mirror of
https://github.com/FEX-Emu/linux.git
synced 2024-12-27 11:55:53 +00:00
b6366f048e
When debugging the latencies on a 40 core box, where we hit 300 to 500 microsecond latencies, I found there was a huge contention on the runqueue locks. Investigating it further, running ftrace, I found that it was due to the pulling of RT tasks. The test that was run was the following: cyclictest --numa -p95 -m -d0 -i100 This created a thread on each CPU, that would set its wakeup in iterations of 100 microseconds. The -d0 means that all the threads had the same interval (100us). Each thread sleeps for 100us and wakes up and measures its latencies. cyclictest is maintained at: git://git.kernel.org/pub/scm/linux/kernel/git/clrkwllms/rt-tests.git What happened was another RT task would be scheduled on one of the CPUs that was running our test, when the other CPU tests went to sleep and scheduled idle. This caused the "pull" operation to execute on all these CPUs. Each one of these saw the RT task that was overloaded on the CPU of the test that was still running, and each one tried to grab that task in a thundering herd way. To grab the task, each thread would do a double rq lock grab, grabbing its own lock as well as the rq of the overloaded CPU. As the sched domains on this box was rather flat for its size, I saw up to 12 CPUs block on this lock at once. This caused a ripple affect with the rq locks especially since the taking was done via a double rq lock, which means that several of the CPUs had their own rq locks held while trying to take this rq lock. As these locks were blocked, any wakeups or load balanceing on these CPUs would also block on these locks, and the wait time escalated. I've tried various methods to lessen the load, but things like an atomic counter to only let one CPU grab the task wont work, because the task may have a limited affinity, and we may pick the wrong CPU to take that lock and do the pull, to only find out that the CPU we picked isn't in the task's affinity. Instead of doing the PULL, I now have the CPUs that want the pull to send over an IPI to the overloaded CPU, and let that CPU pick what CPU to push the task to. No more need to grab the rq lock, and the push/pull algorithm still works fine. With this patch, the latency dropped to just 150us over a 20 hour run. Without the patch, the huge latencies would trigger in seconds. I've created a new sched feature called RT_PUSH_IPI, which is enabled by default. When RT_PUSH_IPI is not enabled, the old method of grabbing the rq locks and having the pulling CPU do the work is implemented. When RT_PUSH_IPI is enabled, the IPI is sent to the overloaded CPU to do a push. To enabled or disable this at run time: # mount -t debugfs nodev /sys/kernel/debug # echo RT_PUSH_IPI > /sys/kernel/debug/sched_features or # echo NO_RT_PUSH_IPI > /sys/kernel/debug/sched_features Update: This original patch would send an IPI to all CPUs in the RT overload list. But that could theoretically cause the reverse issue. That is, there could be lots of overloaded RT queues and one CPU lowers its priority. It would then send an IPI to all the overloaded RT queues and they could then all try to grab the rq lock of the CPU lowering its priority, and then we have the same problem. The latest design sends out only one IPI to the first overloaded CPU. It tries to push any tasks that it can, and then looks for the next overloaded CPU that can push to the source CPU. The IPIs stop when all overloaded CPUs that have pushable tasks that have priorities greater than the source CPU are covered. In case the source CPU lowers its priority again, a flag is set to tell the IPI traversal to restart with the first RT overloaded CPU after the source CPU. Parts-suggested-by: Peter Zijlstra <peterz@infradead.org> Signed-off-by: Steven Rostedt <rostedt@goodmis.org> Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Cc: Joern Engel <joern@purestorage.com> Cc: Clark Williams <williams@redhat.com> Cc: Mike Galbraith <umgwanakikbuti@gmail.com> Cc: Paul E. McKenney <paulmck@linux.vnet.ibm.com> Cc: Thomas Gleixner <tglx@linutronix.de> Link: http://lkml.kernel.org/r/20150318144946.2f3cc982@gandalf.local.home Signed-off-by: Ingo Molnar <mingo@kernel.org>
99 lines
2.6 KiB
C
99 lines
2.6 KiB
C
/*
|
|
* Only give sleepers 50% of their service deficit. This allows
|
|
* them to run sooner, but does not allow tons of sleepers to
|
|
* rip the spread apart.
|
|
*/
|
|
SCHED_FEAT(GENTLE_FAIR_SLEEPERS, true)
|
|
|
|
/*
|
|
* Place new tasks ahead so that they do not starve already running
|
|
* tasks
|
|
*/
|
|
SCHED_FEAT(START_DEBIT, true)
|
|
|
|
/*
|
|
* Prefer to schedule the task we woke last (assuming it failed
|
|
* wakeup-preemption), since its likely going to consume data we
|
|
* touched, increases cache locality.
|
|
*/
|
|
SCHED_FEAT(NEXT_BUDDY, false)
|
|
|
|
/*
|
|
* Prefer to schedule the task that ran last (when we did
|
|
* wake-preempt) as that likely will touch the same data, increases
|
|
* cache locality.
|
|
*/
|
|
SCHED_FEAT(LAST_BUDDY, true)
|
|
|
|
/*
|
|
* Consider buddies to be cache hot, decreases the likelyness of a
|
|
* cache buddy being migrated away, increases cache locality.
|
|
*/
|
|
SCHED_FEAT(CACHE_HOT_BUDDY, true)
|
|
|
|
/*
|
|
* Allow wakeup-time preemption of the current task:
|
|
*/
|
|
SCHED_FEAT(WAKEUP_PREEMPTION, true)
|
|
|
|
/*
|
|
* Use arch dependent cpu capacity functions
|
|
*/
|
|
SCHED_FEAT(ARCH_CAPACITY, true)
|
|
|
|
SCHED_FEAT(HRTICK, false)
|
|
SCHED_FEAT(DOUBLE_TICK, false)
|
|
SCHED_FEAT(LB_BIAS, true)
|
|
|
|
/*
|
|
* Decrement CPU capacity based on time not spent running tasks
|
|
*/
|
|
SCHED_FEAT(NONTASK_CAPACITY, true)
|
|
|
|
/*
|
|
* Queue remote wakeups on the target CPU and process them
|
|
* using the scheduler IPI. Reduces rq->lock contention/bounces.
|
|
*/
|
|
SCHED_FEAT(TTWU_QUEUE, true)
|
|
|
|
#ifdef HAVE_RT_PUSH_IPI
|
|
/*
|
|
* In order to avoid a thundering herd attack of CPUs that are
|
|
* lowering their priorities at the same time, and there being
|
|
* a single CPU that has an RT task that can migrate and is waiting
|
|
* to run, where the other CPUs will try to take that CPUs
|
|
* rq lock and possibly create a large contention, sending an
|
|
* IPI to that CPU and let that CPU push the RT task to where
|
|
* it should go may be a better scenario.
|
|
*/
|
|
SCHED_FEAT(RT_PUSH_IPI, true)
|
|
#endif
|
|
|
|
SCHED_FEAT(FORCE_SD_OVERLAP, false)
|
|
SCHED_FEAT(RT_RUNTIME_SHARE, true)
|
|
SCHED_FEAT(LB_MIN, false)
|
|
|
|
/*
|
|
* Apply the automatic NUMA scheduling policy. Enabled automatically
|
|
* at runtime if running on a NUMA machine. Can be controlled via
|
|
* numa_balancing=
|
|
*/
|
|
#ifdef CONFIG_NUMA_BALANCING
|
|
SCHED_FEAT(NUMA, false)
|
|
|
|
/*
|
|
* NUMA_FAVOUR_HIGHER will favor moving tasks towards nodes where a
|
|
* higher number of hinting faults are recorded during active load
|
|
* balancing.
|
|
*/
|
|
SCHED_FEAT(NUMA_FAVOUR_HIGHER, true)
|
|
|
|
/*
|
|
* NUMA_RESIST_LOWER will resist moving tasks towards nodes where a
|
|
* lower number of hinting faults have been recorded. As this has
|
|
* the potential to prevent a task ever migrating to a new node
|
|
* due to CPU overload it is disabled by default.
|
|
*/
|
|
SCHED_FEAT(NUMA_RESIST_LOWER, false)
|
|
#endif
|