mirror of
https://github.com/FEX-Emu/linux.git
synced 2025-01-07 01:51:42 +00:00
14516bb7bb
It is ridiculous practice to scan inode block by block, this technique applicable only for old indirect files. This takes significant amount of time for really large files. Let's reuse ext4_fiemap which already traverse inode-tree in most optimal meaner. TESTCASE: ftruncate64(fd, 0); ftruncate64(fd, 1ULL << 40); /* lseek will spin very long time */ lseek64(fd, 0, SEEK_DATA); lseek64(fd, 0, SEEK_HOLE); Original report: https://lkml.org/lkml/2014/10/16/620 Signed-off-by: Dmitry Monakhov <dmonakhov@openvz.org> Signed-off-by: Theodore Ts'o <tytso@mit.edu>
607 lines
15 KiB
C
607 lines
15 KiB
C
/*
|
|
* linux/fs/ext4/file.c
|
|
*
|
|
* Copyright (C) 1992, 1993, 1994, 1995
|
|
* Remy Card (card@masi.ibp.fr)
|
|
* Laboratoire MASI - Institut Blaise Pascal
|
|
* Universite Pierre et Marie Curie (Paris VI)
|
|
*
|
|
* from
|
|
*
|
|
* linux/fs/minix/file.c
|
|
*
|
|
* Copyright (C) 1991, 1992 Linus Torvalds
|
|
*
|
|
* ext4 fs regular file handling primitives
|
|
*
|
|
* 64-bit file support on 64-bit platforms by Jakub Jelinek
|
|
* (jj@sunsite.ms.mff.cuni.cz)
|
|
*/
|
|
|
|
#include <linux/time.h>
|
|
#include <linux/fs.h>
|
|
#include <linux/jbd2.h>
|
|
#include <linux/mount.h>
|
|
#include <linux/path.h>
|
|
#include <linux/aio.h>
|
|
#include <linux/quotaops.h>
|
|
#include <linux/pagevec.h>
|
|
#include "ext4.h"
|
|
#include "ext4_jbd2.h"
|
|
#include "xattr.h"
|
|
#include "acl.h"
|
|
|
|
/*
|
|
* Called when an inode is released. Note that this is different
|
|
* from ext4_file_open: open gets called at every open, but release
|
|
* gets called only when /all/ the files are closed.
|
|
*/
|
|
static int ext4_release_file(struct inode *inode, struct file *filp)
|
|
{
|
|
if (ext4_test_inode_state(inode, EXT4_STATE_DA_ALLOC_CLOSE)) {
|
|
ext4_alloc_da_blocks(inode);
|
|
ext4_clear_inode_state(inode, EXT4_STATE_DA_ALLOC_CLOSE);
|
|
}
|
|
/* if we are the last writer on the inode, drop the block reservation */
|
|
if ((filp->f_mode & FMODE_WRITE) &&
|
|
(atomic_read(&inode->i_writecount) == 1) &&
|
|
!EXT4_I(inode)->i_reserved_data_blocks)
|
|
{
|
|
down_write(&EXT4_I(inode)->i_data_sem);
|
|
ext4_discard_preallocations(inode);
|
|
up_write(&EXT4_I(inode)->i_data_sem);
|
|
}
|
|
if (is_dx(inode) && filp->private_data)
|
|
ext4_htree_free_dir_info(filp->private_data);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static void ext4_unwritten_wait(struct inode *inode)
|
|
{
|
|
wait_queue_head_t *wq = ext4_ioend_wq(inode);
|
|
|
|
wait_event(*wq, (atomic_read(&EXT4_I(inode)->i_unwritten) == 0));
|
|
}
|
|
|
|
/*
|
|
* This tests whether the IO in question is block-aligned or not.
|
|
* Ext4 utilizes unwritten extents when hole-filling during direct IO, and they
|
|
* are converted to written only after the IO is complete. Until they are
|
|
* mapped, these blocks appear as holes, so dio_zero_block() will assume that
|
|
* it needs to zero out portions of the start and/or end block. If 2 AIO
|
|
* threads are at work on the same unwritten block, they must be synchronized
|
|
* or one thread will zero the other's data, causing corruption.
|
|
*/
|
|
static int
|
|
ext4_unaligned_aio(struct inode *inode, struct iov_iter *from, loff_t pos)
|
|
{
|
|
struct super_block *sb = inode->i_sb;
|
|
int blockmask = sb->s_blocksize - 1;
|
|
|
|
if (pos >= i_size_read(inode))
|
|
return 0;
|
|
|
|
if ((pos | iov_iter_alignment(from)) & blockmask)
|
|
return 1;
|
|
|
|
return 0;
|
|
}
|
|
|
|
static ssize_t
|
|
ext4_file_write_iter(struct kiocb *iocb, struct iov_iter *from)
|
|
{
|
|
struct file *file = iocb->ki_filp;
|
|
struct inode *inode = file_inode(iocb->ki_filp);
|
|
struct mutex *aio_mutex = NULL;
|
|
struct blk_plug plug;
|
|
int o_direct = file->f_flags & O_DIRECT;
|
|
int overwrite = 0;
|
|
size_t length = iov_iter_count(from);
|
|
ssize_t ret;
|
|
loff_t pos = iocb->ki_pos;
|
|
|
|
/*
|
|
* Unaligned direct AIO must be serialized; see comment above
|
|
* In the case of O_APPEND, assume that we must always serialize
|
|
*/
|
|
if (o_direct &&
|
|
ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS) &&
|
|
!is_sync_kiocb(iocb) &&
|
|
(file->f_flags & O_APPEND ||
|
|
ext4_unaligned_aio(inode, from, pos))) {
|
|
aio_mutex = ext4_aio_mutex(inode);
|
|
mutex_lock(aio_mutex);
|
|
ext4_unwritten_wait(inode);
|
|
}
|
|
|
|
mutex_lock(&inode->i_mutex);
|
|
if (file->f_flags & O_APPEND)
|
|
iocb->ki_pos = pos = i_size_read(inode);
|
|
|
|
/*
|
|
* If we have encountered a bitmap-format file, the size limit
|
|
* is smaller than s_maxbytes, which is for extent-mapped files.
|
|
*/
|
|
if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))) {
|
|
struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
|
|
|
|
if ((pos > sbi->s_bitmap_maxbytes) ||
|
|
(pos == sbi->s_bitmap_maxbytes && length > 0)) {
|
|
mutex_unlock(&inode->i_mutex);
|
|
ret = -EFBIG;
|
|
goto errout;
|
|
}
|
|
|
|
if (pos + length > sbi->s_bitmap_maxbytes)
|
|
iov_iter_truncate(from, sbi->s_bitmap_maxbytes - pos);
|
|
}
|
|
|
|
iocb->private = &overwrite;
|
|
if (o_direct) {
|
|
blk_start_plug(&plug);
|
|
|
|
|
|
/* check whether we do a DIO overwrite or not */
|
|
if (ext4_should_dioread_nolock(inode) && !aio_mutex &&
|
|
!file->f_mapping->nrpages && pos + length <= i_size_read(inode)) {
|
|
struct ext4_map_blocks map;
|
|
unsigned int blkbits = inode->i_blkbits;
|
|
int err, len;
|
|
|
|
map.m_lblk = pos >> blkbits;
|
|
map.m_len = (EXT4_BLOCK_ALIGN(pos + length, blkbits) >> blkbits)
|
|
- map.m_lblk;
|
|
len = map.m_len;
|
|
|
|
err = ext4_map_blocks(NULL, inode, &map, 0);
|
|
/*
|
|
* 'err==len' means that all of blocks has
|
|
* been preallocated no matter they are
|
|
* initialized or not. For excluding
|
|
* unwritten extents, we need to check
|
|
* m_flags. There are two conditions that
|
|
* indicate for initialized extents. 1) If we
|
|
* hit extent cache, EXT4_MAP_MAPPED flag is
|
|
* returned; 2) If we do a real lookup,
|
|
* non-flags are returned. So we should check
|
|
* these two conditions.
|
|
*/
|
|
if (err == len && (map.m_flags & EXT4_MAP_MAPPED))
|
|
overwrite = 1;
|
|
}
|
|
}
|
|
|
|
ret = __generic_file_write_iter(iocb, from);
|
|
mutex_unlock(&inode->i_mutex);
|
|
|
|
if (ret > 0) {
|
|
ssize_t err;
|
|
|
|
err = generic_write_sync(file, iocb->ki_pos - ret, ret);
|
|
if (err < 0)
|
|
ret = err;
|
|
}
|
|
if (o_direct)
|
|
blk_finish_plug(&plug);
|
|
|
|
errout:
|
|
if (aio_mutex)
|
|
mutex_unlock(aio_mutex);
|
|
return ret;
|
|
}
|
|
|
|
static const struct vm_operations_struct ext4_file_vm_ops = {
|
|
.fault = filemap_fault,
|
|
.map_pages = filemap_map_pages,
|
|
.page_mkwrite = ext4_page_mkwrite,
|
|
.remap_pages = generic_file_remap_pages,
|
|
};
|
|
|
|
static int ext4_file_mmap(struct file *file, struct vm_area_struct *vma)
|
|
{
|
|
file_accessed(file);
|
|
vma->vm_ops = &ext4_file_vm_ops;
|
|
return 0;
|
|
}
|
|
|
|
static int ext4_file_open(struct inode * inode, struct file * filp)
|
|
{
|
|
struct super_block *sb = inode->i_sb;
|
|
struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
|
|
struct vfsmount *mnt = filp->f_path.mnt;
|
|
struct path path;
|
|
char buf[64], *cp;
|
|
|
|
if (unlikely(!(sbi->s_mount_flags & EXT4_MF_MNTDIR_SAMPLED) &&
|
|
!(sb->s_flags & MS_RDONLY))) {
|
|
sbi->s_mount_flags |= EXT4_MF_MNTDIR_SAMPLED;
|
|
/*
|
|
* Sample where the filesystem has been mounted and
|
|
* store it in the superblock for sysadmin convenience
|
|
* when trying to sort through large numbers of block
|
|
* devices or filesystem images.
|
|
*/
|
|
memset(buf, 0, sizeof(buf));
|
|
path.mnt = mnt;
|
|
path.dentry = mnt->mnt_root;
|
|
cp = d_path(&path, buf, sizeof(buf));
|
|
if (!IS_ERR(cp)) {
|
|
handle_t *handle;
|
|
int err;
|
|
|
|
handle = ext4_journal_start_sb(sb, EXT4_HT_MISC, 1);
|
|
if (IS_ERR(handle))
|
|
return PTR_ERR(handle);
|
|
BUFFER_TRACE(sbi->s_sbh, "get_write_access");
|
|
err = ext4_journal_get_write_access(handle, sbi->s_sbh);
|
|
if (err) {
|
|
ext4_journal_stop(handle);
|
|
return err;
|
|
}
|
|
strlcpy(sbi->s_es->s_last_mounted, cp,
|
|
sizeof(sbi->s_es->s_last_mounted));
|
|
ext4_handle_dirty_super(handle, sb);
|
|
ext4_journal_stop(handle);
|
|
}
|
|
}
|
|
/*
|
|
* Set up the jbd2_inode if we are opening the inode for
|
|
* writing and the journal is present
|
|
*/
|
|
if (filp->f_mode & FMODE_WRITE) {
|
|
int ret = ext4_inode_attach_jinode(inode);
|
|
if (ret < 0)
|
|
return ret;
|
|
}
|
|
return dquot_file_open(inode, filp);
|
|
}
|
|
|
|
/*
|
|
* Here we use ext4_map_blocks() to get a block mapping for a extent-based
|
|
* file rather than ext4_ext_walk_space() because we can introduce
|
|
* SEEK_DATA/SEEK_HOLE for block-mapped and extent-mapped file at the same
|
|
* function. When extent status tree has been fully implemented, it will
|
|
* track all extent status for a file and we can directly use it to
|
|
* retrieve the offset for SEEK_DATA/SEEK_HOLE.
|
|
*/
|
|
|
|
/*
|
|
* When we retrieve the offset for SEEK_DATA/SEEK_HOLE, we would need to
|
|
* lookup page cache to check whether or not there has some data between
|
|
* [startoff, endoff] because, if this range contains an unwritten extent,
|
|
* we determine this extent as a data or a hole according to whether the
|
|
* page cache has data or not.
|
|
*/
|
|
static int ext4_find_unwritten_pgoff(struct inode *inode, int whence,
|
|
loff_t endoff, loff_t *offset)
|
|
{
|
|
struct pagevec pvec;
|
|
pgoff_t index;
|
|
pgoff_t end;
|
|
loff_t startoff;
|
|
loff_t lastoff;
|
|
int found = 0;
|
|
|
|
startoff = *offset;
|
|
lastoff = startoff;
|
|
|
|
|
|
index = startoff >> PAGE_CACHE_SHIFT;
|
|
end = endoff >> PAGE_CACHE_SHIFT;
|
|
|
|
pagevec_init(&pvec, 0);
|
|
do {
|
|
int i, num;
|
|
unsigned long nr_pages;
|
|
|
|
num = min_t(pgoff_t, end - index, PAGEVEC_SIZE);
|
|
nr_pages = pagevec_lookup(&pvec, inode->i_mapping, index,
|
|
(pgoff_t)num);
|
|
if (nr_pages == 0) {
|
|
if (whence == SEEK_DATA)
|
|
break;
|
|
|
|
BUG_ON(whence != SEEK_HOLE);
|
|
/*
|
|
* If this is the first time to go into the loop and
|
|
* offset is not beyond the end offset, it will be a
|
|
* hole at this offset
|
|
*/
|
|
if (lastoff == startoff || lastoff < endoff)
|
|
found = 1;
|
|
break;
|
|
}
|
|
|
|
/*
|
|
* If this is the first time to go into the loop and
|
|
* offset is smaller than the first page offset, it will be a
|
|
* hole at this offset.
|
|
*/
|
|
if (lastoff == startoff && whence == SEEK_HOLE &&
|
|
lastoff < page_offset(pvec.pages[0])) {
|
|
found = 1;
|
|
break;
|
|
}
|
|
|
|
for (i = 0; i < nr_pages; i++) {
|
|
struct page *page = pvec.pages[i];
|
|
struct buffer_head *bh, *head;
|
|
|
|
/*
|
|
* If the current offset is not beyond the end of given
|
|
* range, it will be a hole.
|
|
*/
|
|
if (lastoff < endoff && whence == SEEK_HOLE &&
|
|
page->index > end) {
|
|
found = 1;
|
|
*offset = lastoff;
|
|
goto out;
|
|
}
|
|
|
|
lock_page(page);
|
|
|
|
if (unlikely(page->mapping != inode->i_mapping)) {
|
|
unlock_page(page);
|
|
continue;
|
|
}
|
|
|
|
if (!page_has_buffers(page)) {
|
|
unlock_page(page);
|
|
continue;
|
|
}
|
|
|
|
if (page_has_buffers(page)) {
|
|
lastoff = page_offset(page);
|
|
bh = head = page_buffers(page);
|
|
do {
|
|
if (buffer_uptodate(bh) ||
|
|
buffer_unwritten(bh)) {
|
|
if (whence == SEEK_DATA)
|
|
found = 1;
|
|
} else {
|
|
if (whence == SEEK_HOLE)
|
|
found = 1;
|
|
}
|
|
if (found) {
|
|
*offset = max_t(loff_t,
|
|
startoff, lastoff);
|
|
unlock_page(page);
|
|
goto out;
|
|
}
|
|
lastoff += bh->b_size;
|
|
bh = bh->b_this_page;
|
|
} while (bh != head);
|
|
}
|
|
|
|
lastoff = page_offset(page) + PAGE_SIZE;
|
|
unlock_page(page);
|
|
}
|
|
|
|
/*
|
|
* The no. of pages is less than our desired, that would be a
|
|
* hole in there.
|
|
*/
|
|
if (nr_pages < num && whence == SEEK_HOLE) {
|
|
found = 1;
|
|
*offset = lastoff;
|
|
break;
|
|
}
|
|
|
|
index = pvec.pages[i - 1]->index + 1;
|
|
pagevec_release(&pvec);
|
|
} while (index <= end);
|
|
|
|
out:
|
|
pagevec_release(&pvec);
|
|
return found;
|
|
}
|
|
|
|
/*
|
|
* ext4_seek_data() retrieves the offset for SEEK_DATA.
|
|
*/
|
|
static loff_t ext4_seek_data(struct file *file, loff_t offset, loff_t maxsize)
|
|
{
|
|
struct inode *inode = file->f_mapping->host;
|
|
struct fiemap_extent_info fie;
|
|
struct fiemap_extent ext[2];
|
|
loff_t next;
|
|
int i, ret = 0;
|
|
|
|
mutex_lock(&inode->i_mutex);
|
|
if (offset >= inode->i_size) {
|
|
mutex_unlock(&inode->i_mutex);
|
|
return -ENXIO;
|
|
}
|
|
fie.fi_flags = 0;
|
|
fie.fi_extents_max = 2;
|
|
fie.fi_extents_start = (struct fiemap_extent __user *) &ext;
|
|
while (1) {
|
|
mm_segment_t old_fs = get_fs();
|
|
|
|
fie.fi_extents_mapped = 0;
|
|
memset(ext, 0, sizeof(*ext) * fie.fi_extents_max);
|
|
|
|
set_fs(get_ds());
|
|
ret = ext4_fiemap(inode, &fie, offset, maxsize - offset);
|
|
set_fs(old_fs);
|
|
if (ret)
|
|
break;
|
|
|
|
/* No extents found, EOF */
|
|
if (!fie.fi_extents_mapped) {
|
|
ret = -ENXIO;
|
|
break;
|
|
}
|
|
for (i = 0; i < fie.fi_extents_mapped; i++) {
|
|
next = (loff_t)(ext[i].fe_length + ext[i].fe_logical);
|
|
|
|
if (offset < (loff_t)ext[i].fe_logical)
|
|
offset = (loff_t)ext[i].fe_logical;
|
|
/*
|
|
* If extent is not unwritten, then it contains valid
|
|
* data, mapped or delayed.
|
|
*/
|
|
if (!(ext[i].fe_flags & FIEMAP_EXTENT_UNWRITTEN))
|
|
goto out;
|
|
|
|
/*
|
|
* If there is a unwritten extent at this offset,
|
|
* it will be as a data or a hole according to page
|
|
* cache that has data or not.
|
|
*/
|
|
if (ext4_find_unwritten_pgoff(inode, SEEK_DATA,
|
|
next, &offset))
|
|
goto out;
|
|
|
|
if (ext[i].fe_flags & FIEMAP_EXTENT_LAST) {
|
|
ret = -ENXIO;
|
|
goto out;
|
|
}
|
|
offset = next;
|
|
}
|
|
}
|
|
if (offset > inode->i_size)
|
|
offset = inode->i_size;
|
|
out:
|
|
mutex_unlock(&inode->i_mutex);
|
|
if (ret)
|
|
return ret;
|
|
|
|
return vfs_setpos(file, offset, maxsize);
|
|
}
|
|
|
|
/*
|
|
* ext4_seek_hole() retrieves the offset for SEEK_HOLE
|
|
*/
|
|
static loff_t ext4_seek_hole(struct file *file, loff_t offset, loff_t maxsize)
|
|
{
|
|
struct inode *inode = file->f_mapping->host;
|
|
struct fiemap_extent_info fie;
|
|
struct fiemap_extent ext[2];
|
|
loff_t next;
|
|
int i, ret = 0;
|
|
|
|
mutex_lock(&inode->i_mutex);
|
|
if (offset >= inode->i_size) {
|
|
mutex_unlock(&inode->i_mutex);
|
|
return -ENXIO;
|
|
}
|
|
|
|
fie.fi_flags = 0;
|
|
fie.fi_extents_max = 2;
|
|
fie.fi_extents_start = (struct fiemap_extent __user *)&ext;
|
|
while (1) {
|
|
mm_segment_t old_fs = get_fs();
|
|
|
|
fie.fi_extents_mapped = 0;
|
|
memset(ext, 0, sizeof(*ext));
|
|
|
|
set_fs(get_ds());
|
|
ret = ext4_fiemap(inode, &fie, offset, maxsize - offset);
|
|
set_fs(old_fs);
|
|
if (ret)
|
|
break;
|
|
|
|
/* No extents found */
|
|
if (!fie.fi_extents_mapped)
|
|
break;
|
|
|
|
for (i = 0; i < fie.fi_extents_mapped; i++) {
|
|
next = (loff_t)(ext[i].fe_logical + ext[i].fe_length);
|
|
/*
|
|
* If extent is not unwritten, then it contains valid
|
|
* data, mapped or delayed.
|
|
*/
|
|
if (!(ext[i].fe_flags & FIEMAP_EXTENT_UNWRITTEN)) {
|
|
if (offset < (loff_t)ext[i].fe_logical)
|
|
goto out;
|
|
offset = next;
|
|
continue;
|
|
}
|
|
/*
|
|
* If there is a unwritten extent at this offset,
|
|
* it will be as a data or a hole according to page
|
|
* cache that has data or not.
|
|
*/
|
|
if (ext4_find_unwritten_pgoff(inode, SEEK_HOLE,
|
|
next, &offset))
|
|
goto out;
|
|
|
|
offset = next;
|
|
if (ext[i].fe_flags & FIEMAP_EXTENT_LAST)
|
|
goto out;
|
|
}
|
|
}
|
|
if (offset > inode->i_size)
|
|
offset = inode->i_size;
|
|
out:
|
|
mutex_unlock(&inode->i_mutex);
|
|
if (ret)
|
|
return ret;
|
|
|
|
return vfs_setpos(file, offset, maxsize);
|
|
}
|
|
|
|
/*
|
|
* ext4_llseek() handles both block-mapped and extent-mapped maxbytes values
|
|
* by calling generic_file_llseek_size() with the appropriate maxbytes
|
|
* value for each.
|
|
*/
|
|
loff_t ext4_llseek(struct file *file, loff_t offset, int whence)
|
|
{
|
|
struct inode *inode = file->f_mapping->host;
|
|
loff_t maxbytes;
|
|
|
|
if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)))
|
|
maxbytes = EXT4_SB(inode->i_sb)->s_bitmap_maxbytes;
|
|
else
|
|
maxbytes = inode->i_sb->s_maxbytes;
|
|
|
|
switch (whence) {
|
|
case SEEK_SET:
|
|
case SEEK_CUR:
|
|
case SEEK_END:
|
|
return generic_file_llseek_size(file, offset, whence,
|
|
maxbytes, i_size_read(inode));
|
|
case SEEK_DATA:
|
|
return ext4_seek_data(file, offset, maxbytes);
|
|
case SEEK_HOLE:
|
|
return ext4_seek_hole(file, offset, maxbytes);
|
|
}
|
|
|
|
return -EINVAL;
|
|
}
|
|
|
|
const struct file_operations ext4_file_operations = {
|
|
.llseek = ext4_llseek,
|
|
.read = new_sync_read,
|
|
.write = new_sync_write,
|
|
.read_iter = generic_file_read_iter,
|
|
.write_iter = ext4_file_write_iter,
|
|
.unlocked_ioctl = ext4_ioctl,
|
|
#ifdef CONFIG_COMPAT
|
|
.compat_ioctl = ext4_compat_ioctl,
|
|
#endif
|
|
.mmap = ext4_file_mmap,
|
|
.open = ext4_file_open,
|
|
.release = ext4_release_file,
|
|
.fsync = ext4_sync_file,
|
|
.splice_read = generic_file_splice_read,
|
|
.splice_write = iter_file_splice_write,
|
|
.fallocate = ext4_fallocate,
|
|
};
|
|
|
|
const struct inode_operations ext4_file_inode_operations = {
|
|
.setattr = ext4_setattr,
|
|
.getattr = ext4_getattr,
|
|
.setxattr = generic_setxattr,
|
|
.getxattr = generic_getxattr,
|
|
.listxattr = ext4_listxattr,
|
|
.removexattr = generic_removexattr,
|
|
.get_acl = ext4_get_acl,
|
|
.set_acl = ext4_set_acl,
|
|
.fiemap = ext4_fiemap,
|
|
};
|
|
|