
* only if the update cannot be applied without tearing within one
|
|
* vblank on that CRTC. The core uses that information to reject
|
|
* updates which require a full modeset (i.e. blanking the screen, or
|
|
* at least pausing updates for a substantial amount of time) if
|
|
* userspace has disallowed that in its request.
|
|
*
|
|
* - The driver also does not need to repeat basic input validation
|
|
* like done for the corresponding legacy entry points. The core does
|
|
* that before calling this hook.
|
|
*
|
|
* See the documentation of @atomic_commit for an exhaustive list of
|
|
* error conditions which don't have to be checked at the
|
|
* ->atomic_check() stage?
|
|
*
|
|
* See the documentation for struct &drm_atomic_state for how exactly
|
|
* an atomic modeset update is described.
|
|
*
|
|
* Drivers using the atomic helpers can implement this hook using
|
|
* drm_atomic_helper_check(), or one of the exported sub-functions of
|
|
* it.
|
|
*
|
|
* RETURNS:
|
|
*
|
|
* 0 on success or one of the below negative error codes:
|
|
*
|
|
* - -EINVAL, if any of the above constraints are violated.
|
|
*
|
|
* - -EDEADLK, when returned from an attempt to acquire an additional
|
|
* &drm_modeset_lock through drm_modeset_lock().
|
|
*
|
|
* - -ENOMEM, if allocating additional state sub-structures failed due
|
|
* to lack of memory.
|
|
*
|
|
* - -EINTR, -EAGAIN or -ERESTARTSYS, if the IOCTL should be restarted.
|
|
* This can either be due to a pending signal, or because the driver
|
|
* needs to completely bail out to recover from an exceptional
|
|
* situation like a GPU hang. From a userspace point all errors are
|
|
* treated equally.
|
|
*/
|
|
int (*atomic_check)(struct drm_device *dev,
|
|
struct drm_atomic_state *state);
|
|
|
|
/**
|
|
* @atomic_commit:
|
|
*
|
|
* This is the only hook to commit an atomic modeset update. The core
|
|
* guarantees that @atomic_check has been called successfully before
|
|
* calling this function, and that nothing has been changed in the
|
|
* interim.
|
|
*
|
|
* See the documentation for struct &drm_atomic_state for how exactly
|
|
* an atomic modeset update is described.
|
|
*
|
|
* Drivers using the atomic helpers can implement this hook using
|
|
* drm_atomic_helper_commit(), or one of the exported sub-functions of
|
|
* it.
|
|
*
|
|
* Nonblocking commits (as indicated with the nonblock parameter) must
|
|
* do any preparatory work which might result in an unsuccessful commit
|
|
* in the context of this callback. The only exceptions are hardware
|
|
* errors resulting in -EIO. But even in that case the driver must
|
|
* ensure that the display pipe is at least running, to avoid
|
|
* compositors crashing when pageflips don't work. Anything else,
|
|
* specifically committing the update to the hardware, should be done
|
|
* without blocking the caller. For updates which do not require a
|
|
* modeset this must be guaranteed.
|
|
*
|
|
* The driver must wait for any pending rendering to the new
|
|
* framebuffers to complete before executing the flip. It should also
|
|
* wait for any pending rendering from other drivers if the underlying
|
|
* buffer is a shared dma-buf. Nonblocking commits must not wait for
|
|
* rendering in the context of this callback.
|
|
*
|
|
* An application can request to be notified when the atomic commit has
|
|
* completed. These events are per-CRTC and can be distinguished by the
|
|
* CRTC index supplied in &drm_event to userspace.
|
|
*
|
|
* The drm core will supply a struct &drm_event in the event
|
|
* member of each CRTC's &drm_crtc_state structure. This can be handled by the
|
|
* drm_crtc_send_vblank_event() function, which the driver should call on
|
|
* the provided event upon completion of the atomic commit. Note that if
|
|
* the driver supports vblank signalling and timestamping the vblank
|
|
* counters and timestamps must agree with the ones returned from page
|
|
* flip events. With the current vblank helper infrastructure this can
|
|
* be achieved by holding a vblank reference while the page flip is
|
|
* pending, acquired through drm_crtc_vblank_get() and released with
|
|
* drm_crtc_vblank_put(). Drivers are free to implement their own vblank
|
|
* counter and timestamp tracking though, e.g. if they have accurate
|
|
* timestamp registers in hardware.
|
|
*
|
|
* NOTE:
|
|
*
|
|
* Drivers are not allowed to shut down any display pipe successfully
|
|
* enabled through an atomic commit on their own. Doing so can result in
|
|
* compositors crashing if a page flip is suddenly rejected because the
|
|
* pipe is off.
|
|
*
|
|
* RETURNS:
|
|
*
|
|
* 0 on success or one of the below negative error codes:
|
|
*
|
|
* - -EBUSY, if a nonblocking updated is requested and there is
|
|
* an earlier updated pending. Drivers are allowed to support a queue
|
|
* of outstanding updates, but currently no driver supports that.
|
|
* Note that drivers must wait for preceding updates to complete if a
|
|
* synchronous update is requested, they are not allowed to fail the
|
|
* commit in that case.
|
|
*
|
|
* - -ENOMEM, if the driver failed to allocate memory. Specifically
|
|
* this can happen when trying to pin framebuffers, which must only
|
|
* be done when committing the state.
|
|
*
|
|
* - -ENOSPC, as a refinement of the more generic -ENOMEM to indicate
|
|
* that the driver has run out of vram, iommu space or similar GPU
|
|
* address space needed for framebuffer.
|
|
*
|
|
* - -EIO, if the hardware completely died.
|
|
*
|
|
* - -EINTR, -EAGAIN or -ERESTARTSYS, if the IOCTL should be restarted.
|
|
* This can either be due to a pending signal, or because the driver
|
|
* needs to completely bail out to recover from an exceptional
|
|
* situation like a GPU hang. From a userspace point of view all errors are
|
|
* treated equally.
|
|
*
|
|
* This list is exhaustive. Specifically this hook is not allowed to
|
|
* return -EINVAL (any invalid requests should be caught in
|
|
* @atomic_check) or -EDEADLK (this function must not acquire
|
|
* additional modeset locks).
|
|
*/
|
|
int (*atomic_commit)(struct drm_device *dev,
|
|
struct drm_atomic_state *state,
|
|
bool nonblock);
|
|
|
|
/**
|
|
* @atomic_state_alloc:
|
|
*
|
|
* This optional hook can be used by drivers that want to subclass struct
|
|
* &drm_atomic_state to be able to track their own driver-private global
|
|
* state easily. If this hook is implemented, drivers must also
|
|
* implement @atomic_state_clear and @atomic_state_free.
|
|
*
|
|
* RETURNS:
|
|
*
|
|
* A new &drm_atomic_state on success or NULL on failure.
|
|
*/
|
|
struct drm_atomic_state *(*atomic_state_alloc)(struct drm_device *dev);
|
|
|
|
/**
|
|
* @atomic_state_clear:
|
|
*
|
|
* This hook must clear any driver private state duplicated into the
|
|
* passed-in &drm_atomic_state. This hook is called when the caller
|
|
* encountered a &drm_modeset_lock deadlock and needs to drop all
|
|
* already acquired locks as part of the deadlock avoidance dance
|
|
* implemented in drm_modeset_lock_backoff().
|
|
*
|
|
* Any duplicated state must be invalidated since a concurrent atomic
|
|
* update might change it, and the drm atomic interfaces always apply
|
|
* updates as relative changes to the current state.
|
|
*
|
|
* Drivers that implement this must call drm_atomic_state_default_clear()
|
|
* to clear common state.
|
|
*/
|
|
void (*atomic_state_clear)(struct drm_atomic_state *state);
|
|
|
|
/**
|
|
* @atomic_state_free:
|
|
*
|
|
* This hook needs driver private resources and the &drm_atomic_state
|
|
* itself. Note that the core first calls drm_atomic_state_clear() to
|
|
* avoid code duplicate between the clear and free hooks.
|
|
*
|
|
* Drivers that implement this must call drm_atomic_state_default_free()
|
|
* to release common resources.
|
|
*/
|
|
void (*atomic_state_free)(struct drm_atomic_state *state);
|
|
};
|
|
|
|
/**
|
|
* struct drm_mode_config - Mode configuration control structure
|
|
* @mutex: mutex protecting KMS related lists and structures
|
|
* @connection_mutex: ww mutex protecting connector state and routing
|
|
* @acquire_ctx: global implicit acquire context used by atomic drivers for
|
|
* legacy IOCTLs
|
|
* @idr_mutex: mutex for KMS ID allocation and management
|
|
* @crtc_idr: main KMS ID tracking object
|
|
* @fb_lock: mutex to protect fb state and lists
|
|
* @num_fb: number of fbs available
|
|
* @fb_list: list of framebuffers available
|
|
* @num_connector: number of connectors on this device
|
|
* @connector_list: list of connector objects
|
|
* @num_encoder: number of encoders on this device
|
|
* @encoder_list: list of encoder objects
|
|
* @num_overlay_plane: number of overlay planes on this device
|
|
* @num_total_plane: number of universal (i.e. with primary/curso) planes on this device
|
|
* @plane_list: list of plane objects
|
|
* @num_crtc: number of CRTCs on this device
|
|
* @crtc_list: list of CRTC objects
|
|
* @property_list: list of property objects
|
|
* @min_width: minimum pixel width on this device
|
|
* @min_height: minimum pixel height on this device
|
|
* @max_width: maximum pixel width on this device
|
|
* @max_height: maximum pixel height on this device
|
|
* @funcs: core driver provided mode setting functions
|
|
* @fb_base: base address of the framebuffer
|
|
* @poll_enabled: track polling support for this device
|
|
* @poll_running: track polling status for this device
|
|
* @output_poll_work: delayed work for polling in process context
|
|
* @property_blob_list: list of all the blob property objects
|
|
* @blob_lock: mutex for blob property allocation and management
|
|
* @*_property: core property tracking
|
|
* @degamma_lut_property: LUT used to convert the framebuffer's colors to linear
|
|
* gamma
|
|
* @degamma_lut_size_property: size of the degamma LUT as supported by the
|
|
* driver (read-only)
|
|
* @ctm_property: Matrix used to convert colors after the lookup in the
|
|
* degamma LUT
|
|
* @gamma_lut_property: LUT used to convert the colors, after the CSC matrix, to
|
|
* the gamma space of the connected screen (read-only)
|
|
* @gamma_lut_size_property: size of the gamma LUT as supported by the driver
|
|
* @preferred_depth: preferred RBG pixel depth, used by fb helpers
|
|
* @prefer_shadow: hint to userspace to prefer shadow-fb rendering
|
|
* @async_page_flip: does this device support async flips on the primary plane?
|
|
* @cursor_width: hint to userspace for max cursor width
|
|
* @cursor_height: hint to userspace for max cursor height
|
|
*
|
|
* Core mode resource tracking structure. All CRTC, encoders, and connectors
|
|
* enumerated by the driver are added here, as are global properties. Some
|
|
* global restrictions are also here, e.g. dimension restrictions.
|
|
*/
|
|
struct drm_mode_config {
|
|
struct mutex mutex; /* protects configuration (mode lists etc.) */
|
|
struct drm_modeset_lock connection_mutex; /* protects connector->encoder and encoder->crtc links */
|
|
struct drm_modeset_acquire_ctx *acquire_ctx; /* for legacy _lock_all() / _unlock_all() */
|
|
struct mutex idr_mutex; /* for IDR management */
|
|
struct idr crtc_idr; /* use this idr for all IDs, fb, crtc, connector, modes - just makes life easier */
|
|
struct idr tile_idr; /* use this idr for all IDs, fb, crtc, connector, modes - just makes life easier */
|
|
/* this is limited to one for now */
|
|
|
|
struct mutex fb_lock; /* proctects global and per-file fb lists */
|
|
int num_fb;
|
|
struct list_head fb_list;
|
|
|
|
int num_connector;
|
|
struct ida connector_ida;
|
|
struct list_head connector_list;
|
|
int num_encoder;
|
|
struct list_head encoder_list;
|
|
|
|
/*
|
|
* Track # of overlay planes separately from # of total planes. By
|
|
* default we only advertise overlay planes to userspace; if userspace
|
|
* sets the "universal plane" capability bit, we'll go ahead and
|
|
* expose all planes.
|
|
*/
|
|
int num_overlay_plane;
|
|
int num_total_plane;
|
|
struct list_head plane_list;
|
|
|
|
int num_crtc;
|
|
struct list_head crtc_list;
|
|
|
|
struct list_head property_list;
|
|
|
|
int min_width, min_height;
|
|
int max_width, max_height;
|
|
const struct drm_mode_config_funcs *funcs;
|
|
resource_size_t fb_base;
|
|
|
|
/* output poll support */
|
|
bool poll_enabled;
|
|
bool poll_running;
|
|
bool delayed_event;
|
|
struct delayed_work output_poll_work;
|
|
|
|
struct mutex blob_lock;
|
|
|
|
/* pointers to standard properties */
|
|
struct list_head property_blob_list;
|
|
struct drm_property *edid_property;
|
|
struct drm_property *dpms_property;
|
|
struct drm_property *path_property;
|
|
struct drm_property *tile_property;
|
|
struct drm_property *plane_type_property;
|
|
struct drm_property *rotation_property;
|
|
struct drm_property *prop_src_x;
|
|
struct drm_property *prop_src_y;
|
|
struct drm_property *prop_src_w;
|
|
struct drm_property *prop_src_h;
|
|
struct drm_property *prop_crtc_x;
|
|
struct drm_property *prop_crtc_y;
|
|
struct drm_property *prop_crtc_w;
|
|
struct drm_property *prop_crtc_h;
|
|
struct drm_property *prop_fb_id;
|
|
struct drm_property *prop_crtc_id;
|
|
struct drm_property *prop_active;
|
|
struct drm_property *prop_mode_id;
|
|
|
|
/* DVI-I properties */
|
|
struct drm_property *dvi_i_subconnector_property;
|
|
struct drm_property *dvi_i_select_subconnector_property;
|
|
|
|
/* TV properties */
|
|
struct drm_property *tv_subconnector_property;
|
|
struct drm_property *tv_select_subconnector_property;
|
|
struct drm_property *tv_mode_property;
|
|
struct drm_property *tv_left_margin_property;
|
|
struct drm_property *tv_right_margin_property;
|
|
struct drm_property *tv_top_margin_property;
|
|
struct drm_property *tv_bottom_margin_property;
|
|
struct drm_property *tv_brightness_property;
|
|
struct drm_property *tv_contrast_property;
|
|
struct drm_property *tv_flicker_reduction_property;
|
|
struct drm_property *tv_overscan_property;
|
|
struct drm_property *tv_saturation_property;
|
|
struct drm_property *tv_hue_property;
|
|
|
|
/* Optional properties */
|
|
struct drm_property *scaling_mode_property;
|
|
struct drm_property *aspect_ratio_property;
|
|
struct drm_property *dirty_info_property;
|
|
|
|
/* Optional color correction properties */
|
|
struct drm_property *degamma_lut_property;
|
|
struct drm_property *degamma_lut_size_property;
|
|
struct drm_property *ctm_property;
|
|
struct drm_property *gamma_lut_property;
|
|
struct drm_property *gamma_lut_size_property;
|
|
|
|
/* properties for virtual machine layout */
|
|
struct drm_property *suggested_x_property;
|
|
struct drm_property *suggested_y_property;
|
|
|
|
/* dumb ioctl parameters */
|
|
uint32_t preferred_depth, prefer_shadow;
|
|
|
|
/* whether async page flip is supported or not */
|
|
bool async_page_flip;
|
|
|
|
/* whether the driver supports fb modifiers */
|
|
bool allow_fb_modifiers;
|
|
|
|
/* cursor size */
|
|
uint32_t cursor_width, cursor_height;
|
|
};
|
|
|
|
/**
|
|
* drm_for_each_plane_mask - iterate over planes specified by bitmask
|
|
* @plane: the loop cursor
|
|
* @dev: the DRM device
|
|
* @plane_mask: bitmask of plane indices
|
|
*
|
|
* Iterate over all planes specified by bitmask.
|
|
*/
|
|
#define drm_for_each_plane_mask(plane, dev, plane_mask) \
|
|
list_for_each_entry((plane), &(dev)->mode_config.plane_list, head) \
|
|
for_each_if ((plane_mask) & (1 << drm_plane_index(plane)))
|
|
|
|
/**
|
|
* drm_for_each_encoder_mask - iterate over encoders specified by bitmask
|
|
* @encoder: the loop cursor
|
|
* @dev: the DRM device
|
|
* @encoder_mask: bitmask of encoder indices
|
|
*
|
|
* Iterate over all encoders specified by bitmask.
|
|
*/
|
|
#define drm_for_each_encoder_mask(encoder, dev, encoder_mask) \
|
|
list_for_each_entry((encoder), &(dev)->mode_config.encoder_list, head) \
|
|
for_each_if ((encoder_mask) & (1 << drm_encoder_index(encoder)))
|
|
|
|
#define obj_to_crtc(x) container_of(x, struct drm_crtc, base)
|
|
#define obj_to_connector(x) container_of(x, struct drm_connector, base)
|
|
#define obj_to_encoder(x) container_of(x, struct drm_encoder, base)
|
|
#define obj_to_mode(x) container_of(x, struct drm_display_mode, base)
|
|
#define obj_to_fb(x) container_of(x, struct drm_framebuffer, base)
|
|
#define obj_to_property(x) container_of(x, struct drm_property, base)
|
|
#define obj_to_blob(x) container_of(x, struct drm_property_blob, base)
|
|
#define obj_to_plane(x) container_of(x, struct drm_plane, base)
|
|
|
|
struct drm_prop_enum_list {
|
|
int type;
|
|
char *name;
|
|
};
|
|
|
|
extern __printf(6, 7)
|
|
int drm_crtc_init_with_planes(struct drm_device *dev,
|
|
struct drm_crtc *crtc,
|
|
struct drm_plane *primary,
|
|
struct drm_plane *cursor,
|
|
const struct drm_crtc_funcs *funcs,
|
|
const char *name, ...);
|
|
extern void drm_crtc_cleanup(struct drm_crtc *crtc);
|
|
extern unsigned int drm_crtc_index(struct drm_crtc *crtc);
|
|
|
|
/**
|
|
* drm_crtc_mask - find the mask of a registered CRTC
|
|
* @crtc: CRTC to find mask for
|
|
*
|
|
* Given a registered CRTC, return the mask bit of that CRTC for an
|
|
* encoder's possible_crtcs field.
|
|
*/
|
|
static inline uint32_t drm_crtc_mask(struct drm_crtc *crtc)
|
|
{
|
|
return 1 << drm_crtc_index(crtc);
|
|
}
|
|
|
|
extern void drm_connector_ida_init(void);
|
|
extern void drm_connector_ida_destroy(void);
|
|
extern int drm_connector_init(struct drm_device *dev,
|
|
struct drm_connector *connector,
|
|
const struct drm_connector_funcs *funcs,
|
|
int connector_type);
|
|
int drm_connector_register(struct drm_connector *connector);
|
|
void drm_connector_unregister(struct drm_connector *connector);
|
|
|
|
extern void drm_connector_cleanup(struct drm_connector *connector);
|
|
static inline unsigned drm_connector_index(struct drm_connector *connector)
|
|
{
|
|
return connector->connector_id;
|
|
}
|
|
|
|
/* helpers to {un}register all connectors from sysfs for device */
|
|
extern int drm_connector_register_all(struct drm_device *dev);
|
|
extern void drm_connector_unregister_all(struct drm_device *dev);
|
|
|
|
extern int drm_bridge_add(struct drm_bridge *bridge);
|
|
extern void drm_bridge_remove(struct drm_bridge *bridge);
|
|
extern struct drm_bridge *of_drm_find_bridge(struct device_node *np);
|
|
extern int drm_bridge_attach(struct drm_device *dev, struct drm_bridge *bridge);
|
|
|
|
bool drm_bridge_mode_fixup(struct drm_bridge *bridge,
|
|
const struct drm_display_mode *mode,
|
|
struct drm_display_mode *adjusted_mode);
|
|
void drm_bridge_disable(struct drm_bridge *bridge);
|
|
void drm_bridge_post_disable(struct drm_bridge *bridge);
|
|
void drm_bridge_mode_set(struct drm_bridge *bridge,
|
|
struct drm_display_mode *mode,
|
|
struct drm_display_mode *adjusted_mode);
|
|
void drm_bridge_pre_enable(struct drm_bridge *bridge);
|
|
void drm_bridge_enable(struct drm_bridge *bridge);
|
|
|
|
extern __printf(5, 6)
|
|
int drm_encoder_init(struct drm_device *dev,
|
|
struct drm_encoder *encoder,
|
|
const struct drm_encoder_funcs *funcs,
|
|
int encoder_type, const char *name, ...);
|
|
extern unsigned int drm_encoder_index(struct drm_encoder *encoder);
|
|
|
|
/**
|
|
* drm_encoder_crtc_ok - can a given crtc drive a given encoder?
|
|
* @encoder: encoder to test
|
|
* @crtc: crtc to test
|
|
*
|
|
* Return false if @encoder can't be driven by @crtc, true otherwise.
|
|
*/
|
|
static inline bool drm_encoder_crtc_ok(struct drm_encoder *encoder,
|
|
struct drm_crtc *crtc)
|
|
{
|
|
return !!(encoder->possible_crtcs & drm_crtc_mask(crtc));
|
|
}
|
|
|
|
extern __printf(8, 9)
|
|
int drm_universal_plane_init(struct drm_device *dev,
|
|
struct drm_plane *plane,
|
|
unsigned long possible_crtcs,
|
|
const struct drm_plane_funcs *funcs,
|
|
const uint32_t *formats,
|
|
unsigned int format_count,
|
|
enum drm_plane_type type,
|
|
const char *name, ...);
|
|
extern int drm_plane_init(struct drm_device *dev,
|
|
struct drm_plane *plane,
|
|
unsigned long possible_crtcs,
|
|
const struct drm_plane_funcs *funcs,
|
|
const uint32_t *formats, unsigned int format_count,
|
|
bool is_primary);
|
|
extern void drm_plane_cleanup(struct drm_plane *plane);
|
|
extern unsigned int drm_plane_index(struct drm_plane *plane);
|
|
extern struct drm_plane * drm_plane_from_index(struct drm_device *dev, int idx);
|
|
extern void drm_plane_force_disable(struct drm_plane *plane);
|
|
extern int drm_plane_check_pixel_format(const struct drm_plane *plane,
|
|
u32 format);
|
|
extern void drm_crtc_get_hv_timing(const struct drm_display_mode *mode,
|
|
int *hdisplay, int *vdisplay);
|
|
extern int drm_crtc_check_viewport(const struct drm_crtc *crtc,
|
|
int x, int y,
|
|
const struct drm_display_mode *mode,
|
|
const struct drm_framebuffer *fb);
|
|
|
|
extern void drm_encoder_cleanup(struct drm_encoder *encoder);
|
|
|
|
extern const char *drm_get_connector_status_name(enum drm_connector_status status);
|
|
extern const char *drm_get_subpixel_order_name(enum subpixel_order order);
|
|
extern const char *drm_get_dpms_name(int val);
|
|
extern const char *drm_get_dvi_i_subconnector_name(int val);
|
|
extern const char *drm_get_dvi_i_select_name(int val);
|
|
extern const char *drm_get_tv_subconnector_name(int val);
|
|
extern const char *drm_get_tv_select_name(int val);
|
|
extern void drm_fb_release(struct drm_file *file_priv);
|
|
extern void drm_property_destroy_user_blobs(struct drm_device *dev,
|
|
struct drm_file *file_priv);
|
|
extern bool drm_probe_ddc(struct i2c_adapter *adapter);
|
|
extern struct edid *drm_get_edid(struct drm_connector *connector,
|
|
struct i2c_adapter *adapter);
|
|
extern struct edid *drm_get_edid_switcheroo(struct drm_connector *connector,
|
|
struct i2c_adapter *adapter);
|
|
extern struct edid *drm_edid_duplicate(const struct edid *edid);
|
|
extern int drm_add_edid_modes(struct drm_connector *connector, struct edid *edid);
|
|
extern void drm_mode_config_init(struct drm_device *dev);
|
|
extern void drm_mode_config_reset(struct drm_device *dev);
|
|
extern void drm_mode_config_cleanup(struct drm_device *dev);
|
|
|
|
extern int drm_mode_connector_set_path_property(struct drm_connector *connector,
|
|
const char *path);
|
|
int drm_mode_connector_set_tile_property(struct drm_connector *connector);
|
|
extern int drm_mode_connector_update_edid_property(struct drm_connector *connector,
|
|
const struct edid *edid);
|
|
|
|
extern int drm_display_info_set_bus_formats(struct drm_display_info *info,
|
|
const u32 *formats,
|
|
unsigned int num_formats);
|
|
|
|
static inline bool drm_property_type_is(struct drm_property *property,
|
|
uint32_t type)
|
|
{
|
|
/* instanceof for props.. handles extended type vs original types: */
|
|
if (property->flags & DRM_MODE_PROP_EXTENDED_TYPE)
|
|
return (property->flags & DRM_MODE_PROP_EXTENDED_TYPE) == type;
|
|
return property->flags & type;
|
|
}
|
|
|
|
static inline bool drm_property_type_valid(struct drm_property *property)
|
|
{
|
|
if (property->flags & DRM_MODE_PROP_EXTENDED_TYPE)
|
|
return !(property->flags & DRM_MODE_PROP_LEGACY_TYPE);
|
|
return !!(property->flags & DRM_MODE_PROP_LEGACY_TYPE);
|
|
}
|
|
|
|
extern int drm_object_property_set_value(struct drm_mode_object *obj,
|
|
struct drm_property *property,
|
|
uint64_t val);
|
|
extern int drm_object_property_get_value(struct drm_mode_object *obj,
|
|
struct drm_property *property,
|
|
uint64_t *value);
|
|
extern int drm_framebuffer_init(struct drm_device *dev,
|
|
struct drm_framebuffer *fb,
|
|
const struct drm_framebuffer_funcs *funcs);
|
|
extern struct drm_framebuffer *drm_framebuffer_lookup(struct drm_device *dev,
|
|
uint32_t id);
|
|
extern void drm_framebuffer_remove(struct drm_framebuffer *fb);
|
|
extern void drm_framebuffer_cleanup(struct drm_framebuffer *fb);
|
|
extern void drm_framebuffer_unregister_private(struct drm_framebuffer *fb);
|
|
|
|
extern void drm_object_attach_property(struct drm_mode_object *obj,
|
|
struct drm_property *property,
|
|
uint64_t init_val);
|
|
extern struct drm_property *drm_property_create(struct drm_device *dev, int flags,
|
|
const char *name, int num_values);
|
|
extern struct drm_property *drm_property_create_enum(struct drm_device *dev, int flags,
|
|
const char *name,
|
|
const struct drm_prop_enum_list *props,
|
|
int num_values);
|
|
struct drm_property *drm_property_create_bitmask(struct drm_device *dev,
|
|
int flags, const char *name,
|
|
const struct drm_prop_enum_list *props,
|
|
int num_props,
|
|
uint64_t supported_bits);
|
|
struct drm_property *drm_property_create_range(struct drm_device *dev, int flags,
|
|
const char *name,
|
|
uint64_t min, uint64_t max);
|
|
struct drm_property *drm_property_create_signed_range(struct drm_device *dev,
|
|
int flags, const char *name,
|
|
int64_t min, int64_t max);
|
|
struct drm_property *drm_property_create_object(struct drm_device *dev,
|
|
int flags, const char *name, uint32_t type);
|
|
struct drm_property *drm_property_create_bool(struct drm_device *dev, int flags,
|
|
const char *name);
|
|
struct drm_property_blob *drm_property_create_blob(struct drm_device *dev,
|
|
size_t length,
|
|
const void *data);
|
|
struct drm_property_blob *drm_property_lookup_blob(struct drm_device *dev,
|
|
uint32_t id);
|
|
struct drm_property_blob *drm_property_reference_blob(struct drm_property_blob *blob);
|
|
void drm_property_unreference_blob(struct drm_property_blob *blob);
|
|
extern void drm_property_destroy(struct drm_device *dev, struct drm_property *property);
|
|
extern int drm_property_add_enum(struct drm_property *property, int index,
|
|
uint64_t value, const char *name);
|
|
extern int drm_mode_create_dvi_i_properties(struct drm_device *dev);
|
|
extern int drm_mode_create_tv_properties(struct drm_device *dev,
|
|
unsigned int num_modes,
|
|
const char * const modes[]);
|
|
extern int drm_mode_create_scaling_mode_property(struct drm_device *dev);
|
|
extern int drm_mode_create_aspect_ratio_property(struct drm_device *dev);
|
|
extern int drm_mode_create_dirty_info_property(struct drm_device *dev);
|
|
extern int drm_mode_create_suggested_offset_properties(struct drm_device *dev);
|
|
extern bool drm_property_change_valid_get(struct drm_property *property,
|
|
uint64_t value, struct drm_mode_object **ref);
|
|
extern void drm_property_change_valid_put(struct drm_property *property,
|
|
struct drm_mode_object *ref);
|
|
|
|
extern int drm_mode_connector_attach_encoder(struct drm_connector *connector,
|
|
struct drm_encoder *encoder);
|
|
extern int drm_mode_crtc_set_gamma_size(struct drm_crtc *crtc,
|
|
int gamma_size);
|
|
extern struct drm_mode_object *drm_mode_object_find(struct drm_device *dev,
|
|
uint32_t id, uint32_t type);
|
|
void drm_mode_object_reference(struct drm_mode_object *obj);
|
|
void drm_mode_object_unreference(struct drm_mode_object *obj);
|
|
|
|
/* IOCTLs */
|
|
extern int drm_mode_getresources(struct drm_device *dev,
|
|
void *data, struct drm_file *file_priv);
|
|
extern int drm_mode_getplane_res(struct drm_device *dev, void *data,
|
|
struct drm_file *file_priv);
|
|
extern int drm_mode_getcrtc(struct drm_device *dev,
|
|
void *data, struct drm_file *file_priv);
|
|
extern int drm_mode_getconnector(struct drm_device *dev,
|
|
void *data, struct drm_file *file_priv);
|
|
extern int drm_mode_set_config_internal(struct drm_mode_set *set);
|
|
extern int drm_mode_setcrtc(struct drm_device *dev,
|
|
void *data, struct drm_file *file_priv);
|
|
extern int drm_mode_getplane(struct drm_device *dev,
|
|
void *data, struct drm_file *file_priv);
|
|
extern int drm_mode_setplane(struct drm_device *dev,
|
|
void *data, struct drm_file *file_priv);
|
|
extern int drm_mode_cursor_ioctl(struct drm_device *dev,
|
|
void *data, struct drm_file *file_priv);
|
|
extern int drm_mode_cursor2_ioctl(struct drm_device *dev,
|
|
void *data, struct drm_file *file_priv);
|
|
extern int drm_mode_addfb(struct drm_device *dev,
|
|
void *data, struct drm_file *file_priv);
|
|
extern int drm_mode_addfb2(struct drm_device *dev,
|
|
void *data, struct drm_file *file_priv);
|
|
extern uint32_t drm_mode_legacy_fb_format(uint32_t bpp, uint32_t depth);
|
|
extern int drm_mode_rmfb(struct drm_device *dev,
|
|
void *data, struct drm_file *file_priv);
|
|
extern int drm_mode_getfb(struct drm_device *dev,
|
|
void *data, struct drm_file *file_priv);
|
|
extern int drm_mode_dirtyfb_ioctl(struct drm_device *dev,
|
|
void *data, struct drm_file *file_priv);
|
|
|
|
extern int drm_mode_getproperty_ioctl(struct drm_device *dev,
|
|
void *data, struct drm_file *file_priv);
|
|
extern int drm_mode_getblob_ioctl(struct drm_device *dev,
|
|
void *data, struct drm_file *file_priv);
|
|
extern int drm_mode_createblob_ioctl(struct drm_device *dev,
|
|
void *data, struct drm_file *file_priv);
|
|
extern int drm_mode_destroyblob_ioctl(struct drm_device *dev,
|
|
void *data, struct drm_file *file_priv);
|
|
extern int drm_mode_connector_property_set_ioctl(struct drm_device *dev,
|
|
void *data, struct drm_file *file_priv);
|
|
extern int drm_mode_getencoder(struct drm_device *dev,
|
|
void *data, struct drm_file *file_priv);
|
|
extern int drm_mode_gamma_get_ioctl(struct drm_device *dev,
|
|
void *data, struct drm_file *file_priv);
|
|
extern int drm_mode_gamma_set_ioctl(struct drm_device *dev,
|
|
void *data, struct drm_file *file_priv);
|
|
extern u8 drm_match_cea_mode(const struct drm_display_mode *to_match);
|
|
extern enum hdmi_picture_aspect drm_get_cea_aspect_ratio(const u8 video_code);
|
|
extern bool drm_detect_hdmi_monitor(struct edid *edid);
|
|
extern bool drm_detect_monitor_audio(struct edid *edid);
|
|
extern bool drm_rgb_quant_range_selectable(struct edid *edid);
|
|
extern int drm_mode_page_flip_ioctl(struct drm_device *dev,
|
|
void *data, struct drm_file *file_priv);
|
|
extern int drm_add_modes_noedid(struct drm_connector *connector,
|
|
int hdisplay, int vdisplay);
|
|
extern void drm_set_preferred_mode(struct drm_connector *connector,
|
|
int hpref, int vpref);
|
|
|
|
extern int drm_edid_header_is_valid(const u8 *raw_edid);
|
|
extern bool drm_edid_block_valid(u8 *raw_edid, int block, bool print_bad_edid,
|
|
bool *edid_corrupt);
|
|
extern bool drm_edid_is_valid(struct edid *edid);
|
|
extern void drm_edid_get_monitor_name(struct edid *edid, char *name,
|
|
int buflen);
|
|
|
|
extern struct drm_tile_group *drm_mode_create_tile_group(struct drm_device *dev,
|
|
char topology[8]);
|
|
extern struct drm_tile_group *drm_mode_get_tile_group(struct drm_device *dev,
|
|
char topology[8]);
|
|
extern void drm_mode_put_tile_group(struct drm_device *dev,
|
|
struct drm_tile_group *tg);
|
|
struct drm_display_mode *drm_mode_find_dmt(struct drm_device *dev,
|
|
int hsize, int vsize, int fresh,
|
|
bool rb);
|
|
|
|
extern int drm_mode_create_dumb_ioctl(struct drm_device *dev,
|
|
void *data, struct drm_file *file_priv);
|
|
extern int drm_mode_mmap_dumb_ioctl(struct drm_device *dev,
|
|
void *data, struct drm_file *file_priv);
|
|
extern int drm_mode_destroy_dumb_ioctl(struct drm_device *dev,
|
|
void *data, struct drm_file *file_priv);
|
|
extern int drm_mode_obj_get_properties_ioctl(struct drm_device *dev, void *data,
|
|
struct drm_file *file_priv);
|
|
extern int drm_mode_obj_set_property_ioctl(struct drm_device *dev, void *data,
|
|
struct drm_file *file_priv);
|
|
extern int drm_mode_plane_set_obj_prop(struct drm_plane *plane,
|
|
struct drm_property *property,
|
|
uint64_t value);
|
|
extern int drm_mode_atomic_ioctl(struct drm_device *dev,
|
|
void *data, struct drm_file *file_priv);
|
|
|
|
extern void drm_fb_get_bpp_depth(uint32_t format, unsigned int *depth,
|
|
int *bpp);
|
|
extern int drm_format_num_planes(uint32_t format);
|
|
extern int drm_format_plane_cpp(uint32_t format, int plane);
|
|
extern int drm_format_horz_chroma_subsampling(uint32_t format);
|
|
extern int drm_format_vert_chroma_subsampling(uint32_t format);
|
|
extern int drm_format_plane_width(int width, uint32_t format, int plane);
|
|
extern int drm_format_plane_height(int height, uint32_t format, int plane);
|
|
extern const char *drm_get_format_name(uint32_t format);
|
|
extern struct drm_property *drm_mode_create_rotation_property(struct drm_device *dev,
|
|
unsigned int supported_rotations);
|
|
extern unsigned int drm_rotation_simplify(unsigned int rotation,
|
|
unsigned int supported_rotations);
|
|
|
|
/* Helpers */
|
|
|
|
static inline struct drm_plane *drm_plane_find(struct drm_device *dev,
|
|
uint32_t id)
|
|
{
|
|
struct drm_mode_object *mo;
|
|
mo = drm_mode_object_find(dev, id, DRM_MODE_OBJECT_PLANE);
|
|
return mo ? obj_to_plane(mo) : NULL;
|
|
}
|
|
|
|
static inline struct drm_crtc *drm_crtc_find(struct drm_device *dev,
|
|
uint32_t id)
|
|
{
|
|
struct drm_mode_object *mo;
|
|
mo = drm_mode_object_find(dev, id, DRM_MODE_OBJECT_CRTC);
|
|
return mo ? obj_to_crtc(mo) : NULL;
|
|
}
|
|
|
|
static inline struct drm_encoder *drm_encoder_find(struct drm_device *dev,
|
|
uint32_t id)
|
|
{
|
|
struct drm_mode_object *mo;
|
|
mo = drm_mode_object_find(dev, id, DRM_MODE_OBJECT_ENCODER);
|
|
return mo ? obj_to_encoder(mo) : NULL;
|
|
}
|
|
|
|
static inline struct drm_connector *drm_connector_find(struct drm_device *dev,
|
|
uint32_t id)
|
|
{
|
|
struct drm_mode_object *mo;
|
|
mo = drm_mode_object_find(dev, id, DRM_MODE_OBJECT_CONNECTOR);
|
|
return mo ? obj_to_connector(mo) : NULL;
|
|
}
|
|
|
|
static inline struct drm_property *drm_property_find(struct drm_device *dev,
|
|
uint32_t id)
|
|
{
|
|
struct drm_mode_object *mo;
|
|
mo = drm_mode_object_find(dev, id, DRM_MODE_OBJECT_PROPERTY);
|
|
return mo ? obj_to_property(mo) : NULL;
|
|
}
|
|
|
|
/*
|
|
* Extract a degamma/gamma LUT value provided by user and round it to the
|
|
* precision supported by the hardware.
|
|
*/
|
|
static inline uint32_t drm_color_lut_extract(uint32_t user_input,
|
|
uint32_t bit_precision)
|
|
{
|
|
uint32_t val = user_input;
|
|
uint32_t max = 0xffff >> (16 - bit_precision);
|
|
|
|
/* Round only if we're not using full precision. */
|
|
if (bit_precision < 16) {
|
|
val += 1UL << (16 - bit_precision - 1);
|
|
val >>= 16 - bit_precision;
|
|
}
|
|
|
|
return clamp_val(val, 0, max);
|
|
}
|
|
|
|
/*
|
|
* drm_framebuffer_reference - incr the fb refcnt
|
|
* @fb: framebuffer
|
|
*
|
|
* This functions increments the fb's refcount.
|
|
*/
|
|
static inline void drm_framebuffer_reference(struct drm_framebuffer *fb)
|
|
{
|
|
drm_mode_object_reference(&fb->base);
|
|
}
|
|
|
|
/**
|
|
* drm_framebuffer_unreference - unref a framebuffer
|
|
* @fb: framebuffer to unref
|
|
*
|
|
* This functions decrements the fb's refcount and frees it if it drops to zero.
|
|
*/
|
|
static inline void drm_framebuffer_unreference(struct drm_framebuffer *fb)
|
|
{
|
|
drm_mode_object_unreference(&fb->base);
|
|
}
|
|
|
|
/**
|
|
* drm_framebuffer_read_refcount - read the framebuffer reference count.
|
|
* @fb: framebuffer
|
|
*
|
|
* This functions returns the framebuffer's reference count.
|
|
*/
|
|
static inline uint32_t drm_framebuffer_read_refcount(struct drm_framebuffer *fb)
|
|
{
|
|
return atomic_read(&fb->base.refcount.refcount);
|
|
}
|
|
|
|
/* Plane list iterator for legacy (overlay only) planes. */
|
|
#define drm_for_each_legacy_plane(plane, dev) \
|
|
list_for_each_entry(plane, &(dev)->mode_config.plane_list, head) \
|
|
for_each_if (plane->type == DRM_PLANE_TYPE_OVERLAY)
|
|
|
|
#define drm_for_each_plane(plane, dev) \
|
|
list_for_each_entry(plane, &(dev)->mode_config.plane_list, head)
|
|
|
|
#define drm_for_each_crtc(crtc, dev) \
|
|
list_for_each_entry(crtc, &(dev)->mode_config.crtc_list, head)
|
|
|
|
static inline void
|
|
assert_drm_connector_list_read_locked(struct drm_mode_config *mode_config)
|
|
{
|
|
/*
|
|
* The connector hotadd/remove code currently grabs both locks when
|
|
* updating lists. Hence readers need only hold either of them to be
|
|
* safe and the check amounts to
|
|
*
|
|
* WARN_ON(not_holding(A) && not_holding(B)).
|
|
*/
|
|
WARN_ON(!mutex_is_locked(&mode_config->mutex) &&
|
|
!drm_modeset_is_locked(&mode_config->connection_mutex));
|
|
}
|
|
|
|
#define drm_for_each_connector(connector, dev) \
|
|
for (assert_drm_connector_list_read_locked(&(dev)->mode_config), \
|
|
connector = list_first_entry(&(dev)->mode_config.connector_list, \
|
|
struct drm_connector, head); \
|
|
&connector->head != (&(dev)->mode_config.connector_list); \
|
|
connector = list_next_entry(connector, head))
|
|
|
|
#define drm_for_each_encoder(encoder, dev) \
|
|
list_for_each_entry(encoder, &(dev)->mode_config.encoder_list, head)
|
|
|
|
#define drm_for_each_fb(fb, dev) \
|
|
for (WARN_ON(!mutex_is_locked(&(dev)->mode_config.fb_lock)), \
|
|
fb = list_first_entry(&(dev)->mode_config.fb_list, \
|
|
struct drm_framebuffer, head); \
|
|
&fb->head != (&(dev)->mode_config.fb_list); \
|
|
fb = list_next_entry(fb, head))
|
|
|
|
#endif /* __DRM_CRTC_H__ */
|