mirror of
https://github.com/FEX-Emu/linux.git
synced 2025-01-26 20:58:33 +00:00
4cf9d54463
Keep track of when an outgoing message is ACKed (i.e., the server fully received it and, presumably, queued it for processing). Time out OSD requests only if it's been too long since they've been received. This prevents timeouts and connection thrashing when the OSDs are simply busy and are throttling the requests they read off the network. Reviewed-by: Yehuda Sadeh <yehuda@hq.newdream.net> Signed-off-by: Sage Weil <sage@newdream.net>
2488 lines
61 KiB
C
2488 lines
61 KiB
C
#include <linux/ceph/ceph_debug.h>
|
|
|
|
#include <linux/crc32c.h>
|
|
#include <linux/ctype.h>
|
|
#include <linux/highmem.h>
|
|
#include <linux/inet.h>
|
|
#include <linux/kthread.h>
|
|
#include <linux/net.h>
|
|
#include <linux/slab.h>
|
|
#include <linux/socket.h>
|
|
#include <linux/string.h>
|
|
#include <linux/bio.h>
|
|
#include <linux/blkdev.h>
|
|
#include <net/tcp.h>
|
|
|
|
#include <linux/ceph/libceph.h>
|
|
#include <linux/ceph/messenger.h>
|
|
#include <linux/ceph/decode.h>
|
|
#include <linux/ceph/pagelist.h>
|
|
|
|
/*
|
|
* Ceph uses the messenger to exchange ceph_msg messages with other
|
|
* hosts in the system. The messenger provides ordered and reliable
|
|
* delivery. We tolerate TCP disconnects by reconnecting (with
|
|
* exponential backoff) in the case of a fault (disconnection, bad
|
|
* crc, protocol error). Acks allow sent messages to be discarded by
|
|
* the sender.
|
|
*/
|
|
|
|
/* static tag bytes (protocol control messages) */
|
|
static char tag_msg = CEPH_MSGR_TAG_MSG;
|
|
static char tag_ack = CEPH_MSGR_TAG_ACK;
|
|
static char tag_keepalive = CEPH_MSGR_TAG_KEEPALIVE;
|
|
|
|
#ifdef CONFIG_LOCKDEP
|
|
static struct lock_class_key socket_class;
|
|
#endif
|
|
|
|
|
|
static void queue_con(struct ceph_connection *con);
|
|
static void con_work(struct work_struct *);
|
|
static void ceph_fault(struct ceph_connection *con);
|
|
|
|
/*
|
|
* nicely render a sockaddr as a string.
|
|
*/
|
|
#define MAX_ADDR_STR 20
|
|
#define MAX_ADDR_STR_LEN 60
|
|
static char addr_str[MAX_ADDR_STR][MAX_ADDR_STR_LEN];
|
|
static DEFINE_SPINLOCK(addr_str_lock);
|
|
static int last_addr_str;
|
|
|
|
const char *ceph_pr_addr(const struct sockaddr_storage *ss)
|
|
{
|
|
int i;
|
|
char *s;
|
|
struct sockaddr_in *in4 = (void *)ss;
|
|
struct sockaddr_in6 *in6 = (void *)ss;
|
|
|
|
spin_lock(&addr_str_lock);
|
|
i = last_addr_str++;
|
|
if (last_addr_str == MAX_ADDR_STR)
|
|
last_addr_str = 0;
|
|
spin_unlock(&addr_str_lock);
|
|
s = addr_str[i];
|
|
|
|
switch (ss->ss_family) {
|
|
case AF_INET:
|
|
snprintf(s, MAX_ADDR_STR_LEN, "%pI4:%u", &in4->sin_addr,
|
|
(unsigned int)ntohs(in4->sin_port));
|
|
break;
|
|
|
|
case AF_INET6:
|
|
snprintf(s, MAX_ADDR_STR_LEN, "[%pI6c]:%u", &in6->sin6_addr,
|
|
(unsigned int)ntohs(in6->sin6_port));
|
|
break;
|
|
|
|
default:
|
|
snprintf(s, MAX_ADDR_STR_LEN, "(unknown sockaddr family %d)",
|
|
(int)ss->ss_family);
|
|
}
|
|
|
|
return s;
|
|
}
|
|
EXPORT_SYMBOL(ceph_pr_addr);
|
|
|
|
static void encode_my_addr(struct ceph_messenger *msgr)
|
|
{
|
|
memcpy(&msgr->my_enc_addr, &msgr->inst.addr, sizeof(msgr->my_enc_addr));
|
|
ceph_encode_addr(&msgr->my_enc_addr);
|
|
}
|
|
|
|
/*
|
|
* work queue for all reading and writing to/from the socket.
|
|
*/
|
|
struct workqueue_struct *ceph_msgr_wq;
|
|
|
|
int ceph_msgr_init(void)
|
|
{
|
|
ceph_msgr_wq = alloc_workqueue("ceph-msgr", WQ_NON_REENTRANT, 0);
|
|
if (!ceph_msgr_wq) {
|
|
pr_err("msgr_init failed to create workqueue\n");
|
|
return -ENOMEM;
|
|
}
|
|
return 0;
|
|
}
|
|
EXPORT_SYMBOL(ceph_msgr_init);
|
|
|
|
void ceph_msgr_exit(void)
|
|
{
|
|
destroy_workqueue(ceph_msgr_wq);
|
|
}
|
|
EXPORT_SYMBOL(ceph_msgr_exit);
|
|
|
|
void ceph_msgr_flush(void)
|
|
{
|
|
flush_workqueue(ceph_msgr_wq);
|
|
}
|
|
EXPORT_SYMBOL(ceph_msgr_flush);
|
|
|
|
|
|
/*
|
|
* socket callback functions
|
|
*/
|
|
|
|
/* data available on socket, or listen socket received a connect */
|
|
static void ceph_data_ready(struct sock *sk, int count_unused)
|
|
{
|
|
struct ceph_connection *con =
|
|
(struct ceph_connection *)sk->sk_user_data;
|
|
if (sk->sk_state != TCP_CLOSE_WAIT) {
|
|
dout("ceph_data_ready on %p state = %lu, queueing work\n",
|
|
con, con->state);
|
|
queue_con(con);
|
|
}
|
|
}
|
|
|
|
/* socket has buffer space for writing */
|
|
static void ceph_write_space(struct sock *sk)
|
|
{
|
|
struct ceph_connection *con =
|
|
(struct ceph_connection *)sk->sk_user_data;
|
|
|
|
/* only queue to workqueue if there is data we want to write. */
|
|
if (test_bit(WRITE_PENDING, &con->state)) {
|
|
dout("ceph_write_space %p queueing write work\n", con);
|
|
queue_con(con);
|
|
} else {
|
|
dout("ceph_write_space %p nothing to write\n", con);
|
|
}
|
|
|
|
/* since we have our own write_space, clear the SOCK_NOSPACE flag */
|
|
clear_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
|
|
}
|
|
|
|
/* socket's state has changed */
|
|
static void ceph_state_change(struct sock *sk)
|
|
{
|
|
struct ceph_connection *con =
|
|
(struct ceph_connection *)sk->sk_user_data;
|
|
|
|
dout("ceph_state_change %p state = %lu sk_state = %u\n",
|
|
con, con->state, sk->sk_state);
|
|
|
|
if (test_bit(CLOSED, &con->state))
|
|
return;
|
|
|
|
switch (sk->sk_state) {
|
|
case TCP_CLOSE:
|
|
dout("ceph_state_change TCP_CLOSE\n");
|
|
case TCP_CLOSE_WAIT:
|
|
dout("ceph_state_change TCP_CLOSE_WAIT\n");
|
|
if (test_and_set_bit(SOCK_CLOSED, &con->state) == 0) {
|
|
if (test_bit(CONNECTING, &con->state))
|
|
con->error_msg = "connection failed";
|
|
else
|
|
con->error_msg = "socket closed";
|
|
queue_con(con);
|
|
}
|
|
break;
|
|
case TCP_ESTABLISHED:
|
|
dout("ceph_state_change TCP_ESTABLISHED\n");
|
|
queue_con(con);
|
|
break;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* set up socket callbacks
|
|
*/
|
|
static void set_sock_callbacks(struct socket *sock,
|
|
struct ceph_connection *con)
|
|
{
|
|
struct sock *sk = sock->sk;
|
|
sk->sk_user_data = (void *)con;
|
|
sk->sk_data_ready = ceph_data_ready;
|
|
sk->sk_write_space = ceph_write_space;
|
|
sk->sk_state_change = ceph_state_change;
|
|
}
|
|
|
|
|
|
/*
|
|
* socket helpers
|
|
*/
|
|
|
|
/*
|
|
* initiate connection to a remote socket.
|
|
*/
|
|
static struct socket *ceph_tcp_connect(struct ceph_connection *con)
|
|
{
|
|
struct sockaddr_storage *paddr = &con->peer_addr.in_addr;
|
|
struct socket *sock;
|
|
int ret;
|
|
|
|
BUG_ON(con->sock);
|
|
ret = sock_create_kern(con->peer_addr.in_addr.ss_family, SOCK_STREAM,
|
|
IPPROTO_TCP, &sock);
|
|
if (ret)
|
|
return ERR_PTR(ret);
|
|
con->sock = sock;
|
|
sock->sk->sk_allocation = GFP_NOFS;
|
|
|
|
#ifdef CONFIG_LOCKDEP
|
|
lockdep_set_class(&sock->sk->sk_lock, &socket_class);
|
|
#endif
|
|
|
|
set_sock_callbacks(sock, con);
|
|
|
|
dout("connect %s\n", ceph_pr_addr(&con->peer_addr.in_addr));
|
|
|
|
ret = sock->ops->connect(sock, (struct sockaddr *)paddr, sizeof(*paddr),
|
|
O_NONBLOCK);
|
|
if (ret == -EINPROGRESS) {
|
|
dout("connect %s EINPROGRESS sk_state = %u\n",
|
|
ceph_pr_addr(&con->peer_addr.in_addr),
|
|
sock->sk->sk_state);
|
|
ret = 0;
|
|
}
|
|
if (ret < 0) {
|
|
pr_err("connect %s error %d\n",
|
|
ceph_pr_addr(&con->peer_addr.in_addr), ret);
|
|
sock_release(sock);
|
|
con->sock = NULL;
|
|
con->error_msg = "connect error";
|
|
}
|
|
|
|
if (ret < 0)
|
|
return ERR_PTR(ret);
|
|
return sock;
|
|
}
|
|
|
|
static int ceph_tcp_recvmsg(struct socket *sock, void *buf, size_t len)
|
|
{
|
|
struct kvec iov = {buf, len};
|
|
struct msghdr msg = { .msg_flags = MSG_DONTWAIT | MSG_NOSIGNAL };
|
|
int r;
|
|
|
|
r = kernel_recvmsg(sock, &msg, &iov, 1, len, msg.msg_flags);
|
|
if (r == -EAGAIN)
|
|
r = 0;
|
|
return r;
|
|
}
|
|
|
|
/*
|
|
* write something. @more is true if caller will be sending more data
|
|
* shortly.
|
|
*/
|
|
static int ceph_tcp_sendmsg(struct socket *sock, struct kvec *iov,
|
|
size_t kvlen, size_t len, int more)
|
|
{
|
|
struct msghdr msg = { .msg_flags = MSG_DONTWAIT | MSG_NOSIGNAL };
|
|
int r;
|
|
|
|
if (more)
|
|
msg.msg_flags |= MSG_MORE;
|
|
else
|
|
msg.msg_flags |= MSG_EOR; /* superfluous, but what the hell */
|
|
|
|
r = kernel_sendmsg(sock, &msg, iov, kvlen, len);
|
|
if (r == -EAGAIN)
|
|
r = 0;
|
|
return r;
|
|
}
|
|
|
|
|
|
/*
|
|
* Shutdown/close the socket for the given connection.
|
|
*/
|
|
static int con_close_socket(struct ceph_connection *con)
|
|
{
|
|
int rc;
|
|
|
|
dout("con_close_socket on %p sock %p\n", con, con->sock);
|
|
if (!con->sock)
|
|
return 0;
|
|
set_bit(SOCK_CLOSED, &con->state);
|
|
rc = con->sock->ops->shutdown(con->sock, SHUT_RDWR);
|
|
sock_release(con->sock);
|
|
con->sock = NULL;
|
|
clear_bit(SOCK_CLOSED, &con->state);
|
|
return rc;
|
|
}
|
|
|
|
/*
|
|
* Reset a connection. Discard all incoming and outgoing messages
|
|
* and clear *_seq state.
|
|
*/
|
|
static void ceph_msg_remove(struct ceph_msg *msg)
|
|
{
|
|
list_del_init(&msg->list_head);
|
|
ceph_msg_put(msg);
|
|
}
|
|
static void ceph_msg_remove_list(struct list_head *head)
|
|
{
|
|
while (!list_empty(head)) {
|
|
struct ceph_msg *msg = list_first_entry(head, struct ceph_msg,
|
|
list_head);
|
|
ceph_msg_remove(msg);
|
|
}
|
|
}
|
|
|
|
static void reset_connection(struct ceph_connection *con)
|
|
{
|
|
/* reset connection, out_queue, msg_ and connect_seq */
|
|
/* discard existing out_queue and msg_seq */
|
|
ceph_msg_remove_list(&con->out_queue);
|
|
ceph_msg_remove_list(&con->out_sent);
|
|
|
|
if (con->in_msg) {
|
|
ceph_msg_put(con->in_msg);
|
|
con->in_msg = NULL;
|
|
}
|
|
|
|
con->connect_seq = 0;
|
|
con->out_seq = 0;
|
|
if (con->out_msg) {
|
|
ceph_msg_put(con->out_msg);
|
|
con->out_msg = NULL;
|
|
}
|
|
con->in_seq = 0;
|
|
con->in_seq_acked = 0;
|
|
}
|
|
|
|
/*
|
|
* mark a peer down. drop any open connections.
|
|
*/
|
|
void ceph_con_close(struct ceph_connection *con)
|
|
{
|
|
dout("con_close %p peer %s\n", con,
|
|
ceph_pr_addr(&con->peer_addr.in_addr));
|
|
set_bit(CLOSED, &con->state); /* in case there's queued work */
|
|
clear_bit(STANDBY, &con->state); /* avoid connect_seq bump */
|
|
clear_bit(LOSSYTX, &con->state); /* so we retry next connect */
|
|
clear_bit(KEEPALIVE_PENDING, &con->state);
|
|
clear_bit(WRITE_PENDING, &con->state);
|
|
mutex_lock(&con->mutex);
|
|
reset_connection(con);
|
|
con->peer_global_seq = 0;
|
|
cancel_delayed_work(&con->work);
|
|
mutex_unlock(&con->mutex);
|
|
queue_con(con);
|
|
}
|
|
EXPORT_SYMBOL(ceph_con_close);
|
|
|
|
/*
|
|
* Reopen a closed connection, with a new peer address.
|
|
*/
|
|
void ceph_con_open(struct ceph_connection *con, struct ceph_entity_addr *addr)
|
|
{
|
|
dout("con_open %p %s\n", con, ceph_pr_addr(&addr->in_addr));
|
|
set_bit(OPENING, &con->state);
|
|
clear_bit(CLOSED, &con->state);
|
|
memcpy(&con->peer_addr, addr, sizeof(*addr));
|
|
con->delay = 0; /* reset backoff memory */
|
|
queue_con(con);
|
|
}
|
|
EXPORT_SYMBOL(ceph_con_open);
|
|
|
|
/*
|
|
* return true if this connection ever successfully opened
|
|
*/
|
|
bool ceph_con_opened(struct ceph_connection *con)
|
|
{
|
|
return con->connect_seq > 0;
|
|
}
|
|
|
|
/*
|
|
* generic get/put
|
|
*/
|
|
struct ceph_connection *ceph_con_get(struct ceph_connection *con)
|
|
{
|
|
dout("con_get %p nref = %d -> %d\n", con,
|
|
atomic_read(&con->nref), atomic_read(&con->nref) + 1);
|
|
if (atomic_inc_not_zero(&con->nref))
|
|
return con;
|
|
return NULL;
|
|
}
|
|
|
|
void ceph_con_put(struct ceph_connection *con)
|
|
{
|
|
dout("con_put %p nref = %d -> %d\n", con,
|
|
atomic_read(&con->nref), atomic_read(&con->nref) - 1);
|
|
BUG_ON(atomic_read(&con->nref) == 0);
|
|
if (atomic_dec_and_test(&con->nref)) {
|
|
BUG_ON(con->sock);
|
|
kfree(con);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* initialize a new connection.
|
|
*/
|
|
void ceph_con_init(struct ceph_messenger *msgr, struct ceph_connection *con)
|
|
{
|
|
dout("con_init %p\n", con);
|
|
memset(con, 0, sizeof(*con));
|
|
atomic_set(&con->nref, 1);
|
|
con->msgr = msgr;
|
|
mutex_init(&con->mutex);
|
|
INIT_LIST_HEAD(&con->out_queue);
|
|
INIT_LIST_HEAD(&con->out_sent);
|
|
INIT_DELAYED_WORK(&con->work, con_work);
|
|
}
|
|
EXPORT_SYMBOL(ceph_con_init);
|
|
|
|
|
|
/*
|
|
* We maintain a global counter to order connection attempts. Get
|
|
* a unique seq greater than @gt.
|
|
*/
|
|
static u32 get_global_seq(struct ceph_messenger *msgr, u32 gt)
|
|
{
|
|
u32 ret;
|
|
|
|
spin_lock(&msgr->global_seq_lock);
|
|
if (msgr->global_seq < gt)
|
|
msgr->global_seq = gt;
|
|
ret = ++msgr->global_seq;
|
|
spin_unlock(&msgr->global_seq_lock);
|
|
return ret;
|
|
}
|
|
|
|
|
|
/*
|
|
* Prepare footer for currently outgoing message, and finish things
|
|
* off. Assumes out_kvec* are already valid.. we just add on to the end.
|
|
*/
|
|
static void prepare_write_message_footer(struct ceph_connection *con, int v)
|
|
{
|
|
struct ceph_msg *m = con->out_msg;
|
|
|
|
dout("prepare_write_message_footer %p\n", con);
|
|
con->out_kvec_is_msg = true;
|
|
con->out_kvec[v].iov_base = &m->footer;
|
|
con->out_kvec[v].iov_len = sizeof(m->footer);
|
|
con->out_kvec_bytes += sizeof(m->footer);
|
|
con->out_kvec_left++;
|
|
con->out_more = m->more_to_follow;
|
|
con->out_msg_done = true;
|
|
}
|
|
|
|
/*
|
|
* Prepare headers for the next outgoing message.
|
|
*/
|
|
static void prepare_write_message(struct ceph_connection *con)
|
|
{
|
|
struct ceph_msg *m;
|
|
int v = 0;
|
|
|
|
con->out_kvec_bytes = 0;
|
|
con->out_kvec_is_msg = true;
|
|
con->out_msg_done = false;
|
|
|
|
/* Sneak an ack in there first? If we can get it into the same
|
|
* TCP packet that's a good thing. */
|
|
if (con->in_seq > con->in_seq_acked) {
|
|
con->in_seq_acked = con->in_seq;
|
|
con->out_kvec[v].iov_base = &tag_ack;
|
|
con->out_kvec[v++].iov_len = 1;
|
|
con->out_temp_ack = cpu_to_le64(con->in_seq_acked);
|
|
con->out_kvec[v].iov_base = &con->out_temp_ack;
|
|
con->out_kvec[v++].iov_len = sizeof(con->out_temp_ack);
|
|
con->out_kvec_bytes = 1 + sizeof(con->out_temp_ack);
|
|
}
|
|
|
|
m = list_first_entry(&con->out_queue,
|
|
struct ceph_msg, list_head);
|
|
con->out_msg = m;
|
|
|
|
/* put message on sent list */
|
|
ceph_msg_get(m);
|
|
list_move_tail(&m->list_head, &con->out_sent);
|
|
|
|
/*
|
|
* only assign outgoing seq # if we haven't sent this message
|
|
* yet. if it is requeued, resend with it's original seq.
|
|
*/
|
|
if (m->needs_out_seq) {
|
|
m->hdr.seq = cpu_to_le64(++con->out_seq);
|
|
m->needs_out_seq = false;
|
|
}
|
|
|
|
dout("prepare_write_message %p seq %lld type %d len %d+%d+%d %d pgs\n",
|
|
m, con->out_seq, le16_to_cpu(m->hdr.type),
|
|
le32_to_cpu(m->hdr.front_len), le32_to_cpu(m->hdr.middle_len),
|
|
le32_to_cpu(m->hdr.data_len),
|
|
m->nr_pages);
|
|
BUG_ON(le32_to_cpu(m->hdr.front_len) != m->front.iov_len);
|
|
|
|
/* tag + hdr + front + middle */
|
|
con->out_kvec[v].iov_base = &tag_msg;
|
|
con->out_kvec[v++].iov_len = 1;
|
|
con->out_kvec[v].iov_base = &m->hdr;
|
|
con->out_kvec[v++].iov_len = sizeof(m->hdr);
|
|
con->out_kvec[v++] = m->front;
|
|
if (m->middle)
|
|
con->out_kvec[v++] = m->middle->vec;
|
|
con->out_kvec_left = v;
|
|
con->out_kvec_bytes += 1 + sizeof(m->hdr) + m->front.iov_len +
|
|
(m->middle ? m->middle->vec.iov_len : 0);
|
|
con->out_kvec_cur = con->out_kvec;
|
|
|
|
/* fill in crc (except data pages), footer */
|
|
con->out_msg->hdr.crc =
|
|
cpu_to_le32(crc32c(0, (void *)&m->hdr,
|
|
sizeof(m->hdr) - sizeof(m->hdr.crc)));
|
|
con->out_msg->footer.flags = CEPH_MSG_FOOTER_COMPLETE;
|
|
con->out_msg->footer.front_crc =
|
|
cpu_to_le32(crc32c(0, m->front.iov_base, m->front.iov_len));
|
|
if (m->middle)
|
|
con->out_msg->footer.middle_crc =
|
|
cpu_to_le32(crc32c(0, m->middle->vec.iov_base,
|
|
m->middle->vec.iov_len));
|
|
else
|
|
con->out_msg->footer.middle_crc = 0;
|
|
con->out_msg->footer.data_crc = 0;
|
|
dout("prepare_write_message front_crc %u data_crc %u\n",
|
|
le32_to_cpu(con->out_msg->footer.front_crc),
|
|
le32_to_cpu(con->out_msg->footer.middle_crc));
|
|
|
|
/* is there a data payload? */
|
|
if (le32_to_cpu(m->hdr.data_len) > 0) {
|
|
/* initialize page iterator */
|
|
con->out_msg_pos.page = 0;
|
|
if (m->pages)
|
|
con->out_msg_pos.page_pos = m->page_alignment;
|
|
else
|
|
con->out_msg_pos.page_pos = 0;
|
|
con->out_msg_pos.data_pos = 0;
|
|
con->out_msg_pos.did_page_crc = 0;
|
|
con->out_more = 1; /* data + footer will follow */
|
|
} else {
|
|
/* no, queue up footer too and be done */
|
|
prepare_write_message_footer(con, v);
|
|
}
|
|
|
|
set_bit(WRITE_PENDING, &con->state);
|
|
}
|
|
|
|
/*
|
|
* Prepare an ack.
|
|
*/
|
|
static void prepare_write_ack(struct ceph_connection *con)
|
|
{
|
|
dout("prepare_write_ack %p %llu -> %llu\n", con,
|
|
con->in_seq_acked, con->in_seq);
|
|
con->in_seq_acked = con->in_seq;
|
|
|
|
con->out_kvec[0].iov_base = &tag_ack;
|
|
con->out_kvec[0].iov_len = 1;
|
|
con->out_temp_ack = cpu_to_le64(con->in_seq_acked);
|
|
con->out_kvec[1].iov_base = &con->out_temp_ack;
|
|
con->out_kvec[1].iov_len = sizeof(con->out_temp_ack);
|
|
con->out_kvec_left = 2;
|
|
con->out_kvec_bytes = 1 + sizeof(con->out_temp_ack);
|
|
con->out_kvec_cur = con->out_kvec;
|
|
con->out_more = 1; /* more will follow.. eventually.. */
|
|
set_bit(WRITE_PENDING, &con->state);
|
|
}
|
|
|
|
/*
|
|
* Prepare to write keepalive byte.
|
|
*/
|
|
static void prepare_write_keepalive(struct ceph_connection *con)
|
|
{
|
|
dout("prepare_write_keepalive %p\n", con);
|
|
con->out_kvec[0].iov_base = &tag_keepalive;
|
|
con->out_kvec[0].iov_len = 1;
|
|
con->out_kvec_left = 1;
|
|
con->out_kvec_bytes = 1;
|
|
con->out_kvec_cur = con->out_kvec;
|
|
set_bit(WRITE_PENDING, &con->state);
|
|
}
|
|
|
|
/*
|
|
* Connection negotiation.
|
|
*/
|
|
|
|
static int prepare_connect_authorizer(struct ceph_connection *con)
|
|
{
|
|
void *auth_buf;
|
|
int auth_len = 0;
|
|
int auth_protocol = 0;
|
|
|
|
mutex_unlock(&con->mutex);
|
|
if (con->ops->get_authorizer)
|
|
con->ops->get_authorizer(con, &auth_buf, &auth_len,
|
|
&auth_protocol, &con->auth_reply_buf,
|
|
&con->auth_reply_buf_len,
|
|
con->auth_retry);
|
|
mutex_lock(&con->mutex);
|
|
|
|
if (test_bit(CLOSED, &con->state) ||
|
|
test_bit(OPENING, &con->state))
|
|
return -EAGAIN;
|
|
|
|
con->out_connect.authorizer_protocol = cpu_to_le32(auth_protocol);
|
|
con->out_connect.authorizer_len = cpu_to_le32(auth_len);
|
|
|
|
if (auth_len) {
|
|
con->out_kvec[con->out_kvec_left].iov_base = auth_buf;
|
|
con->out_kvec[con->out_kvec_left].iov_len = auth_len;
|
|
con->out_kvec_left++;
|
|
con->out_kvec_bytes += auth_len;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* We connected to a peer and are saying hello.
|
|
*/
|
|
static void prepare_write_banner(struct ceph_messenger *msgr,
|
|
struct ceph_connection *con)
|
|
{
|
|
int len = strlen(CEPH_BANNER);
|
|
|
|
con->out_kvec[0].iov_base = CEPH_BANNER;
|
|
con->out_kvec[0].iov_len = len;
|
|
con->out_kvec[1].iov_base = &msgr->my_enc_addr;
|
|
con->out_kvec[1].iov_len = sizeof(msgr->my_enc_addr);
|
|
con->out_kvec_left = 2;
|
|
con->out_kvec_bytes = len + sizeof(msgr->my_enc_addr);
|
|
con->out_kvec_cur = con->out_kvec;
|
|
con->out_more = 0;
|
|
set_bit(WRITE_PENDING, &con->state);
|
|
}
|
|
|
|
static int prepare_write_connect(struct ceph_messenger *msgr,
|
|
struct ceph_connection *con,
|
|
int after_banner)
|
|
{
|
|
unsigned global_seq = get_global_seq(con->msgr, 0);
|
|
int proto;
|
|
|
|
switch (con->peer_name.type) {
|
|
case CEPH_ENTITY_TYPE_MON:
|
|
proto = CEPH_MONC_PROTOCOL;
|
|
break;
|
|
case CEPH_ENTITY_TYPE_OSD:
|
|
proto = CEPH_OSDC_PROTOCOL;
|
|
break;
|
|
case CEPH_ENTITY_TYPE_MDS:
|
|
proto = CEPH_MDSC_PROTOCOL;
|
|
break;
|
|
default:
|
|
BUG();
|
|
}
|
|
|
|
dout("prepare_write_connect %p cseq=%d gseq=%d proto=%d\n", con,
|
|
con->connect_seq, global_seq, proto);
|
|
|
|
con->out_connect.features = cpu_to_le64(msgr->supported_features);
|
|
con->out_connect.host_type = cpu_to_le32(CEPH_ENTITY_TYPE_CLIENT);
|
|
con->out_connect.connect_seq = cpu_to_le32(con->connect_seq);
|
|
con->out_connect.global_seq = cpu_to_le32(global_seq);
|
|
con->out_connect.protocol_version = cpu_to_le32(proto);
|
|
con->out_connect.flags = 0;
|
|
|
|
if (!after_banner) {
|
|
con->out_kvec_left = 0;
|
|
con->out_kvec_bytes = 0;
|
|
}
|
|
con->out_kvec[con->out_kvec_left].iov_base = &con->out_connect;
|
|
con->out_kvec[con->out_kvec_left].iov_len = sizeof(con->out_connect);
|
|
con->out_kvec_left++;
|
|
con->out_kvec_bytes += sizeof(con->out_connect);
|
|
con->out_kvec_cur = con->out_kvec;
|
|
con->out_more = 0;
|
|
set_bit(WRITE_PENDING, &con->state);
|
|
|
|
return prepare_connect_authorizer(con);
|
|
}
|
|
|
|
|
|
/*
|
|
* write as much of pending kvecs to the socket as we can.
|
|
* 1 -> done
|
|
* 0 -> socket full, but more to do
|
|
* <0 -> error
|
|
*/
|
|
static int write_partial_kvec(struct ceph_connection *con)
|
|
{
|
|
int ret;
|
|
|
|
dout("write_partial_kvec %p %d left\n", con, con->out_kvec_bytes);
|
|
while (con->out_kvec_bytes > 0) {
|
|
ret = ceph_tcp_sendmsg(con->sock, con->out_kvec_cur,
|
|
con->out_kvec_left, con->out_kvec_bytes,
|
|
con->out_more);
|
|
if (ret <= 0)
|
|
goto out;
|
|
con->out_kvec_bytes -= ret;
|
|
if (con->out_kvec_bytes == 0)
|
|
break; /* done */
|
|
while (ret > 0) {
|
|
if (ret >= con->out_kvec_cur->iov_len) {
|
|
ret -= con->out_kvec_cur->iov_len;
|
|
con->out_kvec_cur++;
|
|
con->out_kvec_left--;
|
|
} else {
|
|
con->out_kvec_cur->iov_len -= ret;
|
|
con->out_kvec_cur->iov_base += ret;
|
|
ret = 0;
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
con->out_kvec_left = 0;
|
|
con->out_kvec_is_msg = false;
|
|
ret = 1;
|
|
out:
|
|
dout("write_partial_kvec %p %d left in %d kvecs ret = %d\n", con,
|
|
con->out_kvec_bytes, con->out_kvec_left, ret);
|
|
return ret; /* done! */
|
|
}
|
|
|
|
#ifdef CONFIG_BLOCK
|
|
static void init_bio_iter(struct bio *bio, struct bio **iter, int *seg)
|
|
{
|
|
if (!bio) {
|
|
*iter = NULL;
|
|
*seg = 0;
|
|
return;
|
|
}
|
|
*iter = bio;
|
|
*seg = bio->bi_idx;
|
|
}
|
|
|
|
static void iter_bio_next(struct bio **bio_iter, int *seg)
|
|
{
|
|
if (*bio_iter == NULL)
|
|
return;
|
|
|
|
BUG_ON(*seg >= (*bio_iter)->bi_vcnt);
|
|
|
|
(*seg)++;
|
|
if (*seg == (*bio_iter)->bi_vcnt)
|
|
init_bio_iter((*bio_iter)->bi_next, bio_iter, seg);
|
|
}
|
|
#endif
|
|
|
|
/*
|
|
* Write as much message data payload as we can. If we finish, queue
|
|
* up the footer.
|
|
* 1 -> done, footer is now queued in out_kvec[].
|
|
* 0 -> socket full, but more to do
|
|
* <0 -> error
|
|
*/
|
|
static int write_partial_msg_pages(struct ceph_connection *con)
|
|
{
|
|
struct ceph_msg *msg = con->out_msg;
|
|
unsigned data_len = le32_to_cpu(msg->hdr.data_len);
|
|
size_t len;
|
|
int crc = con->msgr->nocrc;
|
|
int ret;
|
|
int total_max_write;
|
|
int in_trail = 0;
|
|
size_t trail_len = (msg->trail ? msg->trail->length : 0);
|
|
|
|
dout("write_partial_msg_pages %p msg %p page %d/%d offset %d\n",
|
|
con, con->out_msg, con->out_msg_pos.page, con->out_msg->nr_pages,
|
|
con->out_msg_pos.page_pos);
|
|
|
|
#ifdef CONFIG_BLOCK
|
|
if (msg->bio && !msg->bio_iter)
|
|
init_bio_iter(msg->bio, &msg->bio_iter, &msg->bio_seg);
|
|
#endif
|
|
|
|
while (data_len > con->out_msg_pos.data_pos) {
|
|
struct page *page = NULL;
|
|
void *kaddr = NULL;
|
|
int max_write = PAGE_SIZE;
|
|
int page_shift = 0;
|
|
|
|
total_max_write = data_len - trail_len -
|
|
con->out_msg_pos.data_pos;
|
|
|
|
/*
|
|
* if we are calculating the data crc (the default), we need
|
|
* to map the page. if our pages[] has been revoked, use the
|
|
* zero page.
|
|
*/
|
|
|
|
/* have we reached the trail part of the data? */
|
|
if (con->out_msg_pos.data_pos >= data_len - trail_len) {
|
|
in_trail = 1;
|
|
|
|
total_max_write = data_len - con->out_msg_pos.data_pos;
|
|
|
|
page = list_first_entry(&msg->trail->head,
|
|
struct page, lru);
|
|
if (crc)
|
|
kaddr = kmap(page);
|
|
max_write = PAGE_SIZE;
|
|
} else if (msg->pages) {
|
|
page = msg->pages[con->out_msg_pos.page];
|
|
if (crc)
|
|
kaddr = kmap(page);
|
|
} else if (msg->pagelist) {
|
|
page = list_first_entry(&msg->pagelist->head,
|
|
struct page, lru);
|
|
if (crc)
|
|
kaddr = kmap(page);
|
|
#ifdef CONFIG_BLOCK
|
|
} else if (msg->bio) {
|
|
struct bio_vec *bv;
|
|
|
|
bv = bio_iovec_idx(msg->bio_iter, msg->bio_seg);
|
|
page = bv->bv_page;
|
|
page_shift = bv->bv_offset;
|
|
if (crc)
|
|
kaddr = kmap(page) + page_shift;
|
|
max_write = bv->bv_len;
|
|
#endif
|
|
} else {
|
|
page = con->msgr->zero_page;
|
|
if (crc)
|
|
kaddr = page_address(con->msgr->zero_page);
|
|
}
|
|
len = min_t(int, max_write - con->out_msg_pos.page_pos,
|
|
total_max_write);
|
|
|
|
if (crc && !con->out_msg_pos.did_page_crc) {
|
|
void *base = kaddr + con->out_msg_pos.page_pos;
|
|
u32 tmpcrc = le32_to_cpu(con->out_msg->footer.data_crc);
|
|
|
|
BUG_ON(kaddr == NULL);
|
|
con->out_msg->footer.data_crc =
|
|
cpu_to_le32(crc32c(tmpcrc, base, len));
|
|
con->out_msg_pos.did_page_crc = 1;
|
|
}
|
|
ret = kernel_sendpage(con->sock, page,
|
|
con->out_msg_pos.page_pos + page_shift,
|
|
len,
|
|
MSG_DONTWAIT | MSG_NOSIGNAL |
|
|
MSG_MORE);
|
|
|
|
if (crc &&
|
|
(msg->pages || msg->pagelist || msg->bio || in_trail))
|
|
kunmap(page);
|
|
|
|
if (ret == -EAGAIN)
|
|
ret = 0;
|
|
if (ret <= 0)
|
|
goto out;
|
|
|
|
con->out_msg_pos.data_pos += ret;
|
|
con->out_msg_pos.page_pos += ret;
|
|
if (ret == len) {
|
|
con->out_msg_pos.page_pos = 0;
|
|
con->out_msg_pos.page++;
|
|
con->out_msg_pos.did_page_crc = 0;
|
|
if (in_trail)
|
|
list_move_tail(&page->lru,
|
|
&msg->trail->head);
|
|
else if (msg->pagelist)
|
|
list_move_tail(&page->lru,
|
|
&msg->pagelist->head);
|
|
#ifdef CONFIG_BLOCK
|
|
else if (msg->bio)
|
|
iter_bio_next(&msg->bio_iter, &msg->bio_seg);
|
|
#endif
|
|
}
|
|
}
|
|
|
|
dout("write_partial_msg_pages %p msg %p done\n", con, msg);
|
|
|
|
/* prepare and queue up footer, too */
|
|
if (!crc)
|
|
con->out_msg->footer.flags |= CEPH_MSG_FOOTER_NOCRC;
|
|
con->out_kvec_bytes = 0;
|
|
con->out_kvec_left = 0;
|
|
con->out_kvec_cur = con->out_kvec;
|
|
prepare_write_message_footer(con, 0);
|
|
ret = 1;
|
|
out:
|
|
return ret;
|
|
}
|
|
|
|
/*
|
|
* write some zeros
|
|
*/
|
|
static int write_partial_skip(struct ceph_connection *con)
|
|
{
|
|
int ret;
|
|
|
|
while (con->out_skip > 0) {
|
|
struct kvec iov = {
|
|
.iov_base = page_address(con->msgr->zero_page),
|
|
.iov_len = min(con->out_skip, (int)PAGE_CACHE_SIZE)
|
|
};
|
|
|
|
ret = ceph_tcp_sendmsg(con->sock, &iov, 1, iov.iov_len, 1);
|
|
if (ret <= 0)
|
|
goto out;
|
|
con->out_skip -= ret;
|
|
}
|
|
ret = 1;
|
|
out:
|
|
return ret;
|
|
}
|
|
|
|
/*
|
|
* Prepare to read connection handshake, or an ack.
|
|
*/
|
|
static void prepare_read_banner(struct ceph_connection *con)
|
|
{
|
|
dout("prepare_read_banner %p\n", con);
|
|
con->in_base_pos = 0;
|
|
}
|
|
|
|
static void prepare_read_connect(struct ceph_connection *con)
|
|
{
|
|
dout("prepare_read_connect %p\n", con);
|
|
con->in_base_pos = 0;
|
|
}
|
|
|
|
static void prepare_read_ack(struct ceph_connection *con)
|
|
{
|
|
dout("prepare_read_ack %p\n", con);
|
|
con->in_base_pos = 0;
|
|
}
|
|
|
|
static void prepare_read_tag(struct ceph_connection *con)
|
|
{
|
|
dout("prepare_read_tag %p\n", con);
|
|
con->in_base_pos = 0;
|
|
con->in_tag = CEPH_MSGR_TAG_READY;
|
|
}
|
|
|
|
/*
|
|
* Prepare to read a message.
|
|
*/
|
|
static int prepare_read_message(struct ceph_connection *con)
|
|
{
|
|
dout("prepare_read_message %p\n", con);
|
|
BUG_ON(con->in_msg != NULL);
|
|
con->in_base_pos = 0;
|
|
con->in_front_crc = con->in_middle_crc = con->in_data_crc = 0;
|
|
return 0;
|
|
}
|
|
|
|
|
|
static int read_partial(struct ceph_connection *con,
|
|
int *to, int size, void *object)
|
|
{
|
|
*to += size;
|
|
while (con->in_base_pos < *to) {
|
|
int left = *to - con->in_base_pos;
|
|
int have = size - left;
|
|
int ret = ceph_tcp_recvmsg(con->sock, object + have, left);
|
|
if (ret <= 0)
|
|
return ret;
|
|
con->in_base_pos += ret;
|
|
}
|
|
return 1;
|
|
}
|
|
|
|
|
|
/*
|
|
* Read all or part of the connect-side handshake on a new connection
|
|
*/
|
|
static int read_partial_banner(struct ceph_connection *con)
|
|
{
|
|
int ret, to = 0;
|
|
|
|
dout("read_partial_banner %p at %d\n", con, con->in_base_pos);
|
|
|
|
/* peer's banner */
|
|
ret = read_partial(con, &to, strlen(CEPH_BANNER), con->in_banner);
|
|
if (ret <= 0)
|
|
goto out;
|
|
ret = read_partial(con, &to, sizeof(con->actual_peer_addr),
|
|
&con->actual_peer_addr);
|
|
if (ret <= 0)
|
|
goto out;
|
|
ret = read_partial(con, &to, sizeof(con->peer_addr_for_me),
|
|
&con->peer_addr_for_me);
|
|
if (ret <= 0)
|
|
goto out;
|
|
out:
|
|
return ret;
|
|
}
|
|
|
|
static int read_partial_connect(struct ceph_connection *con)
|
|
{
|
|
int ret, to = 0;
|
|
|
|
dout("read_partial_connect %p at %d\n", con, con->in_base_pos);
|
|
|
|
ret = read_partial(con, &to, sizeof(con->in_reply), &con->in_reply);
|
|
if (ret <= 0)
|
|
goto out;
|
|
ret = read_partial(con, &to, le32_to_cpu(con->in_reply.authorizer_len),
|
|
con->auth_reply_buf);
|
|
if (ret <= 0)
|
|
goto out;
|
|
|
|
dout("read_partial_connect %p tag %d, con_seq = %u, g_seq = %u\n",
|
|
con, (int)con->in_reply.tag,
|
|
le32_to_cpu(con->in_reply.connect_seq),
|
|
le32_to_cpu(con->in_reply.global_seq));
|
|
out:
|
|
return ret;
|
|
|
|
}
|
|
|
|
/*
|
|
* Verify the hello banner looks okay.
|
|
*/
|
|
static int verify_hello(struct ceph_connection *con)
|
|
{
|
|
if (memcmp(con->in_banner, CEPH_BANNER, strlen(CEPH_BANNER))) {
|
|
pr_err("connect to %s got bad banner\n",
|
|
ceph_pr_addr(&con->peer_addr.in_addr));
|
|
con->error_msg = "protocol error, bad banner";
|
|
return -1;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
static bool addr_is_blank(struct sockaddr_storage *ss)
|
|
{
|
|
switch (ss->ss_family) {
|
|
case AF_INET:
|
|
return ((struct sockaddr_in *)ss)->sin_addr.s_addr == 0;
|
|
case AF_INET6:
|
|
return
|
|
((struct sockaddr_in6 *)ss)->sin6_addr.s6_addr32[0] == 0 &&
|
|
((struct sockaddr_in6 *)ss)->sin6_addr.s6_addr32[1] == 0 &&
|
|
((struct sockaddr_in6 *)ss)->sin6_addr.s6_addr32[2] == 0 &&
|
|
((struct sockaddr_in6 *)ss)->sin6_addr.s6_addr32[3] == 0;
|
|
}
|
|
return false;
|
|
}
|
|
|
|
static int addr_port(struct sockaddr_storage *ss)
|
|
{
|
|
switch (ss->ss_family) {
|
|
case AF_INET:
|
|
return ntohs(((struct sockaddr_in *)ss)->sin_port);
|
|
case AF_INET6:
|
|
return ntohs(((struct sockaddr_in6 *)ss)->sin6_port);
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
static void addr_set_port(struct sockaddr_storage *ss, int p)
|
|
{
|
|
switch (ss->ss_family) {
|
|
case AF_INET:
|
|
((struct sockaddr_in *)ss)->sin_port = htons(p);
|
|
break;
|
|
case AF_INET6:
|
|
((struct sockaddr_in6 *)ss)->sin6_port = htons(p);
|
|
break;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Parse an ip[:port] list into an addr array. Use the default
|
|
* monitor port if a port isn't specified.
|
|
*/
|
|
int ceph_parse_ips(const char *c, const char *end,
|
|
struct ceph_entity_addr *addr,
|
|
int max_count, int *count)
|
|
{
|
|
int i;
|
|
const char *p = c;
|
|
|
|
dout("parse_ips on '%.*s'\n", (int)(end-c), c);
|
|
for (i = 0; i < max_count; i++) {
|
|
const char *ipend;
|
|
struct sockaddr_storage *ss = &addr[i].in_addr;
|
|
struct sockaddr_in *in4 = (void *)ss;
|
|
struct sockaddr_in6 *in6 = (void *)ss;
|
|
int port;
|
|
char delim = ',';
|
|
|
|
if (*p == '[') {
|
|
delim = ']';
|
|
p++;
|
|
}
|
|
|
|
memset(ss, 0, sizeof(*ss));
|
|
if (in4_pton(p, end - p, (u8 *)&in4->sin_addr.s_addr,
|
|
delim, &ipend))
|
|
ss->ss_family = AF_INET;
|
|
else if (in6_pton(p, end - p, (u8 *)&in6->sin6_addr.s6_addr,
|
|
delim, &ipend))
|
|
ss->ss_family = AF_INET6;
|
|
else
|
|
goto bad;
|
|
p = ipend;
|
|
|
|
if (delim == ']') {
|
|
if (*p != ']') {
|
|
dout("missing matching ']'\n");
|
|
goto bad;
|
|
}
|
|
p++;
|
|
}
|
|
|
|
/* port? */
|
|
if (p < end && *p == ':') {
|
|
port = 0;
|
|
p++;
|
|
while (p < end && *p >= '0' && *p <= '9') {
|
|
port = (port * 10) + (*p - '0');
|
|
p++;
|
|
}
|
|
if (port > 65535 || port == 0)
|
|
goto bad;
|
|
} else {
|
|
port = CEPH_MON_PORT;
|
|
}
|
|
|
|
addr_set_port(ss, port);
|
|
|
|
dout("parse_ips got %s\n", ceph_pr_addr(ss));
|
|
|
|
if (p == end)
|
|
break;
|
|
if (*p != ',')
|
|
goto bad;
|
|
p++;
|
|
}
|
|
|
|
if (p != end)
|
|
goto bad;
|
|
|
|
if (count)
|
|
*count = i + 1;
|
|
return 0;
|
|
|
|
bad:
|
|
pr_err("parse_ips bad ip '%.*s'\n", (int)(end - c), c);
|
|
return -EINVAL;
|
|
}
|
|
EXPORT_SYMBOL(ceph_parse_ips);
|
|
|
|
static int process_banner(struct ceph_connection *con)
|
|
{
|
|
dout("process_banner on %p\n", con);
|
|
|
|
if (verify_hello(con) < 0)
|
|
return -1;
|
|
|
|
ceph_decode_addr(&con->actual_peer_addr);
|
|
ceph_decode_addr(&con->peer_addr_for_me);
|
|
|
|
/*
|
|
* Make sure the other end is who we wanted. note that the other
|
|
* end may not yet know their ip address, so if it's 0.0.0.0, give
|
|
* them the benefit of the doubt.
|
|
*/
|
|
if (memcmp(&con->peer_addr, &con->actual_peer_addr,
|
|
sizeof(con->peer_addr)) != 0 &&
|
|
!(addr_is_blank(&con->actual_peer_addr.in_addr) &&
|
|
con->actual_peer_addr.nonce == con->peer_addr.nonce)) {
|
|
pr_warning("wrong peer, want %s/%d, got %s/%d\n",
|
|
ceph_pr_addr(&con->peer_addr.in_addr),
|
|
(int)le32_to_cpu(con->peer_addr.nonce),
|
|
ceph_pr_addr(&con->actual_peer_addr.in_addr),
|
|
(int)le32_to_cpu(con->actual_peer_addr.nonce));
|
|
con->error_msg = "wrong peer at address";
|
|
return -1;
|
|
}
|
|
|
|
/*
|
|
* did we learn our address?
|
|
*/
|
|
if (addr_is_blank(&con->msgr->inst.addr.in_addr)) {
|
|
int port = addr_port(&con->msgr->inst.addr.in_addr);
|
|
|
|
memcpy(&con->msgr->inst.addr.in_addr,
|
|
&con->peer_addr_for_me.in_addr,
|
|
sizeof(con->peer_addr_for_me.in_addr));
|
|
addr_set_port(&con->msgr->inst.addr.in_addr, port);
|
|
encode_my_addr(con->msgr);
|
|
dout("process_banner learned my addr is %s\n",
|
|
ceph_pr_addr(&con->msgr->inst.addr.in_addr));
|
|
}
|
|
|
|
set_bit(NEGOTIATING, &con->state);
|
|
prepare_read_connect(con);
|
|
return 0;
|
|
}
|
|
|
|
static void fail_protocol(struct ceph_connection *con)
|
|
{
|
|
reset_connection(con);
|
|
set_bit(CLOSED, &con->state); /* in case there's queued work */
|
|
|
|
mutex_unlock(&con->mutex);
|
|
if (con->ops->bad_proto)
|
|
con->ops->bad_proto(con);
|
|
mutex_lock(&con->mutex);
|
|
}
|
|
|
|
static int process_connect(struct ceph_connection *con)
|
|
{
|
|
u64 sup_feat = con->msgr->supported_features;
|
|
u64 req_feat = con->msgr->required_features;
|
|
u64 server_feat = le64_to_cpu(con->in_reply.features);
|
|
int ret;
|
|
|
|
dout("process_connect on %p tag %d\n", con, (int)con->in_tag);
|
|
|
|
switch (con->in_reply.tag) {
|
|
case CEPH_MSGR_TAG_FEATURES:
|
|
pr_err("%s%lld %s feature set mismatch,"
|
|
" my %llx < server's %llx, missing %llx\n",
|
|
ENTITY_NAME(con->peer_name),
|
|
ceph_pr_addr(&con->peer_addr.in_addr),
|
|
sup_feat, server_feat, server_feat & ~sup_feat);
|
|
con->error_msg = "missing required protocol features";
|
|
fail_protocol(con);
|
|
return -1;
|
|
|
|
case CEPH_MSGR_TAG_BADPROTOVER:
|
|
pr_err("%s%lld %s protocol version mismatch,"
|
|
" my %d != server's %d\n",
|
|
ENTITY_NAME(con->peer_name),
|
|
ceph_pr_addr(&con->peer_addr.in_addr),
|
|
le32_to_cpu(con->out_connect.protocol_version),
|
|
le32_to_cpu(con->in_reply.protocol_version));
|
|
con->error_msg = "protocol version mismatch";
|
|
fail_protocol(con);
|
|
return -1;
|
|
|
|
case CEPH_MSGR_TAG_BADAUTHORIZER:
|
|
con->auth_retry++;
|
|
dout("process_connect %p got BADAUTHORIZER attempt %d\n", con,
|
|
con->auth_retry);
|
|
if (con->auth_retry == 2) {
|
|
con->error_msg = "connect authorization failure";
|
|
return -1;
|
|
}
|
|
con->auth_retry = 1;
|
|
ret = prepare_write_connect(con->msgr, con, 0);
|
|
if (ret < 0)
|
|
return ret;
|
|
prepare_read_connect(con);
|
|
break;
|
|
|
|
case CEPH_MSGR_TAG_RESETSESSION:
|
|
/*
|
|
* If we connected with a large connect_seq but the peer
|
|
* has no record of a session with us (no connection, or
|
|
* connect_seq == 0), they will send RESETSESION to indicate
|
|
* that they must have reset their session, and may have
|
|
* dropped messages.
|
|
*/
|
|
dout("process_connect got RESET peer seq %u\n",
|
|
le32_to_cpu(con->in_connect.connect_seq));
|
|
pr_err("%s%lld %s connection reset\n",
|
|
ENTITY_NAME(con->peer_name),
|
|
ceph_pr_addr(&con->peer_addr.in_addr));
|
|
reset_connection(con);
|
|
prepare_write_connect(con->msgr, con, 0);
|
|
prepare_read_connect(con);
|
|
|
|
/* Tell ceph about it. */
|
|
mutex_unlock(&con->mutex);
|
|
pr_info("reset on %s%lld\n", ENTITY_NAME(con->peer_name));
|
|
if (con->ops->peer_reset)
|
|
con->ops->peer_reset(con);
|
|
mutex_lock(&con->mutex);
|
|
if (test_bit(CLOSED, &con->state) ||
|
|
test_bit(OPENING, &con->state))
|
|
return -EAGAIN;
|
|
break;
|
|
|
|
case CEPH_MSGR_TAG_RETRY_SESSION:
|
|
/*
|
|
* If we sent a smaller connect_seq than the peer has, try
|
|
* again with a larger value.
|
|
*/
|
|
dout("process_connect got RETRY my seq = %u, peer_seq = %u\n",
|
|
le32_to_cpu(con->out_connect.connect_seq),
|
|
le32_to_cpu(con->in_connect.connect_seq));
|
|
con->connect_seq = le32_to_cpu(con->in_connect.connect_seq);
|
|
prepare_write_connect(con->msgr, con, 0);
|
|
prepare_read_connect(con);
|
|
break;
|
|
|
|
case CEPH_MSGR_TAG_RETRY_GLOBAL:
|
|
/*
|
|
* If we sent a smaller global_seq than the peer has, try
|
|
* again with a larger value.
|
|
*/
|
|
dout("process_connect got RETRY_GLOBAL my %u peer_gseq %u\n",
|
|
con->peer_global_seq,
|
|
le32_to_cpu(con->in_connect.global_seq));
|
|
get_global_seq(con->msgr,
|
|
le32_to_cpu(con->in_connect.global_seq));
|
|
prepare_write_connect(con->msgr, con, 0);
|
|
prepare_read_connect(con);
|
|
break;
|
|
|
|
case CEPH_MSGR_TAG_READY:
|
|
if (req_feat & ~server_feat) {
|
|
pr_err("%s%lld %s protocol feature mismatch,"
|
|
" my required %llx > server's %llx, need %llx\n",
|
|
ENTITY_NAME(con->peer_name),
|
|
ceph_pr_addr(&con->peer_addr.in_addr),
|
|
req_feat, server_feat, req_feat & ~server_feat);
|
|
con->error_msg = "missing required protocol features";
|
|
fail_protocol(con);
|
|
return -1;
|
|
}
|
|
clear_bit(CONNECTING, &con->state);
|
|
con->peer_global_seq = le32_to_cpu(con->in_reply.global_seq);
|
|
con->connect_seq++;
|
|
con->peer_features = server_feat;
|
|
dout("process_connect got READY gseq %d cseq %d (%d)\n",
|
|
con->peer_global_seq,
|
|
le32_to_cpu(con->in_reply.connect_seq),
|
|
con->connect_seq);
|
|
WARN_ON(con->connect_seq !=
|
|
le32_to_cpu(con->in_reply.connect_seq));
|
|
|
|
if (con->in_reply.flags & CEPH_MSG_CONNECT_LOSSY)
|
|
set_bit(LOSSYTX, &con->state);
|
|
|
|
prepare_read_tag(con);
|
|
break;
|
|
|
|
case CEPH_MSGR_TAG_WAIT:
|
|
/*
|
|
* If there is a connection race (we are opening
|
|
* connections to each other), one of us may just have
|
|
* to WAIT. This shouldn't happen if we are the
|
|
* client.
|
|
*/
|
|
pr_err("process_connect got WAIT as client\n");
|
|
con->error_msg = "protocol error, got WAIT as client";
|
|
return -1;
|
|
|
|
default:
|
|
pr_err("connect protocol error, will retry\n");
|
|
con->error_msg = "protocol error, garbage tag during connect";
|
|
return -1;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
|
|
/*
|
|
* read (part of) an ack
|
|
*/
|
|
static int read_partial_ack(struct ceph_connection *con)
|
|
{
|
|
int to = 0;
|
|
|
|
return read_partial(con, &to, sizeof(con->in_temp_ack),
|
|
&con->in_temp_ack);
|
|
}
|
|
|
|
|
|
/*
|
|
* We can finally discard anything that's been acked.
|
|
*/
|
|
static void process_ack(struct ceph_connection *con)
|
|
{
|
|
struct ceph_msg *m;
|
|
u64 ack = le64_to_cpu(con->in_temp_ack);
|
|
u64 seq;
|
|
|
|
while (!list_empty(&con->out_sent)) {
|
|
m = list_first_entry(&con->out_sent, struct ceph_msg,
|
|
list_head);
|
|
seq = le64_to_cpu(m->hdr.seq);
|
|
if (seq > ack)
|
|
break;
|
|
dout("got ack for seq %llu type %d at %p\n", seq,
|
|
le16_to_cpu(m->hdr.type), m);
|
|
m->ack_stamp = jiffies;
|
|
ceph_msg_remove(m);
|
|
}
|
|
prepare_read_tag(con);
|
|
}
|
|
|
|
|
|
|
|
|
|
static int read_partial_message_section(struct ceph_connection *con,
|
|
struct kvec *section,
|
|
unsigned int sec_len, u32 *crc)
|
|
{
|
|
int ret, left;
|
|
|
|
BUG_ON(!section);
|
|
|
|
while (section->iov_len < sec_len) {
|
|
BUG_ON(section->iov_base == NULL);
|
|
left = sec_len - section->iov_len;
|
|
ret = ceph_tcp_recvmsg(con->sock, (char *)section->iov_base +
|
|
section->iov_len, left);
|
|
if (ret <= 0)
|
|
return ret;
|
|
section->iov_len += ret;
|
|
if (section->iov_len == sec_len)
|
|
*crc = crc32c(0, section->iov_base,
|
|
section->iov_len);
|
|
}
|
|
|
|
return 1;
|
|
}
|
|
|
|
static struct ceph_msg *ceph_alloc_msg(struct ceph_connection *con,
|
|
struct ceph_msg_header *hdr,
|
|
int *skip);
|
|
|
|
|
|
static int read_partial_message_pages(struct ceph_connection *con,
|
|
struct page **pages,
|
|
unsigned data_len, int datacrc)
|
|
{
|
|
void *p;
|
|
int ret;
|
|
int left;
|
|
|
|
left = min((int)(data_len - con->in_msg_pos.data_pos),
|
|
(int)(PAGE_SIZE - con->in_msg_pos.page_pos));
|
|
/* (page) data */
|
|
BUG_ON(pages == NULL);
|
|
p = kmap(pages[con->in_msg_pos.page]);
|
|
ret = ceph_tcp_recvmsg(con->sock, p + con->in_msg_pos.page_pos,
|
|
left);
|
|
if (ret > 0 && datacrc)
|
|
con->in_data_crc =
|
|
crc32c(con->in_data_crc,
|
|
p + con->in_msg_pos.page_pos, ret);
|
|
kunmap(pages[con->in_msg_pos.page]);
|
|
if (ret <= 0)
|
|
return ret;
|
|
con->in_msg_pos.data_pos += ret;
|
|
con->in_msg_pos.page_pos += ret;
|
|
if (con->in_msg_pos.page_pos == PAGE_SIZE) {
|
|
con->in_msg_pos.page_pos = 0;
|
|
con->in_msg_pos.page++;
|
|
}
|
|
|
|
return ret;
|
|
}
|
|
|
|
#ifdef CONFIG_BLOCK
|
|
static int read_partial_message_bio(struct ceph_connection *con,
|
|
struct bio **bio_iter, int *bio_seg,
|
|
unsigned data_len, int datacrc)
|
|
{
|
|
struct bio_vec *bv = bio_iovec_idx(*bio_iter, *bio_seg);
|
|
void *p;
|
|
int ret, left;
|
|
|
|
if (IS_ERR(bv))
|
|
return PTR_ERR(bv);
|
|
|
|
left = min((int)(data_len - con->in_msg_pos.data_pos),
|
|
(int)(bv->bv_len - con->in_msg_pos.page_pos));
|
|
|
|
p = kmap(bv->bv_page) + bv->bv_offset;
|
|
|
|
ret = ceph_tcp_recvmsg(con->sock, p + con->in_msg_pos.page_pos,
|
|
left);
|
|
if (ret > 0 && datacrc)
|
|
con->in_data_crc =
|
|
crc32c(con->in_data_crc,
|
|
p + con->in_msg_pos.page_pos, ret);
|
|
kunmap(bv->bv_page);
|
|
if (ret <= 0)
|
|
return ret;
|
|
con->in_msg_pos.data_pos += ret;
|
|
con->in_msg_pos.page_pos += ret;
|
|
if (con->in_msg_pos.page_pos == bv->bv_len) {
|
|
con->in_msg_pos.page_pos = 0;
|
|
iter_bio_next(bio_iter, bio_seg);
|
|
}
|
|
|
|
return ret;
|
|
}
|
|
#endif
|
|
|
|
/*
|
|
* read (part of) a message.
|
|
*/
|
|
static int read_partial_message(struct ceph_connection *con)
|
|
{
|
|
struct ceph_msg *m = con->in_msg;
|
|
int ret;
|
|
int to, left;
|
|
unsigned front_len, middle_len, data_len;
|
|
int datacrc = con->msgr->nocrc;
|
|
int skip;
|
|
u64 seq;
|
|
|
|
dout("read_partial_message con %p msg %p\n", con, m);
|
|
|
|
/* header */
|
|
while (con->in_base_pos < sizeof(con->in_hdr)) {
|
|
left = sizeof(con->in_hdr) - con->in_base_pos;
|
|
ret = ceph_tcp_recvmsg(con->sock,
|
|
(char *)&con->in_hdr + con->in_base_pos,
|
|
left);
|
|
if (ret <= 0)
|
|
return ret;
|
|
con->in_base_pos += ret;
|
|
if (con->in_base_pos == sizeof(con->in_hdr)) {
|
|
u32 crc = crc32c(0, (void *)&con->in_hdr,
|
|
sizeof(con->in_hdr) - sizeof(con->in_hdr.crc));
|
|
if (crc != le32_to_cpu(con->in_hdr.crc)) {
|
|
pr_err("read_partial_message bad hdr "
|
|
" crc %u != expected %u\n",
|
|
crc, con->in_hdr.crc);
|
|
return -EBADMSG;
|
|
}
|
|
}
|
|
}
|
|
front_len = le32_to_cpu(con->in_hdr.front_len);
|
|
if (front_len > CEPH_MSG_MAX_FRONT_LEN)
|
|
return -EIO;
|
|
middle_len = le32_to_cpu(con->in_hdr.middle_len);
|
|
if (middle_len > CEPH_MSG_MAX_DATA_LEN)
|
|
return -EIO;
|
|
data_len = le32_to_cpu(con->in_hdr.data_len);
|
|
if (data_len > CEPH_MSG_MAX_DATA_LEN)
|
|
return -EIO;
|
|
|
|
/* verify seq# */
|
|
seq = le64_to_cpu(con->in_hdr.seq);
|
|
if ((s64)seq - (s64)con->in_seq < 1) {
|
|
pr_info("skipping %s%lld %s seq %lld expected %lld\n",
|
|
ENTITY_NAME(con->peer_name),
|
|
ceph_pr_addr(&con->peer_addr.in_addr),
|
|
seq, con->in_seq + 1);
|
|
con->in_base_pos = -front_len - middle_len - data_len -
|
|
sizeof(m->footer);
|
|
con->in_tag = CEPH_MSGR_TAG_READY;
|
|
return 0;
|
|
} else if ((s64)seq - (s64)con->in_seq > 1) {
|
|
pr_err("read_partial_message bad seq %lld expected %lld\n",
|
|
seq, con->in_seq + 1);
|
|
con->error_msg = "bad message sequence # for incoming message";
|
|
return -EBADMSG;
|
|
}
|
|
|
|
/* allocate message? */
|
|
if (!con->in_msg) {
|
|
dout("got hdr type %d front %d data %d\n", con->in_hdr.type,
|
|
con->in_hdr.front_len, con->in_hdr.data_len);
|
|
skip = 0;
|
|
con->in_msg = ceph_alloc_msg(con, &con->in_hdr, &skip);
|
|
if (skip) {
|
|
/* skip this message */
|
|
dout("alloc_msg said skip message\n");
|
|
BUG_ON(con->in_msg);
|
|
con->in_base_pos = -front_len - middle_len - data_len -
|
|
sizeof(m->footer);
|
|
con->in_tag = CEPH_MSGR_TAG_READY;
|
|
con->in_seq++;
|
|
return 0;
|
|
}
|
|
if (!con->in_msg) {
|
|
con->error_msg =
|
|
"error allocating memory for incoming message";
|
|
return -ENOMEM;
|
|
}
|
|
m = con->in_msg;
|
|
m->front.iov_len = 0; /* haven't read it yet */
|
|
if (m->middle)
|
|
m->middle->vec.iov_len = 0;
|
|
|
|
con->in_msg_pos.page = 0;
|
|
if (m->pages)
|
|
con->in_msg_pos.page_pos = m->page_alignment;
|
|
else
|
|
con->in_msg_pos.page_pos = 0;
|
|
con->in_msg_pos.data_pos = 0;
|
|
}
|
|
|
|
/* front */
|
|
ret = read_partial_message_section(con, &m->front, front_len,
|
|
&con->in_front_crc);
|
|
if (ret <= 0)
|
|
return ret;
|
|
|
|
/* middle */
|
|
if (m->middle) {
|
|
ret = read_partial_message_section(con, &m->middle->vec,
|
|
middle_len,
|
|
&con->in_middle_crc);
|
|
if (ret <= 0)
|
|
return ret;
|
|
}
|
|
#ifdef CONFIG_BLOCK
|
|
if (m->bio && !m->bio_iter)
|
|
init_bio_iter(m->bio, &m->bio_iter, &m->bio_seg);
|
|
#endif
|
|
|
|
/* (page) data */
|
|
while (con->in_msg_pos.data_pos < data_len) {
|
|
if (m->pages) {
|
|
ret = read_partial_message_pages(con, m->pages,
|
|
data_len, datacrc);
|
|
if (ret <= 0)
|
|
return ret;
|
|
#ifdef CONFIG_BLOCK
|
|
} else if (m->bio) {
|
|
|
|
ret = read_partial_message_bio(con,
|
|
&m->bio_iter, &m->bio_seg,
|
|
data_len, datacrc);
|
|
if (ret <= 0)
|
|
return ret;
|
|
#endif
|
|
} else {
|
|
BUG_ON(1);
|
|
}
|
|
}
|
|
|
|
/* footer */
|
|
to = sizeof(m->hdr) + sizeof(m->footer);
|
|
while (con->in_base_pos < to) {
|
|
left = to - con->in_base_pos;
|
|
ret = ceph_tcp_recvmsg(con->sock, (char *)&m->footer +
|
|
(con->in_base_pos - sizeof(m->hdr)),
|
|
left);
|
|
if (ret <= 0)
|
|
return ret;
|
|
con->in_base_pos += ret;
|
|
}
|
|
dout("read_partial_message got msg %p %d (%u) + %d (%u) + %d (%u)\n",
|
|
m, front_len, m->footer.front_crc, middle_len,
|
|
m->footer.middle_crc, data_len, m->footer.data_crc);
|
|
|
|
/* crc ok? */
|
|
if (con->in_front_crc != le32_to_cpu(m->footer.front_crc)) {
|
|
pr_err("read_partial_message %p front crc %u != exp. %u\n",
|
|
m, con->in_front_crc, m->footer.front_crc);
|
|
return -EBADMSG;
|
|
}
|
|
if (con->in_middle_crc != le32_to_cpu(m->footer.middle_crc)) {
|
|
pr_err("read_partial_message %p middle crc %u != exp %u\n",
|
|
m, con->in_middle_crc, m->footer.middle_crc);
|
|
return -EBADMSG;
|
|
}
|
|
if (datacrc &&
|
|
(m->footer.flags & CEPH_MSG_FOOTER_NOCRC) == 0 &&
|
|
con->in_data_crc != le32_to_cpu(m->footer.data_crc)) {
|
|
pr_err("read_partial_message %p data crc %u != exp. %u\n", m,
|
|
con->in_data_crc, le32_to_cpu(m->footer.data_crc));
|
|
return -EBADMSG;
|
|
}
|
|
|
|
return 1; /* done! */
|
|
}
|
|
|
|
/*
|
|
* Process message. This happens in the worker thread. The callback should
|
|
* be careful not to do anything that waits on other incoming messages or it
|
|
* may deadlock.
|
|
*/
|
|
static void process_message(struct ceph_connection *con)
|
|
{
|
|
struct ceph_msg *msg;
|
|
|
|
msg = con->in_msg;
|
|
con->in_msg = NULL;
|
|
|
|
/* if first message, set peer_name */
|
|
if (con->peer_name.type == 0)
|
|
con->peer_name = msg->hdr.src;
|
|
|
|
con->in_seq++;
|
|
mutex_unlock(&con->mutex);
|
|
|
|
dout("===== %p %llu from %s%lld %d=%s len %d+%d (%u %u %u) =====\n",
|
|
msg, le64_to_cpu(msg->hdr.seq),
|
|
ENTITY_NAME(msg->hdr.src),
|
|
le16_to_cpu(msg->hdr.type),
|
|
ceph_msg_type_name(le16_to_cpu(msg->hdr.type)),
|
|
le32_to_cpu(msg->hdr.front_len),
|
|
le32_to_cpu(msg->hdr.data_len),
|
|
con->in_front_crc, con->in_middle_crc, con->in_data_crc);
|
|
con->ops->dispatch(con, msg);
|
|
|
|
mutex_lock(&con->mutex);
|
|
prepare_read_tag(con);
|
|
}
|
|
|
|
|
|
/*
|
|
* Write something to the socket. Called in a worker thread when the
|
|
* socket appears to be writeable and we have something ready to send.
|
|
*/
|
|
static int try_write(struct ceph_connection *con)
|
|
{
|
|
struct ceph_messenger *msgr = con->msgr;
|
|
int ret = 1;
|
|
|
|
dout("try_write start %p state %lu nref %d\n", con, con->state,
|
|
atomic_read(&con->nref));
|
|
|
|
more:
|
|
dout("try_write out_kvec_bytes %d\n", con->out_kvec_bytes);
|
|
|
|
/* open the socket first? */
|
|
if (con->sock == NULL) {
|
|
prepare_write_banner(msgr, con);
|
|
prepare_write_connect(msgr, con, 1);
|
|
prepare_read_banner(con);
|
|
set_bit(CONNECTING, &con->state);
|
|
clear_bit(NEGOTIATING, &con->state);
|
|
|
|
BUG_ON(con->in_msg);
|
|
con->in_tag = CEPH_MSGR_TAG_READY;
|
|
dout("try_write initiating connect on %p new state %lu\n",
|
|
con, con->state);
|
|
con->sock = ceph_tcp_connect(con);
|
|
if (IS_ERR(con->sock)) {
|
|
con->sock = NULL;
|
|
con->error_msg = "connect error";
|
|
ret = -1;
|
|
goto out;
|
|
}
|
|
}
|
|
|
|
more_kvec:
|
|
/* kvec data queued? */
|
|
if (con->out_skip) {
|
|
ret = write_partial_skip(con);
|
|
if (ret <= 0)
|
|
goto out;
|
|
}
|
|
if (con->out_kvec_left) {
|
|
ret = write_partial_kvec(con);
|
|
if (ret <= 0)
|
|
goto out;
|
|
}
|
|
|
|
/* msg pages? */
|
|
if (con->out_msg) {
|
|
if (con->out_msg_done) {
|
|
ceph_msg_put(con->out_msg);
|
|
con->out_msg = NULL; /* we're done with this one */
|
|
goto do_next;
|
|
}
|
|
|
|
ret = write_partial_msg_pages(con);
|
|
if (ret == 1)
|
|
goto more_kvec; /* we need to send the footer, too! */
|
|
if (ret == 0)
|
|
goto out;
|
|
if (ret < 0) {
|
|
dout("try_write write_partial_msg_pages err %d\n",
|
|
ret);
|
|
goto out;
|
|
}
|
|
}
|
|
|
|
do_next:
|
|
if (!test_bit(CONNECTING, &con->state)) {
|
|
/* is anything else pending? */
|
|
if (!list_empty(&con->out_queue)) {
|
|
prepare_write_message(con);
|
|
goto more;
|
|
}
|
|
if (con->in_seq > con->in_seq_acked) {
|
|
prepare_write_ack(con);
|
|
goto more;
|
|
}
|
|
if (test_and_clear_bit(KEEPALIVE_PENDING, &con->state)) {
|
|
prepare_write_keepalive(con);
|
|
goto more;
|
|
}
|
|
}
|
|
|
|
/* Nothing to do! */
|
|
clear_bit(WRITE_PENDING, &con->state);
|
|
dout("try_write nothing else to write.\n");
|
|
ret = 0;
|
|
out:
|
|
dout("try_write done on %p ret %d\n", con, ret);
|
|
return ret;
|
|
}
|
|
|
|
|
|
|
|
/*
|
|
* Read what we can from the socket.
|
|
*/
|
|
static int try_read(struct ceph_connection *con)
|
|
{
|
|
int ret = -1;
|
|
|
|
if (!con->sock)
|
|
return 0;
|
|
|
|
if (test_bit(STANDBY, &con->state))
|
|
return 0;
|
|
|
|
dout("try_read start on %p\n", con);
|
|
|
|
more:
|
|
dout("try_read tag %d in_base_pos %d\n", (int)con->in_tag,
|
|
con->in_base_pos);
|
|
|
|
/*
|
|
* process_connect and process_message drop and re-take
|
|
* con->mutex. make sure we handle a racing close or reopen.
|
|
*/
|
|
if (test_bit(CLOSED, &con->state) ||
|
|
test_bit(OPENING, &con->state)) {
|
|
ret = -EAGAIN;
|
|
goto out;
|
|
}
|
|
|
|
if (test_bit(CONNECTING, &con->state)) {
|
|
if (!test_bit(NEGOTIATING, &con->state)) {
|
|
dout("try_read connecting\n");
|
|
ret = read_partial_banner(con);
|
|
if (ret <= 0)
|
|
goto out;
|
|
ret = process_banner(con);
|
|
if (ret < 0)
|
|
goto out;
|
|
}
|
|
ret = read_partial_connect(con);
|
|
if (ret <= 0)
|
|
goto out;
|
|
ret = process_connect(con);
|
|
if (ret < 0)
|
|
goto out;
|
|
goto more;
|
|
}
|
|
|
|
if (con->in_base_pos < 0) {
|
|
/*
|
|
* skipping + discarding content.
|
|
*
|
|
* FIXME: there must be a better way to do this!
|
|
*/
|
|
static char buf[1024];
|
|
int skip = min(1024, -con->in_base_pos);
|
|
dout("skipping %d / %d bytes\n", skip, -con->in_base_pos);
|
|
ret = ceph_tcp_recvmsg(con->sock, buf, skip);
|
|
if (ret <= 0)
|
|
goto out;
|
|
con->in_base_pos += ret;
|
|
if (con->in_base_pos)
|
|
goto more;
|
|
}
|
|
if (con->in_tag == CEPH_MSGR_TAG_READY) {
|
|
/*
|
|
* what's next?
|
|
*/
|
|
ret = ceph_tcp_recvmsg(con->sock, &con->in_tag, 1);
|
|
if (ret <= 0)
|
|
goto out;
|
|
dout("try_read got tag %d\n", (int)con->in_tag);
|
|
switch (con->in_tag) {
|
|
case CEPH_MSGR_TAG_MSG:
|
|
prepare_read_message(con);
|
|
break;
|
|
case CEPH_MSGR_TAG_ACK:
|
|
prepare_read_ack(con);
|
|
break;
|
|
case CEPH_MSGR_TAG_CLOSE:
|
|
set_bit(CLOSED, &con->state); /* fixme */
|
|
goto out;
|
|
default:
|
|
goto bad_tag;
|
|
}
|
|
}
|
|
if (con->in_tag == CEPH_MSGR_TAG_MSG) {
|
|
ret = read_partial_message(con);
|
|
if (ret <= 0) {
|
|
switch (ret) {
|
|
case -EBADMSG:
|
|
con->error_msg = "bad crc";
|
|
ret = -EIO;
|
|
break;
|
|
case -EIO:
|
|
con->error_msg = "io error";
|
|
break;
|
|
}
|
|
goto out;
|
|
}
|
|
if (con->in_tag == CEPH_MSGR_TAG_READY)
|
|
goto more;
|
|
process_message(con);
|
|
goto more;
|
|
}
|
|
if (con->in_tag == CEPH_MSGR_TAG_ACK) {
|
|
ret = read_partial_ack(con);
|
|
if (ret <= 0)
|
|
goto out;
|
|
process_ack(con);
|
|
goto more;
|
|
}
|
|
|
|
out:
|
|
dout("try_read done on %p ret %d\n", con, ret);
|
|
return ret;
|
|
|
|
bad_tag:
|
|
pr_err("try_read bad con->in_tag = %d\n", (int)con->in_tag);
|
|
con->error_msg = "protocol error, garbage tag";
|
|
ret = -1;
|
|
goto out;
|
|
}
|
|
|
|
|
|
/*
|
|
* Atomically queue work on a connection. Bump @con reference to
|
|
* avoid races with connection teardown.
|
|
*/
|
|
static void queue_con(struct ceph_connection *con)
|
|
{
|
|
if (test_bit(DEAD, &con->state)) {
|
|
dout("queue_con %p ignoring: DEAD\n",
|
|
con);
|
|
return;
|
|
}
|
|
|
|
if (!con->ops->get(con)) {
|
|
dout("queue_con %p ref count 0\n", con);
|
|
return;
|
|
}
|
|
|
|
if (!queue_delayed_work(ceph_msgr_wq, &con->work, 0)) {
|
|
dout("queue_con %p - already queued\n", con);
|
|
con->ops->put(con);
|
|
} else {
|
|
dout("queue_con %p\n", con);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Do some work on a connection. Drop a connection ref when we're done.
|
|
*/
|
|
static void con_work(struct work_struct *work)
|
|
{
|
|
struct ceph_connection *con = container_of(work, struct ceph_connection,
|
|
work.work);
|
|
int ret;
|
|
|
|
mutex_lock(&con->mutex);
|
|
restart:
|
|
if (test_and_clear_bit(BACKOFF, &con->state)) {
|
|
dout("con_work %p backing off\n", con);
|
|
if (queue_delayed_work(ceph_msgr_wq, &con->work,
|
|
round_jiffies_relative(con->delay))) {
|
|
dout("con_work %p backoff %lu\n", con, con->delay);
|
|
mutex_unlock(&con->mutex);
|
|
return;
|
|
} else {
|
|
con->ops->put(con);
|
|
dout("con_work %p FAILED to back off %lu\n", con,
|
|
con->delay);
|
|
}
|
|
}
|
|
|
|
if (test_bit(STANDBY, &con->state)) {
|
|
dout("con_work %p STANDBY\n", con);
|
|
goto done;
|
|
}
|
|
if (test_bit(CLOSED, &con->state)) { /* e.g. if we are replaced */
|
|
dout("con_work CLOSED\n");
|
|
con_close_socket(con);
|
|
goto done;
|
|
}
|
|
if (test_and_clear_bit(OPENING, &con->state)) {
|
|
/* reopen w/ new peer */
|
|
dout("con_work OPENING\n");
|
|
con_close_socket(con);
|
|
}
|
|
|
|
if (test_and_clear_bit(SOCK_CLOSED, &con->state))
|
|
goto fault;
|
|
|
|
ret = try_read(con);
|
|
if (ret == -EAGAIN)
|
|
goto restart;
|
|
if (ret < 0)
|
|
goto fault;
|
|
|
|
ret = try_write(con);
|
|
if (ret == -EAGAIN)
|
|
goto restart;
|
|
if (ret < 0)
|
|
goto fault;
|
|
|
|
done:
|
|
mutex_unlock(&con->mutex);
|
|
done_unlocked:
|
|
con->ops->put(con);
|
|
return;
|
|
|
|
fault:
|
|
mutex_unlock(&con->mutex);
|
|
ceph_fault(con); /* error/fault path */
|
|
goto done_unlocked;
|
|
}
|
|
|
|
|
|
/*
|
|
* Generic error/fault handler. A retry mechanism is used with
|
|
* exponential backoff
|
|
*/
|
|
static void ceph_fault(struct ceph_connection *con)
|
|
{
|
|
pr_err("%s%lld %s %s\n", ENTITY_NAME(con->peer_name),
|
|
ceph_pr_addr(&con->peer_addr.in_addr), con->error_msg);
|
|
dout("fault %p state %lu to peer %s\n",
|
|
con, con->state, ceph_pr_addr(&con->peer_addr.in_addr));
|
|
|
|
if (test_bit(LOSSYTX, &con->state)) {
|
|
dout("fault on LOSSYTX channel\n");
|
|
goto out;
|
|
}
|
|
|
|
mutex_lock(&con->mutex);
|
|
if (test_bit(CLOSED, &con->state))
|
|
goto out_unlock;
|
|
|
|
con_close_socket(con);
|
|
|
|
if (con->in_msg) {
|
|
ceph_msg_put(con->in_msg);
|
|
con->in_msg = NULL;
|
|
}
|
|
|
|
/* Requeue anything that hasn't been acked */
|
|
list_splice_init(&con->out_sent, &con->out_queue);
|
|
|
|
/* If there are no messages queued or keepalive pending, place
|
|
* the connection in a STANDBY state */
|
|
if (list_empty(&con->out_queue) &&
|
|
!test_bit(KEEPALIVE_PENDING, &con->state)) {
|
|
dout("fault %p setting STANDBY clearing WRITE_PENDING\n", con);
|
|
clear_bit(WRITE_PENDING, &con->state);
|
|
set_bit(STANDBY, &con->state);
|
|
} else {
|
|
/* retry after a delay. */
|
|
if (con->delay == 0)
|
|
con->delay = BASE_DELAY_INTERVAL;
|
|
else if (con->delay < MAX_DELAY_INTERVAL)
|
|
con->delay *= 2;
|
|
con->ops->get(con);
|
|
if (queue_delayed_work(ceph_msgr_wq, &con->work,
|
|
round_jiffies_relative(con->delay))) {
|
|
dout("fault queued %p delay %lu\n", con, con->delay);
|
|
} else {
|
|
con->ops->put(con);
|
|
dout("fault failed to queue %p delay %lu, backoff\n",
|
|
con, con->delay);
|
|
/*
|
|
* In many cases we see a socket state change
|
|
* while con_work is running and end up
|
|
* queuing (non-delayed) work, such that we
|
|
* can't backoff with a delay. Set a flag so
|
|
* that when con_work restarts we schedule the
|
|
* delay then.
|
|
*/
|
|
set_bit(BACKOFF, &con->state);
|
|
}
|
|
}
|
|
|
|
out_unlock:
|
|
mutex_unlock(&con->mutex);
|
|
out:
|
|
/*
|
|
* in case we faulted due to authentication, invalidate our
|
|
* current tickets so that we can get new ones.
|
|
*/
|
|
if (con->auth_retry && con->ops->invalidate_authorizer) {
|
|
dout("calling invalidate_authorizer()\n");
|
|
con->ops->invalidate_authorizer(con);
|
|
}
|
|
|
|
if (con->ops->fault)
|
|
con->ops->fault(con);
|
|
}
|
|
|
|
|
|
|
|
/*
|
|
* create a new messenger instance
|
|
*/
|
|
struct ceph_messenger *ceph_messenger_create(struct ceph_entity_addr *myaddr,
|
|
u32 supported_features,
|
|
u32 required_features)
|
|
{
|
|
struct ceph_messenger *msgr;
|
|
|
|
msgr = kzalloc(sizeof(*msgr), GFP_KERNEL);
|
|
if (msgr == NULL)
|
|
return ERR_PTR(-ENOMEM);
|
|
|
|
msgr->supported_features = supported_features;
|
|
msgr->required_features = required_features;
|
|
|
|
spin_lock_init(&msgr->global_seq_lock);
|
|
|
|
/* the zero page is needed if a request is "canceled" while the message
|
|
* is being written over the socket */
|
|
msgr->zero_page = __page_cache_alloc(GFP_KERNEL | __GFP_ZERO);
|
|
if (!msgr->zero_page) {
|
|
kfree(msgr);
|
|
return ERR_PTR(-ENOMEM);
|
|
}
|
|
kmap(msgr->zero_page);
|
|
|
|
if (myaddr)
|
|
msgr->inst.addr = *myaddr;
|
|
|
|
/* select a random nonce */
|
|
msgr->inst.addr.type = 0;
|
|
get_random_bytes(&msgr->inst.addr.nonce, sizeof(msgr->inst.addr.nonce));
|
|
encode_my_addr(msgr);
|
|
|
|
dout("messenger_create %p\n", msgr);
|
|
return msgr;
|
|
}
|
|
EXPORT_SYMBOL(ceph_messenger_create);
|
|
|
|
void ceph_messenger_destroy(struct ceph_messenger *msgr)
|
|
{
|
|
dout("destroy %p\n", msgr);
|
|
kunmap(msgr->zero_page);
|
|
__free_page(msgr->zero_page);
|
|
kfree(msgr);
|
|
dout("destroyed messenger %p\n", msgr);
|
|
}
|
|
EXPORT_SYMBOL(ceph_messenger_destroy);
|
|
|
|
static void clear_standby(struct ceph_connection *con)
|
|
{
|
|
/* come back from STANDBY? */
|
|
if (test_and_clear_bit(STANDBY, &con->state)) {
|
|
mutex_lock(&con->mutex);
|
|
dout("clear_standby %p and ++connect_seq\n", con);
|
|
con->connect_seq++;
|
|
WARN_ON(test_bit(WRITE_PENDING, &con->state));
|
|
WARN_ON(test_bit(KEEPALIVE_PENDING, &con->state));
|
|
mutex_unlock(&con->mutex);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Queue up an outgoing message on the given connection.
|
|
*/
|
|
void ceph_con_send(struct ceph_connection *con, struct ceph_msg *msg)
|
|
{
|
|
if (test_bit(CLOSED, &con->state)) {
|
|
dout("con_send %p closed, dropping %p\n", con, msg);
|
|
ceph_msg_put(msg);
|
|
return;
|
|
}
|
|
|
|
/* set src+dst */
|
|
msg->hdr.src = con->msgr->inst.name;
|
|
|
|
BUG_ON(msg->front.iov_len != le32_to_cpu(msg->hdr.front_len));
|
|
|
|
msg->needs_out_seq = true;
|
|
|
|
/* queue */
|
|
mutex_lock(&con->mutex);
|
|
BUG_ON(!list_empty(&msg->list_head));
|
|
list_add_tail(&msg->list_head, &con->out_queue);
|
|
dout("----- %p to %s%lld %d=%s len %d+%d+%d -----\n", msg,
|
|
ENTITY_NAME(con->peer_name), le16_to_cpu(msg->hdr.type),
|
|
ceph_msg_type_name(le16_to_cpu(msg->hdr.type)),
|
|
le32_to_cpu(msg->hdr.front_len),
|
|
le32_to_cpu(msg->hdr.middle_len),
|
|
le32_to_cpu(msg->hdr.data_len));
|
|
mutex_unlock(&con->mutex);
|
|
|
|
/* if there wasn't anything waiting to send before, queue
|
|
* new work */
|
|
clear_standby(con);
|
|
if (test_and_set_bit(WRITE_PENDING, &con->state) == 0)
|
|
queue_con(con);
|
|
}
|
|
EXPORT_SYMBOL(ceph_con_send);
|
|
|
|
/*
|
|
* Revoke a message that was previously queued for send
|
|
*/
|
|
void ceph_con_revoke(struct ceph_connection *con, struct ceph_msg *msg)
|
|
{
|
|
mutex_lock(&con->mutex);
|
|
if (!list_empty(&msg->list_head)) {
|
|
dout("con_revoke %p msg %p - was on queue\n", con, msg);
|
|
list_del_init(&msg->list_head);
|
|
ceph_msg_put(msg);
|
|
msg->hdr.seq = 0;
|
|
}
|
|
if (con->out_msg == msg) {
|
|
dout("con_revoke %p msg %p - was sending\n", con, msg);
|
|
con->out_msg = NULL;
|
|
if (con->out_kvec_is_msg) {
|
|
con->out_skip = con->out_kvec_bytes;
|
|
con->out_kvec_is_msg = false;
|
|
}
|
|
ceph_msg_put(msg);
|
|
msg->hdr.seq = 0;
|
|
}
|
|
mutex_unlock(&con->mutex);
|
|
}
|
|
|
|
/*
|
|
* Revoke a message that we may be reading data into
|
|
*/
|
|
void ceph_con_revoke_message(struct ceph_connection *con, struct ceph_msg *msg)
|
|
{
|
|
mutex_lock(&con->mutex);
|
|
if (con->in_msg && con->in_msg == msg) {
|
|
unsigned front_len = le32_to_cpu(con->in_hdr.front_len);
|
|
unsigned middle_len = le32_to_cpu(con->in_hdr.middle_len);
|
|
unsigned data_len = le32_to_cpu(con->in_hdr.data_len);
|
|
|
|
/* skip rest of message */
|
|
dout("con_revoke_pages %p msg %p revoked\n", con, msg);
|
|
con->in_base_pos = con->in_base_pos -
|
|
sizeof(struct ceph_msg_header) -
|
|
front_len -
|
|
middle_len -
|
|
data_len -
|
|
sizeof(struct ceph_msg_footer);
|
|
ceph_msg_put(con->in_msg);
|
|
con->in_msg = NULL;
|
|
con->in_tag = CEPH_MSGR_TAG_READY;
|
|
con->in_seq++;
|
|
} else {
|
|
dout("con_revoke_pages %p msg %p pages %p no-op\n",
|
|
con, con->in_msg, msg);
|
|
}
|
|
mutex_unlock(&con->mutex);
|
|
}
|
|
|
|
/*
|
|
* Queue a keepalive byte to ensure the tcp connection is alive.
|
|
*/
|
|
void ceph_con_keepalive(struct ceph_connection *con)
|
|
{
|
|
dout("con_keepalive %p\n", con);
|
|
clear_standby(con);
|
|
if (test_and_set_bit(KEEPALIVE_PENDING, &con->state) == 0 &&
|
|
test_and_set_bit(WRITE_PENDING, &con->state) == 0)
|
|
queue_con(con);
|
|
}
|
|
EXPORT_SYMBOL(ceph_con_keepalive);
|
|
|
|
|
|
/*
|
|
* construct a new message with given type, size
|
|
* the new msg has a ref count of 1.
|
|
*/
|
|
struct ceph_msg *ceph_msg_new(int type, int front_len, gfp_t flags)
|
|
{
|
|
struct ceph_msg *m;
|
|
|
|
m = kmalloc(sizeof(*m), flags);
|
|
if (m == NULL)
|
|
goto out;
|
|
kref_init(&m->kref);
|
|
INIT_LIST_HEAD(&m->list_head);
|
|
|
|
m->hdr.tid = 0;
|
|
m->hdr.type = cpu_to_le16(type);
|
|
m->hdr.priority = cpu_to_le16(CEPH_MSG_PRIO_DEFAULT);
|
|
m->hdr.version = 0;
|
|
m->hdr.front_len = cpu_to_le32(front_len);
|
|
m->hdr.middle_len = 0;
|
|
m->hdr.data_len = 0;
|
|
m->hdr.data_off = 0;
|
|
m->hdr.reserved = 0;
|
|
m->footer.front_crc = 0;
|
|
m->footer.middle_crc = 0;
|
|
m->footer.data_crc = 0;
|
|
m->footer.flags = 0;
|
|
m->front_max = front_len;
|
|
m->front_is_vmalloc = false;
|
|
m->more_to_follow = false;
|
|
m->pool = NULL;
|
|
|
|
/* middle */
|
|
m->middle = NULL;
|
|
|
|
/* data */
|
|
m->nr_pages = 0;
|
|
m->page_alignment = 0;
|
|
m->pages = NULL;
|
|
m->pagelist = NULL;
|
|
m->bio = NULL;
|
|
m->bio_iter = NULL;
|
|
m->bio_seg = 0;
|
|
m->trail = NULL;
|
|
|
|
/* front */
|
|
if (front_len) {
|
|
if (front_len > PAGE_CACHE_SIZE) {
|
|
m->front.iov_base = __vmalloc(front_len, flags,
|
|
PAGE_KERNEL);
|
|
m->front_is_vmalloc = true;
|
|
} else {
|
|
m->front.iov_base = kmalloc(front_len, flags);
|
|
}
|
|
if (m->front.iov_base == NULL) {
|
|
pr_err("msg_new can't allocate %d bytes\n",
|
|
front_len);
|
|
goto out2;
|
|
}
|
|
} else {
|
|
m->front.iov_base = NULL;
|
|
}
|
|
m->front.iov_len = front_len;
|
|
|
|
dout("ceph_msg_new %p front %d\n", m, front_len);
|
|
return m;
|
|
|
|
out2:
|
|
ceph_msg_put(m);
|
|
out:
|
|
pr_err("msg_new can't create type %d front %d\n", type, front_len);
|
|
return NULL;
|
|
}
|
|
EXPORT_SYMBOL(ceph_msg_new);
|
|
|
|
/*
|
|
* Allocate "middle" portion of a message, if it is needed and wasn't
|
|
* allocated by alloc_msg. This allows us to read a small fixed-size
|
|
* per-type header in the front and then gracefully fail (i.e.,
|
|
* propagate the error to the caller based on info in the front) when
|
|
* the middle is too large.
|
|
*/
|
|
static int ceph_alloc_middle(struct ceph_connection *con, struct ceph_msg *msg)
|
|
{
|
|
int type = le16_to_cpu(msg->hdr.type);
|
|
int middle_len = le32_to_cpu(msg->hdr.middle_len);
|
|
|
|
dout("alloc_middle %p type %d %s middle_len %d\n", msg, type,
|
|
ceph_msg_type_name(type), middle_len);
|
|
BUG_ON(!middle_len);
|
|
BUG_ON(msg->middle);
|
|
|
|
msg->middle = ceph_buffer_new(middle_len, GFP_NOFS);
|
|
if (!msg->middle)
|
|
return -ENOMEM;
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* Generic message allocator, for incoming messages.
|
|
*/
|
|
static struct ceph_msg *ceph_alloc_msg(struct ceph_connection *con,
|
|
struct ceph_msg_header *hdr,
|
|
int *skip)
|
|
{
|
|
int type = le16_to_cpu(hdr->type);
|
|
int front_len = le32_to_cpu(hdr->front_len);
|
|
int middle_len = le32_to_cpu(hdr->middle_len);
|
|
struct ceph_msg *msg = NULL;
|
|
int ret;
|
|
|
|
if (con->ops->alloc_msg) {
|
|
mutex_unlock(&con->mutex);
|
|
msg = con->ops->alloc_msg(con, hdr, skip);
|
|
mutex_lock(&con->mutex);
|
|
if (!msg || *skip)
|
|
return NULL;
|
|
}
|
|
if (!msg) {
|
|
*skip = 0;
|
|
msg = ceph_msg_new(type, front_len, GFP_NOFS);
|
|
if (!msg) {
|
|
pr_err("unable to allocate msg type %d len %d\n",
|
|
type, front_len);
|
|
return NULL;
|
|
}
|
|
msg->page_alignment = le16_to_cpu(hdr->data_off);
|
|
}
|
|
memcpy(&msg->hdr, &con->in_hdr, sizeof(con->in_hdr));
|
|
|
|
if (middle_len && !msg->middle) {
|
|
ret = ceph_alloc_middle(con, msg);
|
|
if (ret < 0) {
|
|
ceph_msg_put(msg);
|
|
return NULL;
|
|
}
|
|
}
|
|
|
|
return msg;
|
|
}
|
|
|
|
|
|
/*
|
|
* Free a generically kmalloc'd message.
|
|
*/
|
|
void ceph_msg_kfree(struct ceph_msg *m)
|
|
{
|
|
dout("msg_kfree %p\n", m);
|
|
if (m->front_is_vmalloc)
|
|
vfree(m->front.iov_base);
|
|
else
|
|
kfree(m->front.iov_base);
|
|
kfree(m);
|
|
}
|
|
|
|
/*
|
|
* Drop a msg ref. Destroy as needed.
|
|
*/
|
|
void ceph_msg_last_put(struct kref *kref)
|
|
{
|
|
struct ceph_msg *m = container_of(kref, struct ceph_msg, kref);
|
|
|
|
dout("ceph_msg_put last one on %p\n", m);
|
|
WARN_ON(!list_empty(&m->list_head));
|
|
|
|
/* drop middle, data, if any */
|
|
if (m->middle) {
|
|
ceph_buffer_put(m->middle);
|
|
m->middle = NULL;
|
|
}
|
|
m->nr_pages = 0;
|
|
m->pages = NULL;
|
|
|
|
if (m->pagelist) {
|
|
ceph_pagelist_release(m->pagelist);
|
|
kfree(m->pagelist);
|
|
m->pagelist = NULL;
|
|
}
|
|
|
|
m->trail = NULL;
|
|
|
|
if (m->pool)
|
|
ceph_msgpool_put(m->pool, m);
|
|
else
|
|
ceph_msg_kfree(m);
|
|
}
|
|
EXPORT_SYMBOL(ceph_msg_last_put);
|
|
|
|
void ceph_msg_dump(struct ceph_msg *msg)
|
|
{
|
|
pr_debug("msg_dump %p (front_max %d nr_pages %d)\n", msg,
|
|
msg->front_max, msg->nr_pages);
|
|
print_hex_dump(KERN_DEBUG, "header: ",
|
|
DUMP_PREFIX_OFFSET, 16, 1,
|
|
&msg->hdr, sizeof(msg->hdr), true);
|
|
print_hex_dump(KERN_DEBUG, " front: ",
|
|
DUMP_PREFIX_OFFSET, 16, 1,
|
|
msg->front.iov_base, msg->front.iov_len, true);
|
|
if (msg->middle)
|
|
print_hex_dump(KERN_DEBUG, "middle: ",
|
|
DUMP_PREFIX_OFFSET, 16, 1,
|
|
msg->middle->vec.iov_base,
|
|
msg->middle->vec.iov_len, true);
|
|
print_hex_dump(KERN_DEBUG, "footer: ",
|
|
DUMP_PREFIX_OFFSET, 16, 1,
|
|
&msg->footer, sizeof(msg->footer), true);
|
|
}
|
|
EXPORT_SYMBOL(ceph_msg_dump);
|