mirror of
https://github.com/FEX-Emu/linux.git
synced 2024-12-17 06:17:35 +00:00
a77ebd333c
Short summary: There are severe stalls when a USB stick using VFAT is used with THP enabled that are reduced by this series. If you are experiencing this problem, please test and report back and considering I have seen complaints from openSUSE and Fedora users on this as well as a few private mails, I'm guessing it's a widespread issue. This is a new type of USB-related stall because it is due to synchronous compaction writing where as in the past the big problem was dirty pages reaching the end of the LRU and being written by reclaim. Am cc'ing Andrew this time and this series would replace mm-do-not-stall-in-synchronous-compaction-for-thp-allocations.patch. I'm also cc'ing Dave Jones as he might have merged that patch to Fedora for wider testing and ideally it would be reverted and replaced by this series. That said, the later patches could really do with some review. If this series is not the answer then a new direction needs to be discussed because as it is, the stalls are unacceptable as the results in this leader show. For testers that try backporting this to 3.1, it won't work because there is a non-obvious dependency on not writing back pages in direct reclaim so you need those patches too. Changelog since V5 o Rebase to 3.2-rc5 o Tidy up the changelogs a bit Changelog since V4 o Added reviewed-bys, credited Andrea properly for sync-light o Allow dirty pages without mappings to be considered for migration o Bound the number of pages freed for compaction o Isolate PageReclaim pages on their own LRU list This is against 3.2-rc5 and follows on from discussions on "mm: Do not stall in synchronous compaction for THP allocations" and "[RFC PATCH 0/5] Reduce compaction-related stalls". Initially, the proposed patch eliminated stalls due to compaction which sometimes resulted in user-visible interactivity problems on browsers by simply never using sync compaction. The downside was that THP success allocation rates were lower because dirty pages were not being migrated as reported by Andrea. His approach at fixing this was nacked on the grounds that it reverted fixes from Rik merged that reduced the amount of pages reclaimed as it severely impacted his workloads performance. This series attempts to reconcile the requirements of maximising THP usage, without stalling in a user-visible fashion due to compaction or cheating by reclaiming an excessive number of pages. Patch 1 partially reverts commit |
||
---|---|---|
.. | ||
backing-dev.c | ||
bootmem.c | ||
bounce.c | ||
cleancache.c | ||
compaction.c | ||
debug-pagealloc.c | ||
dmapool.c | ||
fadvise.c | ||
failslab.c | ||
filemap_xip.c | ||
filemap.c | ||
fremap.c | ||
highmem.c | ||
huge_memory.c | ||
hugetlb.c | ||
hwpoison-inject.c | ||
init-mm.c | ||
internal.h | ||
Kconfig | ||
Kconfig.debug | ||
kmemcheck.c | ||
kmemleak-test.c | ||
kmemleak.c | ||
ksm.c | ||
maccess.c | ||
madvise.c | ||
Makefile | ||
memblock.c | ||
memcontrol.c | ||
memory_hotplug.c | ||
memory-failure.c | ||
memory.c | ||
mempolicy.c | ||
mempool.c | ||
migrate.c | ||
mincore.c | ||
mlock.c | ||
mm_init.c | ||
mmap.c | ||
mmu_context.c | ||
mmu_notifier.c | ||
mmzone.c | ||
mprotect.c | ||
mremap.c | ||
msync.c | ||
nobootmem.c | ||
nommu.c | ||
oom_kill.c | ||
page_alloc.c | ||
page_cgroup.c | ||
page_io.c | ||
page_isolation.c | ||
page-writeback.c | ||
pagewalk.c | ||
percpu-km.c | ||
percpu-vm.c | ||
percpu.c | ||
pgtable-generic.c | ||
prio_tree.c | ||
process_vm_access.c | ||
quicklist.c | ||
readahead.c | ||
rmap.c | ||
shmem.c | ||
slab.c | ||
slob.c | ||
slub.c | ||
sparse-vmemmap.c | ||
sparse.c | ||
swap_state.c | ||
swap.c | ||
swapfile.c | ||
thrash.c | ||
truncate.c | ||
util.c | ||
vmalloc.c | ||
vmscan.c | ||
vmstat.c |