mirror of
https://github.com/FEX-Emu/linux.git
synced 2024-12-21 08:53:41 +00:00
512626a04e
* 'for-linus' of git://linux-arm.org/linux-2.6: kmemleak: Add the corresponding MAINTAINERS entry kmemleak: Simple testing module for kmemleak kmemleak: Enable the building of the memory leak detector kmemleak: Remove some of the kmemleak false positives kmemleak: Add modules support kmemleak: Add kmemleak_alloc callback from alloc_large_system_hash kmemleak: Add the vmalloc memory allocation/freeing hooks kmemleak: Add the slub memory allocation/freeing hooks kmemleak: Add the slob memory allocation/freeing hooks kmemleak: Add the slab memory allocation/freeing hooks kmemleak: Add documentation on the memory leak detector kmemleak: Add the base support Manual conflict resolution (with the slab/earlyboot changes) in: drivers/char/vt.c init/main.c mm/slab.c
1952 lines
46 KiB
C
1952 lines
46 KiB
C
/*
|
|
* linux/mm/vmalloc.c
|
|
*
|
|
* Copyright (C) 1993 Linus Torvalds
|
|
* Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
|
|
* SMP-safe vmalloc/vfree/ioremap, Tigran Aivazian <tigran@veritas.com>, May 2000
|
|
* Major rework to support vmap/vunmap, Christoph Hellwig, SGI, August 2002
|
|
* Numa awareness, Christoph Lameter, SGI, June 2005
|
|
*/
|
|
|
|
#include <linux/vmalloc.h>
|
|
#include <linux/mm.h>
|
|
#include <linux/module.h>
|
|
#include <linux/highmem.h>
|
|
#include <linux/slab.h>
|
|
#include <linux/spinlock.h>
|
|
#include <linux/interrupt.h>
|
|
#include <linux/proc_fs.h>
|
|
#include <linux/seq_file.h>
|
|
#include <linux/debugobjects.h>
|
|
#include <linux/kallsyms.h>
|
|
#include <linux/list.h>
|
|
#include <linux/rbtree.h>
|
|
#include <linux/radix-tree.h>
|
|
#include <linux/rcupdate.h>
|
|
#include <linux/pfn.h>
|
|
#include <linux/kmemleak.h>
|
|
|
|
#include <asm/atomic.h>
|
|
#include <asm/uaccess.h>
|
|
#include <asm/tlbflush.h>
|
|
|
|
|
|
/*** Page table manipulation functions ***/
|
|
|
|
static void vunmap_pte_range(pmd_t *pmd, unsigned long addr, unsigned long end)
|
|
{
|
|
pte_t *pte;
|
|
|
|
pte = pte_offset_kernel(pmd, addr);
|
|
do {
|
|
pte_t ptent = ptep_get_and_clear(&init_mm, addr, pte);
|
|
WARN_ON(!pte_none(ptent) && !pte_present(ptent));
|
|
} while (pte++, addr += PAGE_SIZE, addr != end);
|
|
}
|
|
|
|
static void vunmap_pmd_range(pud_t *pud, unsigned long addr, unsigned long end)
|
|
{
|
|
pmd_t *pmd;
|
|
unsigned long next;
|
|
|
|
pmd = pmd_offset(pud, addr);
|
|
do {
|
|
next = pmd_addr_end(addr, end);
|
|
if (pmd_none_or_clear_bad(pmd))
|
|
continue;
|
|
vunmap_pte_range(pmd, addr, next);
|
|
} while (pmd++, addr = next, addr != end);
|
|
}
|
|
|
|
static void vunmap_pud_range(pgd_t *pgd, unsigned long addr, unsigned long end)
|
|
{
|
|
pud_t *pud;
|
|
unsigned long next;
|
|
|
|
pud = pud_offset(pgd, addr);
|
|
do {
|
|
next = pud_addr_end(addr, end);
|
|
if (pud_none_or_clear_bad(pud))
|
|
continue;
|
|
vunmap_pmd_range(pud, addr, next);
|
|
} while (pud++, addr = next, addr != end);
|
|
}
|
|
|
|
static void vunmap_page_range(unsigned long addr, unsigned long end)
|
|
{
|
|
pgd_t *pgd;
|
|
unsigned long next;
|
|
|
|
BUG_ON(addr >= end);
|
|
pgd = pgd_offset_k(addr);
|
|
do {
|
|
next = pgd_addr_end(addr, end);
|
|
if (pgd_none_or_clear_bad(pgd))
|
|
continue;
|
|
vunmap_pud_range(pgd, addr, next);
|
|
} while (pgd++, addr = next, addr != end);
|
|
}
|
|
|
|
static int vmap_pte_range(pmd_t *pmd, unsigned long addr,
|
|
unsigned long end, pgprot_t prot, struct page **pages, int *nr)
|
|
{
|
|
pte_t *pte;
|
|
|
|
/*
|
|
* nr is a running index into the array which helps higher level
|
|
* callers keep track of where we're up to.
|
|
*/
|
|
|
|
pte = pte_alloc_kernel(pmd, addr);
|
|
if (!pte)
|
|
return -ENOMEM;
|
|
do {
|
|
struct page *page = pages[*nr];
|
|
|
|
if (WARN_ON(!pte_none(*pte)))
|
|
return -EBUSY;
|
|
if (WARN_ON(!page))
|
|
return -ENOMEM;
|
|
set_pte_at(&init_mm, addr, pte, mk_pte(page, prot));
|
|
(*nr)++;
|
|
} while (pte++, addr += PAGE_SIZE, addr != end);
|
|
return 0;
|
|
}
|
|
|
|
static int vmap_pmd_range(pud_t *pud, unsigned long addr,
|
|
unsigned long end, pgprot_t prot, struct page **pages, int *nr)
|
|
{
|
|
pmd_t *pmd;
|
|
unsigned long next;
|
|
|
|
pmd = pmd_alloc(&init_mm, pud, addr);
|
|
if (!pmd)
|
|
return -ENOMEM;
|
|
do {
|
|
next = pmd_addr_end(addr, end);
|
|
if (vmap_pte_range(pmd, addr, next, prot, pages, nr))
|
|
return -ENOMEM;
|
|
} while (pmd++, addr = next, addr != end);
|
|
return 0;
|
|
}
|
|
|
|
static int vmap_pud_range(pgd_t *pgd, unsigned long addr,
|
|
unsigned long end, pgprot_t prot, struct page **pages, int *nr)
|
|
{
|
|
pud_t *pud;
|
|
unsigned long next;
|
|
|
|
pud = pud_alloc(&init_mm, pgd, addr);
|
|
if (!pud)
|
|
return -ENOMEM;
|
|
do {
|
|
next = pud_addr_end(addr, end);
|
|
if (vmap_pmd_range(pud, addr, next, prot, pages, nr))
|
|
return -ENOMEM;
|
|
} while (pud++, addr = next, addr != end);
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* Set up page tables in kva (addr, end). The ptes shall have prot "prot", and
|
|
* will have pfns corresponding to the "pages" array.
|
|
*
|
|
* Ie. pte at addr+N*PAGE_SIZE shall point to pfn corresponding to pages[N]
|
|
*/
|
|
static int vmap_page_range_noflush(unsigned long start, unsigned long end,
|
|
pgprot_t prot, struct page **pages)
|
|
{
|
|
pgd_t *pgd;
|
|
unsigned long next;
|
|
unsigned long addr = start;
|
|
int err = 0;
|
|
int nr = 0;
|
|
|
|
BUG_ON(addr >= end);
|
|
pgd = pgd_offset_k(addr);
|
|
do {
|
|
next = pgd_addr_end(addr, end);
|
|
err = vmap_pud_range(pgd, addr, next, prot, pages, &nr);
|
|
if (err)
|
|
break;
|
|
} while (pgd++, addr = next, addr != end);
|
|
|
|
if (unlikely(err))
|
|
return err;
|
|
return nr;
|
|
}
|
|
|
|
static int vmap_page_range(unsigned long start, unsigned long end,
|
|
pgprot_t prot, struct page **pages)
|
|
{
|
|
int ret;
|
|
|
|
ret = vmap_page_range_noflush(start, end, prot, pages);
|
|
flush_cache_vmap(start, end);
|
|
return ret;
|
|
}
|
|
|
|
static inline int is_vmalloc_or_module_addr(const void *x)
|
|
{
|
|
/*
|
|
* ARM, x86-64 and sparc64 put modules in a special place,
|
|
* and fall back on vmalloc() if that fails. Others
|
|
* just put it in the vmalloc space.
|
|
*/
|
|
#if defined(CONFIG_MODULES) && defined(MODULES_VADDR)
|
|
unsigned long addr = (unsigned long)x;
|
|
if (addr >= MODULES_VADDR && addr < MODULES_END)
|
|
return 1;
|
|
#endif
|
|
return is_vmalloc_addr(x);
|
|
}
|
|
|
|
/*
|
|
* Walk a vmap address to the struct page it maps.
|
|
*/
|
|
struct page *vmalloc_to_page(const void *vmalloc_addr)
|
|
{
|
|
unsigned long addr = (unsigned long) vmalloc_addr;
|
|
struct page *page = NULL;
|
|
pgd_t *pgd = pgd_offset_k(addr);
|
|
|
|
/*
|
|
* XXX we might need to change this if we add VIRTUAL_BUG_ON for
|
|
* architectures that do not vmalloc module space
|
|
*/
|
|
VIRTUAL_BUG_ON(!is_vmalloc_or_module_addr(vmalloc_addr));
|
|
|
|
if (!pgd_none(*pgd)) {
|
|
pud_t *pud = pud_offset(pgd, addr);
|
|
if (!pud_none(*pud)) {
|
|
pmd_t *pmd = pmd_offset(pud, addr);
|
|
if (!pmd_none(*pmd)) {
|
|
pte_t *ptep, pte;
|
|
|
|
ptep = pte_offset_map(pmd, addr);
|
|
pte = *ptep;
|
|
if (pte_present(pte))
|
|
page = pte_page(pte);
|
|
pte_unmap(ptep);
|
|
}
|
|
}
|
|
}
|
|
return page;
|
|
}
|
|
EXPORT_SYMBOL(vmalloc_to_page);
|
|
|
|
/*
|
|
* Map a vmalloc()-space virtual address to the physical page frame number.
|
|
*/
|
|
unsigned long vmalloc_to_pfn(const void *vmalloc_addr)
|
|
{
|
|
return page_to_pfn(vmalloc_to_page(vmalloc_addr));
|
|
}
|
|
EXPORT_SYMBOL(vmalloc_to_pfn);
|
|
|
|
|
|
/*** Global kva allocator ***/
|
|
|
|
#define VM_LAZY_FREE 0x01
|
|
#define VM_LAZY_FREEING 0x02
|
|
#define VM_VM_AREA 0x04
|
|
|
|
struct vmap_area {
|
|
unsigned long va_start;
|
|
unsigned long va_end;
|
|
unsigned long flags;
|
|
struct rb_node rb_node; /* address sorted rbtree */
|
|
struct list_head list; /* address sorted list */
|
|
struct list_head purge_list; /* "lazy purge" list */
|
|
void *private;
|
|
struct rcu_head rcu_head;
|
|
};
|
|
|
|
static DEFINE_SPINLOCK(vmap_area_lock);
|
|
static struct rb_root vmap_area_root = RB_ROOT;
|
|
static LIST_HEAD(vmap_area_list);
|
|
|
|
static struct vmap_area *__find_vmap_area(unsigned long addr)
|
|
{
|
|
struct rb_node *n = vmap_area_root.rb_node;
|
|
|
|
while (n) {
|
|
struct vmap_area *va;
|
|
|
|
va = rb_entry(n, struct vmap_area, rb_node);
|
|
if (addr < va->va_start)
|
|
n = n->rb_left;
|
|
else if (addr > va->va_start)
|
|
n = n->rb_right;
|
|
else
|
|
return va;
|
|
}
|
|
|
|
return NULL;
|
|
}
|
|
|
|
static void __insert_vmap_area(struct vmap_area *va)
|
|
{
|
|
struct rb_node **p = &vmap_area_root.rb_node;
|
|
struct rb_node *parent = NULL;
|
|
struct rb_node *tmp;
|
|
|
|
while (*p) {
|
|
struct vmap_area *tmp;
|
|
|
|
parent = *p;
|
|
tmp = rb_entry(parent, struct vmap_area, rb_node);
|
|
if (va->va_start < tmp->va_end)
|
|
p = &(*p)->rb_left;
|
|
else if (va->va_end > tmp->va_start)
|
|
p = &(*p)->rb_right;
|
|
else
|
|
BUG();
|
|
}
|
|
|
|
rb_link_node(&va->rb_node, parent, p);
|
|
rb_insert_color(&va->rb_node, &vmap_area_root);
|
|
|
|
/* address-sort this list so it is usable like the vmlist */
|
|
tmp = rb_prev(&va->rb_node);
|
|
if (tmp) {
|
|
struct vmap_area *prev;
|
|
prev = rb_entry(tmp, struct vmap_area, rb_node);
|
|
list_add_rcu(&va->list, &prev->list);
|
|
} else
|
|
list_add_rcu(&va->list, &vmap_area_list);
|
|
}
|
|
|
|
static void purge_vmap_area_lazy(void);
|
|
|
|
/*
|
|
* Allocate a region of KVA of the specified size and alignment, within the
|
|
* vstart and vend.
|
|
*/
|
|
static struct vmap_area *alloc_vmap_area(unsigned long size,
|
|
unsigned long align,
|
|
unsigned long vstart, unsigned long vend,
|
|
int node, gfp_t gfp_mask)
|
|
{
|
|
struct vmap_area *va;
|
|
struct rb_node *n;
|
|
unsigned long addr;
|
|
int purged = 0;
|
|
|
|
BUG_ON(!size);
|
|
BUG_ON(size & ~PAGE_MASK);
|
|
|
|
va = kmalloc_node(sizeof(struct vmap_area),
|
|
gfp_mask & GFP_RECLAIM_MASK, node);
|
|
if (unlikely(!va))
|
|
return ERR_PTR(-ENOMEM);
|
|
|
|
retry:
|
|
addr = ALIGN(vstart, align);
|
|
|
|
spin_lock(&vmap_area_lock);
|
|
if (addr + size - 1 < addr)
|
|
goto overflow;
|
|
|
|
/* XXX: could have a last_hole cache */
|
|
n = vmap_area_root.rb_node;
|
|
if (n) {
|
|
struct vmap_area *first = NULL;
|
|
|
|
do {
|
|
struct vmap_area *tmp;
|
|
tmp = rb_entry(n, struct vmap_area, rb_node);
|
|
if (tmp->va_end >= addr) {
|
|
if (!first && tmp->va_start < addr + size)
|
|
first = tmp;
|
|
n = n->rb_left;
|
|
} else {
|
|
first = tmp;
|
|
n = n->rb_right;
|
|
}
|
|
} while (n);
|
|
|
|
if (!first)
|
|
goto found;
|
|
|
|
if (first->va_end < addr) {
|
|
n = rb_next(&first->rb_node);
|
|
if (n)
|
|
first = rb_entry(n, struct vmap_area, rb_node);
|
|
else
|
|
goto found;
|
|
}
|
|
|
|
while (addr + size > first->va_start && addr + size <= vend) {
|
|
addr = ALIGN(first->va_end + PAGE_SIZE, align);
|
|
if (addr + size - 1 < addr)
|
|
goto overflow;
|
|
|
|
n = rb_next(&first->rb_node);
|
|
if (n)
|
|
first = rb_entry(n, struct vmap_area, rb_node);
|
|
else
|
|
goto found;
|
|
}
|
|
}
|
|
found:
|
|
if (addr + size > vend) {
|
|
overflow:
|
|
spin_unlock(&vmap_area_lock);
|
|
if (!purged) {
|
|
purge_vmap_area_lazy();
|
|
purged = 1;
|
|
goto retry;
|
|
}
|
|
if (printk_ratelimit())
|
|
printk(KERN_WARNING
|
|
"vmap allocation for size %lu failed: "
|
|
"use vmalloc=<size> to increase size.\n", size);
|
|
kfree(va);
|
|
return ERR_PTR(-EBUSY);
|
|
}
|
|
|
|
BUG_ON(addr & (align-1));
|
|
|
|
va->va_start = addr;
|
|
va->va_end = addr + size;
|
|
va->flags = 0;
|
|
__insert_vmap_area(va);
|
|
spin_unlock(&vmap_area_lock);
|
|
|
|
return va;
|
|
}
|
|
|
|
static void rcu_free_va(struct rcu_head *head)
|
|
{
|
|
struct vmap_area *va = container_of(head, struct vmap_area, rcu_head);
|
|
|
|
kfree(va);
|
|
}
|
|
|
|
static void __free_vmap_area(struct vmap_area *va)
|
|
{
|
|
BUG_ON(RB_EMPTY_NODE(&va->rb_node));
|
|
rb_erase(&va->rb_node, &vmap_area_root);
|
|
RB_CLEAR_NODE(&va->rb_node);
|
|
list_del_rcu(&va->list);
|
|
|
|
call_rcu(&va->rcu_head, rcu_free_va);
|
|
}
|
|
|
|
/*
|
|
* Free a region of KVA allocated by alloc_vmap_area
|
|
*/
|
|
static void free_vmap_area(struct vmap_area *va)
|
|
{
|
|
spin_lock(&vmap_area_lock);
|
|
__free_vmap_area(va);
|
|
spin_unlock(&vmap_area_lock);
|
|
}
|
|
|
|
/*
|
|
* Clear the pagetable entries of a given vmap_area
|
|
*/
|
|
static void unmap_vmap_area(struct vmap_area *va)
|
|
{
|
|
vunmap_page_range(va->va_start, va->va_end);
|
|
}
|
|
|
|
static void vmap_debug_free_range(unsigned long start, unsigned long end)
|
|
{
|
|
/*
|
|
* Unmap page tables and force a TLB flush immediately if
|
|
* CONFIG_DEBUG_PAGEALLOC is set. This catches use after free
|
|
* bugs similarly to those in linear kernel virtual address
|
|
* space after a page has been freed.
|
|
*
|
|
* All the lazy freeing logic is still retained, in order to
|
|
* minimise intrusiveness of this debugging feature.
|
|
*
|
|
* This is going to be *slow* (linear kernel virtual address
|
|
* debugging doesn't do a broadcast TLB flush so it is a lot
|
|
* faster).
|
|
*/
|
|
#ifdef CONFIG_DEBUG_PAGEALLOC
|
|
vunmap_page_range(start, end);
|
|
flush_tlb_kernel_range(start, end);
|
|
#endif
|
|
}
|
|
|
|
/*
|
|
* lazy_max_pages is the maximum amount of virtual address space we gather up
|
|
* before attempting to purge with a TLB flush.
|
|
*
|
|
* There is a tradeoff here: a larger number will cover more kernel page tables
|
|
* and take slightly longer to purge, but it will linearly reduce the number of
|
|
* global TLB flushes that must be performed. It would seem natural to scale
|
|
* this number up linearly with the number of CPUs (because vmapping activity
|
|
* could also scale linearly with the number of CPUs), however it is likely
|
|
* that in practice, workloads might be constrained in other ways that mean
|
|
* vmap activity will not scale linearly with CPUs. Also, I want to be
|
|
* conservative and not introduce a big latency on huge systems, so go with
|
|
* a less aggressive log scale. It will still be an improvement over the old
|
|
* code, and it will be simple to change the scale factor if we find that it
|
|
* becomes a problem on bigger systems.
|
|
*/
|
|
static unsigned long lazy_max_pages(void)
|
|
{
|
|
unsigned int log;
|
|
|
|
log = fls(num_online_cpus());
|
|
|
|
return log * (32UL * 1024 * 1024 / PAGE_SIZE);
|
|
}
|
|
|
|
static atomic_t vmap_lazy_nr = ATOMIC_INIT(0);
|
|
|
|
/*
|
|
* Purges all lazily-freed vmap areas.
|
|
*
|
|
* If sync is 0 then don't purge if there is already a purge in progress.
|
|
* If force_flush is 1, then flush kernel TLBs between *start and *end even
|
|
* if we found no lazy vmap areas to unmap (callers can use this to optimise
|
|
* their own TLB flushing).
|
|
* Returns with *start = min(*start, lowest purged address)
|
|
* *end = max(*end, highest purged address)
|
|
*/
|
|
static void __purge_vmap_area_lazy(unsigned long *start, unsigned long *end,
|
|
int sync, int force_flush)
|
|
{
|
|
static DEFINE_SPINLOCK(purge_lock);
|
|
LIST_HEAD(valist);
|
|
struct vmap_area *va;
|
|
struct vmap_area *n_va;
|
|
int nr = 0;
|
|
|
|
/*
|
|
* If sync is 0 but force_flush is 1, we'll go sync anyway but callers
|
|
* should not expect such behaviour. This just simplifies locking for
|
|
* the case that isn't actually used at the moment anyway.
|
|
*/
|
|
if (!sync && !force_flush) {
|
|
if (!spin_trylock(&purge_lock))
|
|
return;
|
|
} else
|
|
spin_lock(&purge_lock);
|
|
|
|
rcu_read_lock();
|
|
list_for_each_entry_rcu(va, &vmap_area_list, list) {
|
|
if (va->flags & VM_LAZY_FREE) {
|
|
if (va->va_start < *start)
|
|
*start = va->va_start;
|
|
if (va->va_end > *end)
|
|
*end = va->va_end;
|
|
nr += (va->va_end - va->va_start) >> PAGE_SHIFT;
|
|
unmap_vmap_area(va);
|
|
list_add_tail(&va->purge_list, &valist);
|
|
va->flags |= VM_LAZY_FREEING;
|
|
va->flags &= ~VM_LAZY_FREE;
|
|
}
|
|
}
|
|
rcu_read_unlock();
|
|
|
|
if (nr) {
|
|
BUG_ON(nr > atomic_read(&vmap_lazy_nr));
|
|
atomic_sub(nr, &vmap_lazy_nr);
|
|
}
|
|
|
|
if (nr || force_flush)
|
|
flush_tlb_kernel_range(*start, *end);
|
|
|
|
if (nr) {
|
|
spin_lock(&vmap_area_lock);
|
|
list_for_each_entry_safe(va, n_va, &valist, purge_list)
|
|
__free_vmap_area(va);
|
|
spin_unlock(&vmap_area_lock);
|
|
}
|
|
spin_unlock(&purge_lock);
|
|
}
|
|
|
|
/*
|
|
* Kick off a purge of the outstanding lazy areas. Don't bother if somebody
|
|
* is already purging.
|
|
*/
|
|
static void try_purge_vmap_area_lazy(void)
|
|
{
|
|
unsigned long start = ULONG_MAX, end = 0;
|
|
|
|
__purge_vmap_area_lazy(&start, &end, 0, 0);
|
|
}
|
|
|
|
/*
|
|
* Kick off a purge of the outstanding lazy areas.
|
|
*/
|
|
static void purge_vmap_area_lazy(void)
|
|
{
|
|
unsigned long start = ULONG_MAX, end = 0;
|
|
|
|
__purge_vmap_area_lazy(&start, &end, 1, 0);
|
|
}
|
|
|
|
/*
|
|
* Free and unmap a vmap area, caller ensuring flush_cache_vunmap had been
|
|
* called for the correct range previously.
|
|
*/
|
|
static void free_unmap_vmap_area_noflush(struct vmap_area *va)
|
|
{
|
|
va->flags |= VM_LAZY_FREE;
|
|
atomic_add((va->va_end - va->va_start) >> PAGE_SHIFT, &vmap_lazy_nr);
|
|
if (unlikely(atomic_read(&vmap_lazy_nr) > lazy_max_pages()))
|
|
try_purge_vmap_area_lazy();
|
|
}
|
|
|
|
/*
|
|
* Free and unmap a vmap area
|
|
*/
|
|
static void free_unmap_vmap_area(struct vmap_area *va)
|
|
{
|
|
flush_cache_vunmap(va->va_start, va->va_end);
|
|
free_unmap_vmap_area_noflush(va);
|
|
}
|
|
|
|
static struct vmap_area *find_vmap_area(unsigned long addr)
|
|
{
|
|
struct vmap_area *va;
|
|
|
|
spin_lock(&vmap_area_lock);
|
|
va = __find_vmap_area(addr);
|
|
spin_unlock(&vmap_area_lock);
|
|
|
|
return va;
|
|
}
|
|
|
|
static void free_unmap_vmap_area_addr(unsigned long addr)
|
|
{
|
|
struct vmap_area *va;
|
|
|
|
va = find_vmap_area(addr);
|
|
BUG_ON(!va);
|
|
free_unmap_vmap_area(va);
|
|
}
|
|
|
|
|
|
/*** Per cpu kva allocator ***/
|
|
|
|
/*
|
|
* vmap space is limited especially on 32 bit architectures. Ensure there is
|
|
* room for at least 16 percpu vmap blocks per CPU.
|
|
*/
|
|
/*
|
|
* If we had a constant VMALLOC_START and VMALLOC_END, we'd like to be able
|
|
* to #define VMALLOC_SPACE (VMALLOC_END-VMALLOC_START). Guess
|
|
* instead (we just need a rough idea)
|
|
*/
|
|
#if BITS_PER_LONG == 32
|
|
#define VMALLOC_SPACE (128UL*1024*1024)
|
|
#else
|
|
#define VMALLOC_SPACE (128UL*1024*1024*1024)
|
|
#endif
|
|
|
|
#define VMALLOC_PAGES (VMALLOC_SPACE / PAGE_SIZE)
|
|
#define VMAP_MAX_ALLOC BITS_PER_LONG /* 256K with 4K pages */
|
|
#define VMAP_BBMAP_BITS_MAX 1024 /* 4MB with 4K pages */
|
|
#define VMAP_BBMAP_BITS_MIN (VMAP_MAX_ALLOC*2)
|
|
#define VMAP_MIN(x, y) ((x) < (y) ? (x) : (y)) /* can't use min() */
|
|
#define VMAP_MAX(x, y) ((x) > (y) ? (x) : (y)) /* can't use max() */
|
|
#define VMAP_BBMAP_BITS VMAP_MIN(VMAP_BBMAP_BITS_MAX, \
|
|
VMAP_MAX(VMAP_BBMAP_BITS_MIN, \
|
|
VMALLOC_PAGES / NR_CPUS / 16))
|
|
|
|
#define VMAP_BLOCK_SIZE (VMAP_BBMAP_BITS * PAGE_SIZE)
|
|
|
|
static bool vmap_initialized __read_mostly = false;
|
|
|
|
struct vmap_block_queue {
|
|
spinlock_t lock;
|
|
struct list_head free;
|
|
struct list_head dirty;
|
|
unsigned int nr_dirty;
|
|
};
|
|
|
|
struct vmap_block {
|
|
spinlock_t lock;
|
|
struct vmap_area *va;
|
|
struct vmap_block_queue *vbq;
|
|
unsigned long free, dirty;
|
|
DECLARE_BITMAP(alloc_map, VMAP_BBMAP_BITS);
|
|
DECLARE_BITMAP(dirty_map, VMAP_BBMAP_BITS);
|
|
union {
|
|
struct list_head free_list;
|
|
struct rcu_head rcu_head;
|
|
};
|
|
};
|
|
|
|
/* Queue of free and dirty vmap blocks, for allocation and flushing purposes */
|
|
static DEFINE_PER_CPU(struct vmap_block_queue, vmap_block_queue);
|
|
|
|
/*
|
|
* Radix tree of vmap blocks, indexed by address, to quickly find a vmap block
|
|
* in the free path. Could get rid of this if we change the API to return a
|
|
* "cookie" from alloc, to be passed to free. But no big deal yet.
|
|
*/
|
|
static DEFINE_SPINLOCK(vmap_block_tree_lock);
|
|
static RADIX_TREE(vmap_block_tree, GFP_ATOMIC);
|
|
|
|
/*
|
|
* We should probably have a fallback mechanism to allocate virtual memory
|
|
* out of partially filled vmap blocks. However vmap block sizing should be
|
|
* fairly reasonable according to the vmalloc size, so it shouldn't be a
|
|
* big problem.
|
|
*/
|
|
|
|
static unsigned long addr_to_vb_idx(unsigned long addr)
|
|
{
|
|
addr -= VMALLOC_START & ~(VMAP_BLOCK_SIZE-1);
|
|
addr /= VMAP_BLOCK_SIZE;
|
|
return addr;
|
|
}
|
|
|
|
static struct vmap_block *new_vmap_block(gfp_t gfp_mask)
|
|
{
|
|
struct vmap_block_queue *vbq;
|
|
struct vmap_block *vb;
|
|
struct vmap_area *va;
|
|
unsigned long vb_idx;
|
|
int node, err;
|
|
|
|
node = numa_node_id();
|
|
|
|
vb = kmalloc_node(sizeof(struct vmap_block),
|
|
gfp_mask & GFP_RECLAIM_MASK, node);
|
|
if (unlikely(!vb))
|
|
return ERR_PTR(-ENOMEM);
|
|
|
|
va = alloc_vmap_area(VMAP_BLOCK_SIZE, VMAP_BLOCK_SIZE,
|
|
VMALLOC_START, VMALLOC_END,
|
|
node, gfp_mask);
|
|
if (unlikely(IS_ERR(va))) {
|
|
kfree(vb);
|
|
return ERR_PTR(PTR_ERR(va));
|
|
}
|
|
|
|
err = radix_tree_preload(gfp_mask);
|
|
if (unlikely(err)) {
|
|
kfree(vb);
|
|
free_vmap_area(va);
|
|
return ERR_PTR(err);
|
|
}
|
|
|
|
spin_lock_init(&vb->lock);
|
|
vb->va = va;
|
|
vb->free = VMAP_BBMAP_BITS;
|
|
vb->dirty = 0;
|
|
bitmap_zero(vb->alloc_map, VMAP_BBMAP_BITS);
|
|
bitmap_zero(vb->dirty_map, VMAP_BBMAP_BITS);
|
|
INIT_LIST_HEAD(&vb->free_list);
|
|
|
|
vb_idx = addr_to_vb_idx(va->va_start);
|
|
spin_lock(&vmap_block_tree_lock);
|
|
err = radix_tree_insert(&vmap_block_tree, vb_idx, vb);
|
|
spin_unlock(&vmap_block_tree_lock);
|
|
BUG_ON(err);
|
|
radix_tree_preload_end();
|
|
|
|
vbq = &get_cpu_var(vmap_block_queue);
|
|
vb->vbq = vbq;
|
|
spin_lock(&vbq->lock);
|
|
list_add(&vb->free_list, &vbq->free);
|
|
spin_unlock(&vbq->lock);
|
|
put_cpu_var(vmap_cpu_blocks);
|
|
|
|
return vb;
|
|
}
|
|
|
|
static void rcu_free_vb(struct rcu_head *head)
|
|
{
|
|
struct vmap_block *vb = container_of(head, struct vmap_block, rcu_head);
|
|
|
|
kfree(vb);
|
|
}
|
|
|
|
static void free_vmap_block(struct vmap_block *vb)
|
|
{
|
|
struct vmap_block *tmp;
|
|
unsigned long vb_idx;
|
|
|
|
BUG_ON(!list_empty(&vb->free_list));
|
|
|
|
vb_idx = addr_to_vb_idx(vb->va->va_start);
|
|
spin_lock(&vmap_block_tree_lock);
|
|
tmp = radix_tree_delete(&vmap_block_tree, vb_idx);
|
|
spin_unlock(&vmap_block_tree_lock);
|
|
BUG_ON(tmp != vb);
|
|
|
|
free_unmap_vmap_area_noflush(vb->va);
|
|
call_rcu(&vb->rcu_head, rcu_free_vb);
|
|
}
|
|
|
|
static void *vb_alloc(unsigned long size, gfp_t gfp_mask)
|
|
{
|
|
struct vmap_block_queue *vbq;
|
|
struct vmap_block *vb;
|
|
unsigned long addr = 0;
|
|
unsigned int order;
|
|
|
|
BUG_ON(size & ~PAGE_MASK);
|
|
BUG_ON(size > PAGE_SIZE*VMAP_MAX_ALLOC);
|
|
order = get_order(size);
|
|
|
|
again:
|
|
rcu_read_lock();
|
|
vbq = &get_cpu_var(vmap_block_queue);
|
|
list_for_each_entry_rcu(vb, &vbq->free, free_list) {
|
|
int i;
|
|
|
|
spin_lock(&vb->lock);
|
|
i = bitmap_find_free_region(vb->alloc_map,
|
|
VMAP_BBMAP_BITS, order);
|
|
|
|
if (i >= 0) {
|
|
addr = vb->va->va_start + (i << PAGE_SHIFT);
|
|
BUG_ON(addr_to_vb_idx(addr) !=
|
|
addr_to_vb_idx(vb->va->va_start));
|
|
vb->free -= 1UL << order;
|
|
if (vb->free == 0) {
|
|
spin_lock(&vbq->lock);
|
|
list_del_init(&vb->free_list);
|
|
spin_unlock(&vbq->lock);
|
|
}
|
|
spin_unlock(&vb->lock);
|
|
break;
|
|
}
|
|
spin_unlock(&vb->lock);
|
|
}
|
|
put_cpu_var(vmap_cpu_blocks);
|
|
rcu_read_unlock();
|
|
|
|
if (!addr) {
|
|
vb = new_vmap_block(gfp_mask);
|
|
if (IS_ERR(vb))
|
|
return vb;
|
|
goto again;
|
|
}
|
|
|
|
return (void *)addr;
|
|
}
|
|
|
|
static void vb_free(const void *addr, unsigned long size)
|
|
{
|
|
unsigned long offset;
|
|
unsigned long vb_idx;
|
|
unsigned int order;
|
|
struct vmap_block *vb;
|
|
|
|
BUG_ON(size & ~PAGE_MASK);
|
|
BUG_ON(size > PAGE_SIZE*VMAP_MAX_ALLOC);
|
|
|
|
flush_cache_vunmap((unsigned long)addr, (unsigned long)addr + size);
|
|
|
|
order = get_order(size);
|
|
|
|
offset = (unsigned long)addr & (VMAP_BLOCK_SIZE - 1);
|
|
|
|
vb_idx = addr_to_vb_idx((unsigned long)addr);
|
|
rcu_read_lock();
|
|
vb = radix_tree_lookup(&vmap_block_tree, vb_idx);
|
|
rcu_read_unlock();
|
|
BUG_ON(!vb);
|
|
|
|
spin_lock(&vb->lock);
|
|
bitmap_allocate_region(vb->dirty_map, offset >> PAGE_SHIFT, order);
|
|
|
|
vb->dirty += 1UL << order;
|
|
if (vb->dirty == VMAP_BBMAP_BITS) {
|
|
BUG_ON(vb->free || !list_empty(&vb->free_list));
|
|
spin_unlock(&vb->lock);
|
|
free_vmap_block(vb);
|
|
} else
|
|
spin_unlock(&vb->lock);
|
|
}
|
|
|
|
/**
|
|
* vm_unmap_aliases - unmap outstanding lazy aliases in the vmap layer
|
|
*
|
|
* The vmap/vmalloc layer lazily flushes kernel virtual mappings primarily
|
|
* to amortize TLB flushing overheads. What this means is that any page you
|
|
* have now, may, in a former life, have been mapped into kernel virtual
|
|
* address by the vmap layer and so there might be some CPUs with TLB entries
|
|
* still referencing that page (additional to the regular 1:1 kernel mapping).
|
|
*
|
|
* vm_unmap_aliases flushes all such lazy mappings. After it returns, we can
|
|
* be sure that none of the pages we have control over will have any aliases
|
|
* from the vmap layer.
|
|
*/
|
|
void vm_unmap_aliases(void)
|
|
{
|
|
unsigned long start = ULONG_MAX, end = 0;
|
|
int cpu;
|
|
int flush = 0;
|
|
|
|
if (unlikely(!vmap_initialized))
|
|
return;
|
|
|
|
for_each_possible_cpu(cpu) {
|
|
struct vmap_block_queue *vbq = &per_cpu(vmap_block_queue, cpu);
|
|
struct vmap_block *vb;
|
|
|
|
rcu_read_lock();
|
|
list_for_each_entry_rcu(vb, &vbq->free, free_list) {
|
|
int i;
|
|
|
|
spin_lock(&vb->lock);
|
|
i = find_first_bit(vb->dirty_map, VMAP_BBMAP_BITS);
|
|
while (i < VMAP_BBMAP_BITS) {
|
|
unsigned long s, e;
|
|
int j;
|
|
j = find_next_zero_bit(vb->dirty_map,
|
|
VMAP_BBMAP_BITS, i);
|
|
|
|
s = vb->va->va_start + (i << PAGE_SHIFT);
|
|
e = vb->va->va_start + (j << PAGE_SHIFT);
|
|
vunmap_page_range(s, e);
|
|
flush = 1;
|
|
|
|
if (s < start)
|
|
start = s;
|
|
if (e > end)
|
|
end = e;
|
|
|
|
i = j;
|
|
i = find_next_bit(vb->dirty_map,
|
|
VMAP_BBMAP_BITS, i);
|
|
}
|
|
spin_unlock(&vb->lock);
|
|
}
|
|
rcu_read_unlock();
|
|
}
|
|
|
|
__purge_vmap_area_lazy(&start, &end, 1, flush);
|
|
}
|
|
EXPORT_SYMBOL_GPL(vm_unmap_aliases);
|
|
|
|
/**
|
|
* vm_unmap_ram - unmap linear kernel address space set up by vm_map_ram
|
|
* @mem: the pointer returned by vm_map_ram
|
|
* @count: the count passed to that vm_map_ram call (cannot unmap partial)
|
|
*/
|
|
void vm_unmap_ram(const void *mem, unsigned int count)
|
|
{
|
|
unsigned long size = count << PAGE_SHIFT;
|
|
unsigned long addr = (unsigned long)mem;
|
|
|
|
BUG_ON(!addr);
|
|
BUG_ON(addr < VMALLOC_START);
|
|
BUG_ON(addr > VMALLOC_END);
|
|
BUG_ON(addr & (PAGE_SIZE-1));
|
|
|
|
debug_check_no_locks_freed(mem, size);
|
|
vmap_debug_free_range(addr, addr+size);
|
|
|
|
if (likely(count <= VMAP_MAX_ALLOC))
|
|
vb_free(mem, size);
|
|
else
|
|
free_unmap_vmap_area_addr(addr);
|
|
}
|
|
EXPORT_SYMBOL(vm_unmap_ram);
|
|
|
|
/**
|
|
* vm_map_ram - map pages linearly into kernel virtual address (vmalloc space)
|
|
* @pages: an array of pointers to the pages to be mapped
|
|
* @count: number of pages
|
|
* @node: prefer to allocate data structures on this node
|
|
* @prot: memory protection to use. PAGE_KERNEL for regular RAM
|
|
*
|
|
* Returns: a pointer to the address that has been mapped, or %NULL on failure
|
|
*/
|
|
void *vm_map_ram(struct page **pages, unsigned int count, int node, pgprot_t prot)
|
|
{
|
|
unsigned long size = count << PAGE_SHIFT;
|
|
unsigned long addr;
|
|
void *mem;
|
|
|
|
if (likely(count <= VMAP_MAX_ALLOC)) {
|
|
mem = vb_alloc(size, GFP_KERNEL);
|
|
if (IS_ERR(mem))
|
|
return NULL;
|
|
addr = (unsigned long)mem;
|
|
} else {
|
|
struct vmap_area *va;
|
|
va = alloc_vmap_area(size, PAGE_SIZE,
|
|
VMALLOC_START, VMALLOC_END, node, GFP_KERNEL);
|
|
if (IS_ERR(va))
|
|
return NULL;
|
|
|
|
addr = va->va_start;
|
|
mem = (void *)addr;
|
|
}
|
|
if (vmap_page_range(addr, addr + size, prot, pages) < 0) {
|
|
vm_unmap_ram(mem, count);
|
|
return NULL;
|
|
}
|
|
return mem;
|
|
}
|
|
EXPORT_SYMBOL(vm_map_ram);
|
|
|
|
/**
|
|
* vm_area_register_early - register vmap area early during boot
|
|
* @vm: vm_struct to register
|
|
* @align: requested alignment
|
|
*
|
|
* This function is used to register kernel vm area before
|
|
* vmalloc_init() is called. @vm->size and @vm->flags should contain
|
|
* proper values on entry and other fields should be zero. On return,
|
|
* vm->addr contains the allocated address.
|
|
*
|
|
* DO NOT USE THIS FUNCTION UNLESS YOU KNOW WHAT YOU'RE DOING.
|
|
*/
|
|
void __init vm_area_register_early(struct vm_struct *vm, size_t align)
|
|
{
|
|
static size_t vm_init_off __initdata;
|
|
unsigned long addr;
|
|
|
|
addr = ALIGN(VMALLOC_START + vm_init_off, align);
|
|
vm_init_off = PFN_ALIGN(addr + vm->size) - VMALLOC_START;
|
|
|
|
vm->addr = (void *)addr;
|
|
|
|
vm->next = vmlist;
|
|
vmlist = vm;
|
|
}
|
|
|
|
void __init vmalloc_init(void)
|
|
{
|
|
struct vmap_area *va;
|
|
struct vm_struct *tmp;
|
|
int i;
|
|
|
|
for_each_possible_cpu(i) {
|
|
struct vmap_block_queue *vbq;
|
|
|
|
vbq = &per_cpu(vmap_block_queue, i);
|
|
spin_lock_init(&vbq->lock);
|
|
INIT_LIST_HEAD(&vbq->free);
|
|
INIT_LIST_HEAD(&vbq->dirty);
|
|
vbq->nr_dirty = 0;
|
|
}
|
|
|
|
/* Import existing vmlist entries. */
|
|
for (tmp = vmlist; tmp; tmp = tmp->next) {
|
|
va = kzalloc(sizeof(struct vmap_area), GFP_NOWAIT);
|
|
va->flags = tmp->flags | VM_VM_AREA;
|
|
va->va_start = (unsigned long)tmp->addr;
|
|
va->va_end = va->va_start + tmp->size;
|
|
__insert_vmap_area(va);
|
|
}
|
|
vmap_initialized = true;
|
|
}
|
|
|
|
/**
|
|
* map_kernel_range_noflush - map kernel VM area with the specified pages
|
|
* @addr: start of the VM area to map
|
|
* @size: size of the VM area to map
|
|
* @prot: page protection flags to use
|
|
* @pages: pages to map
|
|
*
|
|
* Map PFN_UP(@size) pages at @addr. The VM area @addr and @size
|
|
* specify should have been allocated using get_vm_area() and its
|
|
* friends.
|
|
*
|
|
* NOTE:
|
|
* This function does NOT do any cache flushing. The caller is
|
|
* responsible for calling flush_cache_vmap() on to-be-mapped areas
|
|
* before calling this function.
|
|
*
|
|
* RETURNS:
|
|
* The number of pages mapped on success, -errno on failure.
|
|
*/
|
|
int map_kernel_range_noflush(unsigned long addr, unsigned long size,
|
|
pgprot_t prot, struct page **pages)
|
|
{
|
|
return vmap_page_range_noflush(addr, addr + size, prot, pages);
|
|
}
|
|
|
|
/**
|
|
* unmap_kernel_range_noflush - unmap kernel VM area
|
|
* @addr: start of the VM area to unmap
|
|
* @size: size of the VM area to unmap
|
|
*
|
|
* Unmap PFN_UP(@size) pages at @addr. The VM area @addr and @size
|
|
* specify should have been allocated using get_vm_area() and its
|
|
* friends.
|
|
*
|
|
* NOTE:
|
|
* This function does NOT do any cache flushing. The caller is
|
|
* responsible for calling flush_cache_vunmap() on to-be-mapped areas
|
|
* before calling this function and flush_tlb_kernel_range() after.
|
|
*/
|
|
void unmap_kernel_range_noflush(unsigned long addr, unsigned long size)
|
|
{
|
|
vunmap_page_range(addr, addr + size);
|
|
}
|
|
|
|
/**
|
|
* unmap_kernel_range - unmap kernel VM area and flush cache and TLB
|
|
* @addr: start of the VM area to unmap
|
|
* @size: size of the VM area to unmap
|
|
*
|
|
* Similar to unmap_kernel_range_noflush() but flushes vcache before
|
|
* the unmapping and tlb after.
|
|
*/
|
|
void unmap_kernel_range(unsigned long addr, unsigned long size)
|
|
{
|
|
unsigned long end = addr + size;
|
|
|
|
flush_cache_vunmap(addr, end);
|
|
vunmap_page_range(addr, end);
|
|
flush_tlb_kernel_range(addr, end);
|
|
}
|
|
|
|
int map_vm_area(struct vm_struct *area, pgprot_t prot, struct page ***pages)
|
|
{
|
|
unsigned long addr = (unsigned long)area->addr;
|
|
unsigned long end = addr + area->size - PAGE_SIZE;
|
|
int err;
|
|
|
|
err = vmap_page_range(addr, end, prot, *pages);
|
|
if (err > 0) {
|
|
*pages += err;
|
|
err = 0;
|
|
}
|
|
|
|
return err;
|
|
}
|
|
EXPORT_SYMBOL_GPL(map_vm_area);
|
|
|
|
/*** Old vmalloc interfaces ***/
|
|
DEFINE_RWLOCK(vmlist_lock);
|
|
struct vm_struct *vmlist;
|
|
|
|
static struct vm_struct *__get_vm_area_node(unsigned long size,
|
|
unsigned long flags, unsigned long start, unsigned long end,
|
|
int node, gfp_t gfp_mask, void *caller)
|
|
{
|
|
static struct vmap_area *va;
|
|
struct vm_struct *area;
|
|
struct vm_struct *tmp, **p;
|
|
unsigned long align = 1;
|
|
|
|
BUG_ON(in_interrupt());
|
|
if (flags & VM_IOREMAP) {
|
|
int bit = fls(size);
|
|
|
|
if (bit > IOREMAP_MAX_ORDER)
|
|
bit = IOREMAP_MAX_ORDER;
|
|
else if (bit < PAGE_SHIFT)
|
|
bit = PAGE_SHIFT;
|
|
|
|
align = 1ul << bit;
|
|
}
|
|
|
|
size = PAGE_ALIGN(size);
|
|
if (unlikely(!size))
|
|
return NULL;
|
|
|
|
area = kmalloc_node(sizeof(*area), gfp_mask & GFP_RECLAIM_MASK, node);
|
|
if (unlikely(!area))
|
|
return NULL;
|
|
|
|
/*
|
|
* We always allocate a guard page.
|
|
*/
|
|
size += PAGE_SIZE;
|
|
|
|
va = alloc_vmap_area(size, align, start, end, node, gfp_mask);
|
|
if (IS_ERR(va)) {
|
|
kfree(area);
|
|
return NULL;
|
|
}
|
|
|
|
area->flags = flags;
|
|
area->addr = (void *)va->va_start;
|
|
area->size = size;
|
|
area->pages = NULL;
|
|
area->nr_pages = 0;
|
|
area->phys_addr = 0;
|
|
area->caller = caller;
|
|
va->private = area;
|
|
va->flags |= VM_VM_AREA;
|
|
|
|
write_lock(&vmlist_lock);
|
|
for (p = &vmlist; (tmp = *p) != NULL; p = &tmp->next) {
|
|
if (tmp->addr >= area->addr)
|
|
break;
|
|
}
|
|
area->next = *p;
|
|
*p = area;
|
|
write_unlock(&vmlist_lock);
|
|
|
|
return area;
|
|
}
|
|
|
|
struct vm_struct *__get_vm_area(unsigned long size, unsigned long flags,
|
|
unsigned long start, unsigned long end)
|
|
{
|
|
return __get_vm_area_node(size, flags, start, end, -1, GFP_KERNEL,
|
|
__builtin_return_address(0));
|
|
}
|
|
EXPORT_SYMBOL_GPL(__get_vm_area);
|
|
|
|
struct vm_struct *__get_vm_area_caller(unsigned long size, unsigned long flags,
|
|
unsigned long start, unsigned long end,
|
|
void *caller)
|
|
{
|
|
return __get_vm_area_node(size, flags, start, end, -1, GFP_KERNEL,
|
|
caller);
|
|
}
|
|
|
|
/**
|
|
* get_vm_area - reserve a contiguous kernel virtual area
|
|
* @size: size of the area
|
|
* @flags: %VM_IOREMAP for I/O mappings or VM_ALLOC
|
|
*
|
|
* Search an area of @size in the kernel virtual mapping area,
|
|
* and reserved it for out purposes. Returns the area descriptor
|
|
* on success or %NULL on failure.
|
|
*/
|
|
struct vm_struct *get_vm_area(unsigned long size, unsigned long flags)
|
|
{
|
|
return __get_vm_area_node(size, flags, VMALLOC_START, VMALLOC_END,
|
|
-1, GFP_KERNEL, __builtin_return_address(0));
|
|
}
|
|
|
|
struct vm_struct *get_vm_area_caller(unsigned long size, unsigned long flags,
|
|
void *caller)
|
|
{
|
|
return __get_vm_area_node(size, flags, VMALLOC_START, VMALLOC_END,
|
|
-1, GFP_KERNEL, caller);
|
|
}
|
|
|
|
struct vm_struct *get_vm_area_node(unsigned long size, unsigned long flags,
|
|
int node, gfp_t gfp_mask)
|
|
{
|
|
return __get_vm_area_node(size, flags, VMALLOC_START, VMALLOC_END, node,
|
|
gfp_mask, __builtin_return_address(0));
|
|
}
|
|
|
|
static struct vm_struct *find_vm_area(const void *addr)
|
|
{
|
|
struct vmap_area *va;
|
|
|
|
va = find_vmap_area((unsigned long)addr);
|
|
if (va && va->flags & VM_VM_AREA)
|
|
return va->private;
|
|
|
|
return NULL;
|
|
}
|
|
|
|
/**
|
|
* remove_vm_area - find and remove a continuous kernel virtual area
|
|
* @addr: base address
|
|
*
|
|
* Search for the kernel VM area starting at @addr, and remove it.
|
|
* This function returns the found VM area, but using it is NOT safe
|
|
* on SMP machines, except for its size or flags.
|
|
*/
|
|
struct vm_struct *remove_vm_area(const void *addr)
|
|
{
|
|
struct vmap_area *va;
|
|
|
|
va = find_vmap_area((unsigned long)addr);
|
|
if (va && va->flags & VM_VM_AREA) {
|
|
struct vm_struct *vm = va->private;
|
|
struct vm_struct *tmp, **p;
|
|
|
|
vmap_debug_free_range(va->va_start, va->va_end);
|
|
free_unmap_vmap_area(va);
|
|
vm->size -= PAGE_SIZE;
|
|
|
|
write_lock(&vmlist_lock);
|
|
for (p = &vmlist; (tmp = *p) != vm; p = &tmp->next)
|
|
;
|
|
*p = tmp->next;
|
|
write_unlock(&vmlist_lock);
|
|
|
|
return vm;
|
|
}
|
|
return NULL;
|
|
}
|
|
|
|
static void __vunmap(const void *addr, int deallocate_pages)
|
|
{
|
|
struct vm_struct *area;
|
|
|
|
if (!addr)
|
|
return;
|
|
|
|
if ((PAGE_SIZE-1) & (unsigned long)addr) {
|
|
WARN(1, KERN_ERR "Trying to vfree() bad address (%p)\n", addr);
|
|
return;
|
|
}
|
|
|
|
area = remove_vm_area(addr);
|
|
if (unlikely(!area)) {
|
|
WARN(1, KERN_ERR "Trying to vfree() nonexistent vm area (%p)\n",
|
|
addr);
|
|
return;
|
|
}
|
|
|
|
debug_check_no_locks_freed(addr, area->size);
|
|
debug_check_no_obj_freed(addr, area->size);
|
|
|
|
if (deallocate_pages) {
|
|
int i;
|
|
|
|
for (i = 0; i < area->nr_pages; i++) {
|
|
struct page *page = area->pages[i];
|
|
|
|
BUG_ON(!page);
|
|
__free_page(page);
|
|
}
|
|
|
|
if (area->flags & VM_VPAGES)
|
|
vfree(area->pages);
|
|
else
|
|
kfree(area->pages);
|
|
}
|
|
|
|
kfree(area);
|
|
return;
|
|
}
|
|
|
|
/**
|
|
* vfree - release memory allocated by vmalloc()
|
|
* @addr: memory base address
|
|
*
|
|
* Free the virtually continuous memory area starting at @addr, as
|
|
* obtained from vmalloc(), vmalloc_32() or __vmalloc(). If @addr is
|
|
* NULL, no operation is performed.
|
|
*
|
|
* Must not be called in interrupt context.
|
|
*/
|
|
void vfree(const void *addr)
|
|
{
|
|
BUG_ON(in_interrupt());
|
|
|
|
kmemleak_free(addr);
|
|
|
|
__vunmap(addr, 1);
|
|
}
|
|
EXPORT_SYMBOL(vfree);
|
|
|
|
/**
|
|
* vunmap - release virtual mapping obtained by vmap()
|
|
* @addr: memory base address
|
|
*
|
|
* Free the virtually contiguous memory area starting at @addr,
|
|
* which was created from the page array passed to vmap().
|
|
*
|
|
* Must not be called in interrupt context.
|
|
*/
|
|
void vunmap(const void *addr)
|
|
{
|
|
BUG_ON(in_interrupt());
|
|
might_sleep();
|
|
__vunmap(addr, 0);
|
|
}
|
|
EXPORT_SYMBOL(vunmap);
|
|
|
|
/**
|
|
* vmap - map an array of pages into virtually contiguous space
|
|
* @pages: array of page pointers
|
|
* @count: number of pages to map
|
|
* @flags: vm_area->flags
|
|
* @prot: page protection for the mapping
|
|
*
|
|
* Maps @count pages from @pages into contiguous kernel virtual
|
|
* space.
|
|
*/
|
|
void *vmap(struct page **pages, unsigned int count,
|
|
unsigned long flags, pgprot_t prot)
|
|
{
|
|
struct vm_struct *area;
|
|
|
|
might_sleep();
|
|
|
|
if (count > num_physpages)
|
|
return NULL;
|
|
|
|
area = get_vm_area_caller((count << PAGE_SHIFT), flags,
|
|
__builtin_return_address(0));
|
|
if (!area)
|
|
return NULL;
|
|
|
|
if (map_vm_area(area, prot, &pages)) {
|
|
vunmap(area->addr);
|
|
return NULL;
|
|
}
|
|
|
|
return area->addr;
|
|
}
|
|
EXPORT_SYMBOL(vmap);
|
|
|
|
static void *__vmalloc_node(unsigned long size, gfp_t gfp_mask, pgprot_t prot,
|
|
int node, void *caller);
|
|
static void *__vmalloc_area_node(struct vm_struct *area, gfp_t gfp_mask,
|
|
pgprot_t prot, int node, void *caller)
|
|
{
|
|
struct page **pages;
|
|
unsigned int nr_pages, array_size, i;
|
|
|
|
nr_pages = (area->size - PAGE_SIZE) >> PAGE_SHIFT;
|
|
array_size = (nr_pages * sizeof(struct page *));
|
|
|
|
area->nr_pages = nr_pages;
|
|
/* Please note that the recursion is strictly bounded. */
|
|
if (array_size > PAGE_SIZE) {
|
|
pages = __vmalloc_node(array_size, gfp_mask | __GFP_ZERO,
|
|
PAGE_KERNEL, node, caller);
|
|
area->flags |= VM_VPAGES;
|
|
} else {
|
|
pages = kmalloc_node(array_size,
|
|
(gfp_mask & GFP_RECLAIM_MASK) | __GFP_ZERO,
|
|
node);
|
|
}
|
|
area->pages = pages;
|
|
area->caller = caller;
|
|
if (!area->pages) {
|
|
remove_vm_area(area->addr);
|
|
kfree(area);
|
|
return NULL;
|
|
}
|
|
|
|
for (i = 0; i < area->nr_pages; i++) {
|
|
struct page *page;
|
|
|
|
if (node < 0)
|
|
page = alloc_page(gfp_mask);
|
|
else
|
|
page = alloc_pages_node(node, gfp_mask, 0);
|
|
|
|
if (unlikely(!page)) {
|
|
/* Successfully allocated i pages, free them in __vunmap() */
|
|
area->nr_pages = i;
|
|
goto fail;
|
|
}
|
|
area->pages[i] = page;
|
|
}
|
|
|
|
if (map_vm_area(area, prot, &pages))
|
|
goto fail;
|
|
return area->addr;
|
|
|
|
fail:
|
|
vfree(area->addr);
|
|
return NULL;
|
|
}
|
|
|
|
void *__vmalloc_area(struct vm_struct *area, gfp_t gfp_mask, pgprot_t prot)
|
|
{
|
|
void *addr = __vmalloc_area_node(area, gfp_mask, prot, -1,
|
|
__builtin_return_address(0));
|
|
|
|
/*
|
|
* A ref_count = 3 is needed because the vm_struct and vmap_area
|
|
* structures allocated in the __get_vm_area_node() function contain
|
|
* references to the virtual address of the vmalloc'ed block.
|
|
*/
|
|
kmemleak_alloc(addr, area->size - PAGE_SIZE, 3, gfp_mask);
|
|
|
|
return addr;
|
|
}
|
|
|
|
/**
|
|
* __vmalloc_node - allocate virtually contiguous memory
|
|
* @size: allocation size
|
|
* @gfp_mask: flags for the page level allocator
|
|
* @prot: protection mask for the allocated pages
|
|
* @node: node to use for allocation or -1
|
|
* @caller: caller's return address
|
|
*
|
|
* Allocate enough pages to cover @size from the page level
|
|
* allocator with @gfp_mask flags. Map them into contiguous
|
|
* kernel virtual space, using a pagetable protection of @prot.
|
|
*/
|
|
static void *__vmalloc_node(unsigned long size, gfp_t gfp_mask, pgprot_t prot,
|
|
int node, void *caller)
|
|
{
|
|
struct vm_struct *area;
|
|
void *addr;
|
|
unsigned long real_size = size;
|
|
|
|
size = PAGE_ALIGN(size);
|
|
if (!size || (size >> PAGE_SHIFT) > num_physpages)
|
|
return NULL;
|
|
|
|
area = __get_vm_area_node(size, VM_ALLOC, VMALLOC_START, VMALLOC_END,
|
|
node, gfp_mask, caller);
|
|
|
|
if (!area)
|
|
return NULL;
|
|
|
|
addr = __vmalloc_area_node(area, gfp_mask, prot, node, caller);
|
|
|
|
/*
|
|
* A ref_count = 3 is needed because the vm_struct and vmap_area
|
|
* structures allocated in the __get_vm_area_node() function contain
|
|
* references to the virtual address of the vmalloc'ed block.
|
|
*/
|
|
kmemleak_alloc(addr, real_size, 3, gfp_mask);
|
|
|
|
return addr;
|
|
}
|
|
|
|
void *__vmalloc(unsigned long size, gfp_t gfp_mask, pgprot_t prot)
|
|
{
|
|
return __vmalloc_node(size, gfp_mask, prot, -1,
|
|
__builtin_return_address(0));
|
|
}
|
|
EXPORT_SYMBOL(__vmalloc);
|
|
|
|
/**
|
|
* vmalloc - allocate virtually contiguous memory
|
|
* @size: allocation size
|
|
* Allocate enough pages to cover @size from the page level
|
|
* allocator and map them into contiguous kernel virtual space.
|
|
*
|
|
* For tight control over page level allocator and protection flags
|
|
* use __vmalloc() instead.
|
|
*/
|
|
void *vmalloc(unsigned long size)
|
|
{
|
|
return __vmalloc_node(size, GFP_KERNEL | __GFP_HIGHMEM, PAGE_KERNEL,
|
|
-1, __builtin_return_address(0));
|
|
}
|
|
EXPORT_SYMBOL(vmalloc);
|
|
|
|
/**
|
|
* vmalloc_user - allocate zeroed virtually contiguous memory for userspace
|
|
* @size: allocation size
|
|
*
|
|
* The resulting memory area is zeroed so it can be mapped to userspace
|
|
* without leaking data.
|
|
*/
|
|
void *vmalloc_user(unsigned long size)
|
|
{
|
|
struct vm_struct *area;
|
|
void *ret;
|
|
|
|
ret = __vmalloc_node(size, GFP_KERNEL | __GFP_HIGHMEM | __GFP_ZERO,
|
|
PAGE_KERNEL, -1, __builtin_return_address(0));
|
|
if (ret) {
|
|
area = find_vm_area(ret);
|
|
area->flags |= VM_USERMAP;
|
|
}
|
|
return ret;
|
|
}
|
|
EXPORT_SYMBOL(vmalloc_user);
|
|
|
|
/**
|
|
* vmalloc_node - allocate memory on a specific node
|
|
* @size: allocation size
|
|
* @node: numa node
|
|
*
|
|
* Allocate enough pages to cover @size from the page level
|
|
* allocator and map them into contiguous kernel virtual space.
|
|
*
|
|
* For tight control over page level allocator and protection flags
|
|
* use __vmalloc() instead.
|
|
*/
|
|
void *vmalloc_node(unsigned long size, int node)
|
|
{
|
|
return __vmalloc_node(size, GFP_KERNEL | __GFP_HIGHMEM, PAGE_KERNEL,
|
|
node, __builtin_return_address(0));
|
|
}
|
|
EXPORT_SYMBOL(vmalloc_node);
|
|
|
|
#ifndef PAGE_KERNEL_EXEC
|
|
# define PAGE_KERNEL_EXEC PAGE_KERNEL
|
|
#endif
|
|
|
|
/**
|
|
* vmalloc_exec - allocate virtually contiguous, executable memory
|
|
* @size: allocation size
|
|
*
|
|
* Kernel-internal function to allocate enough pages to cover @size
|
|
* the page level allocator and map them into contiguous and
|
|
* executable kernel virtual space.
|
|
*
|
|
* For tight control over page level allocator and protection flags
|
|
* use __vmalloc() instead.
|
|
*/
|
|
|
|
void *vmalloc_exec(unsigned long size)
|
|
{
|
|
return __vmalloc_node(size, GFP_KERNEL | __GFP_HIGHMEM, PAGE_KERNEL_EXEC,
|
|
-1, __builtin_return_address(0));
|
|
}
|
|
|
|
#if defined(CONFIG_64BIT) && defined(CONFIG_ZONE_DMA32)
|
|
#define GFP_VMALLOC32 GFP_DMA32 | GFP_KERNEL
|
|
#elif defined(CONFIG_64BIT) && defined(CONFIG_ZONE_DMA)
|
|
#define GFP_VMALLOC32 GFP_DMA | GFP_KERNEL
|
|
#else
|
|
#define GFP_VMALLOC32 GFP_KERNEL
|
|
#endif
|
|
|
|
/**
|
|
* vmalloc_32 - allocate virtually contiguous memory (32bit addressable)
|
|
* @size: allocation size
|
|
*
|
|
* Allocate enough 32bit PA addressable pages to cover @size from the
|
|
* page level allocator and map them into contiguous kernel virtual space.
|
|
*/
|
|
void *vmalloc_32(unsigned long size)
|
|
{
|
|
return __vmalloc_node(size, GFP_VMALLOC32, PAGE_KERNEL,
|
|
-1, __builtin_return_address(0));
|
|
}
|
|
EXPORT_SYMBOL(vmalloc_32);
|
|
|
|
/**
|
|
* vmalloc_32_user - allocate zeroed virtually contiguous 32bit memory
|
|
* @size: allocation size
|
|
*
|
|
* The resulting memory area is 32bit addressable and zeroed so it can be
|
|
* mapped to userspace without leaking data.
|
|
*/
|
|
void *vmalloc_32_user(unsigned long size)
|
|
{
|
|
struct vm_struct *area;
|
|
void *ret;
|
|
|
|
ret = __vmalloc_node(size, GFP_VMALLOC32 | __GFP_ZERO, PAGE_KERNEL,
|
|
-1, __builtin_return_address(0));
|
|
if (ret) {
|
|
area = find_vm_area(ret);
|
|
area->flags |= VM_USERMAP;
|
|
}
|
|
return ret;
|
|
}
|
|
EXPORT_SYMBOL(vmalloc_32_user);
|
|
|
|
long vread(char *buf, char *addr, unsigned long count)
|
|
{
|
|
struct vm_struct *tmp;
|
|
char *vaddr, *buf_start = buf;
|
|
unsigned long n;
|
|
|
|
/* Don't allow overflow */
|
|
if ((unsigned long) addr + count < count)
|
|
count = -(unsigned long) addr;
|
|
|
|
read_lock(&vmlist_lock);
|
|
for (tmp = vmlist; tmp; tmp = tmp->next) {
|
|
vaddr = (char *) tmp->addr;
|
|
if (addr >= vaddr + tmp->size - PAGE_SIZE)
|
|
continue;
|
|
while (addr < vaddr) {
|
|
if (count == 0)
|
|
goto finished;
|
|
*buf = '\0';
|
|
buf++;
|
|
addr++;
|
|
count--;
|
|
}
|
|
n = vaddr + tmp->size - PAGE_SIZE - addr;
|
|
do {
|
|
if (count == 0)
|
|
goto finished;
|
|
*buf = *addr;
|
|
buf++;
|
|
addr++;
|
|
count--;
|
|
} while (--n > 0);
|
|
}
|
|
finished:
|
|
read_unlock(&vmlist_lock);
|
|
return buf - buf_start;
|
|
}
|
|
|
|
long vwrite(char *buf, char *addr, unsigned long count)
|
|
{
|
|
struct vm_struct *tmp;
|
|
char *vaddr, *buf_start = buf;
|
|
unsigned long n;
|
|
|
|
/* Don't allow overflow */
|
|
if ((unsigned long) addr + count < count)
|
|
count = -(unsigned long) addr;
|
|
|
|
read_lock(&vmlist_lock);
|
|
for (tmp = vmlist; tmp; tmp = tmp->next) {
|
|
vaddr = (char *) tmp->addr;
|
|
if (addr >= vaddr + tmp->size - PAGE_SIZE)
|
|
continue;
|
|
while (addr < vaddr) {
|
|
if (count == 0)
|
|
goto finished;
|
|
buf++;
|
|
addr++;
|
|
count--;
|
|
}
|
|
n = vaddr + tmp->size - PAGE_SIZE - addr;
|
|
do {
|
|
if (count == 0)
|
|
goto finished;
|
|
*addr = *buf;
|
|
buf++;
|
|
addr++;
|
|
count--;
|
|
} while (--n > 0);
|
|
}
|
|
finished:
|
|
read_unlock(&vmlist_lock);
|
|
return buf - buf_start;
|
|
}
|
|
|
|
/**
|
|
* remap_vmalloc_range - map vmalloc pages to userspace
|
|
* @vma: vma to cover (map full range of vma)
|
|
* @addr: vmalloc memory
|
|
* @pgoff: number of pages into addr before first page to map
|
|
*
|
|
* Returns: 0 for success, -Exxx on failure
|
|
*
|
|
* This function checks that addr is a valid vmalloc'ed area, and
|
|
* that it is big enough to cover the vma. Will return failure if
|
|
* that criteria isn't met.
|
|
*
|
|
* Similar to remap_pfn_range() (see mm/memory.c)
|
|
*/
|
|
int remap_vmalloc_range(struct vm_area_struct *vma, void *addr,
|
|
unsigned long pgoff)
|
|
{
|
|
struct vm_struct *area;
|
|
unsigned long uaddr = vma->vm_start;
|
|
unsigned long usize = vma->vm_end - vma->vm_start;
|
|
|
|
if ((PAGE_SIZE-1) & (unsigned long)addr)
|
|
return -EINVAL;
|
|
|
|
area = find_vm_area(addr);
|
|
if (!area)
|
|
return -EINVAL;
|
|
|
|
if (!(area->flags & VM_USERMAP))
|
|
return -EINVAL;
|
|
|
|
if (usize + (pgoff << PAGE_SHIFT) > area->size - PAGE_SIZE)
|
|
return -EINVAL;
|
|
|
|
addr += pgoff << PAGE_SHIFT;
|
|
do {
|
|
struct page *page = vmalloc_to_page(addr);
|
|
int ret;
|
|
|
|
ret = vm_insert_page(vma, uaddr, page);
|
|
if (ret)
|
|
return ret;
|
|
|
|
uaddr += PAGE_SIZE;
|
|
addr += PAGE_SIZE;
|
|
usize -= PAGE_SIZE;
|
|
} while (usize > 0);
|
|
|
|
/* Prevent "things" like memory migration? VM_flags need a cleanup... */
|
|
vma->vm_flags |= VM_RESERVED;
|
|
|
|
return 0;
|
|
}
|
|
EXPORT_SYMBOL(remap_vmalloc_range);
|
|
|
|
/*
|
|
* Implement a stub for vmalloc_sync_all() if the architecture chose not to
|
|
* have one.
|
|
*/
|
|
void __attribute__((weak)) vmalloc_sync_all(void)
|
|
{
|
|
}
|
|
|
|
|
|
static int f(pte_t *pte, pgtable_t table, unsigned long addr, void *data)
|
|
{
|
|
/* apply_to_page_range() does all the hard work. */
|
|
return 0;
|
|
}
|
|
|
|
/**
|
|
* alloc_vm_area - allocate a range of kernel address space
|
|
* @size: size of the area
|
|
*
|
|
* Returns: NULL on failure, vm_struct on success
|
|
*
|
|
* This function reserves a range of kernel address space, and
|
|
* allocates pagetables to map that range. No actual mappings
|
|
* are created. If the kernel address space is not shared
|
|
* between processes, it syncs the pagetable across all
|
|
* processes.
|
|
*/
|
|
struct vm_struct *alloc_vm_area(size_t size)
|
|
{
|
|
struct vm_struct *area;
|
|
|
|
area = get_vm_area_caller(size, VM_IOREMAP,
|
|
__builtin_return_address(0));
|
|
if (area == NULL)
|
|
return NULL;
|
|
|
|
/*
|
|
* This ensures that page tables are constructed for this region
|
|
* of kernel virtual address space and mapped into init_mm.
|
|
*/
|
|
if (apply_to_page_range(&init_mm, (unsigned long)area->addr,
|
|
area->size, f, NULL)) {
|
|
free_vm_area(area);
|
|
return NULL;
|
|
}
|
|
|
|
/* Make sure the pagetables are constructed in process kernel
|
|
mappings */
|
|
vmalloc_sync_all();
|
|
|
|
return area;
|
|
}
|
|
EXPORT_SYMBOL_GPL(alloc_vm_area);
|
|
|
|
void free_vm_area(struct vm_struct *area)
|
|
{
|
|
struct vm_struct *ret;
|
|
ret = remove_vm_area(area->addr);
|
|
BUG_ON(ret != area);
|
|
kfree(area);
|
|
}
|
|
EXPORT_SYMBOL_GPL(free_vm_area);
|
|
|
|
|
|
#ifdef CONFIG_PROC_FS
|
|
static void *s_start(struct seq_file *m, loff_t *pos)
|
|
{
|
|
loff_t n = *pos;
|
|
struct vm_struct *v;
|
|
|
|
read_lock(&vmlist_lock);
|
|
v = vmlist;
|
|
while (n > 0 && v) {
|
|
n--;
|
|
v = v->next;
|
|
}
|
|
if (!n)
|
|
return v;
|
|
|
|
return NULL;
|
|
|
|
}
|
|
|
|
static void *s_next(struct seq_file *m, void *p, loff_t *pos)
|
|
{
|
|
struct vm_struct *v = p;
|
|
|
|
++*pos;
|
|
return v->next;
|
|
}
|
|
|
|
static void s_stop(struct seq_file *m, void *p)
|
|
{
|
|
read_unlock(&vmlist_lock);
|
|
}
|
|
|
|
static void show_numa_info(struct seq_file *m, struct vm_struct *v)
|
|
{
|
|
if (NUMA_BUILD) {
|
|
unsigned int nr, *counters = m->private;
|
|
|
|
if (!counters)
|
|
return;
|
|
|
|
memset(counters, 0, nr_node_ids * sizeof(unsigned int));
|
|
|
|
for (nr = 0; nr < v->nr_pages; nr++)
|
|
counters[page_to_nid(v->pages[nr])]++;
|
|
|
|
for_each_node_state(nr, N_HIGH_MEMORY)
|
|
if (counters[nr])
|
|
seq_printf(m, " N%u=%u", nr, counters[nr]);
|
|
}
|
|
}
|
|
|
|
static int s_show(struct seq_file *m, void *p)
|
|
{
|
|
struct vm_struct *v = p;
|
|
|
|
seq_printf(m, "0x%p-0x%p %7ld",
|
|
v->addr, v->addr + v->size, v->size);
|
|
|
|
if (v->caller) {
|
|
char buff[KSYM_SYMBOL_LEN];
|
|
|
|
seq_putc(m, ' ');
|
|
sprint_symbol(buff, (unsigned long)v->caller);
|
|
seq_puts(m, buff);
|
|
}
|
|
|
|
if (v->nr_pages)
|
|
seq_printf(m, " pages=%d", v->nr_pages);
|
|
|
|
if (v->phys_addr)
|
|
seq_printf(m, " phys=%lx", v->phys_addr);
|
|
|
|
if (v->flags & VM_IOREMAP)
|
|
seq_printf(m, " ioremap");
|
|
|
|
if (v->flags & VM_ALLOC)
|
|
seq_printf(m, " vmalloc");
|
|
|
|
if (v->flags & VM_MAP)
|
|
seq_printf(m, " vmap");
|
|
|
|
if (v->flags & VM_USERMAP)
|
|
seq_printf(m, " user");
|
|
|
|
if (v->flags & VM_VPAGES)
|
|
seq_printf(m, " vpages");
|
|
|
|
show_numa_info(m, v);
|
|
seq_putc(m, '\n');
|
|
return 0;
|
|
}
|
|
|
|
static const struct seq_operations vmalloc_op = {
|
|
.start = s_start,
|
|
.next = s_next,
|
|
.stop = s_stop,
|
|
.show = s_show,
|
|
};
|
|
|
|
static int vmalloc_open(struct inode *inode, struct file *file)
|
|
{
|
|
unsigned int *ptr = NULL;
|
|
int ret;
|
|
|
|
if (NUMA_BUILD)
|
|
ptr = kmalloc(nr_node_ids * sizeof(unsigned int), GFP_KERNEL);
|
|
ret = seq_open(file, &vmalloc_op);
|
|
if (!ret) {
|
|
struct seq_file *m = file->private_data;
|
|
m->private = ptr;
|
|
} else
|
|
kfree(ptr);
|
|
return ret;
|
|
}
|
|
|
|
static const struct file_operations proc_vmalloc_operations = {
|
|
.open = vmalloc_open,
|
|
.read = seq_read,
|
|
.llseek = seq_lseek,
|
|
.release = seq_release_private,
|
|
};
|
|
|
|
static int __init proc_vmalloc_init(void)
|
|
{
|
|
proc_create("vmallocinfo", S_IRUSR, NULL, &proc_vmalloc_operations);
|
|
return 0;
|
|
}
|
|
module_init(proc_vmalloc_init);
|
|
#endif
|
|
|