mirror of
https://github.com/FEX-Emu/linux.git
synced 2025-01-12 04:19:08 +00:00
43250ddd75
Supporting AR8131, and AR8132. Signed-off-by: Jie Yang <jie.yang@atheros.com> Signed-off-by: David S. Miller <davem@davemloft.net>
528 lines
14 KiB
C
528 lines
14 KiB
C
/*
|
|
* Copyright(c) 2007 Atheros Corporation. All rights reserved.
|
|
*
|
|
* Derived from Intel e1000 driver
|
|
* Copyright(c) 1999 - 2005 Intel Corporation. All rights reserved.
|
|
*
|
|
* This program is free software; you can redistribute it and/or modify it
|
|
* under the terms of the GNU General Public License as published by the Free
|
|
* Software Foundation; either version 2 of the License, or (at your option)
|
|
* any later version.
|
|
*
|
|
* This program is distributed in the hope that it will be useful, but WITHOUT
|
|
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
|
|
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
|
|
* more details.
|
|
*
|
|
* You should have received a copy of the GNU General Public License along with
|
|
* this program; if not, write to the Free Software Foundation, Inc., 59
|
|
* Temple Place - Suite 330, Boston, MA 02111-1307, USA.
|
|
*/
|
|
#include <linux/pci.h>
|
|
#include <linux/delay.h>
|
|
#include <linux/mii.h>
|
|
#include <linux/crc32.h>
|
|
|
|
#include "atl1c.h"
|
|
|
|
/*
|
|
* check_eeprom_exist
|
|
* return 1 if eeprom exist
|
|
*/
|
|
int atl1c_check_eeprom_exist(struct atl1c_hw *hw)
|
|
{
|
|
u32 data;
|
|
|
|
AT_READ_REG(hw, REG_TWSI_DEBUG, &data);
|
|
if (data & TWSI_DEBUG_DEV_EXIST)
|
|
return 1;
|
|
|
|
return 0;
|
|
}
|
|
|
|
void atl1c_hw_set_mac_addr(struct atl1c_hw *hw)
|
|
{
|
|
u32 value;
|
|
/*
|
|
* 00-0B-6A-F6-00-DC
|
|
* 0: 6AF600DC 1: 000B
|
|
* low dword
|
|
*/
|
|
value = (((u32)hw->mac_addr[2]) << 24) |
|
|
(((u32)hw->mac_addr[3]) << 16) |
|
|
(((u32)hw->mac_addr[4]) << 8) |
|
|
(((u32)hw->mac_addr[5])) ;
|
|
AT_WRITE_REG_ARRAY(hw, REG_MAC_STA_ADDR, 0, value);
|
|
/* hight dword */
|
|
value = (((u32)hw->mac_addr[0]) << 8) |
|
|
(((u32)hw->mac_addr[1])) ;
|
|
AT_WRITE_REG_ARRAY(hw, REG_MAC_STA_ADDR, 1, value);
|
|
}
|
|
|
|
/*
|
|
* atl1c_get_permanent_address
|
|
* return 0 if get valid mac address,
|
|
*/
|
|
static int atl1c_get_permanent_address(struct atl1c_hw *hw)
|
|
{
|
|
u32 addr[2];
|
|
u32 i;
|
|
u32 otp_ctrl_data;
|
|
u32 twsi_ctrl_data;
|
|
u8 eth_addr[ETH_ALEN];
|
|
|
|
/* init */
|
|
addr[0] = addr[1] = 0;
|
|
AT_READ_REG(hw, REG_OTP_CTRL, &otp_ctrl_data);
|
|
if (atl1c_check_eeprom_exist(hw)) {
|
|
/* Enable OTP CLK */
|
|
if (!(otp_ctrl_data & OTP_CTRL_CLK_EN)) {
|
|
otp_ctrl_data |= OTP_CTRL_CLK_EN;
|
|
AT_WRITE_REG(hw, REG_OTP_CTRL, otp_ctrl_data);
|
|
AT_WRITE_FLUSH(hw);
|
|
msleep(1);
|
|
}
|
|
|
|
AT_READ_REG(hw, REG_TWSI_CTRL, &twsi_ctrl_data);
|
|
twsi_ctrl_data |= TWSI_CTRL_SW_LDSTART;
|
|
AT_WRITE_REG(hw, REG_TWSI_CTRL, twsi_ctrl_data);
|
|
for (i = 0; i < AT_TWSI_EEPROM_TIMEOUT; i++) {
|
|
msleep(10);
|
|
AT_READ_REG(hw, REG_TWSI_CTRL, &twsi_ctrl_data);
|
|
if ((twsi_ctrl_data & TWSI_CTRL_SW_LDSTART) == 0)
|
|
break;
|
|
}
|
|
if (i >= AT_TWSI_EEPROM_TIMEOUT)
|
|
return -1;
|
|
}
|
|
/* Disable OTP_CLK */
|
|
if (otp_ctrl_data & OTP_CTRL_CLK_EN) {
|
|
otp_ctrl_data &= ~OTP_CTRL_CLK_EN;
|
|
AT_WRITE_REG(hw, REG_OTP_CTRL, otp_ctrl_data);
|
|
AT_WRITE_FLUSH(hw);
|
|
msleep(1);
|
|
}
|
|
|
|
/* maybe MAC-address is from BIOS */
|
|
AT_READ_REG(hw, REG_MAC_STA_ADDR, &addr[0]);
|
|
AT_READ_REG(hw, REG_MAC_STA_ADDR + 4, &addr[1]);
|
|
*(u32 *) ð_addr[2] = swab32(addr[0]);
|
|
*(u16 *) ð_addr[0] = swab16(*(u16 *)&addr[1]);
|
|
|
|
if (is_valid_ether_addr(eth_addr)) {
|
|
memcpy(hw->perm_mac_addr, eth_addr, ETH_ALEN);
|
|
return 0;
|
|
}
|
|
|
|
return -1;
|
|
}
|
|
|
|
bool atl1c_read_eeprom(struct atl1c_hw *hw, u32 offset, u32 *p_value)
|
|
{
|
|
int i;
|
|
int ret = false;
|
|
u32 otp_ctrl_data;
|
|
u32 control;
|
|
u32 data;
|
|
|
|
if (offset & 3)
|
|
return ret; /* address do not align */
|
|
|
|
AT_READ_REG(hw, REG_OTP_CTRL, &otp_ctrl_data);
|
|
if (!(otp_ctrl_data & OTP_CTRL_CLK_EN))
|
|
AT_WRITE_REG(hw, REG_OTP_CTRL,
|
|
(otp_ctrl_data | OTP_CTRL_CLK_EN));
|
|
|
|
AT_WRITE_REG(hw, REG_EEPROM_DATA_LO, 0);
|
|
control = (offset & EEPROM_CTRL_ADDR_MASK) << EEPROM_CTRL_ADDR_SHIFT;
|
|
AT_WRITE_REG(hw, REG_EEPROM_CTRL, control);
|
|
|
|
for (i = 0; i < 10; i++) {
|
|
udelay(100);
|
|
AT_READ_REG(hw, REG_EEPROM_CTRL, &control);
|
|
if (control & EEPROM_CTRL_RW)
|
|
break;
|
|
}
|
|
if (control & EEPROM_CTRL_RW) {
|
|
AT_READ_REG(hw, REG_EEPROM_CTRL, &data);
|
|
AT_READ_REG(hw, REG_EEPROM_DATA_LO, p_value);
|
|
data = data & 0xFFFF;
|
|
*p_value = swab32((data << 16) | (*p_value >> 16));
|
|
ret = true;
|
|
}
|
|
if (!(otp_ctrl_data & OTP_CTRL_CLK_EN))
|
|
AT_WRITE_REG(hw, REG_OTP_CTRL, otp_ctrl_data);
|
|
|
|
return ret;
|
|
}
|
|
/*
|
|
* Reads the adapter's MAC address from the EEPROM
|
|
*
|
|
* hw - Struct containing variables accessed by shared code
|
|
*/
|
|
int atl1c_read_mac_addr(struct atl1c_hw *hw)
|
|
{
|
|
int err = 0;
|
|
|
|
err = atl1c_get_permanent_address(hw);
|
|
if (err)
|
|
random_ether_addr(hw->perm_mac_addr);
|
|
|
|
memcpy(hw->mac_addr, hw->perm_mac_addr, sizeof(hw->perm_mac_addr));
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* atl1c_hash_mc_addr
|
|
* purpose
|
|
* set hash value for a multicast address
|
|
* hash calcu processing :
|
|
* 1. calcu 32bit CRC for multicast address
|
|
* 2. reverse crc with MSB to LSB
|
|
*/
|
|
u32 atl1c_hash_mc_addr(struct atl1c_hw *hw, u8 *mc_addr)
|
|
{
|
|
u32 crc32;
|
|
u32 value = 0;
|
|
int i;
|
|
|
|
crc32 = ether_crc_le(6, mc_addr);
|
|
for (i = 0; i < 32; i++)
|
|
value |= (((crc32 >> i) & 1) << (31 - i));
|
|
|
|
return value;
|
|
}
|
|
|
|
/*
|
|
* Sets the bit in the multicast table corresponding to the hash value.
|
|
* hw - Struct containing variables accessed by shared code
|
|
* hash_value - Multicast address hash value
|
|
*/
|
|
void atl1c_hash_set(struct atl1c_hw *hw, u32 hash_value)
|
|
{
|
|
u32 hash_bit, hash_reg;
|
|
u32 mta;
|
|
|
|
/*
|
|
* The HASH Table is a register array of 2 32-bit registers.
|
|
* It is treated like an array of 64 bits. We want to set
|
|
* bit BitArray[hash_value]. So we figure out what register
|
|
* the bit is in, read it, OR in the new bit, then write
|
|
* back the new value. The register is determined by the
|
|
* upper bit of the hash value and the bit within that
|
|
* register are determined by the lower 5 bits of the value.
|
|
*/
|
|
hash_reg = (hash_value >> 31) & 0x1;
|
|
hash_bit = (hash_value >> 26) & 0x1F;
|
|
|
|
mta = AT_READ_REG_ARRAY(hw, REG_RX_HASH_TABLE, hash_reg);
|
|
|
|
mta |= (1 << hash_bit);
|
|
|
|
AT_WRITE_REG_ARRAY(hw, REG_RX_HASH_TABLE, hash_reg, mta);
|
|
}
|
|
|
|
/*
|
|
* Reads the value from a PHY register
|
|
* hw - Struct containing variables accessed by shared code
|
|
* reg_addr - address of the PHY register to read
|
|
*/
|
|
int atl1c_read_phy_reg(struct atl1c_hw *hw, u16 reg_addr, u16 *phy_data)
|
|
{
|
|
u32 val;
|
|
int i;
|
|
|
|
val = ((u32)(reg_addr & MDIO_REG_ADDR_MASK)) << MDIO_REG_ADDR_SHIFT |
|
|
MDIO_START | MDIO_SUP_PREAMBLE | MDIO_RW |
|
|
MDIO_CLK_25_4 << MDIO_CLK_SEL_SHIFT;
|
|
|
|
AT_WRITE_REG(hw, REG_MDIO_CTRL, val);
|
|
|
|
for (i = 0; i < MDIO_WAIT_TIMES; i++) {
|
|
udelay(2);
|
|
AT_READ_REG(hw, REG_MDIO_CTRL, &val);
|
|
if (!(val & (MDIO_START | MDIO_BUSY)))
|
|
break;
|
|
}
|
|
if (!(val & (MDIO_START | MDIO_BUSY))) {
|
|
*phy_data = (u16)val;
|
|
return 0;
|
|
}
|
|
|
|
return -1;
|
|
}
|
|
|
|
/*
|
|
* Writes a value to a PHY register
|
|
* hw - Struct containing variables accessed by shared code
|
|
* reg_addr - address of the PHY register to write
|
|
* data - data to write to the PHY
|
|
*/
|
|
int atl1c_write_phy_reg(struct atl1c_hw *hw, u32 reg_addr, u16 phy_data)
|
|
{
|
|
int i;
|
|
u32 val;
|
|
|
|
val = ((u32)(phy_data & MDIO_DATA_MASK)) << MDIO_DATA_SHIFT |
|
|
(reg_addr & MDIO_REG_ADDR_MASK) << MDIO_REG_ADDR_SHIFT |
|
|
MDIO_SUP_PREAMBLE | MDIO_START |
|
|
MDIO_CLK_25_4 << MDIO_CLK_SEL_SHIFT;
|
|
|
|
AT_WRITE_REG(hw, REG_MDIO_CTRL, val);
|
|
|
|
for (i = 0; i < MDIO_WAIT_TIMES; i++) {
|
|
udelay(2);
|
|
AT_READ_REG(hw, REG_MDIO_CTRL, &val);
|
|
if (!(val & (MDIO_START | MDIO_BUSY)))
|
|
break;
|
|
}
|
|
|
|
if (!(val & (MDIO_START | MDIO_BUSY)))
|
|
return 0;
|
|
|
|
return -1;
|
|
}
|
|
|
|
/*
|
|
* Configures PHY autoneg and flow control advertisement settings
|
|
*
|
|
* hw - Struct containing variables accessed by shared code
|
|
*/
|
|
static int atl1c_phy_setup_adv(struct atl1c_hw *hw)
|
|
{
|
|
u16 mii_adv_data = ADVERTISE_DEFAULT_CAP & ~ADVERTISE_SPEED_MASK;
|
|
u16 mii_giga_ctrl_data = GIGA_CR_1000T_DEFAULT_CAP &
|
|
~GIGA_CR_1000T_SPEED_MASK;
|
|
|
|
if (hw->autoneg_advertised & ADVERTISED_10baseT_Half)
|
|
mii_adv_data |= ADVERTISE_10HALF;
|
|
if (hw->autoneg_advertised & ADVERTISED_10baseT_Full)
|
|
mii_adv_data |= ADVERTISE_10FULL;
|
|
if (hw->autoneg_advertised & ADVERTISED_100baseT_Half)
|
|
mii_adv_data |= ADVERTISE_100HALF;
|
|
if (hw->autoneg_advertised & ADVERTISED_100baseT_Full)
|
|
mii_adv_data |= ADVERTISE_100FULL;
|
|
|
|
if (hw->autoneg_advertised & ADVERTISED_Autoneg)
|
|
mii_adv_data |= ADVERTISE_10HALF | ADVERTISE_10FULL |
|
|
ADVERTISE_100HALF | ADVERTISE_100FULL;
|
|
|
|
if (hw->ctrl_flags & ATL1C_LINK_CAP_1000M) {
|
|
if (hw->autoneg_advertised & ADVERTISED_1000baseT_Half)
|
|
mii_giga_ctrl_data |= ADVERTISE_1000HALF;
|
|
if (hw->autoneg_advertised & ADVERTISED_1000baseT_Full)
|
|
mii_giga_ctrl_data |= ADVERTISE_1000FULL;
|
|
if (hw->autoneg_advertised & ADVERTISED_Autoneg)
|
|
mii_giga_ctrl_data |= ADVERTISE_1000HALF |
|
|
ADVERTISE_1000FULL;
|
|
}
|
|
|
|
if (atl1c_write_phy_reg(hw, MII_ADVERTISE, mii_adv_data) != 0 ||
|
|
atl1c_write_phy_reg(hw, MII_GIGA_CR, mii_giga_ctrl_data) != 0)
|
|
return -1;
|
|
return 0;
|
|
}
|
|
|
|
void atl1c_phy_disable(struct atl1c_hw *hw)
|
|
{
|
|
AT_WRITE_REGW(hw, REG_GPHY_CTRL,
|
|
GPHY_CTRL_PW_WOL_DIS | GPHY_CTRL_EXT_RESET);
|
|
}
|
|
|
|
static void atl1c_phy_magic_data(struct atl1c_hw *hw)
|
|
{
|
|
u16 data;
|
|
|
|
data = ANA_LOOP_SEL_10BT | ANA_EN_MASK_TB | ANA_EN_10BT_IDLE |
|
|
((1 & ANA_INTERVAL_SEL_TIMER_MASK) <<
|
|
ANA_INTERVAL_SEL_TIMER_SHIFT);
|
|
|
|
atl1c_write_phy_reg(hw, MII_DBG_ADDR, MII_ANA_CTRL_18);
|
|
atl1c_write_phy_reg(hw, MII_DBG_DATA, data);
|
|
|
|
data = (2 & ANA_SERDES_CDR_BW_MASK) | ANA_MS_PAD_DBG |
|
|
ANA_SERDES_EN_DEEM | ANA_SERDES_SEL_HSP | ANA_SERDES_EN_PLL |
|
|
ANA_SERDES_EN_LCKDT;
|
|
|
|
atl1c_write_phy_reg(hw, MII_DBG_ADDR, MII_ANA_CTRL_5);
|
|
atl1c_write_phy_reg(hw, MII_DBG_DATA, data);
|
|
|
|
data = (44 & ANA_LONG_CABLE_TH_100_MASK) |
|
|
((33 & ANA_SHORT_CABLE_TH_100_MASK) <<
|
|
ANA_SHORT_CABLE_TH_100_SHIFT) | ANA_BP_BAD_LINK_ACCUM |
|
|
ANA_BP_SMALL_BW;
|
|
|
|
atl1c_write_phy_reg(hw, MII_DBG_ADDR, MII_ANA_CTRL_54);
|
|
atl1c_write_phy_reg(hw, MII_DBG_DATA, data);
|
|
|
|
data = (11 & ANA_IECHO_ADJ_MASK) | ((11 & ANA_IECHO_ADJ_MASK) <<
|
|
ANA_IECHO_ADJ_2_SHIFT) | ((8 & ANA_IECHO_ADJ_MASK) <<
|
|
ANA_IECHO_ADJ_1_SHIFT) | ((8 & ANA_IECHO_ADJ_MASK) <<
|
|
ANA_IECHO_ADJ_0_SHIFT);
|
|
|
|
atl1c_write_phy_reg(hw, MII_DBG_ADDR, MII_ANA_CTRL_4);
|
|
atl1c_write_phy_reg(hw, MII_DBG_DATA, data);
|
|
|
|
data = ANA_RESTART_CAL | ((7 & ANA_MANUL_SWICH_ON_MASK) <<
|
|
ANA_MANUL_SWICH_ON_SHIFT) | ANA_MAN_ENABLE |
|
|
ANA_SEL_HSP | ANA_EN_HB | ANA_OEN_125M;
|
|
|
|
atl1c_write_phy_reg(hw, MII_DBG_ADDR, MII_ANA_CTRL_0);
|
|
atl1c_write_phy_reg(hw, MII_DBG_DATA, data);
|
|
|
|
if (hw->ctrl_flags & ATL1C_HIB_DISABLE) {
|
|
atl1c_write_phy_reg(hw, MII_DBG_ADDR, MII_ANA_CTRL_41);
|
|
if (atl1c_read_phy_reg(hw, MII_DBG_DATA, &data) != 0)
|
|
return;
|
|
data &= ~ANA_TOP_PS_EN;
|
|
atl1c_write_phy_reg(hw, MII_DBG_DATA, data);
|
|
|
|
atl1c_write_phy_reg(hw, MII_DBG_ADDR, MII_ANA_CTRL_11);
|
|
if (atl1c_read_phy_reg(hw, MII_DBG_DATA, &data) != 0)
|
|
return;
|
|
data &= ~ANA_PS_HIB_EN;
|
|
atl1c_write_phy_reg(hw, MII_DBG_DATA, data);
|
|
}
|
|
}
|
|
|
|
int atl1c_phy_reset(struct atl1c_hw *hw)
|
|
{
|
|
struct atl1c_adapter *adapter = hw->adapter;
|
|
struct pci_dev *pdev = adapter->pdev;
|
|
u32 phy_ctrl_data = GPHY_CTRL_DEFAULT;
|
|
u32 mii_ier_data = IER_LINK_UP | IER_LINK_DOWN;
|
|
int err;
|
|
|
|
if (hw->ctrl_flags & ATL1C_HIB_DISABLE)
|
|
phy_ctrl_data &= ~GPHY_CTRL_HIB_EN;
|
|
|
|
AT_WRITE_REG(hw, REG_GPHY_CTRL, phy_ctrl_data);
|
|
AT_WRITE_FLUSH(hw);
|
|
msleep(40);
|
|
phy_ctrl_data |= GPHY_CTRL_EXT_RESET;
|
|
AT_WRITE_REG(hw, REG_GPHY_CTRL, phy_ctrl_data);
|
|
AT_WRITE_FLUSH(hw);
|
|
msleep(10);
|
|
|
|
/*Enable PHY LinkChange Interrupt */
|
|
err = atl1c_write_phy_reg(hw, MII_IER, mii_ier_data);
|
|
if (err) {
|
|
if (netif_msg_hw(adapter))
|
|
dev_err(&pdev->dev,
|
|
"Error enable PHY linkChange Interrupt\n");
|
|
return err;
|
|
}
|
|
if (!(hw->ctrl_flags & ATL1C_FPGA_VERSION))
|
|
atl1c_phy_magic_data(hw);
|
|
return 0;
|
|
}
|
|
|
|
int atl1c_phy_init(struct atl1c_hw *hw)
|
|
{
|
|
struct atl1c_adapter *adapter = (struct atl1c_adapter *)hw->adapter;
|
|
struct pci_dev *pdev = adapter->pdev;
|
|
int ret_val;
|
|
u16 mii_bmcr_data = BMCR_RESET;
|
|
u16 phy_id1, phy_id2;
|
|
|
|
if ((atl1c_read_phy_reg(hw, MII_PHYSID1, &phy_id1) != 0) ||
|
|
(atl1c_read_phy_reg(hw, MII_PHYSID2, &phy_id2) != 0)) {
|
|
if (netif_msg_link(adapter))
|
|
dev_err(&pdev->dev, "Error get phy ID\n");
|
|
return -1;
|
|
}
|
|
switch (hw->media_type) {
|
|
case MEDIA_TYPE_AUTO_SENSOR:
|
|
ret_val = atl1c_phy_setup_adv(hw);
|
|
if (ret_val) {
|
|
if (netif_msg_link(adapter))
|
|
dev_err(&pdev->dev,
|
|
"Error Setting up Auto-Negotiation\n");
|
|
return ret_val;
|
|
}
|
|
mii_bmcr_data |= BMCR_AUTO_NEG_EN | BMCR_RESTART_AUTO_NEG;
|
|
break;
|
|
case MEDIA_TYPE_100M_FULL:
|
|
mii_bmcr_data |= BMCR_SPEED_100 | BMCR_FULL_DUPLEX;
|
|
break;
|
|
case MEDIA_TYPE_100M_HALF:
|
|
mii_bmcr_data |= BMCR_SPEED_100;
|
|
break;
|
|
case MEDIA_TYPE_10M_FULL:
|
|
mii_bmcr_data |= BMCR_SPEED_10 | BMCR_FULL_DUPLEX;
|
|
break;
|
|
case MEDIA_TYPE_10M_HALF:
|
|
mii_bmcr_data |= BMCR_SPEED_10;
|
|
break;
|
|
default:
|
|
if (netif_msg_link(adapter))
|
|
dev_err(&pdev->dev, "Wrong Media type %d\n",
|
|
hw->media_type);
|
|
return -1;
|
|
break;
|
|
}
|
|
|
|
ret_val = atl1c_write_phy_reg(hw, MII_BMCR, mii_bmcr_data);
|
|
if (ret_val)
|
|
return ret_val;
|
|
hw->phy_configured = true;
|
|
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* Detects the current speed and duplex settings of the hardware.
|
|
*
|
|
* hw - Struct containing variables accessed by shared code
|
|
* speed - Speed of the connection
|
|
* duplex - Duplex setting of the connection
|
|
*/
|
|
int atl1c_get_speed_and_duplex(struct atl1c_hw *hw, u16 *speed, u16 *duplex)
|
|
{
|
|
int err;
|
|
u16 phy_data;
|
|
|
|
/* Read PHY Specific Status Register (17) */
|
|
err = atl1c_read_phy_reg(hw, MII_GIGA_PSSR, &phy_data);
|
|
if (err)
|
|
return err;
|
|
|
|
if (!(phy_data & GIGA_PSSR_SPD_DPLX_RESOLVED))
|
|
return -1;
|
|
|
|
switch (phy_data & GIGA_PSSR_SPEED) {
|
|
case GIGA_PSSR_1000MBS:
|
|
*speed = SPEED_1000;
|
|
break;
|
|
case GIGA_PSSR_100MBS:
|
|
*speed = SPEED_100;
|
|
break;
|
|
case GIGA_PSSR_10MBS:
|
|
*speed = SPEED_10;
|
|
break;
|
|
default:
|
|
return -1;
|
|
break;
|
|
}
|
|
|
|
if (phy_data & GIGA_PSSR_DPLX)
|
|
*duplex = FULL_DUPLEX;
|
|
else
|
|
*duplex = HALF_DUPLEX;
|
|
|
|
return 0;
|
|
}
|
|
|
|
int atl1c_restart_autoneg(struct atl1c_hw *hw)
|
|
{
|
|
int err = 0;
|
|
u16 mii_bmcr_data = BMCR_RESET;
|
|
|
|
err = atl1c_phy_setup_adv(hw);
|
|
if (err)
|
|
return err;
|
|
mii_bmcr_data |= BMCR_AUTO_NEG_EN | BMCR_RESTART_AUTO_NEG;
|
|
|
|
return atl1c_write_phy_reg(hw, MII_BMCR, mii_bmcr_data);
|
|
}
|