mirror of
https://github.com/FEX-Emu/linux.git
synced 2025-01-07 10:03:24 +00:00
3ac285ff23
Return -ENOMEM when memory allocation fails in cond_init_bool_indexes, correctly propagating error code to caller. Signed-off-by: Davidlohr Bueso <dave@gnu.org> Signed-off-by: James Morris <jmorris@namei.org>
3161 lines
64 KiB
C
3161 lines
64 KiB
C
/*
|
|
* Implementation of the policy database.
|
|
*
|
|
* Author : Stephen Smalley, <sds@epoch.ncsc.mil>
|
|
*/
|
|
|
|
/*
|
|
* Updated: Trusted Computer Solutions, Inc. <dgoeddel@trustedcs.com>
|
|
*
|
|
* Support for enhanced MLS infrastructure.
|
|
*
|
|
* Updated: Frank Mayer <mayerf@tresys.com> and Karl MacMillan <kmacmillan@tresys.com>
|
|
*
|
|
* Added conditional policy language extensions
|
|
*
|
|
* Updated: Hewlett-Packard <paul.moore@hp.com>
|
|
*
|
|
* Added support for the policy capability bitmap
|
|
*
|
|
* Copyright (C) 2007 Hewlett-Packard Development Company, L.P.
|
|
* Copyright (C) 2004-2005 Trusted Computer Solutions, Inc.
|
|
* Copyright (C) 2003 - 2004 Tresys Technology, LLC
|
|
* This program is free software; you can redistribute it and/or modify
|
|
* it under the terms of the GNU General Public License as published by
|
|
* the Free Software Foundation, version 2.
|
|
*/
|
|
|
|
#include <linux/kernel.h>
|
|
#include <linux/sched.h>
|
|
#include <linux/slab.h>
|
|
#include <linux/string.h>
|
|
#include <linux/errno.h>
|
|
#include <linux/audit.h>
|
|
#include <linux/flex_array.h>
|
|
#include "security.h"
|
|
|
|
#include "policydb.h"
|
|
#include "conditional.h"
|
|
#include "mls.h"
|
|
#include "services.h"
|
|
|
|
#define _DEBUG_HASHES
|
|
|
|
#ifdef DEBUG_HASHES
|
|
static const char *symtab_name[SYM_NUM] = {
|
|
"common prefixes",
|
|
"classes",
|
|
"roles",
|
|
"types",
|
|
"users",
|
|
"bools",
|
|
"levels",
|
|
"categories",
|
|
};
|
|
#endif
|
|
|
|
static unsigned int symtab_sizes[SYM_NUM] = {
|
|
2,
|
|
32,
|
|
16,
|
|
512,
|
|
128,
|
|
16,
|
|
16,
|
|
16,
|
|
};
|
|
|
|
struct policydb_compat_info {
|
|
int version;
|
|
int sym_num;
|
|
int ocon_num;
|
|
};
|
|
|
|
/* These need to be updated if SYM_NUM or OCON_NUM changes */
|
|
static struct policydb_compat_info policydb_compat[] = {
|
|
{
|
|
.version = POLICYDB_VERSION_BASE,
|
|
.sym_num = SYM_NUM - 3,
|
|
.ocon_num = OCON_NUM - 1,
|
|
},
|
|
{
|
|
.version = POLICYDB_VERSION_BOOL,
|
|
.sym_num = SYM_NUM - 2,
|
|
.ocon_num = OCON_NUM - 1,
|
|
},
|
|
{
|
|
.version = POLICYDB_VERSION_IPV6,
|
|
.sym_num = SYM_NUM - 2,
|
|
.ocon_num = OCON_NUM,
|
|
},
|
|
{
|
|
.version = POLICYDB_VERSION_NLCLASS,
|
|
.sym_num = SYM_NUM - 2,
|
|
.ocon_num = OCON_NUM,
|
|
},
|
|
{
|
|
.version = POLICYDB_VERSION_MLS,
|
|
.sym_num = SYM_NUM,
|
|
.ocon_num = OCON_NUM,
|
|
},
|
|
{
|
|
.version = POLICYDB_VERSION_AVTAB,
|
|
.sym_num = SYM_NUM,
|
|
.ocon_num = OCON_NUM,
|
|
},
|
|
{
|
|
.version = POLICYDB_VERSION_RANGETRANS,
|
|
.sym_num = SYM_NUM,
|
|
.ocon_num = OCON_NUM,
|
|
},
|
|
{
|
|
.version = POLICYDB_VERSION_POLCAP,
|
|
.sym_num = SYM_NUM,
|
|
.ocon_num = OCON_NUM,
|
|
},
|
|
{
|
|
.version = POLICYDB_VERSION_PERMISSIVE,
|
|
.sym_num = SYM_NUM,
|
|
.ocon_num = OCON_NUM,
|
|
},
|
|
{
|
|
.version = POLICYDB_VERSION_BOUNDARY,
|
|
.sym_num = SYM_NUM,
|
|
.ocon_num = OCON_NUM,
|
|
},
|
|
};
|
|
|
|
static struct policydb_compat_info *policydb_lookup_compat(int version)
|
|
{
|
|
int i;
|
|
struct policydb_compat_info *info = NULL;
|
|
|
|
for (i = 0; i < ARRAY_SIZE(policydb_compat); i++) {
|
|
if (policydb_compat[i].version == version) {
|
|
info = &policydb_compat[i];
|
|
break;
|
|
}
|
|
}
|
|
return info;
|
|
}
|
|
|
|
/*
|
|
* Initialize the role table.
|
|
*/
|
|
static int roles_init(struct policydb *p)
|
|
{
|
|
char *key = NULL;
|
|
int rc;
|
|
struct role_datum *role;
|
|
|
|
rc = -ENOMEM;
|
|
role = kzalloc(sizeof(*role), GFP_KERNEL);
|
|
if (!role)
|
|
goto out;
|
|
|
|
rc = -EINVAL;
|
|
role->value = ++p->p_roles.nprim;
|
|
if (role->value != OBJECT_R_VAL)
|
|
goto out;
|
|
|
|
rc = -ENOMEM;
|
|
key = kstrdup(OBJECT_R, GFP_KERNEL);
|
|
if (!key)
|
|
goto out;
|
|
|
|
rc = hashtab_insert(p->p_roles.table, key, role);
|
|
if (rc)
|
|
goto out;
|
|
|
|
return 0;
|
|
out:
|
|
kfree(key);
|
|
kfree(role);
|
|
return rc;
|
|
}
|
|
|
|
static u32 rangetr_hash(struct hashtab *h, const void *k)
|
|
{
|
|
const struct range_trans *key = k;
|
|
return (key->source_type + (key->target_type << 3) +
|
|
(key->target_class << 5)) & (h->size - 1);
|
|
}
|
|
|
|
static int rangetr_cmp(struct hashtab *h, const void *k1, const void *k2)
|
|
{
|
|
const struct range_trans *key1 = k1, *key2 = k2;
|
|
int v;
|
|
|
|
v = key1->source_type - key2->source_type;
|
|
if (v)
|
|
return v;
|
|
|
|
v = key1->target_type - key2->target_type;
|
|
if (v)
|
|
return v;
|
|
|
|
v = key1->target_class - key2->target_class;
|
|
|
|
return v;
|
|
}
|
|
|
|
/*
|
|
* Initialize a policy database structure.
|
|
*/
|
|
static int policydb_init(struct policydb *p)
|
|
{
|
|
int i, rc;
|
|
|
|
memset(p, 0, sizeof(*p));
|
|
|
|
for (i = 0; i < SYM_NUM; i++) {
|
|
rc = symtab_init(&p->symtab[i], symtab_sizes[i]);
|
|
if (rc)
|
|
goto out;
|
|
}
|
|
|
|
rc = avtab_init(&p->te_avtab);
|
|
if (rc)
|
|
goto out;
|
|
|
|
rc = roles_init(p);
|
|
if (rc)
|
|
goto out;
|
|
|
|
rc = cond_policydb_init(p);
|
|
if (rc)
|
|
goto out;
|
|
|
|
p->range_tr = hashtab_create(rangetr_hash, rangetr_cmp, 256);
|
|
if (!p->range_tr)
|
|
goto out;
|
|
|
|
ebitmap_init(&p->policycaps);
|
|
ebitmap_init(&p->permissive_map);
|
|
|
|
return 0;
|
|
out:
|
|
for (i = 0; i < SYM_NUM; i++)
|
|
hashtab_destroy(p->symtab[i].table);
|
|
return rc;
|
|
}
|
|
|
|
/*
|
|
* The following *_index functions are used to
|
|
* define the val_to_name and val_to_struct arrays
|
|
* in a policy database structure. The val_to_name
|
|
* arrays are used when converting security context
|
|
* structures into string representations. The
|
|
* val_to_struct arrays are used when the attributes
|
|
* of a class, role, or user are needed.
|
|
*/
|
|
|
|
static int common_index(void *key, void *datum, void *datap)
|
|
{
|
|
struct policydb *p;
|
|
struct common_datum *comdatum;
|
|
struct flex_array *fa;
|
|
|
|
comdatum = datum;
|
|
p = datap;
|
|
if (!comdatum->value || comdatum->value > p->p_commons.nprim)
|
|
return -EINVAL;
|
|
|
|
fa = p->sym_val_to_name[SYM_COMMONS];
|
|
if (flex_array_put_ptr(fa, comdatum->value - 1, key,
|
|
GFP_KERNEL | __GFP_ZERO))
|
|
BUG();
|
|
return 0;
|
|
}
|
|
|
|
static int class_index(void *key, void *datum, void *datap)
|
|
{
|
|
struct policydb *p;
|
|
struct class_datum *cladatum;
|
|
struct flex_array *fa;
|
|
|
|
cladatum = datum;
|
|
p = datap;
|
|
if (!cladatum->value || cladatum->value > p->p_classes.nprim)
|
|
return -EINVAL;
|
|
fa = p->sym_val_to_name[SYM_CLASSES];
|
|
if (flex_array_put_ptr(fa, cladatum->value - 1, key,
|
|
GFP_KERNEL | __GFP_ZERO))
|
|
BUG();
|
|
p->class_val_to_struct[cladatum->value - 1] = cladatum;
|
|
return 0;
|
|
}
|
|
|
|
static int role_index(void *key, void *datum, void *datap)
|
|
{
|
|
struct policydb *p;
|
|
struct role_datum *role;
|
|
struct flex_array *fa;
|
|
|
|
role = datum;
|
|
p = datap;
|
|
if (!role->value
|
|
|| role->value > p->p_roles.nprim
|
|
|| role->bounds > p->p_roles.nprim)
|
|
return -EINVAL;
|
|
|
|
fa = p->sym_val_to_name[SYM_ROLES];
|
|
if (flex_array_put_ptr(fa, role->value - 1, key,
|
|
GFP_KERNEL | __GFP_ZERO))
|
|
BUG();
|
|
p->role_val_to_struct[role->value - 1] = role;
|
|
return 0;
|
|
}
|
|
|
|
static int type_index(void *key, void *datum, void *datap)
|
|
{
|
|
struct policydb *p;
|
|
struct type_datum *typdatum;
|
|
struct flex_array *fa;
|
|
|
|
typdatum = datum;
|
|
p = datap;
|
|
|
|
if (typdatum->primary) {
|
|
if (!typdatum->value
|
|
|| typdatum->value > p->p_types.nprim
|
|
|| typdatum->bounds > p->p_types.nprim)
|
|
return -EINVAL;
|
|
fa = p->sym_val_to_name[SYM_TYPES];
|
|
if (flex_array_put_ptr(fa, typdatum->value - 1, key,
|
|
GFP_KERNEL | __GFP_ZERO))
|
|
BUG();
|
|
|
|
fa = p->type_val_to_struct_array;
|
|
if (flex_array_put_ptr(fa, typdatum->value - 1, typdatum,
|
|
GFP_KERNEL | __GFP_ZERO))
|
|
BUG();
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int user_index(void *key, void *datum, void *datap)
|
|
{
|
|
struct policydb *p;
|
|
struct user_datum *usrdatum;
|
|
struct flex_array *fa;
|
|
|
|
usrdatum = datum;
|
|
p = datap;
|
|
if (!usrdatum->value
|
|
|| usrdatum->value > p->p_users.nprim
|
|
|| usrdatum->bounds > p->p_users.nprim)
|
|
return -EINVAL;
|
|
|
|
fa = p->sym_val_to_name[SYM_USERS];
|
|
if (flex_array_put_ptr(fa, usrdatum->value - 1, key,
|
|
GFP_KERNEL | __GFP_ZERO))
|
|
BUG();
|
|
p->user_val_to_struct[usrdatum->value - 1] = usrdatum;
|
|
return 0;
|
|
}
|
|
|
|
static int sens_index(void *key, void *datum, void *datap)
|
|
{
|
|
struct policydb *p;
|
|
struct level_datum *levdatum;
|
|
struct flex_array *fa;
|
|
|
|
levdatum = datum;
|
|
p = datap;
|
|
|
|
if (!levdatum->isalias) {
|
|
if (!levdatum->level->sens ||
|
|
levdatum->level->sens > p->p_levels.nprim)
|
|
return -EINVAL;
|
|
fa = p->sym_val_to_name[SYM_LEVELS];
|
|
if (flex_array_put_ptr(fa, levdatum->level->sens - 1, key,
|
|
GFP_KERNEL | __GFP_ZERO))
|
|
BUG();
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int cat_index(void *key, void *datum, void *datap)
|
|
{
|
|
struct policydb *p;
|
|
struct cat_datum *catdatum;
|
|
struct flex_array *fa;
|
|
|
|
catdatum = datum;
|
|
p = datap;
|
|
|
|
if (!catdatum->isalias) {
|
|
if (!catdatum->value || catdatum->value > p->p_cats.nprim)
|
|
return -EINVAL;
|
|
fa = p->sym_val_to_name[SYM_CATS];
|
|
if (flex_array_put_ptr(fa, catdatum->value - 1, key,
|
|
GFP_KERNEL | __GFP_ZERO))
|
|
BUG();
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int (*index_f[SYM_NUM]) (void *key, void *datum, void *datap) =
|
|
{
|
|
common_index,
|
|
class_index,
|
|
role_index,
|
|
type_index,
|
|
user_index,
|
|
cond_index_bool,
|
|
sens_index,
|
|
cat_index,
|
|
};
|
|
|
|
#ifdef DEBUG_HASHES
|
|
static void symtab_hash_eval(struct symtab *s)
|
|
{
|
|
int i;
|
|
|
|
for (i = 0; i < SYM_NUM; i++) {
|
|
struct hashtab *h = s[i].table;
|
|
struct hashtab_info info;
|
|
|
|
hashtab_stat(h, &info);
|
|
printk(KERN_DEBUG "SELinux: %s: %d entries and %d/%d buckets used, "
|
|
"longest chain length %d\n", symtab_name[i], h->nel,
|
|
info.slots_used, h->size, info.max_chain_len);
|
|
}
|
|
}
|
|
|
|
static void rangetr_hash_eval(struct hashtab *h)
|
|
{
|
|
struct hashtab_info info;
|
|
|
|
hashtab_stat(h, &info);
|
|
printk(KERN_DEBUG "SELinux: rangetr: %d entries and %d/%d buckets used, "
|
|
"longest chain length %d\n", h->nel,
|
|
info.slots_used, h->size, info.max_chain_len);
|
|
}
|
|
#else
|
|
static inline void rangetr_hash_eval(struct hashtab *h)
|
|
{
|
|
}
|
|
#endif
|
|
|
|
/*
|
|
* Define the other val_to_name and val_to_struct arrays
|
|
* in a policy database structure.
|
|
*
|
|
* Caller must clean up on failure.
|
|
*/
|
|
static int policydb_index(struct policydb *p)
|
|
{
|
|
int i, rc;
|
|
|
|
printk(KERN_DEBUG "SELinux: %d users, %d roles, %d types, %d bools",
|
|
p->p_users.nprim, p->p_roles.nprim, p->p_types.nprim, p->p_bools.nprim);
|
|
if (p->mls_enabled)
|
|
printk(", %d sens, %d cats", p->p_levels.nprim,
|
|
p->p_cats.nprim);
|
|
printk("\n");
|
|
|
|
printk(KERN_DEBUG "SELinux: %d classes, %d rules\n",
|
|
p->p_classes.nprim, p->te_avtab.nel);
|
|
|
|
#ifdef DEBUG_HASHES
|
|
avtab_hash_eval(&p->te_avtab, "rules");
|
|
symtab_hash_eval(p->symtab);
|
|
#endif
|
|
|
|
rc = -ENOMEM;
|
|
p->class_val_to_struct =
|
|
kmalloc(p->p_classes.nprim * sizeof(*(p->class_val_to_struct)),
|
|
GFP_KERNEL);
|
|
if (!p->class_val_to_struct)
|
|
goto out;
|
|
|
|
rc = -ENOMEM;
|
|
p->role_val_to_struct =
|
|
kmalloc(p->p_roles.nprim * sizeof(*(p->role_val_to_struct)),
|
|
GFP_KERNEL);
|
|
if (!p->role_val_to_struct)
|
|
goto out;
|
|
|
|
rc = -ENOMEM;
|
|
p->user_val_to_struct =
|
|
kmalloc(p->p_users.nprim * sizeof(*(p->user_val_to_struct)),
|
|
GFP_KERNEL);
|
|
if (!p->user_val_to_struct)
|
|
goto out;
|
|
|
|
/* Yes, I want the sizeof the pointer, not the structure */
|
|
rc = -ENOMEM;
|
|
p->type_val_to_struct_array = flex_array_alloc(sizeof(struct type_datum *),
|
|
p->p_types.nprim,
|
|
GFP_KERNEL | __GFP_ZERO);
|
|
if (!p->type_val_to_struct_array)
|
|
goto out;
|
|
|
|
rc = flex_array_prealloc(p->type_val_to_struct_array, 0,
|
|
p->p_types.nprim - 1, GFP_KERNEL | __GFP_ZERO);
|
|
if (rc)
|
|
goto out;
|
|
|
|
rc = cond_init_bool_indexes(p);
|
|
if (rc)
|
|
goto out;
|
|
|
|
for (i = 0; i < SYM_NUM; i++) {
|
|
rc = -ENOMEM;
|
|
p->sym_val_to_name[i] = flex_array_alloc(sizeof(char *),
|
|
p->symtab[i].nprim,
|
|
GFP_KERNEL | __GFP_ZERO);
|
|
if (!p->sym_val_to_name[i])
|
|
goto out;
|
|
|
|
rc = flex_array_prealloc(p->sym_val_to_name[i],
|
|
0, p->symtab[i].nprim - 1,
|
|
GFP_KERNEL | __GFP_ZERO);
|
|
if (rc)
|
|
goto out;
|
|
|
|
rc = hashtab_map(p->symtab[i].table, index_f[i], p);
|
|
if (rc)
|
|
goto out;
|
|
}
|
|
rc = 0;
|
|
out:
|
|
return rc;
|
|
}
|
|
|
|
/*
|
|
* The following *_destroy functions are used to
|
|
* free any memory allocated for each kind of
|
|
* symbol data in the policy database.
|
|
*/
|
|
|
|
static int perm_destroy(void *key, void *datum, void *p)
|
|
{
|
|
kfree(key);
|
|
kfree(datum);
|
|
return 0;
|
|
}
|
|
|
|
static int common_destroy(void *key, void *datum, void *p)
|
|
{
|
|
struct common_datum *comdatum;
|
|
|
|
kfree(key);
|
|
if (datum) {
|
|
comdatum = datum;
|
|
hashtab_map(comdatum->permissions.table, perm_destroy, NULL);
|
|
hashtab_destroy(comdatum->permissions.table);
|
|
}
|
|
kfree(datum);
|
|
return 0;
|
|
}
|
|
|
|
static int cls_destroy(void *key, void *datum, void *p)
|
|
{
|
|
struct class_datum *cladatum;
|
|
struct constraint_node *constraint, *ctemp;
|
|
struct constraint_expr *e, *etmp;
|
|
|
|
kfree(key);
|
|
if (datum) {
|
|
cladatum = datum;
|
|
hashtab_map(cladatum->permissions.table, perm_destroy, NULL);
|
|
hashtab_destroy(cladatum->permissions.table);
|
|
constraint = cladatum->constraints;
|
|
while (constraint) {
|
|
e = constraint->expr;
|
|
while (e) {
|
|
ebitmap_destroy(&e->names);
|
|
etmp = e;
|
|
e = e->next;
|
|
kfree(etmp);
|
|
}
|
|
ctemp = constraint;
|
|
constraint = constraint->next;
|
|
kfree(ctemp);
|
|
}
|
|
|
|
constraint = cladatum->validatetrans;
|
|
while (constraint) {
|
|
e = constraint->expr;
|
|
while (e) {
|
|
ebitmap_destroy(&e->names);
|
|
etmp = e;
|
|
e = e->next;
|
|
kfree(etmp);
|
|
}
|
|
ctemp = constraint;
|
|
constraint = constraint->next;
|
|
kfree(ctemp);
|
|
}
|
|
|
|
kfree(cladatum->comkey);
|
|
}
|
|
kfree(datum);
|
|
return 0;
|
|
}
|
|
|
|
static int role_destroy(void *key, void *datum, void *p)
|
|
{
|
|
struct role_datum *role;
|
|
|
|
kfree(key);
|
|
if (datum) {
|
|
role = datum;
|
|
ebitmap_destroy(&role->dominates);
|
|
ebitmap_destroy(&role->types);
|
|
}
|
|
kfree(datum);
|
|
return 0;
|
|
}
|
|
|
|
static int type_destroy(void *key, void *datum, void *p)
|
|
{
|
|
kfree(key);
|
|
kfree(datum);
|
|
return 0;
|
|
}
|
|
|
|
static int user_destroy(void *key, void *datum, void *p)
|
|
{
|
|
struct user_datum *usrdatum;
|
|
|
|
kfree(key);
|
|
if (datum) {
|
|
usrdatum = datum;
|
|
ebitmap_destroy(&usrdatum->roles);
|
|
ebitmap_destroy(&usrdatum->range.level[0].cat);
|
|
ebitmap_destroy(&usrdatum->range.level[1].cat);
|
|
ebitmap_destroy(&usrdatum->dfltlevel.cat);
|
|
}
|
|
kfree(datum);
|
|
return 0;
|
|
}
|
|
|
|
static int sens_destroy(void *key, void *datum, void *p)
|
|
{
|
|
struct level_datum *levdatum;
|
|
|
|
kfree(key);
|
|
if (datum) {
|
|
levdatum = datum;
|
|
ebitmap_destroy(&levdatum->level->cat);
|
|
kfree(levdatum->level);
|
|
}
|
|
kfree(datum);
|
|
return 0;
|
|
}
|
|
|
|
static int cat_destroy(void *key, void *datum, void *p)
|
|
{
|
|
kfree(key);
|
|
kfree(datum);
|
|
return 0;
|
|
}
|
|
|
|
static int (*destroy_f[SYM_NUM]) (void *key, void *datum, void *datap) =
|
|
{
|
|
common_destroy,
|
|
cls_destroy,
|
|
role_destroy,
|
|
type_destroy,
|
|
user_destroy,
|
|
cond_destroy_bool,
|
|
sens_destroy,
|
|
cat_destroy,
|
|
};
|
|
|
|
static int range_tr_destroy(void *key, void *datum, void *p)
|
|
{
|
|
struct mls_range *rt = datum;
|
|
kfree(key);
|
|
ebitmap_destroy(&rt->level[0].cat);
|
|
ebitmap_destroy(&rt->level[1].cat);
|
|
kfree(datum);
|
|
cond_resched();
|
|
return 0;
|
|
}
|
|
|
|
static void ocontext_destroy(struct ocontext *c, int i)
|
|
{
|
|
if (!c)
|
|
return;
|
|
|
|
context_destroy(&c->context[0]);
|
|
context_destroy(&c->context[1]);
|
|
if (i == OCON_ISID || i == OCON_FS ||
|
|
i == OCON_NETIF || i == OCON_FSUSE)
|
|
kfree(c->u.name);
|
|
kfree(c);
|
|
}
|
|
|
|
/*
|
|
* Free any memory allocated by a policy database structure.
|
|
*/
|
|
void policydb_destroy(struct policydb *p)
|
|
{
|
|
struct ocontext *c, *ctmp;
|
|
struct genfs *g, *gtmp;
|
|
int i;
|
|
struct role_allow *ra, *lra = NULL;
|
|
struct role_trans *tr, *ltr = NULL;
|
|
|
|
for (i = 0; i < SYM_NUM; i++) {
|
|
cond_resched();
|
|
hashtab_map(p->symtab[i].table, destroy_f[i], NULL);
|
|
hashtab_destroy(p->symtab[i].table);
|
|
}
|
|
|
|
for (i = 0; i < SYM_NUM; i++) {
|
|
if (p->sym_val_to_name[i])
|
|
flex_array_free(p->sym_val_to_name[i]);
|
|
}
|
|
|
|
kfree(p->class_val_to_struct);
|
|
kfree(p->role_val_to_struct);
|
|
kfree(p->user_val_to_struct);
|
|
if (p->type_val_to_struct_array)
|
|
flex_array_free(p->type_val_to_struct_array);
|
|
|
|
avtab_destroy(&p->te_avtab);
|
|
|
|
for (i = 0; i < OCON_NUM; i++) {
|
|
cond_resched();
|
|
c = p->ocontexts[i];
|
|
while (c) {
|
|
ctmp = c;
|
|
c = c->next;
|
|
ocontext_destroy(ctmp, i);
|
|
}
|
|
p->ocontexts[i] = NULL;
|
|
}
|
|
|
|
g = p->genfs;
|
|
while (g) {
|
|
cond_resched();
|
|
kfree(g->fstype);
|
|
c = g->head;
|
|
while (c) {
|
|
ctmp = c;
|
|
c = c->next;
|
|
ocontext_destroy(ctmp, OCON_FSUSE);
|
|
}
|
|
gtmp = g;
|
|
g = g->next;
|
|
kfree(gtmp);
|
|
}
|
|
p->genfs = NULL;
|
|
|
|
cond_policydb_destroy(p);
|
|
|
|
for (tr = p->role_tr; tr; tr = tr->next) {
|
|
cond_resched();
|
|
kfree(ltr);
|
|
ltr = tr;
|
|
}
|
|
kfree(ltr);
|
|
|
|
for (ra = p->role_allow; ra; ra = ra->next) {
|
|
cond_resched();
|
|
kfree(lra);
|
|
lra = ra;
|
|
}
|
|
kfree(lra);
|
|
|
|
hashtab_map(p->range_tr, range_tr_destroy, NULL);
|
|
hashtab_destroy(p->range_tr);
|
|
|
|
if (p->type_attr_map_array) {
|
|
for (i = 0; i < p->p_types.nprim; i++) {
|
|
struct ebitmap *e;
|
|
|
|
e = flex_array_get(p->type_attr_map_array, i);
|
|
if (!e)
|
|
continue;
|
|
ebitmap_destroy(e);
|
|
}
|
|
flex_array_free(p->type_attr_map_array);
|
|
}
|
|
ebitmap_destroy(&p->policycaps);
|
|
ebitmap_destroy(&p->permissive_map);
|
|
|
|
return;
|
|
}
|
|
|
|
/*
|
|
* Load the initial SIDs specified in a policy database
|
|
* structure into a SID table.
|
|
*/
|
|
int policydb_load_isids(struct policydb *p, struct sidtab *s)
|
|
{
|
|
struct ocontext *head, *c;
|
|
int rc;
|
|
|
|
rc = sidtab_init(s);
|
|
if (rc) {
|
|
printk(KERN_ERR "SELinux: out of memory on SID table init\n");
|
|
goto out;
|
|
}
|
|
|
|
head = p->ocontexts[OCON_ISID];
|
|
for (c = head; c; c = c->next) {
|
|
rc = -EINVAL;
|
|
if (!c->context[0].user) {
|
|
printk(KERN_ERR "SELinux: SID %s was never defined.\n",
|
|
c->u.name);
|
|
goto out;
|
|
}
|
|
|
|
rc = sidtab_insert(s, c->sid[0], &c->context[0]);
|
|
if (rc) {
|
|
printk(KERN_ERR "SELinux: unable to load initial SID %s.\n",
|
|
c->u.name);
|
|
goto out;
|
|
}
|
|
}
|
|
rc = 0;
|
|
out:
|
|
return rc;
|
|
}
|
|
|
|
int policydb_class_isvalid(struct policydb *p, unsigned int class)
|
|
{
|
|
if (!class || class > p->p_classes.nprim)
|
|
return 0;
|
|
return 1;
|
|
}
|
|
|
|
int policydb_role_isvalid(struct policydb *p, unsigned int role)
|
|
{
|
|
if (!role || role > p->p_roles.nprim)
|
|
return 0;
|
|
return 1;
|
|
}
|
|
|
|
int policydb_type_isvalid(struct policydb *p, unsigned int type)
|
|
{
|
|
if (!type || type > p->p_types.nprim)
|
|
return 0;
|
|
return 1;
|
|
}
|
|
|
|
/*
|
|
* Return 1 if the fields in the security context
|
|
* structure `c' are valid. Return 0 otherwise.
|
|
*/
|
|
int policydb_context_isvalid(struct policydb *p, struct context *c)
|
|
{
|
|
struct role_datum *role;
|
|
struct user_datum *usrdatum;
|
|
|
|
if (!c->role || c->role > p->p_roles.nprim)
|
|
return 0;
|
|
|
|
if (!c->user || c->user > p->p_users.nprim)
|
|
return 0;
|
|
|
|
if (!c->type || c->type > p->p_types.nprim)
|
|
return 0;
|
|
|
|
if (c->role != OBJECT_R_VAL) {
|
|
/*
|
|
* Role must be authorized for the type.
|
|
*/
|
|
role = p->role_val_to_struct[c->role - 1];
|
|
if (!ebitmap_get_bit(&role->types, c->type - 1))
|
|
/* role may not be associated with type */
|
|
return 0;
|
|
|
|
/*
|
|
* User must be authorized for the role.
|
|
*/
|
|
usrdatum = p->user_val_to_struct[c->user - 1];
|
|
if (!usrdatum)
|
|
return 0;
|
|
|
|
if (!ebitmap_get_bit(&usrdatum->roles, c->role - 1))
|
|
/* user may not be associated with role */
|
|
return 0;
|
|
}
|
|
|
|
if (!mls_context_isvalid(p, c))
|
|
return 0;
|
|
|
|
return 1;
|
|
}
|
|
|
|
/*
|
|
* Read a MLS range structure from a policydb binary
|
|
* representation file.
|
|
*/
|
|
static int mls_read_range_helper(struct mls_range *r, void *fp)
|
|
{
|
|
__le32 buf[2];
|
|
u32 items;
|
|
int rc;
|
|
|
|
rc = next_entry(buf, fp, sizeof(u32));
|
|
if (rc)
|
|
goto out;
|
|
|
|
rc = -EINVAL;
|
|
items = le32_to_cpu(buf[0]);
|
|
if (items > ARRAY_SIZE(buf)) {
|
|
printk(KERN_ERR "SELinux: mls: range overflow\n");
|
|
goto out;
|
|
}
|
|
|
|
rc = next_entry(buf, fp, sizeof(u32) * items);
|
|
if (rc) {
|
|
printk(KERN_ERR "SELinux: mls: truncated range\n");
|
|
goto out;
|
|
}
|
|
|
|
r->level[0].sens = le32_to_cpu(buf[0]);
|
|
if (items > 1)
|
|
r->level[1].sens = le32_to_cpu(buf[1]);
|
|
else
|
|
r->level[1].sens = r->level[0].sens;
|
|
|
|
rc = ebitmap_read(&r->level[0].cat, fp);
|
|
if (rc) {
|
|
printk(KERN_ERR "SELinux: mls: error reading low categories\n");
|
|
goto out;
|
|
}
|
|
if (items > 1) {
|
|
rc = ebitmap_read(&r->level[1].cat, fp);
|
|
if (rc) {
|
|
printk(KERN_ERR "SELinux: mls: error reading high categories\n");
|
|
goto bad_high;
|
|
}
|
|
} else {
|
|
rc = ebitmap_cpy(&r->level[1].cat, &r->level[0].cat);
|
|
if (rc) {
|
|
printk(KERN_ERR "SELinux: mls: out of memory\n");
|
|
goto bad_high;
|
|
}
|
|
}
|
|
|
|
return 0;
|
|
bad_high:
|
|
ebitmap_destroy(&r->level[0].cat);
|
|
out:
|
|
return rc;
|
|
}
|
|
|
|
/*
|
|
* Read and validate a security context structure
|
|
* from a policydb binary representation file.
|
|
*/
|
|
static int context_read_and_validate(struct context *c,
|
|
struct policydb *p,
|
|
void *fp)
|
|
{
|
|
__le32 buf[3];
|
|
int rc;
|
|
|
|
rc = next_entry(buf, fp, sizeof buf);
|
|
if (rc) {
|
|
printk(KERN_ERR "SELinux: context truncated\n");
|
|
goto out;
|
|
}
|
|
c->user = le32_to_cpu(buf[0]);
|
|
c->role = le32_to_cpu(buf[1]);
|
|
c->type = le32_to_cpu(buf[2]);
|
|
if (p->policyvers >= POLICYDB_VERSION_MLS) {
|
|
rc = mls_read_range_helper(&c->range, fp);
|
|
if (rc) {
|
|
printk(KERN_ERR "SELinux: error reading MLS range of context\n");
|
|
goto out;
|
|
}
|
|
}
|
|
|
|
rc = -EINVAL;
|
|
if (!policydb_context_isvalid(p, c)) {
|
|
printk(KERN_ERR "SELinux: invalid security context\n");
|
|
context_destroy(c);
|
|
goto out;
|
|
}
|
|
rc = 0;
|
|
out:
|
|
return rc;
|
|
}
|
|
|
|
/*
|
|
* The following *_read functions are used to
|
|
* read the symbol data from a policy database
|
|
* binary representation file.
|
|
*/
|
|
|
|
static int perm_read(struct policydb *p, struct hashtab *h, void *fp)
|
|
{
|
|
char *key = NULL;
|
|
struct perm_datum *perdatum;
|
|
int rc;
|
|
__le32 buf[2];
|
|
u32 len;
|
|
|
|
rc = -ENOMEM;
|
|
perdatum = kzalloc(sizeof(*perdatum), GFP_KERNEL);
|
|
if (!perdatum)
|
|
goto bad;
|
|
|
|
rc = next_entry(buf, fp, sizeof buf);
|
|
if (rc)
|
|
goto bad;
|
|
|
|
len = le32_to_cpu(buf[0]);
|
|
perdatum->value = le32_to_cpu(buf[1]);
|
|
|
|
rc = -ENOMEM;
|
|
key = kmalloc(len + 1, GFP_KERNEL);
|
|
if (!key)
|
|
goto bad;
|
|
|
|
rc = next_entry(key, fp, len);
|
|
if (rc)
|
|
goto bad;
|
|
key[len] = '\0';
|
|
|
|
rc = hashtab_insert(h, key, perdatum);
|
|
if (rc)
|
|
goto bad;
|
|
|
|
return 0;
|
|
bad:
|
|
perm_destroy(key, perdatum, NULL);
|
|
return rc;
|
|
}
|
|
|
|
static int common_read(struct policydb *p, struct hashtab *h, void *fp)
|
|
{
|
|
char *key = NULL;
|
|
struct common_datum *comdatum;
|
|
__le32 buf[4];
|
|
u32 len, nel;
|
|
int i, rc;
|
|
|
|
rc = -ENOMEM;
|
|
comdatum = kzalloc(sizeof(*comdatum), GFP_KERNEL);
|
|
if (!comdatum)
|
|
goto bad;
|
|
|
|
rc = next_entry(buf, fp, sizeof buf);
|
|
if (rc)
|
|
goto bad;
|
|
|
|
len = le32_to_cpu(buf[0]);
|
|
comdatum->value = le32_to_cpu(buf[1]);
|
|
|
|
rc = symtab_init(&comdatum->permissions, PERM_SYMTAB_SIZE);
|
|
if (rc)
|
|
goto bad;
|
|
comdatum->permissions.nprim = le32_to_cpu(buf[2]);
|
|
nel = le32_to_cpu(buf[3]);
|
|
|
|
rc = -ENOMEM;
|
|
key = kmalloc(len + 1, GFP_KERNEL);
|
|
if (!key)
|
|
goto bad;
|
|
|
|
rc = next_entry(key, fp, len);
|
|
if (rc)
|
|
goto bad;
|
|
key[len] = '\0';
|
|
|
|
for (i = 0; i < nel; i++) {
|
|
rc = perm_read(p, comdatum->permissions.table, fp);
|
|
if (rc)
|
|
goto bad;
|
|
}
|
|
|
|
rc = hashtab_insert(h, key, comdatum);
|
|
if (rc)
|
|
goto bad;
|
|
return 0;
|
|
bad:
|
|
common_destroy(key, comdatum, NULL);
|
|
return rc;
|
|
}
|
|
|
|
static int read_cons_helper(struct constraint_node **nodep, int ncons,
|
|
int allowxtarget, void *fp)
|
|
{
|
|
struct constraint_node *c, *lc;
|
|
struct constraint_expr *e, *le;
|
|
__le32 buf[3];
|
|
u32 nexpr;
|
|
int rc, i, j, depth;
|
|
|
|
lc = NULL;
|
|
for (i = 0; i < ncons; i++) {
|
|
c = kzalloc(sizeof(*c), GFP_KERNEL);
|
|
if (!c)
|
|
return -ENOMEM;
|
|
|
|
if (lc)
|
|
lc->next = c;
|
|
else
|
|
*nodep = c;
|
|
|
|
rc = next_entry(buf, fp, (sizeof(u32) * 2));
|
|
if (rc)
|
|
return rc;
|
|
c->permissions = le32_to_cpu(buf[0]);
|
|
nexpr = le32_to_cpu(buf[1]);
|
|
le = NULL;
|
|
depth = -1;
|
|
for (j = 0; j < nexpr; j++) {
|
|
e = kzalloc(sizeof(*e), GFP_KERNEL);
|
|
if (!e)
|
|
return -ENOMEM;
|
|
|
|
if (le)
|
|
le->next = e;
|
|
else
|
|
c->expr = e;
|
|
|
|
rc = next_entry(buf, fp, (sizeof(u32) * 3));
|
|
if (rc)
|
|
return rc;
|
|
e->expr_type = le32_to_cpu(buf[0]);
|
|
e->attr = le32_to_cpu(buf[1]);
|
|
e->op = le32_to_cpu(buf[2]);
|
|
|
|
switch (e->expr_type) {
|
|
case CEXPR_NOT:
|
|
if (depth < 0)
|
|
return -EINVAL;
|
|
break;
|
|
case CEXPR_AND:
|
|
case CEXPR_OR:
|
|
if (depth < 1)
|
|
return -EINVAL;
|
|
depth--;
|
|
break;
|
|
case CEXPR_ATTR:
|
|
if (depth == (CEXPR_MAXDEPTH - 1))
|
|
return -EINVAL;
|
|
depth++;
|
|
break;
|
|
case CEXPR_NAMES:
|
|
if (!allowxtarget && (e->attr & CEXPR_XTARGET))
|
|
return -EINVAL;
|
|
if (depth == (CEXPR_MAXDEPTH - 1))
|
|
return -EINVAL;
|
|
depth++;
|
|
rc = ebitmap_read(&e->names, fp);
|
|
if (rc)
|
|
return rc;
|
|
break;
|
|
default:
|
|
return -EINVAL;
|
|
}
|
|
le = e;
|
|
}
|
|
if (depth != 0)
|
|
return -EINVAL;
|
|
lc = c;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int class_read(struct policydb *p, struct hashtab *h, void *fp)
|
|
{
|
|
char *key = NULL;
|
|
struct class_datum *cladatum;
|
|
__le32 buf[6];
|
|
u32 len, len2, ncons, nel;
|
|
int i, rc;
|
|
|
|
rc = -ENOMEM;
|
|
cladatum = kzalloc(sizeof(*cladatum), GFP_KERNEL);
|
|
if (!cladatum)
|
|
goto bad;
|
|
|
|
rc = next_entry(buf, fp, sizeof(u32)*6);
|
|
if (rc)
|
|
goto bad;
|
|
|
|
len = le32_to_cpu(buf[0]);
|
|
len2 = le32_to_cpu(buf[1]);
|
|
cladatum->value = le32_to_cpu(buf[2]);
|
|
|
|
rc = symtab_init(&cladatum->permissions, PERM_SYMTAB_SIZE);
|
|
if (rc)
|
|
goto bad;
|
|
cladatum->permissions.nprim = le32_to_cpu(buf[3]);
|
|
nel = le32_to_cpu(buf[4]);
|
|
|
|
ncons = le32_to_cpu(buf[5]);
|
|
|
|
rc = -ENOMEM;
|
|
key = kmalloc(len + 1, GFP_KERNEL);
|
|
if (!key)
|
|
goto bad;
|
|
|
|
rc = next_entry(key, fp, len);
|
|
if (rc)
|
|
goto bad;
|
|
key[len] = '\0';
|
|
|
|
if (len2) {
|
|
rc = -ENOMEM;
|
|
cladatum->comkey = kmalloc(len2 + 1, GFP_KERNEL);
|
|
if (!cladatum->comkey)
|
|
goto bad;
|
|
rc = next_entry(cladatum->comkey, fp, len2);
|
|
if (rc)
|
|
goto bad;
|
|
cladatum->comkey[len2] = '\0';
|
|
|
|
rc = -EINVAL;
|
|
cladatum->comdatum = hashtab_search(p->p_commons.table, cladatum->comkey);
|
|
if (!cladatum->comdatum) {
|
|
printk(KERN_ERR "SELinux: unknown common %s\n", cladatum->comkey);
|
|
goto bad;
|
|
}
|
|
}
|
|
for (i = 0; i < nel; i++) {
|
|
rc = perm_read(p, cladatum->permissions.table, fp);
|
|
if (rc)
|
|
goto bad;
|
|
}
|
|
|
|
rc = read_cons_helper(&cladatum->constraints, ncons, 0, fp);
|
|
if (rc)
|
|
goto bad;
|
|
|
|
if (p->policyvers >= POLICYDB_VERSION_VALIDATETRANS) {
|
|
/* grab the validatetrans rules */
|
|
rc = next_entry(buf, fp, sizeof(u32));
|
|
if (rc)
|
|
goto bad;
|
|
ncons = le32_to_cpu(buf[0]);
|
|
rc = read_cons_helper(&cladatum->validatetrans, ncons, 1, fp);
|
|
if (rc)
|
|
goto bad;
|
|
}
|
|
|
|
rc = hashtab_insert(h, key, cladatum);
|
|
if (rc)
|
|
goto bad;
|
|
|
|
return 0;
|
|
bad:
|
|
cls_destroy(key, cladatum, NULL);
|
|
return rc;
|
|
}
|
|
|
|
static int role_read(struct policydb *p, struct hashtab *h, void *fp)
|
|
{
|
|
char *key = NULL;
|
|
struct role_datum *role;
|
|
int rc, to_read = 2;
|
|
__le32 buf[3];
|
|
u32 len;
|
|
|
|
rc = -ENOMEM;
|
|
role = kzalloc(sizeof(*role), GFP_KERNEL);
|
|
if (!role)
|
|
goto bad;
|
|
|
|
if (p->policyvers >= POLICYDB_VERSION_BOUNDARY)
|
|
to_read = 3;
|
|
|
|
rc = next_entry(buf, fp, sizeof(buf[0]) * to_read);
|
|
if (rc)
|
|
goto bad;
|
|
|
|
len = le32_to_cpu(buf[0]);
|
|
role->value = le32_to_cpu(buf[1]);
|
|
if (p->policyvers >= POLICYDB_VERSION_BOUNDARY)
|
|
role->bounds = le32_to_cpu(buf[2]);
|
|
|
|
rc = -ENOMEM;
|
|
key = kmalloc(len + 1, GFP_KERNEL);
|
|
if (!key)
|
|
goto bad;
|
|
|
|
rc = next_entry(key, fp, len);
|
|
if (rc)
|
|
goto bad;
|
|
key[len] = '\0';
|
|
|
|
rc = ebitmap_read(&role->dominates, fp);
|
|
if (rc)
|
|
goto bad;
|
|
|
|
rc = ebitmap_read(&role->types, fp);
|
|
if (rc)
|
|
goto bad;
|
|
|
|
if (strcmp(key, OBJECT_R) == 0) {
|
|
rc = -EINVAL;
|
|
if (role->value != OBJECT_R_VAL) {
|
|
printk(KERN_ERR "SELinux: Role %s has wrong value %d\n",
|
|
OBJECT_R, role->value);
|
|
goto bad;
|
|
}
|
|
rc = 0;
|
|
goto bad;
|
|
}
|
|
|
|
rc = hashtab_insert(h, key, role);
|
|
if (rc)
|
|
goto bad;
|
|
return 0;
|
|
bad:
|
|
role_destroy(key, role, NULL);
|
|
return rc;
|
|
}
|
|
|
|
static int type_read(struct policydb *p, struct hashtab *h, void *fp)
|
|
{
|
|
char *key = NULL;
|
|
struct type_datum *typdatum;
|
|
int rc, to_read = 3;
|
|
__le32 buf[4];
|
|
u32 len;
|
|
|
|
rc = -ENOMEM;
|
|
typdatum = kzalloc(sizeof(*typdatum), GFP_KERNEL);
|
|
if (!typdatum)
|
|
goto bad;
|
|
|
|
if (p->policyvers >= POLICYDB_VERSION_BOUNDARY)
|
|
to_read = 4;
|
|
|
|
rc = next_entry(buf, fp, sizeof(buf[0]) * to_read);
|
|
if (rc)
|
|
goto bad;
|
|
|
|
len = le32_to_cpu(buf[0]);
|
|
typdatum->value = le32_to_cpu(buf[1]);
|
|
if (p->policyvers >= POLICYDB_VERSION_BOUNDARY) {
|
|
u32 prop = le32_to_cpu(buf[2]);
|
|
|
|
if (prop & TYPEDATUM_PROPERTY_PRIMARY)
|
|
typdatum->primary = 1;
|
|
if (prop & TYPEDATUM_PROPERTY_ATTRIBUTE)
|
|
typdatum->attribute = 1;
|
|
|
|
typdatum->bounds = le32_to_cpu(buf[3]);
|
|
} else {
|
|
typdatum->primary = le32_to_cpu(buf[2]);
|
|
}
|
|
|
|
rc = -ENOMEM;
|
|
key = kmalloc(len + 1, GFP_KERNEL);
|
|
if (!key)
|
|
goto bad;
|
|
rc = next_entry(key, fp, len);
|
|
if (rc)
|
|
goto bad;
|
|
key[len] = '\0';
|
|
|
|
rc = hashtab_insert(h, key, typdatum);
|
|
if (rc)
|
|
goto bad;
|
|
return 0;
|
|
bad:
|
|
type_destroy(key, typdatum, NULL);
|
|
return rc;
|
|
}
|
|
|
|
|
|
/*
|
|
* Read a MLS level structure from a policydb binary
|
|
* representation file.
|
|
*/
|
|
static int mls_read_level(struct mls_level *lp, void *fp)
|
|
{
|
|
__le32 buf[1];
|
|
int rc;
|
|
|
|
memset(lp, 0, sizeof(*lp));
|
|
|
|
rc = next_entry(buf, fp, sizeof buf);
|
|
if (rc) {
|
|
printk(KERN_ERR "SELinux: mls: truncated level\n");
|
|
return rc;
|
|
}
|
|
lp->sens = le32_to_cpu(buf[0]);
|
|
|
|
rc = ebitmap_read(&lp->cat, fp);
|
|
if (rc) {
|
|
printk(KERN_ERR "SELinux: mls: error reading level categories\n");
|
|
return rc;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
static int user_read(struct policydb *p, struct hashtab *h, void *fp)
|
|
{
|
|
char *key = NULL;
|
|
struct user_datum *usrdatum;
|
|
int rc, to_read = 2;
|
|
__le32 buf[3];
|
|
u32 len;
|
|
|
|
rc = -ENOMEM;
|
|
usrdatum = kzalloc(sizeof(*usrdatum), GFP_KERNEL);
|
|
if (!usrdatum)
|
|
goto bad;
|
|
|
|
if (p->policyvers >= POLICYDB_VERSION_BOUNDARY)
|
|
to_read = 3;
|
|
|
|
rc = next_entry(buf, fp, sizeof(buf[0]) * to_read);
|
|
if (rc)
|
|
goto bad;
|
|
|
|
len = le32_to_cpu(buf[0]);
|
|
usrdatum->value = le32_to_cpu(buf[1]);
|
|
if (p->policyvers >= POLICYDB_VERSION_BOUNDARY)
|
|
usrdatum->bounds = le32_to_cpu(buf[2]);
|
|
|
|
rc = -ENOMEM;
|
|
key = kmalloc(len + 1, GFP_KERNEL);
|
|
if (!key)
|
|
goto bad;
|
|
rc = next_entry(key, fp, len);
|
|
if (rc)
|
|
goto bad;
|
|
key[len] = '\0';
|
|
|
|
rc = ebitmap_read(&usrdatum->roles, fp);
|
|
if (rc)
|
|
goto bad;
|
|
|
|
if (p->policyvers >= POLICYDB_VERSION_MLS) {
|
|
rc = mls_read_range_helper(&usrdatum->range, fp);
|
|
if (rc)
|
|
goto bad;
|
|
rc = mls_read_level(&usrdatum->dfltlevel, fp);
|
|
if (rc)
|
|
goto bad;
|
|
}
|
|
|
|
rc = hashtab_insert(h, key, usrdatum);
|
|
if (rc)
|
|
goto bad;
|
|
return 0;
|
|
bad:
|
|
user_destroy(key, usrdatum, NULL);
|
|
return rc;
|
|
}
|
|
|
|
static int sens_read(struct policydb *p, struct hashtab *h, void *fp)
|
|
{
|
|
char *key = NULL;
|
|
struct level_datum *levdatum;
|
|
int rc;
|
|
__le32 buf[2];
|
|
u32 len;
|
|
|
|
rc = -ENOMEM;
|
|
levdatum = kzalloc(sizeof(*levdatum), GFP_ATOMIC);
|
|
if (!levdatum)
|
|
goto bad;
|
|
|
|
rc = next_entry(buf, fp, sizeof buf);
|
|
if (rc)
|
|
goto bad;
|
|
|
|
len = le32_to_cpu(buf[0]);
|
|
levdatum->isalias = le32_to_cpu(buf[1]);
|
|
|
|
rc = -ENOMEM;
|
|
key = kmalloc(len + 1, GFP_ATOMIC);
|
|
if (!key)
|
|
goto bad;
|
|
rc = next_entry(key, fp, len);
|
|
if (rc)
|
|
goto bad;
|
|
key[len] = '\0';
|
|
|
|
rc = -ENOMEM;
|
|
levdatum->level = kmalloc(sizeof(struct mls_level), GFP_ATOMIC);
|
|
if (!levdatum->level)
|
|
goto bad;
|
|
|
|
rc = mls_read_level(levdatum->level, fp);
|
|
if (rc)
|
|
goto bad;
|
|
|
|
rc = hashtab_insert(h, key, levdatum);
|
|
if (rc)
|
|
goto bad;
|
|
return 0;
|
|
bad:
|
|
sens_destroy(key, levdatum, NULL);
|
|
return rc;
|
|
}
|
|
|
|
static int cat_read(struct policydb *p, struct hashtab *h, void *fp)
|
|
{
|
|
char *key = NULL;
|
|
struct cat_datum *catdatum;
|
|
int rc;
|
|
__le32 buf[3];
|
|
u32 len;
|
|
|
|
rc = -ENOMEM;
|
|
catdatum = kzalloc(sizeof(*catdatum), GFP_ATOMIC);
|
|
if (!catdatum)
|
|
goto bad;
|
|
|
|
rc = next_entry(buf, fp, sizeof buf);
|
|
if (rc)
|
|
goto bad;
|
|
|
|
len = le32_to_cpu(buf[0]);
|
|
catdatum->value = le32_to_cpu(buf[1]);
|
|
catdatum->isalias = le32_to_cpu(buf[2]);
|
|
|
|
rc = -ENOMEM;
|
|
key = kmalloc(len + 1, GFP_ATOMIC);
|
|
if (!key)
|
|
goto bad;
|
|
rc = next_entry(key, fp, len);
|
|
if (rc)
|
|
goto bad;
|
|
key[len] = '\0';
|
|
|
|
rc = hashtab_insert(h, key, catdatum);
|
|
if (rc)
|
|
goto bad;
|
|
return 0;
|
|
bad:
|
|
cat_destroy(key, catdatum, NULL);
|
|
return rc;
|
|
}
|
|
|
|
static int (*read_f[SYM_NUM]) (struct policydb *p, struct hashtab *h, void *fp) =
|
|
{
|
|
common_read,
|
|
class_read,
|
|
role_read,
|
|
type_read,
|
|
user_read,
|
|
cond_read_bool,
|
|
sens_read,
|
|
cat_read,
|
|
};
|
|
|
|
static int user_bounds_sanity_check(void *key, void *datum, void *datap)
|
|
{
|
|
struct user_datum *upper, *user;
|
|
struct policydb *p = datap;
|
|
int depth = 0;
|
|
|
|
upper = user = datum;
|
|
while (upper->bounds) {
|
|
struct ebitmap_node *node;
|
|
unsigned long bit;
|
|
|
|
if (++depth == POLICYDB_BOUNDS_MAXDEPTH) {
|
|
printk(KERN_ERR "SELinux: user %s: "
|
|
"too deep or looped boundary",
|
|
(char *) key);
|
|
return -EINVAL;
|
|
}
|
|
|
|
upper = p->user_val_to_struct[upper->bounds - 1];
|
|
ebitmap_for_each_positive_bit(&user->roles, node, bit) {
|
|
if (ebitmap_get_bit(&upper->roles, bit))
|
|
continue;
|
|
|
|
printk(KERN_ERR
|
|
"SELinux: boundary violated policy: "
|
|
"user=%s role=%s bounds=%s\n",
|
|
sym_name(p, SYM_USERS, user->value - 1),
|
|
sym_name(p, SYM_ROLES, bit),
|
|
sym_name(p, SYM_USERS, upper->value - 1));
|
|
|
|
return -EINVAL;
|
|
}
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int role_bounds_sanity_check(void *key, void *datum, void *datap)
|
|
{
|
|
struct role_datum *upper, *role;
|
|
struct policydb *p = datap;
|
|
int depth = 0;
|
|
|
|
upper = role = datum;
|
|
while (upper->bounds) {
|
|
struct ebitmap_node *node;
|
|
unsigned long bit;
|
|
|
|
if (++depth == POLICYDB_BOUNDS_MAXDEPTH) {
|
|
printk(KERN_ERR "SELinux: role %s: "
|
|
"too deep or looped bounds\n",
|
|
(char *) key);
|
|
return -EINVAL;
|
|
}
|
|
|
|
upper = p->role_val_to_struct[upper->bounds - 1];
|
|
ebitmap_for_each_positive_bit(&role->types, node, bit) {
|
|
if (ebitmap_get_bit(&upper->types, bit))
|
|
continue;
|
|
|
|
printk(KERN_ERR
|
|
"SELinux: boundary violated policy: "
|
|
"role=%s type=%s bounds=%s\n",
|
|
sym_name(p, SYM_ROLES, role->value - 1),
|
|
sym_name(p, SYM_TYPES, bit),
|
|
sym_name(p, SYM_ROLES, upper->value - 1));
|
|
|
|
return -EINVAL;
|
|
}
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int type_bounds_sanity_check(void *key, void *datum, void *datap)
|
|
{
|
|
struct type_datum *upper;
|
|
struct policydb *p = datap;
|
|
int depth = 0;
|
|
|
|
upper = datum;
|
|
while (upper->bounds) {
|
|
if (++depth == POLICYDB_BOUNDS_MAXDEPTH) {
|
|
printk(KERN_ERR "SELinux: type %s: "
|
|
"too deep or looped boundary\n",
|
|
(char *) key);
|
|
return -EINVAL;
|
|
}
|
|
|
|
upper = flex_array_get_ptr(p->type_val_to_struct_array,
|
|
upper->bounds - 1);
|
|
BUG_ON(!upper);
|
|
|
|
if (upper->attribute) {
|
|
printk(KERN_ERR "SELinux: type %s: "
|
|
"bounded by attribute %s",
|
|
(char *) key,
|
|
sym_name(p, SYM_TYPES, upper->value - 1));
|
|
return -EINVAL;
|
|
}
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int policydb_bounds_sanity_check(struct policydb *p)
|
|
{
|
|
int rc;
|
|
|
|
if (p->policyvers < POLICYDB_VERSION_BOUNDARY)
|
|
return 0;
|
|
|
|
rc = hashtab_map(p->p_users.table,
|
|
user_bounds_sanity_check, p);
|
|
if (rc)
|
|
return rc;
|
|
|
|
rc = hashtab_map(p->p_roles.table,
|
|
role_bounds_sanity_check, p);
|
|
if (rc)
|
|
return rc;
|
|
|
|
rc = hashtab_map(p->p_types.table,
|
|
type_bounds_sanity_check, p);
|
|
if (rc)
|
|
return rc;
|
|
|
|
return 0;
|
|
}
|
|
|
|
extern int ss_initialized;
|
|
|
|
u16 string_to_security_class(struct policydb *p, const char *name)
|
|
{
|
|
struct class_datum *cladatum;
|
|
|
|
cladatum = hashtab_search(p->p_classes.table, name);
|
|
if (!cladatum)
|
|
return 0;
|
|
|
|
return cladatum->value;
|
|
}
|
|
|
|
u32 string_to_av_perm(struct policydb *p, u16 tclass, const char *name)
|
|
{
|
|
struct class_datum *cladatum;
|
|
struct perm_datum *perdatum = NULL;
|
|
struct common_datum *comdatum;
|
|
|
|
if (!tclass || tclass > p->p_classes.nprim)
|
|
return 0;
|
|
|
|
cladatum = p->class_val_to_struct[tclass-1];
|
|
comdatum = cladatum->comdatum;
|
|
if (comdatum)
|
|
perdatum = hashtab_search(comdatum->permissions.table,
|
|
name);
|
|
if (!perdatum)
|
|
perdatum = hashtab_search(cladatum->permissions.table,
|
|
name);
|
|
if (!perdatum)
|
|
return 0;
|
|
|
|
return 1U << (perdatum->value-1);
|
|
}
|
|
|
|
static int range_read(struct policydb *p, void *fp)
|
|
{
|
|
struct range_trans *rt = NULL;
|
|
struct mls_range *r = NULL;
|
|
int i, rc;
|
|
__le32 buf[2];
|
|
u32 nel;
|
|
|
|
if (p->policyvers < POLICYDB_VERSION_MLS)
|
|
return 0;
|
|
|
|
rc = next_entry(buf, fp, sizeof(u32));
|
|
if (rc)
|
|
goto out;
|
|
|
|
nel = le32_to_cpu(buf[0]);
|
|
for (i = 0; i < nel; i++) {
|
|
rc = -ENOMEM;
|
|
rt = kzalloc(sizeof(*rt), GFP_KERNEL);
|
|
if (!rt)
|
|
goto out;
|
|
|
|
rc = next_entry(buf, fp, (sizeof(u32) * 2));
|
|
if (rc)
|
|
goto out;
|
|
|
|
rt->source_type = le32_to_cpu(buf[0]);
|
|
rt->target_type = le32_to_cpu(buf[1]);
|
|
if (p->policyvers >= POLICYDB_VERSION_RANGETRANS) {
|
|
rc = next_entry(buf, fp, sizeof(u32));
|
|
if (rc)
|
|
goto out;
|
|
rt->target_class = le32_to_cpu(buf[0]);
|
|
} else
|
|
rt->target_class = p->process_class;
|
|
|
|
rc = -EINVAL;
|
|
if (!policydb_type_isvalid(p, rt->source_type) ||
|
|
!policydb_type_isvalid(p, rt->target_type) ||
|
|
!policydb_class_isvalid(p, rt->target_class))
|
|
goto out;
|
|
|
|
rc = -ENOMEM;
|
|
r = kzalloc(sizeof(*r), GFP_KERNEL);
|
|
if (!r)
|
|
goto out;
|
|
|
|
rc = mls_read_range_helper(r, fp);
|
|
if (rc)
|
|
goto out;
|
|
|
|
rc = -EINVAL;
|
|
if (!mls_range_isvalid(p, r)) {
|
|
printk(KERN_WARNING "SELinux: rangetrans: invalid range\n");
|
|
goto out;
|
|
}
|
|
|
|
rc = hashtab_insert(p->range_tr, rt, r);
|
|
if (rc)
|
|
goto out;
|
|
|
|
rt = NULL;
|
|
r = NULL;
|
|
}
|
|
rangetr_hash_eval(p->range_tr);
|
|
rc = 0;
|
|
out:
|
|
kfree(rt);
|
|
kfree(r);
|
|
return rc;
|
|
}
|
|
|
|
static int genfs_read(struct policydb *p, void *fp)
|
|
{
|
|
int i, j, rc;
|
|
u32 nel, nel2, len, len2;
|
|
__le32 buf[1];
|
|
struct ocontext *l, *c;
|
|
struct ocontext *newc = NULL;
|
|
struct genfs *genfs_p, *genfs;
|
|
struct genfs *newgenfs = NULL;
|
|
|
|
rc = next_entry(buf, fp, sizeof(u32));
|
|
if (rc)
|
|
goto out;
|
|
nel = le32_to_cpu(buf[0]);
|
|
|
|
for (i = 0; i < nel; i++) {
|
|
rc = next_entry(buf, fp, sizeof(u32));
|
|
if (rc)
|
|
goto out;
|
|
len = le32_to_cpu(buf[0]);
|
|
|
|
rc = -ENOMEM;
|
|
newgenfs = kzalloc(sizeof(*newgenfs), GFP_KERNEL);
|
|
if (!newgenfs)
|
|
goto out;
|
|
|
|
rc = -ENOMEM;
|
|
newgenfs->fstype = kmalloc(len + 1, GFP_KERNEL);
|
|
if (!newgenfs->fstype)
|
|
goto out;
|
|
|
|
rc = next_entry(newgenfs->fstype, fp, len);
|
|
if (rc)
|
|
goto out;
|
|
|
|
newgenfs->fstype[len] = 0;
|
|
|
|
for (genfs_p = NULL, genfs = p->genfs; genfs;
|
|
genfs_p = genfs, genfs = genfs->next) {
|
|
rc = -EINVAL;
|
|
if (strcmp(newgenfs->fstype, genfs->fstype) == 0) {
|
|
printk(KERN_ERR "SELinux: dup genfs fstype %s\n",
|
|
newgenfs->fstype);
|
|
goto out;
|
|
}
|
|
if (strcmp(newgenfs->fstype, genfs->fstype) < 0)
|
|
break;
|
|
}
|
|
newgenfs->next = genfs;
|
|
if (genfs_p)
|
|
genfs_p->next = newgenfs;
|
|
else
|
|
p->genfs = newgenfs;
|
|
genfs = newgenfs;
|
|
newgenfs = NULL;
|
|
|
|
rc = next_entry(buf, fp, sizeof(u32));
|
|
if (rc)
|
|
goto out;
|
|
|
|
nel2 = le32_to_cpu(buf[0]);
|
|
for (j = 0; j < nel2; j++) {
|
|
rc = next_entry(buf, fp, sizeof(u32));
|
|
if (rc)
|
|
goto out;
|
|
len = le32_to_cpu(buf[0]);
|
|
|
|
rc = -ENOMEM;
|
|
newc = kzalloc(sizeof(*newc), GFP_KERNEL);
|
|
if (!newc)
|
|
goto out;
|
|
|
|
rc = -ENOMEM;
|
|
newc->u.name = kmalloc(len + 1, GFP_KERNEL);
|
|
if (!newc->u.name)
|
|
goto out;
|
|
|
|
rc = next_entry(newc->u.name, fp, len);
|
|
if (rc)
|
|
goto out;
|
|
newc->u.name[len] = 0;
|
|
|
|
rc = next_entry(buf, fp, sizeof(u32));
|
|
if (rc)
|
|
goto out;
|
|
|
|
newc->v.sclass = le32_to_cpu(buf[0]);
|
|
rc = context_read_and_validate(&newc->context[0], p, fp);
|
|
if (rc)
|
|
goto out;
|
|
|
|
for (l = NULL, c = genfs->head; c;
|
|
l = c, c = c->next) {
|
|
rc = -EINVAL;
|
|
if (!strcmp(newc->u.name, c->u.name) &&
|
|
(!c->v.sclass || !newc->v.sclass ||
|
|
newc->v.sclass == c->v.sclass)) {
|
|
printk(KERN_ERR "SELinux: dup genfs entry (%s,%s)\n",
|
|
genfs->fstype, c->u.name);
|
|
goto out;
|
|
}
|
|
len = strlen(newc->u.name);
|
|
len2 = strlen(c->u.name);
|
|
if (len > len2)
|
|
break;
|
|
}
|
|
|
|
newc->next = c;
|
|
if (l)
|
|
l->next = newc;
|
|
else
|
|
genfs->head = newc;
|
|
newc = NULL;
|
|
}
|
|
}
|
|
rc = 0;
|
|
out:
|
|
if (newgenfs)
|
|
kfree(newgenfs->fstype);
|
|
kfree(newgenfs);
|
|
ocontext_destroy(newc, OCON_FSUSE);
|
|
|
|
return rc;
|
|
}
|
|
|
|
static int ocontext_read(struct policydb *p, struct policydb_compat_info *info,
|
|
void *fp)
|
|
{
|
|
int i, j, rc;
|
|
u32 nel, len;
|
|
__le32 buf[3];
|
|
struct ocontext *l, *c;
|
|
u32 nodebuf[8];
|
|
|
|
for (i = 0; i < info->ocon_num; i++) {
|
|
rc = next_entry(buf, fp, sizeof(u32));
|
|
if (rc)
|
|
goto out;
|
|
nel = le32_to_cpu(buf[0]);
|
|
|
|
l = NULL;
|
|
for (j = 0; j < nel; j++) {
|
|
rc = -ENOMEM;
|
|
c = kzalloc(sizeof(*c), GFP_KERNEL);
|
|
if (!c)
|
|
goto out;
|
|
if (l)
|
|
l->next = c;
|
|
else
|
|
p->ocontexts[i] = c;
|
|
l = c;
|
|
|
|
switch (i) {
|
|
case OCON_ISID:
|
|
rc = next_entry(buf, fp, sizeof(u32));
|
|
if (rc)
|
|
goto out;
|
|
|
|
c->sid[0] = le32_to_cpu(buf[0]);
|
|
rc = context_read_and_validate(&c->context[0], p, fp);
|
|
if (rc)
|
|
goto out;
|
|
break;
|
|
case OCON_FS:
|
|
case OCON_NETIF:
|
|
rc = next_entry(buf, fp, sizeof(u32));
|
|
if (rc)
|
|
goto out;
|
|
len = le32_to_cpu(buf[0]);
|
|
|
|
rc = -ENOMEM;
|
|
c->u.name = kmalloc(len + 1, GFP_KERNEL);
|
|
if (!c->u.name)
|
|
goto out;
|
|
|
|
rc = next_entry(c->u.name, fp, len);
|
|
if (rc)
|
|
goto out;
|
|
|
|
c->u.name[len] = 0;
|
|
rc = context_read_and_validate(&c->context[0], p, fp);
|
|
if (rc)
|
|
goto out;
|
|
rc = context_read_and_validate(&c->context[1], p, fp);
|
|
if (rc)
|
|
goto out;
|
|
break;
|
|
case OCON_PORT:
|
|
rc = next_entry(buf, fp, sizeof(u32)*3);
|
|
if (rc)
|
|
goto out;
|
|
c->u.port.protocol = le32_to_cpu(buf[0]);
|
|
c->u.port.low_port = le32_to_cpu(buf[1]);
|
|
c->u.port.high_port = le32_to_cpu(buf[2]);
|
|
rc = context_read_and_validate(&c->context[0], p, fp);
|
|
if (rc)
|
|
goto out;
|
|
break;
|
|
case OCON_NODE:
|
|
rc = next_entry(nodebuf, fp, sizeof(u32) * 2);
|
|
if (rc)
|
|
goto out;
|
|
c->u.node.addr = nodebuf[0]; /* network order */
|
|
c->u.node.mask = nodebuf[1]; /* network order */
|
|
rc = context_read_and_validate(&c->context[0], p, fp);
|
|
if (rc)
|
|
goto out;
|
|
break;
|
|
case OCON_FSUSE:
|
|
rc = next_entry(buf, fp, sizeof(u32)*2);
|
|
if (rc)
|
|
goto out;
|
|
|
|
rc = -EINVAL;
|
|
c->v.behavior = le32_to_cpu(buf[0]);
|
|
if (c->v.behavior > SECURITY_FS_USE_NONE)
|
|
goto out;
|
|
|
|
rc = -ENOMEM;
|
|
len = le32_to_cpu(buf[1]);
|
|
c->u.name = kmalloc(len + 1, GFP_KERNEL);
|
|
if (!c->u.name)
|
|
goto out;
|
|
|
|
rc = next_entry(c->u.name, fp, len);
|
|
if (rc)
|
|
goto out;
|
|
c->u.name[len] = 0;
|
|
rc = context_read_and_validate(&c->context[0], p, fp);
|
|
if (rc)
|
|
goto out;
|
|
break;
|
|
case OCON_NODE6: {
|
|
int k;
|
|
|
|
rc = next_entry(nodebuf, fp, sizeof(u32) * 8);
|
|
if (rc)
|
|
goto out;
|
|
for (k = 0; k < 4; k++)
|
|
c->u.node6.addr[k] = nodebuf[k];
|
|
for (k = 0; k < 4; k++)
|
|
c->u.node6.mask[k] = nodebuf[k+4];
|
|
rc = context_read_and_validate(&c->context[0], p, fp);
|
|
if (rc)
|
|
goto out;
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
rc = 0;
|
|
out:
|
|
return rc;
|
|
}
|
|
|
|
/*
|
|
* Read the configuration data from a policy database binary
|
|
* representation file into a policy database structure.
|
|
*/
|
|
int policydb_read(struct policydb *p, void *fp)
|
|
{
|
|
struct role_allow *ra, *lra;
|
|
struct role_trans *tr, *ltr;
|
|
int i, j, rc;
|
|
__le32 buf[4];
|
|
u32 len, nprim, nel;
|
|
|
|
char *policydb_str;
|
|
struct policydb_compat_info *info;
|
|
|
|
rc = policydb_init(p);
|
|
if (rc)
|
|
return rc;
|
|
|
|
/* Read the magic number and string length. */
|
|
rc = next_entry(buf, fp, sizeof(u32) * 2);
|
|
if (rc)
|
|
goto bad;
|
|
|
|
rc = -EINVAL;
|
|
if (le32_to_cpu(buf[0]) != POLICYDB_MAGIC) {
|
|
printk(KERN_ERR "SELinux: policydb magic number 0x%x does "
|
|
"not match expected magic number 0x%x\n",
|
|
le32_to_cpu(buf[0]), POLICYDB_MAGIC);
|
|
goto bad;
|
|
}
|
|
|
|
rc = -EINVAL;
|
|
len = le32_to_cpu(buf[1]);
|
|
if (len != strlen(POLICYDB_STRING)) {
|
|
printk(KERN_ERR "SELinux: policydb string length %d does not "
|
|
"match expected length %Zu\n",
|
|
len, strlen(POLICYDB_STRING));
|
|
goto bad;
|
|
}
|
|
|
|
rc = -ENOMEM;
|
|
policydb_str = kmalloc(len + 1, GFP_KERNEL);
|
|
if (!policydb_str) {
|
|
printk(KERN_ERR "SELinux: unable to allocate memory for policydb "
|
|
"string of length %d\n", len);
|
|
goto bad;
|
|
}
|
|
|
|
rc = next_entry(policydb_str, fp, len);
|
|
if (rc) {
|
|
printk(KERN_ERR "SELinux: truncated policydb string identifier\n");
|
|
kfree(policydb_str);
|
|
goto bad;
|
|
}
|
|
|
|
rc = -EINVAL;
|
|
policydb_str[len] = '\0';
|
|
if (strcmp(policydb_str, POLICYDB_STRING)) {
|
|
printk(KERN_ERR "SELinux: policydb string %s does not match "
|
|
"my string %s\n", policydb_str, POLICYDB_STRING);
|
|
kfree(policydb_str);
|
|
goto bad;
|
|
}
|
|
/* Done with policydb_str. */
|
|
kfree(policydb_str);
|
|
policydb_str = NULL;
|
|
|
|
/* Read the version and table sizes. */
|
|
rc = next_entry(buf, fp, sizeof(u32)*4);
|
|
if (rc)
|
|
goto bad;
|
|
|
|
rc = -EINVAL;
|
|
p->policyvers = le32_to_cpu(buf[0]);
|
|
if (p->policyvers < POLICYDB_VERSION_MIN ||
|
|
p->policyvers > POLICYDB_VERSION_MAX) {
|
|
printk(KERN_ERR "SELinux: policydb version %d does not match "
|
|
"my version range %d-%d\n",
|
|
le32_to_cpu(buf[0]), POLICYDB_VERSION_MIN, POLICYDB_VERSION_MAX);
|
|
goto bad;
|
|
}
|
|
|
|
if ((le32_to_cpu(buf[1]) & POLICYDB_CONFIG_MLS)) {
|
|
p->mls_enabled = 1;
|
|
|
|
rc = -EINVAL;
|
|
if (p->policyvers < POLICYDB_VERSION_MLS) {
|
|
printk(KERN_ERR "SELinux: security policydb version %d "
|
|
"(MLS) not backwards compatible\n",
|
|
p->policyvers);
|
|
goto bad;
|
|
}
|
|
}
|
|
p->reject_unknown = !!(le32_to_cpu(buf[1]) & REJECT_UNKNOWN);
|
|
p->allow_unknown = !!(le32_to_cpu(buf[1]) & ALLOW_UNKNOWN);
|
|
|
|
if (p->policyvers >= POLICYDB_VERSION_POLCAP) {
|
|
rc = ebitmap_read(&p->policycaps, fp);
|
|
if (rc)
|
|
goto bad;
|
|
}
|
|
|
|
if (p->policyvers >= POLICYDB_VERSION_PERMISSIVE) {
|
|
rc = ebitmap_read(&p->permissive_map, fp);
|
|
if (rc)
|
|
goto bad;
|
|
}
|
|
|
|
rc = -EINVAL;
|
|
info = policydb_lookup_compat(p->policyvers);
|
|
if (!info) {
|
|
printk(KERN_ERR "SELinux: unable to find policy compat info "
|
|
"for version %d\n", p->policyvers);
|
|
goto bad;
|
|
}
|
|
|
|
rc = -EINVAL;
|
|
if (le32_to_cpu(buf[2]) != info->sym_num ||
|
|
le32_to_cpu(buf[3]) != info->ocon_num) {
|
|
printk(KERN_ERR "SELinux: policydb table sizes (%d,%d) do "
|
|
"not match mine (%d,%d)\n", le32_to_cpu(buf[2]),
|
|
le32_to_cpu(buf[3]),
|
|
info->sym_num, info->ocon_num);
|
|
goto bad;
|
|
}
|
|
|
|
for (i = 0; i < info->sym_num; i++) {
|
|
rc = next_entry(buf, fp, sizeof(u32)*2);
|
|
if (rc)
|
|
goto bad;
|
|
nprim = le32_to_cpu(buf[0]);
|
|
nel = le32_to_cpu(buf[1]);
|
|
for (j = 0; j < nel; j++) {
|
|
rc = read_f[i](p, p->symtab[i].table, fp);
|
|
if (rc)
|
|
goto bad;
|
|
}
|
|
|
|
p->symtab[i].nprim = nprim;
|
|
}
|
|
|
|
rc = avtab_read(&p->te_avtab, fp, p);
|
|
if (rc)
|
|
goto bad;
|
|
|
|
if (p->policyvers >= POLICYDB_VERSION_BOOL) {
|
|
rc = cond_read_list(p, fp);
|
|
if (rc)
|
|
goto bad;
|
|
}
|
|
|
|
rc = next_entry(buf, fp, sizeof(u32));
|
|
if (rc)
|
|
goto bad;
|
|
nel = le32_to_cpu(buf[0]);
|
|
ltr = NULL;
|
|
for (i = 0; i < nel; i++) {
|
|
rc = -ENOMEM;
|
|
tr = kzalloc(sizeof(*tr), GFP_KERNEL);
|
|
if (!tr)
|
|
goto bad;
|
|
if (ltr)
|
|
ltr->next = tr;
|
|
else
|
|
p->role_tr = tr;
|
|
rc = next_entry(buf, fp, sizeof(u32)*3);
|
|
if (rc)
|
|
goto bad;
|
|
|
|
rc = -EINVAL;
|
|
tr->role = le32_to_cpu(buf[0]);
|
|
tr->type = le32_to_cpu(buf[1]);
|
|
tr->new_role = le32_to_cpu(buf[2]);
|
|
if (!policydb_role_isvalid(p, tr->role) ||
|
|
!policydb_type_isvalid(p, tr->type) ||
|
|
!policydb_role_isvalid(p, tr->new_role))
|
|
goto bad;
|
|
ltr = tr;
|
|
}
|
|
|
|
rc = next_entry(buf, fp, sizeof(u32));
|
|
if (rc)
|
|
goto bad;
|
|
nel = le32_to_cpu(buf[0]);
|
|
lra = NULL;
|
|
for (i = 0; i < nel; i++) {
|
|
rc = -ENOMEM;
|
|
ra = kzalloc(sizeof(*ra), GFP_KERNEL);
|
|
if (!ra)
|
|
goto bad;
|
|
if (lra)
|
|
lra->next = ra;
|
|
else
|
|
p->role_allow = ra;
|
|
rc = next_entry(buf, fp, sizeof(u32)*2);
|
|
if (rc)
|
|
goto bad;
|
|
|
|
rc = -EINVAL;
|
|
ra->role = le32_to_cpu(buf[0]);
|
|
ra->new_role = le32_to_cpu(buf[1]);
|
|
if (!policydb_role_isvalid(p, ra->role) ||
|
|
!policydb_role_isvalid(p, ra->new_role))
|
|
goto bad;
|
|
lra = ra;
|
|
}
|
|
|
|
rc = policydb_index(p);
|
|
if (rc)
|
|
goto bad;
|
|
|
|
rc = -EINVAL;
|
|
p->process_class = string_to_security_class(p, "process");
|
|
if (!p->process_class)
|
|
goto bad;
|
|
|
|
rc = -EINVAL;
|
|
p->process_trans_perms = string_to_av_perm(p, p->process_class, "transition");
|
|
p->process_trans_perms |= string_to_av_perm(p, p->process_class, "dyntransition");
|
|
if (!p->process_trans_perms)
|
|
goto bad;
|
|
|
|
rc = ocontext_read(p, info, fp);
|
|
if (rc)
|
|
goto bad;
|
|
|
|
rc = genfs_read(p, fp);
|
|
if (rc)
|
|
goto bad;
|
|
|
|
rc = range_read(p, fp);
|
|
if (rc)
|
|
goto bad;
|
|
|
|
rc = -ENOMEM;
|
|
p->type_attr_map_array = flex_array_alloc(sizeof(struct ebitmap),
|
|
p->p_types.nprim,
|
|
GFP_KERNEL | __GFP_ZERO);
|
|
if (!p->type_attr_map_array)
|
|
goto bad;
|
|
|
|
/* preallocate so we don't have to worry about the put ever failing */
|
|
rc = flex_array_prealloc(p->type_attr_map_array, 0, p->p_types.nprim - 1,
|
|
GFP_KERNEL | __GFP_ZERO);
|
|
if (rc)
|
|
goto bad;
|
|
|
|
for (i = 0; i < p->p_types.nprim; i++) {
|
|
struct ebitmap *e = flex_array_get(p->type_attr_map_array, i);
|
|
|
|
BUG_ON(!e);
|
|
ebitmap_init(e);
|
|
if (p->policyvers >= POLICYDB_VERSION_AVTAB) {
|
|
rc = ebitmap_read(e, fp);
|
|
if (rc)
|
|
goto bad;
|
|
}
|
|
/* add the type itself as the degenerate case */
|
|
rc = ebitmap_set_bit(e, i, 1);
|
|
if (rc)
|
|
goto bad;
|
|
}
|
|
|
|
rc = policydb_bounds_sanity_check(p);
|
|
if (rc)
|
|
goto bad;
|
|
|
|
rc = 0;
|
|
out:
|
|
return rc;
|
|
bad:
|
|
policydb_destroy(p);
|
|
goto out;
|
|
}
|
|
|
|
/*
|
|
* Write a MLS level structure to a policydb binary
|
|
* representation file.
|
|
*/
|
|
static int mls_write_level(struct mls_level *l, void *fp)
|
|
{
|
|
__le32 buf[1];
|
|
int rc;
|
|
|
|
buf[0] = cpu_to_le32(l->sens);
|
|
rc = put_entry(buf, sizeof(u32), 1, fp);
|
|
if (rc)
|
|
return rc;
|
|
|
|
rc = ebitmap_write(&l->cat, fp);
|
|
if (rc)
|
|
return rc;
|
|
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* Write a MLS range structure to a policydb binary
|
|
* representation file.
|
|
*/
|
|
static int mls_write_range_helper(struct mls_range *r, void *fp)
|
|
{
|
|
__le32 buf[3];
|
|
size_t items;
|
|
int rc, eq;
|
|
|
|
eq = mls_level_eq(&r->level[1], &r->level[0]);
|
|
|
|
if (eq)
|
|
items = 2;
|
|
else
|
|
items = 3;
|
|
buf[0] = cpu_to_le32(items-1);
|
|
buf[1] = cpu_to_le32(r->level[0].sens);
|
|
if (!eq)
|
|
buf[2] = cpu_to_le32(r->level[1].sens);
|
|
|
|
BUG_ON(items > (sizeof(buf)/sizeof(buf[0])));
|
|
|
|
rc = put_entry(buf, sizeof(u32), items, fp);
|
|
if (rc)
|
|
return rc;
|
|
|
|
rc = ebitmap_write(&r->level[0].cat, fp);
|
|
if (rc)
|
|
return rc;
|
|
if (!eq) {
|
|
rc = ebitmap_write(&r->level[1].cat, fp);
|
|
if (rc)
|
|
return rc;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int sens_write(void *vkey, void *datum, void *ptr)
|
|
{
|
|
char *key = vkey;
|
|
struct level_datum *levdatum = datum;
|
|
struct policy_data *pd = ptr;
|
|
void *fp = pd->fp;
|
|
__le32 buf[2];
|
|
size_t len;
|
|
int rc;
|
|
|
|
len = strlen(key);
|
|
buf[0] = cpu_to_le32(len);
|
|
buf[1] = cpu_to_le32(levdatum->isalias);
|
|
rc = put_entry(buf, sizeof(u32), 2, fp);
|
|
if (rc)
|
|
return rc;
|
|
|
|
rc = put_entry(key, 1, len, fp);
|
|
if (rc)
|
|
return rc;
|
|
|
|
rc = mls_write_level(levdatum->level, fp);
|
|
if (rc)
|
|
return rc;
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int cat_write(void *vkey, void *datum, void *ptr)
|
|
{
|
|
char *key = vkey;
|
|
struct cat_datum *catdatum = datum;
|
|
struct policy_data *pd = ptr;
|
|
void *fp = pd->fp;
|
|
__le32 buf[3];
|
|
size_t len;
|
|
int rc;
|
|
|
|
len = strlen(key);
|
|
buf[0] = cpu_to_le32(len);
|
|
buf[1] = cpu_to_le32(catdatum->value);
|
|
buf[2] = cpu_to_le32(catdatum->isalias);
|
|
rc = put_entry(buf, sizeof(u32), 3, fp);
|
|
if (rc)
|
|
return rc;
|
|
|
|
rc = put_entry(key, 1, len, fp);
|
|
if (rc)
|
|
return rc;
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int role_trans_write(struct role_trans *r, void *fp)
|
|
{
|
|
struct role_trans *tr;
|
|
u32 buf[3];
|
|
size_t nel;
|
|
int rc;
|
|
|
|
nel = 0;
|
|
for (tr = r; tr; tr = tr->next)
|
|
nel++;
|
|
buf[0] = cpu_to_le32(nel);
|
|
rc = put_entry(buf, sizeof(u32), 1, fp);
|
|
if (rc)
|
|
return rc;
|
|
for (tr = r; tr; tr = tr->next) {
|
|
buf[0] = cpu_to_le32(tr->role);
|
|
buf[1] = cpu_to_le32(tr->type);
|
|
buf[2] = cpu_to_le32(tr->new_role);
|
|
rc = put_entry(buf, sizeof(u32), 3, fp);
|
|
if (rc)
|
|
return rc;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int role_allow_write(struct role_allow *r, void *fp)
|
|
{
|
|
struct role_allow *ra;
|
|
u32 buf[2];
|
|
size_t nel;
|
|
int rc;
|
|
|
|
nel = 0;
|
|
for (ra = r; ra; ra = ra->next)
|
|
nel++;
|
|
buf[0] = cpu_to_le32(nel);
|
|
rc = put_entry(buf, sizeof(u32), 1, fp);
|
|
if (rc)
|
|
return rc;
|
|
for (ra = r; ra; ra = ra->next) {
|
|
buf[0] = cpu_to_le32(ra->role);
|
|
buf[1] = cpu_to_le32(ra->new_role);
|
|
rc = put_entry(buf, sizeof(u32), 2, fp);
|
|
if (rc)
|
|
return rc;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* Write a security context structure
|
|
* to a policydb binary representation file.
|
|
*/
|
|
static int context_write(struct policydb *p, struct context *c,
|
|
void *fp)
|
|
{
|
|
int rc;
|
|
__le32 buf[3];
|
|
|
|
buf[0] = cpu_to_le32(c->user);
|
|
buf[1] = cpu_to_le32(c->role);
|
|
buf[2] = cpu_to_le32(c->type);
|
|
|
|
rc = put_entry(buf, sizeof(u32), 3, fp);
|
|
if (rc)
|
|
return rc;
|
|
|
|
rc = mls_write_range_helper(&c->range, fp);
|
|
if (rc)
|
|
return rc;
|
|
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* The following *_write functions are used to
|
|
* write the symbol data to a policy database
|
|
* binary representation file.
|
|
*/
|
|
|
|
static int perm_write(void *vkey, void *datum, void *fp)
|
|
{
|
|
char *key = vkey;
|
|
struct perm_datum *perdatum = datum;
|
|
__le32 buf[2];
|
|
size_t len;
|
|
int rc;
|
|
|
|
len = strlen(key);
|
|
buf[0] = cpu_to_le32(len);
|
|
buf[1] = cpu_to_le32(perdatum->value);
|
|
rc = put_entry(buf, sizeof(u32), 2, fp);
|
|
if (rc)
|
|
return rc;
|
|
|
|
rc = put_entry(key, 1, len, fp);
|
|
if (rc)
|
|
return rc;
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int common_write(void *vkey, void *datum, void *ptr)
|
|
{
|
|
char *key = vkey;
|
|
struct common_datum *comdatum = datum;
|
|
struct policy_data *pd = ptr;
|
|
void *fp = pd->fp;
|
|
__le32 buf[4];
|
|
size_t len;
|
|
int rc;
|
|
|
|
len = strlen(key);
|
|
buf[0] = cpu_to_le32(len);
|
|
buf[1] = cpu_to_le32(comdatum->value);
|
|
buf[2] = cpu_to_le32(comdatum->permissions.nprim);
|
|
buf[3] = cpu_to_le32(comdatum->permissions.table->nel);
|
|
rc = put_entry(buf, sizeof(u32), 4, fp);
|
|
if (rc)
|
|
return rc;
|
|
|
|
rc = put_entry(key, 1, len, fp);
|
|
if (rc)
|
|
return rc;
|
|
|
|
rc = hashtab_map(comdatum->permissions.table, perm_write, fp);
|
|
if (rc)
|
|
return rc;
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int write_cons_helper(struct policydb *p, struct constraint_node *node,
|
|
void *fp)
|
|
{
|
|
struct constraint_node *c;
|
|
struct constraint_expr *e;
|
|
__le32 buf[3];
|
|
u32 nel;
|
|
int rc;
|
|
|
|
for (c = node; c; c = c->next) {
|
|
nel = 0;
|
|
for (e = c->expr; e; e = e->next)
|
|
nel++;
|
|
buf[0] = cpu_to_le32(c->permissions);
|
|
buf[1] = cpu_to_le32(nel);
|
|
rc = put_entry(buf, sizeof(u32), 2, fp);
|
|
if (rc)
|
|
return rc;
|
|
for (e = c->expr; e; e = e->next) {
|
|
buf[0] = cpu_to_le32(e->expr_type);
|
|
buf[1] = cpu_to_le32(e->attr);
|
|
buf[2] = cpu_to_le32(e->op);
|
|
rc = put_entry(buf, sizeof(u32), 3, fp);
|
|
if (rc)
|
|
return rc;
|
|
|
|
switch (e->expr_type) {
|
|
case CEXPR_NAMES:
|
|
rc = ebitmap_write(&e->names, fp);
|
|
if (rc)
|
|
return rc;
|
|
break;
|
|
default:
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int class_write(void *vkey, void *datum, void *ptr)
|
|
{
|
|
char *key = vkey;
|
|
struct class_datum *cladatum = datum;
|
|
struct policy_data *pd = ptr;
|
|
void *fp = pd->fp;
|
|
struct policydb *p = pd->p;
|
|
struct constraint_node *c;
|
|
__le32 buf[6];
|
|
u32 ncons;
|
|
size_t len, len2;
|
|
int rc;
|
|
|
|
len = strlen(key);
|
|
if (cladatum->comkey)
|
|
len2 = strlen(cladatum->comkey);
|
|
else
|
|
len2 = 0;
|
|
|
|
ncons = 0;
|
|
for (c = cladatum->constraints; c; c = c->next)
|
|
ncons++;
|
|
|
|
buf[0] = cpu_to_le32(len);
|
|
buf[1] = cpu_to_le32(len2);
|
|
buf[2] = cpu_to_le32(cladatum->value);
|
|
buf[3] = cpu_to_le32(cladatum->permissions.nprim);
|
|
if (cladatum->permissions.table)
|
|
buf[4] = cpu_to_le32(cladatum->permissions.table->nel);
|
|
else
|
|
buf[4] = 0;
|
|
buf[5] = cpu_to_le32(ncons);
|
|
rc = put_entry(buf, sizeof(u32), 6, fp);
|
|
if (rc)
|
|
return rc;
|
|
|
|
rc = put_entry(key, 1, len, fp);
|
|
if (rc)
|
|
return rc;
|
|
|
|
if (cladatum->comkey) {
|
|
rc = put_entry(cladatum->comkey, 1, len2, fp);
|
|
if (rc)
|
|
return rc;
|
|
}
|
|
|
|
rc = hashtab_map(cladatum->permissions.table, perm_write, fp);
|
|
if (rc)
|
|
return rc;
|
|
|
|
rc = write_cons_helper(p, cladatum->constraints, fp);
|
|
if (rc)
|
|
return rc;
|
|
|
|
/* write out the validatetrans rule */
|
|
ncons = 0;
|
|
for (c = cladatum->validatetrans; c; c = c->next)
|
|
ncons++;
|
|
|
|
buf[0] = cpu_to_le32(ncons);
|
|
rc = put_entry(buf, sizeof(u32), 1, fp);
|
|
if (rc)
|
|
return rc;
|
|
|
|
rc = write_cons_helper(p, cladatum->validatetrans, fp);
|
|
if (rc)
|
|
return rc;
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int role_write(void *vkey, void *datum, void *ptr)
|
|
{
|
|
char *key = vkey;
|
|
struct role_datum *role = datum;
|
|
struct policy_data *pd = ptr;
|
|
void *fp = pd->fp;
|
|
struct policydb *p = pd->p;
|
|
__le32 buf[3];
|
|
size_t items, len;
|
|
int rc;
|
|
|
|
len = strlen(key);
|
|
items = 0;
|
|
buf[items++] = cpu_to_le32(len);
|
|
buf[items++] = cpu_to_le32(role->value);
|
|
if (p->policyvers >= POLICYDB_VERSION_BOUNDARY)
|
|
buf[items++] = cpu_to_le32(role->bounds);
|
|
|
|
BUG_ON(items > (sizeof(buf)/sizeof(buf[0])));
|
|
|
|
rc = put_entry(buf, sizeof(u32), items, fp);
|
|
if (rc)
|
|
return rc;
|
|
|
|
rc = put_entry(key, 1, len, fp);
|
|
if (rc)
|
|
return rc;
|
|
|
|
rc = ebitmap_write(&role->dominates, fp);
|
|
if (rc)
|
|
return rc;
|
|
|
|
rc = ebitmap_write(&role->types, fp);
|
|
if (rc)
|
|
return rc;
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int type_write(void *vkey, void *datum, void *ptr)
|
|
{
|
|
char *key = vkey;
|
|
struct type_datum *typdatum = datum;
|
|
struct policy_data *pd = ptr;
|
|
struct policydb *p = pd->p;
|
|
void *fp = pd->fp;
|
|
__le32 buf[4];
|
|
int rc;
|
|
size_t items, len;
|
|
|
|
len = strlen(key);
|
|
items = 0;
|
|
buf[items++] = cpu_to_le32(len);
|
|
buf[items++] = cpu_to_le32(typdatum->value);
|
|
if (p->policyvers >= POLICYDB_VERSION_BOUNDARY) {
|
|
u32 properties = 0;
|
|
|
|
if (typdatum->primary)
|
|
properties |= TYPEDATUM_PROPERTY_PRIMARY;
|
|
|
|
if (typdatum->attribute)
|
|
properties |= TYPEDATUM_PROPERTY_ATTRIBUTE;
|
|
|
|
buf[items++] = cpu_to_le32(properties);
|
|
buf[items++] = cpu_to_le32(typdatum->bounds);
|
|
} else {
|
|
buf[items++] = cpu_to_le32(typdatum->primary);
|
|
}
|
|
BUG_ON(items > (sizeof(buf) / sizeof(buf[0])));
|
|
rc = put_entry(buf, sizeof(u32), items, fp);
|
|
if (rc)
|
|
return rc;
|
|
|
|
rc = put_entry(key, 1, len, fp);
|
|
if (rc)
|
|
return rc;
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int user_write(void *vkey, void *datum, void *ptr)
|
|
{
|
|
char *key = vkey;
|
|
struct user_datum *usrdatum = datum;
|
|
struct policy_data *pd = ptr;
|
|
struct policydb *p = pd->p;
|
|
void *fp = pd->fp;
|
|
__le32 buf[3];
|
|
size_t items, len;
|
|
int rc;
|
|
|
|
len = strlen(key);
|
|
items = 0;
|
|
buf[items++] = cpu_to_le32(len);
|
|
buf[items++] = cpu_to_le32(usrdatum->value);
|
|
if (p->policyvers >= POLICYDB_VERSION_BOUNDARY)
|
|
buf[items++] = cpu_to_le32(usrdatum->bounds);
|
|
BUG_ON(items > (sizeof(buf) / sizeof(buf[0])));
|
|
rc = put_entry(buf, sizeof(u32), items, fp);
|
|
if (rc)
|
|
return rc;
|
|
|
|
rc = put_entry(key, 1, len, fp);
|
|
if (rc)
|
|
return rc;
|
|
|
|
rc = ebitmap_write(&usrdatum->roles, fp);
|
|
if (rc)
|
|
return rc;
|
|
|
|
rc = mls_write_range_helper(&usrdatum->range, fp);
|
|
if (rc)
|
|
return rc;
|
|
|
|
rc = mls_write_level(&usrdatum->dfltlevel, fp);
|
|
if (rc)
|
|
return rc;
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int (*write_f[SYM_NUM]) (void *key, void *datum,
|
|
void *datap) =
|
|
{
|
|
common_write,
|
|
class_write,
|
|
role_write,
|
|
type_write,
|
|
user_write,
|
|
cond_write_bool,
|
|
sens_write,
|
|
cat_write,
|
|
};
|
|
|
|
static int ocontext_write(struct policydb *p, struct policydb_compat_info *info,
|
|
void *fp)
|
|
{
|
|
unsigned int i, j, rc;
|
|
size_t nel, len;
|
|
__le32 buf[3];
|
|
u32 nodebuf[8];
|
|
struct ocontext *c;
|
|
for (i = 0; i < info->ocon_num; i++) {
|
|
nel = 0;
|
|
for (c = p->ocontexts[i]; c; c = c->next)
|
|
nel++;
|
|
buf[0] = cpu_to_le32(nel);
|
|
rc = put_entry(buf, sizeof(u32), 1, fp);
|
|
if (rc)
|
|
return rc;
|
|
for (c = p->ocontexts[i]; c; c = c->next) {
|
|
switch (i) {
|
|
case OCON_ISID:
|
|
buf[0] = cpu_to_le32(c->sid[0]);
|
|
rc = put_entry(buf, sizeof(u32), 1, fp);
|
|
if (rc)
|
|
return rc;
|
|
rc = context_write(p, &c->context[0], fp);
|
|
if (rc)
|
|
return rc;
|
|
break;
|
|
case OCON_FS:
|
|
case OCON_NETIF:
|
|
len = strlen(c->u.name);
|
|
buf[0] = cpu_to_le32(len);
|
|
rc = put_entry(buf, sizeof(u32), 1, fp);
|
|
if (rc)
|
|
return rc;
|
|
rc = put_entry(c->u.name, 1, len, fp);
|
|
if (rc)
|
|
return rc;
|
|
rc = context_write(p, &c->context[0], fp);
|
|
if (rc)
|
|
return rc;
|
|
rc = context_write(p, &c->context[1], fp);
|
|
if (rc)
|
|
return rc;
|
|
break;
|
|
case OCON_PORT:
|
|
buf[0] = cpu_to_le32(c->u.port.protocol);
|
|
buf[1] = cpu_to_le32(c->u.port.low_port);
|
|
buf[2] = cpu_to_le32(c->u.port.high_port);
|
|
rc = put_entry(buf, sizeof(u32), 3, fp);
|
|
if (rc)
|
|
return rc;
|
|
rc = context_write(p, &c->context[0], fp);
|
|
if (rc)
|
|
return rc;
|
|
break;
|
|
case OCON_NODE:
|
|
nodebuf[0] = c->u.node.addr; /* network order */
|
|
nodebuf[1] = c->u.node.mask; /* network order */
|
|
rc = put_entry(nodebuf, sizeof(u32), 2, fp);
|
|
if (rc)
|
|
return rc;
|
|
rc = context_write(p, &c->context[0], fp);
|
|
if (rc)
|
|
return rc;
|
|
break;
|
|
case OCON_FSUSE:
|
|
buf[0] = cpu_to_le32(c->v.behavior);
|
|
len = strlen(c->u.name);
|
|
buf[1] = cpu_to_le32(len);
|
|
rc = put_entry(buf, sizeof(u32), 2, fp);
|
|
if (rc)
|
|
return rc;
|
|
rc = put_entry(c->u.name, 1, len, fp);
|
|
if (rc)
|
|
return rc;
|
|
rc = context_write(p, &c->context[0], fp);
|
|
if (rc)
|
|
return rc;
|
|
break;
|
|
case OCON_NODE6:
|
|
for (j = 0; j < 4; j++)
|
|
nodebuf[j] = c->u.node6.addr[j]; /* network order */
|
|
for (j = 0; j < 4; j++)
|
|
nodebuf[j + 4] = c->u.node6.mask[j]; /* network order */
|
|
rc = put_entry(nodebuf, sizeof(u32), 8, fp);
|
|
if (rc)
|
|
return rc;
|
|
rc = context_write(p, &c->context[0], fp);
|
|
if (rc)
|
|
return rc;
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
static int genfs_write(struct policydb *p, void *fp)
|
|
{
|
|
struct genfs *genfs;
|
|
struct ocontext *c;
|
|
size_t len;
|
|
__le32 buf[1];
|
|
int rc;
|
|
|
|
len = 0;
|
|
for (genfs = p->genfs; genfs; genfs = genfs->next)
|
|
len++;
|
|
buf[0] = cpu_to_le32(len);
|
|
rc = put_entry(buf, sizeof(u32), 1, fp);
|
|
if (rc)
|
|
return rc;
|
|
for (genfs = p->genfs; genfs; genfs = genfs->next) {
|
|
len = strlen(genfs->fstype);
|
|
buf[0] = cpu_to_le32(len);
|
|
rc = put_entry(buf, sizeof(u32), 1, fp);
|
|
if (rc)
|
|
return rc;
|
|
rc = put_entry(genfs->fstype, 1, len, fp);
|
|
if (rc)
|
|
return rc;
|
|
len = 0;
|
|
for (c = genfs->head; c; c = c->next)
|
|
len++;
|
|
buf[0] = cpu_to_le32(len);
|
|
rc = put_entry(buf, sizeof(u32), 1, fp);
|
|
if (rc)
|
|
return rc;
|
|
for (c = genfs->head; c; c = c->next) {
|
|
len = strlen(c->u.name);
|
|
buf[0] = cpu_to_le32(len);
|
|
rc = put_entry(buf, sizeof(u32), 1, fp);
|
|
if (rc)
|
|
return rc;
|
|
rc = put_entry(c->u.name, 1, len, fp);
|
|
if (rc)
|
|
return rc;
|
|
buf[0] = cpu_to_le32(c->v.sclass);
|
|
rc = put_entry(buf, sizeof(u32), 1, fp);
|
|
if (rc)
|
|
return rc;
|
|
rc = context_write(p, &c->context[0], fp);
|
|
if (rc)
|
|
return rc;
|
|
}
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
static int range_count(void *key, void *data, void *ptr)
|
|
{
|
|
int *cnt = ptr;
|
|
*cnt = *cnt + 1;
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int range_write_helper(void *key, void *data, void *ptr)
|
|
{
|
|
__le32 buf[2];
|
|
struct range_trans *rt = key;
|
|
struct mls_range *r = data;
|
|
struct policy_data *pd = ptr;
|
|
void *fp = pd->fp;
|
|
struct policydb *p = pd->p;
|
|
int rc;
|
|
|
|
buf[0] = cpu_to_le32(rt->source_type);
|
|
buf[1] = cpu_to_le32(rt->target_type);
|
|
rc = put_entry(buf, sizeof(u32), 2, fp);
|
|
if (rc)
|
|
return rc;
|
|
if (p->policyvers >= POLICYDB_VERSION_RANGETRANS) {
|
|
buf[0] = cpu_to_le32(rt->target_class);
|
|
rc = put_entry(buf, sizeof(u32), 1, fp);
|
|
if (rc)
|
|
return rc;
|
|
}
|
|
rc = mls_write_range_helper(r, fp);
|
|
if (rc)
|
|
return rc;
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int range_write(struct policydb *p, void *fp)
|
|
{
|
|
size_t nel;
|
|
__le32 buf[1];
|
|
int rc;
|
|
struct policy_data pd;
|
|
|
|
pd.p = p;
|
|
pd.fp = fp;
|
|
|
|
/* count the number of entries in the hashtab */
|
|
nel = 0;
|
|
rc = hashtab_map(p->range_tr, range_count, &nel);
|
|
if (rc)
|
|
return rc;
|
|
|
|
buf[0] = cpu_to_le32(nel);
|
|
rc = put_entry(buf, sizeof(u32), 1, fp);
|
|
if (rc)
|
|
return rc;
|
|
|
|
/* actually write all of the entries */
|
|
rc = hashtab_map(p->range_tr, range_write_helper, &pd);
|
|
if (rc)
|
|
return rc;
|
|
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* Write the configuration data in a policy database
|
|
* structure to a policy database binary representation
|
|
* file.
|
|
*/
|
|
int policydb_write(struct policydb *p, void *fp)
|
|
{
|
|
unsigned int i, num_syms;
|
|
int rc;
|
|
__le32 buf[4];
|
|
u32 config;
|
|
size_t len;
|
|
struct policydb_compat_info *info;
|
|
|
|
/*
|
|
* refuse to write policy older than compressed avtab
|
|
* to simplify the writer. There are other tests dropped
|
|
* since we assume this throughout the writer code. Be
|
|
* careful if you ever try to remove this restriction
|
|
*/
|
|
if (p->policyvers < POLICYDB_VERSION_AVTAB) {
|
|
printk(KERN_ERR "SELinux: refusing to write policy version %d."
|
|
" Because it is less than version %d\n", p->policyvers,
|
|
POLICYDB_VERSION_AVTAB);
|
|
return -EINVAL;
|
|
}
|
|
|
|
config = 0;
|
|
if (p->mls_enabled)
|
|
config |= POLICYDB_CONFIG_MLS;
|
|
|
|
if (p->reject_unknown)
|
|
config |= REJECT_UNKNOWN;
|
|
if (p->allow_unknown)
|
|
config |= ALLOW_UNKNOWN;
|
|
|
|
/* Write the magic number and string identifiers. */
|
|
buf[0] = cpu_to_le32(POLICYDB_MAGIC);
|
|
len = strlen(POLICYDB_STRING);
|
|
buf[1] = cpu_to_le32(len);
|
|
rc = put_entry(buf, sizeof(u32), 2, fp);
|
|
if (rc)
|
|
return rc;
|
|
rc = put_entry(POLICYDB_STRING, 1, len, fp);
|
|
if (rc)
|
|
return rc;
|
|
|
|
/* Write the version, config, and table sizes. */
|
|
info = policydb_lookup_compat(p->policyvers);
|
|
if (!info) {
|
|
printk(KERN_ERR "SELinux: compatibility lookup failed for policy "
|
|
"version %d", p->policyvers);
|
|
return -EINVAL;
|
|
}
|
|
|
|
buf[0] = cpu_to_le32(p->policyvers);
|
|
buf[1] = cpu_to_le32(config);
|
|
buf[2] = cpu_to_le32(info->sym_num);
|
|
buf[3] = cpu_to_le32(info->ocon_num);
|
|
|
|
rc = put_entry(buf, sizeof(u32), 4, fp);
|
|
if (rc)
|
|
return rc;
|
|
|
|
if (p->policyvers >= POLICYDB_VERSION_POLCAP) {
|
|
rc = ebitmap_write(&p->policycaps, fp);
|
|
if (rc)
|
|
return rc;
|
|
}
|
|
|
|
if (p->policyvers >= POLICYDB_VERSION_PERMISSIVE) {
|
|
rc = ebitmap_write(&p->permissive_map, fp);
|
|
if (rc)
|
|
return rc;
|
|
}
|
|
|
|
num_syms = info->sym_num;
|
|
for (i = 0; i < num_syms; i++) {
|
|
struct policy_data pd;
|
|
|
|
pd.fp = fp;
|
|
pd.p = p;
|
|
|
|
buf[0] = cpu_to_le32(p->symtab[i].nprim);
|
|
buf[1] = cpu_to_le32(p->symtab[i].table->nel);
|
|
|
|
rc = put_entry(buf, sizeof(u32), 2, fp);
|
|
if (rc)
|
|
return rc;
|
|
rc = hashtab_map(p->symtab[i].table, write_f[i], &pd);
|
|
if (rc)
|
|
return rc;
|
|
}
|
|
|
|
rc = avtab_write(p, &p->te_avtab, fp);
|
|
if (rc)
|
|
return rc;
|
|
|
|
rc = cond_write_list(p, p->cond_list, fp);
|
|
if (rc)
|
|
return rc;
|
|
|
|
rc = role_trans_write(p->role_tr, fp);
|
|
if (rc)
|
|
return rc;
|
|
|
|
rc = role_allow_write(p->role_allow, fp);
|
|
if (rc)
|
|
return rc;
|
|
|
|
rc = ocontext_write(p, info, fp);
|
|
if (rc)
|
|
return rc;
|
|
|
|
rc = genfs_write(p, fp);
|
|
if (rc)
|
|
return rc;
|
|
|
|
rc = range_write(p, fp);
|
|
if (rc)
|
|
return rc;
|
|
|
|
for (i = 0; i < p->p_types.nprim; i++) {
|
|
struct ebitmap *e = flex_array_get(p->type_attr_map_array, i);
|
|
|
|
BUG_ON(!e);
|
|
rc = ebitmap_write(e, fp);
|
|
if (rc)
|
|
return rc;
|
|
}
|
|
|
|
return 0;
|
|
}
|