linux/drivers/gpu/drm/i915/intel_ddi.c
Ville Syrjälä a930acd91f drm/i915: Extract bdw_get_buf_trans_edp()
Make the BDW and SKL code a bit more similar by extracting the
low vswing handling for BDW into a helper, as we already have
it like that for SKL+.

Cc: Mika Kahola <mika.kahola@intel.com>
Signed-off-by: Ville Syrjälä <ville.syrjala@linux.intel.com>
Link: http://patchwork.freedesktop.org/patch/msgid/1468328376-6380-10-git-send-email-ville.syrjala@linux.intel.com
Reviewed-by: Imre Deak <imre.deak@intel.com>
2016-08-02 15:09:20 +03:00

2475 lines
70 KiB
C

/*
* Copyright © 2012 Intel Corporation
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice (including the next
* paragraph) shall be included in all copies or substantial portions of the
* Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
* FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
* IN THE SOFTWARE.
*
* Authors:
* Eugeni Dodonov <eugeni.dodonov@intel.com>
*
*/
#include "i915_drv.h"
#include "intel_drv.h"
struct ddi_buf_trans {
u32 trans1; /* balance leg enable, de-emph level */
u32 trans2; /* vref sel, vswing */
u8 i_boost; /* SKL: I_boost; valid: 0x0, 0x1, 0x3, 0x7 */
};
/* HDMI/DVI modes ignore everything but the last 2 items. So we share
* them for both DP and FDI transports, allowing those ports to
* automatically adapt to HDMI connections as well
*/
static const struct ddi_buf_trans hsw_ddi_translations_dp[] = {
{ 0x00FFFFFF, 0x0006000E, 0x0 },
{ 0x00D75FFF, 0x0005000A, 0x0 },
{ 0x00C30FFF, 0x00040006, 0x0 },
{ 0x80AAAFFF, 0x000B0000, 0x0 },
{ 0x00FFFFFF, 0x0005000A, 0x0 },
{ 0x00D75FFF, 0x000C0004, 0x0 },
{ 0x80C30FFF, 0x000B0000, 0x0 },
{ 0x00FFFFFF, 0x00040006, 0x0 },
{ 0x80D75FFF, 0x000B0000, 0x0 },
};
static const struct ddi_buf_trans hsw_ddi_translations_fdi[] = {
{ 0x00FFFFFF, 0x0007000E, 0x0 },
{ 0x00D75FFF, 0x000F000A, 0x0 },
{ 0x00C30FFF, 0x00060006, 0x0 },
{ 0x00AAAFFF, 0x001E0000, 0x0 },
{ 0x00FFFFFF, 0x000F000A, 0x0 },
{ 0x00D75FFF, 0x00160004, 0x0 },
{ 0x00C30FFF, 0x001E0000, 0x0 },
{ 0x00FFFFFF, 0x00060006, 0x0 },
{ 0x00D75FFF, 0x001E0000, 0x0 },
};
static const struct ddi_buf_trans hsw_ddi_translations_hdmi[] = {
/* Idx NT mV d T mV d db */
{ 0x00FFFFFF, 0x0006000E, 0x0 },/* 0: 400 400 0 */
{ 0x00E79FFF, 0x000E000C, 0x0 },/* 1: 400 500 2 */
{ 0x00D75FFF, 0x0005000A, 0x0 },/* 2: 400 600 3.5 */
{ 0x00FFFFFF, 0x0005000A, 0x0 },/* 3: 600 600 0 */
{ 0x00E79FFF, 0x001D0007, 0x0 },/* 4: 600 750 2 */
{ 0x00D75FFF, 0x000C0004, 0x0 },/* 5: 600 900 3.5 */
{ 0x00FFFFFF, 0x00040006, 0x0 },/* 6: 800 800 0 */
{ 0x80E79FFF, 0x00030002, 0x0 },/* 7: 800 1000 2 */
{ 0x00FFFFFF, 0x00140005, 0x0 },/* 8: 850 850 0 */
{ 0x00FFFFFF, 0x000C0004, 0x0 },/* 9: 900 900 0 */
{ 0x00FFFFFF, 0x001C0003, 0x0 },/* 10: 950 950 0 */
{ 0x80FFFFFF, 0x00030002, 0x0 },/* 11: 1000 1000 0 */
};
static const struct ddi_buf_trans bdw_ddi_translations_edp[] = {
{ 0x00FFFFFF, 0x00000012, 0x0 },
{ 0x00EBAFFF, 0x00020011, 0x0 },
{ 0x00C71FFF, 0x0006000F, 0x0 },
{ 0x00AAAFFF, 0x000E000A, 0x0 },
{ 0x00FFFFFF, 0x00020011, 0x0 },
{ 0x00DB6FFF, 0x0005000F, 0x0 },
{ 0x00BEEFFF, 0x000A000C, 0x0 },
{ 0x00FFFFFF, 0x0005000F, 0x0 },
{ 0x00DB6FFF, 0x000A000C, 0x0 },
};
static const struct ddi_buf_trans bdw_ddi_translations_dp[] = {
{ 0x00FFFFFF, 0x0007000E, 0x0 },
{ 0x00D75FFF, 0x000E000A, 0x0 },
{ 0x00BEFFFF, 0x00140006, 0x0 },
{ 0x80B2CFFF, 0x001B0002, 0x0 },
{ 0x00FFFFFF, 0x000E000A, 0x0 },
{ 0x00DB6FFF, 0x00160005, 0x0 },
{ 0x80C71FFF, 0x001A0002, 0x0 },
{ 0x00F7DFFF, 0x00180004, 0x0 },
{ 0x80D75FFF, 0x001B0002, 0x0 },
};
static const struct ddi_buf_trans bdw_ddi_translations_fdi[] = {
{ 0x00FFFFFF, 0x0001000E, 0x0 },
{ 0x00D75FFF, 0x0004000A, 0x0 },
{ 0x00C30FFF, 0x00070006, 0x0 },
{ 0x00AAAFFF, 0x000C0000, 0x0 },
{ 0x00FFFFFF, 0x0004000A, 0x0 },
{ 0x00D75FFF, 0x00090004, 0x0 },
{ 0x00C30FFF, 0x000C0000, 0x0 },
{ 0x00FFFFFF, 0x00070006, 0x0 },
{ 0x00D75FFF, 0x000C0000, 0x0 },
};
static const struct ddi_buf_trans bdw_ddi_translations_hdmi[] = {
/* Idx NT mV d T mV df db */
{ 0x00FFFFFF, 0x0007000E, 0x0 },/* 0: 400 400 0 */
{ 0x00D75FFF, 0x000E000A, 0x0 },/* 1: 400 600 3.5 */
{ 0x00BEFFFF, 0x00140006, 0x0 },/* 2: 400 800 6 */
{ 0x00FFFFFF, 0x0009000D, 0x0 },/* 3: 450 450 0 */
{ 0x00FFFFFF, 0x000E000A, 0x0 },/* 4: 600 600 0 */
{ 0x00D7FFFF, 0x00140006, 0x0 },/* 5: 600 800 2.5 */
{ 0x80CB2FFF, 0x001B0002, 0x0 },/* 6: 600 1000 4.5 */
{ 0x00FFFFFF, 0x00140006, 0x0 },/* 7: 800 800 0 */
{ 0x80E79FFF, 0x001B0002, 0x0 },/* 8: 800 1000 2 */
{ 0x80FFFFFF, 0x001B0002, 0x0 },/* 9: 1000 1000 0 */
};
/* Skylake H and S */
static const struct ddi_buf_trans skl_ddi_translations_dp[] = {
{ 0x00002016, 0x000000A0, 0x0 },
{ 0x00005012, 0x0000009B, 0x0 },
{ 0x00007011, 0x00000088, 0x0 },
{ 0x80009010, 0x000000C0, 0x1 },
{ 0x00002016, 0x0000009B, 0x0 },
{ 0x00005012, 0x00000088, 0x0 },
{ 0x80007011, 0x000000C0, 0x1 },
{ 0x00002016, 0x000000DF, 0x0 },
{ 0x80005012, 0x000000C0, 0x1 },
};
/* Skylake U */
static const struct ddi_buf_trans skl_u_ddi_translations_dp[] = {
{ 0x0000201B, 0x000000A2, 0x0 },
{ 0x00005012, 0x00000088, 0x0 },
{ 0x80007011, 0x000000CD, 0x0 },
{ 0x80009010, 0x000000C0, 0x1 },
{ 0x0000201B, 0x0000009D, 0x0 },
{ 0x80005012, 0x000000C0, 0x1 },
{ 0x80007011, 0x000000C0, 0x1 },
{ 0x00002016, 0x00000088, 0x0 },
{ 0x80005012, 0x000000C0, 0x1 },
};
/* Skylake Y */
static const struct ddi_buf_trans skl_y_ddi_translations_dp[] = {
{ 0x00000018, 0x000000A2, 0x0 },
{ 0x00005012, 0x00000088, 0x0 },
{ 0x80007011, 0x000000CD, 0x0 },
{ 0x80009010, 0x000000C0, 0x3 },
{ 0x00000018, 0x0000009D, 0x0 },
{ 0x80005012, 0x000000C0, 0x3 },
{ 0x80007011, 0x000000C0, 0x3 },
{ 0x00000018, 0x00000088, 0x0 },
{ 0x80005012, 0x000000C0, 0x3 },
};
/*
* Skylake H and S
* eDP 1.4 low vswing translation parameters
*/
static const struct ddi_buf_trans skl_ddi_translations_edp[] = {
{ 0x00000018, 0x000000A8, 0x0 },
{ 0x00004013, 0x000000A9, 0x0 },
{ 0x00007011, 0x000000A2, 0x0 },
{ 0x00009010, 0x0000009C, 0x0 },
{ 0x00000018, 0x000000A9, 0x0 },
{ 0x00006013, 0x000000A2, 0x0 },
{ 0x00007011, 0x000000A6, 0x0 },
{ 0x00000018, 0x000000AB, 0x0 },
{ 0x00007013, 0x0000009F, 0x0 },
{ 0x00000018, 0x000000DF, 0x0 },
};
/*
* Skylake U
* eDP 1.4 low vswing translation parameters
*/
static const struct ddi_buf_trans skl_u_ddi_translations_edp[] = {
{ 0x00000018, 0x000000A8, 0x0 },
{ 0x00004013, 0x000000A9, 0x0 },
{ 0x00007011, 0x000000A2, 0x0 },
{ 0x00009010, 0x0000009C, 0x0 },
{ 0x00000018, 0x000000A9, 0x0 },
{ 0x00006013, 0x000000A2, 0x0 },
{ 0x00007011, 0x000000A6, 0x0 },
{ 0x00002016, 0x000000AB, 0x0 },
{ 0x00005013, 0x0000009F, 0x0 },
{ 0x00000018, 0x000000DF, 0x0 },
};
/*
* Skylake Y
* eDP 1.4 low vswing translation parameters
*/
static const struct ddi_buf_trans skl_y_ddi_translations_edp[] = {
{ 0x00000018, 0x000000A8, 0x0 },
{ 0x00004013, 0x000000AB, 0x0 },
{ 0x00007011, 0x000000A4, 0x0 },
{ 0x00009010, 0x000000DF, 0x0 },
{ 0x00000018, 0x000000AA, 0x0 },
{ 0x00006013, 0x000000A4, 0x0 },
{ 0x00007011, 0x0000009D, 0x0 },
{ 0x00000018, 0x000000A0, 0x0 },
{ 0x00006012, 0x000000DF, 0x0 },
{ 0x00000018, 0x0000008A, 0x0 },
};
/* Skylake U, H and S */
static const struct ddi_buf_trans skl_ddi_translations_hdmi[] = {
{ 0x00000018, 0x000000AC, 0x0 },
{ 0x00005012, 0x0000009D, 0x0 },
{ 0x00007011, 0x00000088, 0x0 },
{ 0x00000018, 0x000000A1, 0x0 },
{ 0x00000018, 0x00000098, 0x0 },
{ 0x00004013, 0x00000088, 0x0 },
{ 0x80006012, 0x000000CD, 0x1 },
{ 0x00000018, 0x000000DF, 0x0 },
{ 0x80003015, 0x000000CD, 0x1 }, /* Default */
{ 0x80003015, 0x000000C0, 0x1 },
{ 0x80000018, 0x000000C0, 0x1 },
};
/* Skylake Y */
static const struct ddi_buf_trans skl_y_ddi_translations_hdmi[] = {
{ 0x00000018, 0x000000A1, 0x0 },
{ 0x00005012, 0x000000DF, 0x0 },
{ 0x80007011, 0x000000CB, 0x3 },
{ 0x00000018, 0x000000A4, 0x0 },
{ 0x00000018, 0x0000009D, 0x0 },
{ 0x00004013, 0x00000080, 0x0 },
{ 0x80006013, 0x000000C0, 0x3 },
{ 0x00000018, 0x0000008A, 0x0 },
{ 0x80003015, 0x000000C0, 0x3 }, /* Default */
{ 0x80003015, 0x000000C0, 0x3 },
{ 0x80000018, 0x000000C0, 0x3 },
};
struct bxt_ddi_buf_trans {
u32 margin; /* swing value */
u32 scale; /* scale value */
u32 enable; /* scale enable */
u32 deemphasis;
bool default_index; /* true if the entry represents default value */
};
static const struct bxt_ddi_buf_trans bxt_ddi_translations_dp[] = {
/* Idx NT mV diff db */
{ 52, 0x9A, 0, 128, true }, /* 0: 400 0 */
{ 78, 0x9A, 0, 85, false }, /* 1: 400 3.5 */
{ 104, 0x9A, 0, 64, false }, /* 2: 400 6 */
{ 154, 0x9A, 0, 43, false }, /* 3: 400 9.5 */
{ 77, 0x9A, 0, 128, false }, /* 4: 600 0 */
{ 116, 0x9A, 0, 85, false }, /* 5: 600 3.5 */
{ 154, 0x9A, 0, 64, false }, /* 6: 600 6 */
{ 102, 0x9A, 0, 128, false }, /* 7: 800 0 */
{ 154, 0x9A, 0, 85, false }, /* 8: 800 3.5 */
{ 154, 0x9A, 1, 128, false }, /* 9: 1200 0 */
};
static const struct bxt_ddi_buf_trans bxt_ddi_translations_edp[] = {
/* Idx NT mV diff db */
{ 26, 0, 0, 128, false }, /* 0: 200 0 */
{ 38, 0, 0, 112, false }, /* 1: 200 1.5 */
{ 48, 0, 0, 96, false }, /* 2: 200 4 */
{ 54, 0, 0, 69, false }, /* 3: 200 6 */
{ 32, 0, 0, 128, false }, /* 4: 250 0 */
{ 48, 0, 0, 104, false }, /* 5: 250 1.5 */
{ 54, 0, 0, 85, false }, /* 6: 250 4 */
{ 43, 0, 0, 128, false }, /* 7: 300 0 */
{ 54, 0, 0, 101, false }, /* 8: 300 1.5 */
{ 48, 0, 0, 128, false }, /* 9: 300 0 */
};
/* BSpec has 2 recommended values - entries 0 and 8.
* Using the entry with higher vswing.
*/
static const struct bxt_ddi_buf_trans bxt_ddi_translations_hdmi[] = {
/* Idx NT mV diff db */
{ 52, 0x9A, 0, 128, false }, /* 0: 400 0 */
{ 52, 0x9A, 0, 85, false }, /* 1: 400 3.5 */
{ 52, 0x9A, 0, 64, false }, /* 2: 400 6 */
{ 42, 0x9A, 0, 43, false }, /* 3: 400 9.5 */
{ 77, 0x9A, 0, 128, false }, /* 4: 600 0 */
{ 77, 0x9A, 0, 85, false }, /* 5: 600 3.5 */
{ 77, 0x9A, 0, 64, false }, /* 6: 600 6 */
{ 102, 0x9A, 0, 128, false }, /* 7: 800 0 */
{ 102, 0x9A, 0, 85, false }, /* 8: 800 3.5 */
{ 154, 0x9A, 1, 128, true }, /* 9: 1200 0 */
};
enum port intel_ddi_get_encoder_port(struct intel_encoder *encoder)
{
switch (encoder->type) {
case INTEL_OUTPUT_DP_MST:
return enc_to_mst(&encoder->base)->primary->port;
case INTEL_OUTPUT_DP:
case INTEL_OUTPUT_EDP:
case INTEL_OUTPUT_HDMI:
case INTEL_OUTPUT_UNKNOWN:
return enc_to_dig_port(&encoder->base)->port;
case INTEL_OUTPUT_ANALOG:
return PORT_E;
default:
MISSING_CASE(encoder->type);
return PORT_A;
}
}
static const struct ddi_buf_trans *
bdw_get_buf_trans_edp(struct drm_i915_private *dev_priv, int *n_entries)
{
if (dev_priv->vbt.edp.low_vswing) {
*n_entries = ARRAY_SIZE(bdw_ddi_translations_edp);
return bdw_ddi_translations_edp;
} else {
*n_entries = ARRAY_SIZE(bdw_ddi_translations_dp);
return bdw_ddi_translations_dp;
}
}
static const struct ddi_buf_trans *
skl_get_buf_trans_dp(struct drm_i915_private *dev_priv, int *n_entries)
{
if (IS_SKL_ULX(dev_priv) || IS_KBL_ULX(dev_priv)) {
*n_entries = ARRAY_SIZE(skl_y_ddi_translations_dp);
return skl_y_ddi_translations_dp;
} else if (IS_SKL_ULT(dev_priv) || IS_KBL_ULT(dev_priv)) {
*n_entries = ARRAY_SIZE(skl_u_ddi_translations_dp);
return skl_u_ddi_translations_dp;
} else {
*n_entries = ARRAY_SIZE(skl_ddi_translations_dp);
return skl_ddi_translations_dp;
}
}
static const struct ddi_buf_trans *
skl_get_buf_trans_edp(struct drm_i915_private *dev_priv, int *n_entries)
{
if (dev_priv->vbt.edp.low_vswing) {
if (IS_SKL_ULX(dev_priv) || IS_KBL_ULX(dev_priv)) {
*n_entries = ARRAY_SIZE(skl_y_ddi_translations_edp);
return skl_y_ddi_translations_edp;
} else if (IS_SKL_ULT(dev_priv) || IS_KBL_ULT(dev_priv)) {
*n_entries = ARRAY_SIZE(skl_u_ddi_translations_edp);
return skl_u_ddi_translations_edp;
} else {
*n_entries = ARRAY_SIZE(skl_ddi_translations_edp);
return skl_ddi_translations_edp;
}
}
return skl_get_buf_trans_dp(dev_priv, n_entries);
}
static const struct ddi_buf_trans *
skl_get_buf_trans_hdmi(struct drm_i915_private *dev_priv, int *n_entries)
{
if (IS_SKL_ULX(dev_priv) || IS_KBL_ULX(dev_priv)) {
*n_entries = ARRAY_SIZE(skl_y_ddi_translations_hdmi);
return skl_y_ddi_translations_hdmi;
} else {
*n_entries = ARRAY_SIZE(skl_ddi_translations_hdmi);
return skl_ddi_translations_hdmi;
}
}
static int intel_ddi_hdmi_level(struct drm_i915_private *dev_priv, enum port port)
{
int n_hdmi_entries;
int hdmi_level;
int hdmi_default_entry;
hdmi_level = dev_priv->vbt.ddi_port_info[port].hdmi_level_shift;
if (IS_BROXTON(dev_priv))
return hdmi_level;
if (IS_SKYLAKE(dev_priv) || IS_KABYLAKE(dev_priv)) {
skl_get_buf_trans_hdmi(dev_priv, &n_hdmi_entries);
hdmi_default_entry = 8;
} else if (IS_BROADWELL(dev_priv)) {
n_hdmi_entries = ARRAY_SIZE(bdw_ddi_translations_hdmi);
hdmi_default_entry = 7;
} else if (IS_HASWELL(dev_priv)) {
n_hdmi_entries = ARRAY_SIZE(hsw_ddi_translations_hdmi);
hdmi_default_entry = 6;
} else {
WARN(1, "ddi translation table missing\n");
n_hdmi_entries = ARRAY_SIZE(bdw_ddi_translations_hdmi);
hdmi_default_entry = 7;
}
/* Choose a good default if VBT is badly populated */
if (hdmi_level == HDMI_LEVEL_SHIFT_UNKNOWN ||
hdmi_level >= n_hdmi_entries)
hdmi_level = hdmi_default_entry;
return hdmi_level;
}
/*
* Starting with Haswell, DDI port buffers must be programmed with correct
* values in advance. This function programs the correct values for
* DP/eDP/FDI use cases.
*/
void intel_prepare_dp_ddi_buffers(struct intel_encoder *encoder)
{
struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
u32 iboost_bit = 0;
int i, n_dp_entries, n_edp_entries, size;
enum port port = intel_ddi_get_encoder_port(encoder);
const struct ddi_buf_trans *ddi_translations_fdi;
const struct ddi_buf_trans *ddi_translations_dp;
const struct ddi_buf_trans *ddi_translations_edp;
const struct ddi_buf_trans *ddi_translations;
if (IS_BROXTON(dev_priv))
return;
if (IS_SKYLAKE(dev_priv) || IS_KABYLAKE(dev_priv)) {
ddi_translations_fdi = NULL;
ddi_translations_dp =
skl_get_buf_trans_dp(dev_priv, &n_dp_entries);
ddi_translations_edp =
skl_get_buf_trans_edp(dev_priv, &n_edp_entries);
/* If we're boosting the current, set bit 31 of trans1 */
if (dev_priv->vbt.ddi_port_info[port].dp_boost_level)
iboost_bit = DDI_BUF_BALANCE_LEG_ENABLE;
if (WARN_ON(encoder->type == INTEL_OUTPUT_EDP &&
port != PORT_A && port != PORT_E &&
n_edp_entries > 9))
n_edp_entries = 9;
} else if (IS_BROADWELL(dev_priv)) {
ddi_translations_fdi = bdw_ddi_translations_fdi;
ddi_translations_dp = bdw_ddi_translations_dp;
ddi_translations_edp = bdw_get_buf_trans_edp(dev_priv, &n_edp_entries);
n_dp_entries = ARRAY_SIZE(bdw_ddi_translations_dp);
} else if (IS_HASWELL(dev_priv)) {
ddi_translations_fdi = hsw_ddi_translations_fdi;
ddi_translations_dp = hsw_ddi_translations_dp;
ddi_translations_edp = hsw_ddi_translations_dp;
n_dp_entries = n_edp_entries = ARRAY_SIZE(hsw_ddi_translations_dp);
} else {
WARN(1, "ddi translation table missing\n");
ddi_translations_edp = bdw_ddi_translations_dp;
ddi_translations_fdi = bdw_ddi_translations_fdi;
ddi_translations_dp = bdw_ddi_translations_dp;
n_edp_entries = ARRAY_SIZE(bdw_ddi_translations_edp);
n_dp_entries = ARRAY_SIZE(bdw_ddi_translations_dp);
}
switch (encoder->type) {
case INTEL_OUTPUT_EDP:
ddi_translations = ddi_translations_edp;
size = n_edp_entries;
break;
case INTEL_OUTPUT_DP:
ddi_translations = ddi_translations_dp;
size = n_dp_entries;
break;
case INTEL_OUTPUT_ANALOG:
ddi_translations = ddi_translations_fdi;
size = n_dp_entries;
break;
default:
BUG();
}
for (i = 0; i < size; i++) {
I915_WRITE(DDI_BUF_TRANS_LO(port, i),
ddi_translations[i].trans1 | iboost_bit);
I915_WRITE(DDI_BUF_TRANS_HI(port, i),
ddi_translations[i].trans2);
}
}
/*
* Starting with Haswell, DDI port buffers must be programmed with correct
* values in advance. This function programs the correct values for
* HDMI/DVI use cases.
*/
static void intel_prepare_hdmi_ddi_buffers(struct intel_encoder *encoder)
{
struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
u32 iboost_bit = 0;
int n_hdmi_entries, hdmi_level;
enum port port = intel_ddi_get_encoder_port(encoder);
const struct ddi_buf_trans *ddi_translations_hdmi;
if (IS_BROXTON(dev_priv))
return;
hdmi_level = intel_ddi_hdmi_level(dev_priv, port);
if (IS_SKYLAKE(dev_priv) || IS_KABYLAKE(dev_priv)) {
ddi_translations_hdmi = skl_get_buf_trans_hdmi(dev_priv, &n_hdmi_entries);
/* If we're boosting the current, set bit 31 of trans1 */
if (dev_priv->vbt.ddi_port_info[port].hdmi_boost_level)
iboost_bit = DDI_BUF_BALANCE_LEG_ENABLE;
} else if (IS_BROADWELL(dev_priv)) {
ddi_translations_hdmi = bdw_ddi_translations_hdmi;
n_hdmi_entries = ARRAY_SIZE(bdw_ddi_translations_hdmi);
} else if (IS_HASWELL(dev_priv)) {
ddi_translations_hdmi = hsw_ddi_translations_hdmi;
n_hdmi_entries = ARRAY_SIZE(hsw_ddi_translations_hdmi);
} else {
WARN(1, "ddi translation table missing\n");
ddi_translations_hdmi = bdw_ddi_translations_hdmi;
n_hdmi_entries = ARRAY_SIZE(bdw_ddi_translations_hdmi);
}
/* Entry 9 is for HDMI: */
I915_WRITE(DDI_BUF_TRANS_LO(port, 9),
ddi_translations_hdmi[hdmi_level].trans1 | iboost_bit);
I915_WRITE(DDI_BUF_TRANS_HI(port, 9),
ddi_translations_hdmi[hdmi_level].trans2);
}
static void intel_wait_ddi_buf_idle(struct drm_i915_private *dev_priv,
enum port port)
{
i915_reg_t reg = DDI_BUF_CTL(port);
int i;
for (i = 0; i < 16; i++) {
udelay(1);
if (I915_READ(reg) & DDI_BUF_IS_IDLE)
return;
}
DRM_ERROR("Timeout waiting for DDI BUF %c idle bit\n", port_name(port));
}
/* Starting with Haswell, different DDI ports can work in FDI mode for
* connection to the PCH-located connectors. For this, it is necessary to train
* both the DDI port and PCH receiver for the desired DDI buffer settings.
*
* The recommended port to work in FDI mode is DDI E, which we use here. Also,
* please note that when FDI mode is active on DDI E, it shares 2 lines with
* DDI A (which is used for eDP)
*/
void hsw_fdi_link_train(struct drm_crtc *crtc)
{
struct drm_device *dev = crtc->dev;
struct drm_i915_private *dev_priv = to_i915(dev);
struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
struct intel_encoder *encoder;
u32 temp, i, rx_ctl_val;
for_each_encoder_on_crtc(dev, crtc, encoder) {
WARN_ON(encoder->type != INTEL_OUTPUT_ANALOG);
intel_prepare_dp_ddi_buffers(encoder);
}
/* Set the FDI_RX_MISC pwrdn lanes and the 2 workarounds listed at the
* mode set "sequence for CRT port" document:
* - TP1 to TP2 time with the default value
* - FDI delay to 90h
*
* WaFDIAutoLinkSetTimingOverrride:hsw
*/
I915_WRITE(FDI_RX_MISC(PIPE_A), FDI_RX_PWRDN_LANE1_VAL(2) |
FDI_RX_PWRDN_LANE0_VAL(2) |
FDI_RX_TP1_TO_TP2_48 | FDI_RX_FDI_DELAY_90);
/* Enable the PCH Receiver FDI PLL */
rx_ctl_val = dev_priv->fdi_rx_config | FDI_RX_ENHANCE_FRAME_ENABLE |
FDI_RX_PLL_ENABLE |
FDI_DP_PORT_WIDTH(intel_crtc->config->fdi_lanes);
I915_WRITE(FDI_RX_CTL(PIPE_A), rx_ctl_val);
POSTING_READ(FDI_RX_CTL(PIPE_A));
udelay(220);
/* Switch from Rawclk to PCDclk */
rx_ctl_val |= FDI_PCDCLK;
I915_WRITE(FDI_RX_CTL(PIPE_A), rx_ctl_val);
/* Configure Port Clock Select */
I915_WRITE(PORT_CLK_SEL(PORT_E), intel_crtc->config->ddi_pll_sel);
WARN_ON(intel_crtc->config->ddi_pll_sel != PORT_CLK_SEL_SPLL);
/* Start the training iterating through available voltages and emphasis,
* testing each value twice. */
for (i = 0; i < ARRAY_SIZE(hsw_ddi_translations_fdi) * 2; i++) {
/* Configure DP_TP_CTL with auto-training */
I915_WRITE(DP_TP_CTL(PORT_E),
DP_TP_CTL_FDI_AUTOTRAIN |
DP_TP_CTL_ENHANCED_FRAME_ENABLE |
DP_TP_CTL_LINK_TRAIN_PAT1 |
DP_TP_CTL_ENABLE);
/* Configure and enable DDI_BUF_CTL for DDI E with next voltage.
* DDI E does not support port reversal, the functionality is
* achieved on the PCH side in FDI_RX_CTL, so no need to set the
* port reversal bit */
I915_WRITE(DDI_BUF_CTL(PORT_E),
DDI_BUF_CTL_ENABLE |
((intel_crtc->config->fdi_lanes - 1) << 1) |
DDI_BUF_TRANS_SELECT(i / 2));
POSTING_READ(DDI_BUF_CTL(PORT_E));
udelay(600);
/* Program PCH FDI Receiver TU */
I915_WRITE(FDI_RX_TUSIZE1(PIPE_A), TU_SIZE(64));
/* Enable PCH FDI Receiver with auto-training */
rx_ctl_val |= FDI_RX_ENABLE | FDI_LINK_TRAIN_AUTO;
I915_WRITE(FDI_RX_CTL(PIPE_A), rx_ctl_val);
POSTING_READ(FDI_RX_CTL(PIPE_A));
/* Wait for FDI receiver lane calibration */
udelay(30);
/* Unset FDI_RX_MISC pwrdn lanes */
temp = I915_READ(FDI_RX_MISC(PIPE_A));
temp &= ~(FDI_RX_PWRDN_LANE1_MASK | FDI_RX_PWRDN_LANE0_MASK);
I915_WRITE(FDI_RX_MISC(PIPE_A), temp);
POSTING_READ(FDI_RX_MISC(PIPE_A));
/* Wait for FDI auto training time */
udelay(5);
temp = I915_READ(DP_TP_STATUS(PORT_E));
if (temp & DP_TP_STATUS_AUTOTRAIN_DONE) {
DRM_DEBUG_KMS("FDI link training done on step %d\n", i);
break;
}
/*
* Leave things enabled even if we failed to train FDI.
* Results in less fireworks from the state checker.
*/
if (i == ARRAY_SIZE(hsw_ddi_translations_fdi) * 2 - 1) {
DRM_ERROR("FDI link training failed!\n");
break;
}
rx_ctl_val &= ~FDI_RX_ENABLE;
I915_WRITE(FDI_RX_CTL(PIPE_A), rx_ctl_val);
POSTING_READ(FDI_RX_CTL(PIPE_A));
temp = I915_READ(DDI_BUF_CTL(PORT_E));
temp &= ~DDI_BUF_CTL_ENABLE;
I915_WRITE(DDI_BUF_CTL(PORT_E), temp);
POSTING_READ(DDI_BUF_CTL(PORT_E));
/* Disable DP_TP_CTL and FDI_RX_CTL and retry */
temp = I915_READ(DP_TP_CTL(PORT_E));
temp &= ~(DP_TP_CTL_ENABLE | DP_TP_CTL_LINK_TRAIN_MASK);
temp |= DP_TP_CTL_LINK_TRAIN_PAT1;
I915_WRITE(DP_TP_CTL(PORT_E), temp);
POSTING_READ(DP_TP_CTL(PORT_E));
intel_wait_ddi_buf_idle(dev_priv, PORT_E);
/* Reset FDI_RX_MISC pwrdn lanes */
temp = I915_READ(FDI_RX_MISC(PIPE_A));
temp &= ~(FDI_RX_PWRDN_LANE1_MASK | FDI_RX_PWRDN_LANE0_MASK);
temp |= FDI_RX_PWRDN_LANE1_VAL(2) | FDI_RX_PWRDN_LANE0_VAL(2);
I915_WRITE(FDI_RX_MISC(PIPE_A), temp);
POSTING_READ(FDI_RX_MISC(PIPE_A));
}
/* Enable normal pixel sending for FDI */
I915_WRITE(DP_TP_CTL(PORT_E),
DP_TP_CTL_FDI_AUTOTRAIN |
DP_TP_CTL_LINK_TRAIN_NORMAL |
DP_TP_CTL_ENHANCED_FRAME_ENABLE |
DP_TP_CTL_ENABLE);
}
void intel_ddi_init_dp_buf_reg(struct intel_encoder *encoder)
{
struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
struct intel_digital_port *intel_dig_port =
enc_to_dig_port(&encoder->base);
intel_dp->DP = intel_dig_port->saved_port_bits |
DDI_BUF_CTL_ENABLE | DDI_BUF_TRANS_SELECT(0);
intel_dp->DP |= DDI_PORT_WIDTH(intel_dp->lane_count);
}
static struct intel_encoder *
intel_ddi_get_crtc_encoder(struct drm_crtc *crtc)
{
struct drm_device *dev = crtc->dev;
struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
struct intel_encoder *intel_encoder, *ret = NULL;
int num_encoders = 0;
for_each_encoder_on_crtc(dev, crtc, intel_encoder) {
ret = intel_encoder;
num_encoders++;
}
if (num_encoders != 1)
WARN(1, "%d encoders on crtc for pipe %c\n", num_encoders,
pipe_name(intel_crtc->pipe));
BUG_ON(ret == NULL);
return ret;
}
struct intel_encoder *
intel_ddi_get_crtc_new_encoder(struct intel_crtc_state *crtc_state)
{
struct intel_crtc *crtc = to_intel_crtc(crtc_state->base.crtc);
struct intel_encoder *ret = NULL;
struct drm_atomic_state *state;
struct drm_connector *connector;
struct drm_connector_state *connector_state;
int num_encoders = 0;
int i;
state = crtc_state->base.state;
for_each_connector_in_state(state, connector, connector_state, i) {
if (connector_state->crtc != crtc_state->base.crtc)
continue;
ret = to_intel_encoder(connector_state->best_encoder);
num_encoders++;
}
WARN(num_encoders != 1, "%d encoders on crtc for pipe %c\n", num_encoders,
pipe_name(crtc->pipe));
BUG_ON(ret == NULL);
return ret;
}
#define LC_FREQ 2700
static int hsw_ddi_calc_wrpll_link(struct drm_i915_private *dev_priv,
i915_reg_t reg)
{
int refclk = LC_FREQ;
int n, p, r;
u32 wrpll;
wrpll = I915_READ(reg);
switch (wrpll & WRPLL_PLL_REF_MASK) {
case WRPLL_PLL_SSC:
case WRPLL_PLL_NON_SSC:
/*
* We could calculate spread here, but our checking
* code only cares about 5% accuracy, and spread is a max of
* 0.5% downspread.
*/
refclk = 135;
break;
case WRPLL_PLL_LCPLL:
refclk = LC_FREQ;
break;
default:
WARN(1, "bad wrpll refclk\n");
return 0;
}
r = wrpll & WRPLL_DIVIDER_REF_MASK;
p = (wrpll & WRPLL_DIVIDER_POST_MASK) >> WRPLL_DIVIDER_POST_SHIFT;
n = (wrpll & WRPLL_DIVIDER_FB_MASK) >> WRPLL_DIVIDER_FB_SHIFT;
/* Convert to KHz, p & r have a fixed point portion */
return (refclk * n * 100) / (p * r);
}
static int skl_calc_wrpll_link(struct drm_i915_private *dev_priv,
uint32_t dpll)
{
i915_reg_t cfgcr1_reg, cfgcr2_reg;
uint32_t cfgcr1_val, cfgcr2_val;
uint32_t p0, p1, p2, dco_freq;
cfgcr1_reg = DPLL_CFGCR1(dpll);
cfgcr2_reg = DPLL_CFGCR2(dpll);
cfgcr1_val = I915_READ(cfgcr1_reg);
cfgcr2_val = I915_READ(cfgcr2_reg);
p0 = cfgcr2_val & DPLL_CFGCR2_PDIV_MASK;
p2 = cfgcr2_val & DPLL_CFGCR2_KDIV_MASK;
if (cfgcr2_val & DPLL_CFGCR2_QDIV_MODE(1))
p1 = (cfgcr2_val & DPLL_CFGCR2_QDIV_RATIO_MASK) >> 8;
else
p1 = 1;
switch (p0) {
case DPLL_CFGCR2_PDIV_1:
p0 = 1;
break;
case DPLL_CFGCR2_PDIV_2:
p0 = 2;
break;
case DPLL_CFGCR2_PDIV_3:
p0 = 3;
break;
case DPLL_CFGCR2_PDIV_7:
p0 = 7;
break;
}
switch (p2) {
case DPLL_CFGCR2_KDIV_5:
p2 = 5;
break;
case DPLL_CFGCR2_KDIV_2:
p2 = 2;
break;
case DPLL_CFGCR2_KDIV_3:
p2 = 3;
break;
case DPLL_CFGCR2_KDIV_1:
p2 = 1;
break;
}
dco_freq = (cfgcr1_val & DPLL_CFGCR1_DCO_INTEGER_MASK) * 24 * 1000;
dco_freq += (((cfgcr1_val & DPLL_CFGCR1_DCO_FRACTION_MASK) >> 9) * 24 *
1000) / 0x8000;
return dco_freq / (p0 * p1 * p2 * 5);
}
static void ddi_dotclock_get(struct intel_crtc_state *pipe_config)
{
int dotclock;
if (pipe_config->has_pch_encoder)
dotclock = intel_dotclock_calculate(pipe_config->port_clock,
&pipe_config->fdi_m_n);
else if (intel_crtc_has_dp_encoder(pipe_config))
dotclock = intel_dotclock_calculate(pipe_config->port_clock,
&pipe_config->dp_m_n);
else if (pipe_config->has_hdmi_sink && pipe_config->pipe_bpp == 36)
dotclock = pipe_config->port_clock * 2 / 3;
else
dotclock = pipe_config->port_clock;
if (pipe_config->pixel_multiplier)
dotclock /= pipe_config->pixel_multiplier;
pipe_config->base.adjusted_mode.crtc_clock = dotclock;
}
static void skl_ddi_clock_get(struct intel_encoder *encoder,
struct intel_crtc_state *pipe_config)
{
struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
int link_clock = 0;
uint32_t dpll_ctl1, dpll;
dpll = pipe_config->ddi_pll_sel;
dpll_ctl1 = I915_READ(DPLL_CTRL1);
if (dpll_ctl1 & DPLL_CTRL1_HDMI_MODE(dpll)) {
link_clock = skl_calc_wrpll_link(dev_priv, dpll);
} else {
link_clock = dpll_ctl1 & DPLL_CTRL1_LINK_RATE_MASK(dpll);
link_clock >>= DPLL_CTRL1_LINK_RATE_SHIFT(dpll);
switch (link_clock) {
case DPLL_CTRL1_LINK_RATE_810:
link_clock = 81000;
break;
case DPLL_CTRL1_LINK_RATE_1080:
link_clock = 108000;
break;
case DPLL_CTRL1_LINK_RATE_1350:
link_clock = 135000;
break;
case DPLL_CTRL1_LINK_RATE_1620:
link_clock = 162000;
break;
case DPLL_CTRL1_LINK_RATE_2160:
link_clock = 216000;
break;
case DPLL_CTRL1_LINK_RATE_2700:
link_clock = 270000;
break;
default:
WARN(1, "Unsupported link rate\n");
break;
}
link_clock *= 2;
}
pipe_config->port_clock = link_clock;
ddi_dotclock_get(pipe_config);
}
static void hsw_ddi_clock_get(struct intel_encoder *encoder,
struct intel_crtc_state *pipe_config)
{
struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
int link_clock = 0;
u32 val, pll;
val = pipe_config->ddi_pll_sel;
switch (val & PORT_CLK_SEL_MASK) {
case PORT_CLK_SEL_LCPLL_810:
link_clock = 81000;
break;
case PORT_CLK_SEL_LCPLL_1350:
link_clock = 135000;
break;
case PORT_CLK_SEL_LCPLL_2700:
link_clock = 270000;
break;
case PORT_CLK_SEL_WRPLL1:
link_clock = hsw_ddi_calc_wrpll_link(dev_priv, WRPLL_CTL(0));
break;
case PORT_CLK_SEL_WRPLL2:
link_clock = hsw_ddi_calc_wrpll_link(dev_priv, WRPLL_CTL(1));
break;
case PORT_CLK_SEL_SPLL:
pll = I915_READ(SPLL_CTL) & SPLL_PLL_FREQ_MASK;
if (pll == SPLL_PLL_FREQ_810MHz)
link_clock = 81000;
else if (pll == SPLL_PLL_FREQ_1350MHz)
link_clock = 135000;
else if (pll == SPLL_PLL_FREQ_2700MHz)
link_clock = 270000;
else {
WARN(1, "bad spll freq\n");
return;
}
break;
default:
WARN(1, "bad port clock sel\n");
return;
}
pipe_config->port_clock = link_clock * 2;
ddi_dotclock_get(pipe_config);
}
static int bxt_calc_pll_link(struct drm_i915_private *dev_priv,
enum intel_dpll_id dpll)
{
struct intel_shared_dpll *pll;
struct intel_dpll_hw_state *state;
struct dpll clock;
/* For DDI ports we always use a shared PLL. */
if (WARN_ON(dpll == DPLL_ID_PRIVATE))
return 0;
pll = &dev_priv->shared_dplls[dpll];
state = &pll->config.hw_state;
clock.m1 = 2;
clock.m2 = (state->pll0 & PORT_PLL_M2_MASK) << 22;
if (state->pll3 & PORT_PLL_M2_FRAC_ENABLE)
clock.m2 |= state->pll2 & PORT_PLL_M2_FRAC_MASK;
clock.n = (state->pll1 & PORT_PLL_N_MASK) >> PORT_PLL_N_SHIFT;
clock.p1 = (state->ebb0 & PORT_PLL_P1_MASK) >> PORT_PLL_P1_SHIFT;
clock.p2 = (state->ebb0 & PORT_PLL_P2_MASK) >> PORT_PLL_P2_SHIFT;
return chv_calc_dpll_params(100000, &clock);
}
static void bxt_ddi_clock_get(struct intel_encoder *encoder,
struct intel_crtc_state *pipe_config)
{
struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
enum port port = intel_ddi_get_encoder_port(encoder);
uint32_t dpll = port;
pipe_config->port_clock = bxt_calc_pll_link(dev_priv, dpll);
ddi_dotclock_get(pipe_config);
}
void intel_ddi_clock_get(struct intel_encoder *encoder,
struct intel_crtc_state *pipe_config)
{
struct drm_device *dev = encoder->base.dev;
if (INTEL_INFO(dev)->gen <= 8)
hsw_ddi_clock_get(encoder, pipe_config);
else if (IS_SKYLAKE(dev) || IS_KABYLAKE(dev))
skl_ddi_clock_get(encoder, pipe_config);
else if (IS_BROXTON(dev))
bxt_ddi_clock_get(encoder, pipe_config);
}
static bool
hsw_ddi_pll_select(struct intel_crtc *intel_crtc,
struct intel_crtc_state *crtc_state,
struct intel_encoder *intel_encoder)
{
struct intel_shared_dpll *pll;
pll = intel_get_shared_dpll(intel_crtc, crtc_state,
intel_encoder);
if (!pll)
DRM_DEBUG_DRIVER("failed to find PLL for pipe %c\n",
pipe_name(intel_crtc->pipe));
return pll;
}
static bool
skl_ddi_pll_select(struct intel_crtc *intel_crtc,
struct intel_crtc_state *crtc_state,
struct intel_encoder *intel_encoder)
{
struct intel_shared_dpll *pll;
pll = intel_get_shared_dpll(intel_crtc, crtc_state, intel_encoder);
if (pll == NULL) {
DRM_DEBUG_DRIVER("failed to find PLL for pipe %c\n",
pipe_name(intel_crtc->pipe));
return false;
}
return true;
}
static bool
bxt_ddi_pll_select(struct intel_crtc *intel_crtc,
struct intel_crtc_state *crtc_state,
struct intel_encoder *intel_encoder)
{
return !!intel_get_shared_dpll(intel_crtc, crtc_state, intel_encoder);
}
/*
* Tries to find a *shared* PLL for the CRTC and store it in
* intel_crtc->ddi_pll_sel.
*
* For private DPLLs, compute_config() should do the selection for us. This
* function should be folded into compute_config() eventually.
*/
bool intel_ddi_pll_select(struct intel_crtc *intel_crtc,
struct intel_crtc_state *crtc_state)
{
struct drm_device *dev = intel_crtc->base.dev;
struct intel_encoder *intel_encoder =
intel_ddi_get_crtc_new_encoder(crtc_state);
if (IS_SKYLAKE(dev) || IS_KABYLAKE(dev))
return skl_ddi_pll_select(intel_crtc, crtc_state,
intel_encoder);
else if (IS_BROXTON(dev))
return bxt_ddi_pll_select(intel_crtc, crtc_state,
intel_encoder);
else
return hsw_ddi_pll_select(intel_crtc, crtc_state,
intel_encoder);
}
void intel_ddi_set_pipe_settings(struct drm_crtc *crtc)
{
struct drm_i915_private *dev_priv = to_i915(crtc->dev);
struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
struct intel_encoder *intel_encoder = intel_ddi_get_crtc_encoder(crtc);
enum transcoder cpu_transcoder = intel_crtc->config->cpu_transcoder;
int type = intel_encoder->type;
uint32_t temp;
if (type == INTEL_OUTPUT_DP || type == INTEL_OUTPUT_EDP || type == INTEL_OUTPUT_DP_MST) {
WARN_ON(transcoder_is_dsi(cpu_transcoder));
temp = TRANS_MSA_SYNC_CLK;
switch (intel_crtc->config->pipe_bpp) {
case 18:
temp |= TRANS_MSA_6_BPC;
break;
case 24:
temp |= TRANS_MSA_8_BPC;
break;
case 30:
temp |= TRANS_MSA_10_BPC;
break;
case 36:
temp |= TRANS_MSA_12_BPC;
break;
default:
BUG();
}
I915_WRITE(TRANS_MSA_MISC(cpu_transcoder), temp);
}
}
void intel_ddi_set_vc_payload_alloc(struct drm_crtc *crtc, bool state)
{
struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
struct drm_device *dev = crtc->dev;
struct drm_i915_private *dev_priv = to_i915(dev);
enum transcoder cpu_transcoder = intel_crtc->config->cpu_transcoder;
uint32_t temp;
temp = I915_READ(TRANS_DDI_FUNC_CTL(cpu_transcoder));
if (state == true)
temp |= TRANS_DDI_DP_VC_PAYLOAD_ALLOC;
else
temp &= ~TRANS_DDI_DP_VC_PAYLOAD_ALLOC;
I915_WRITE(TRANS_DDI_FUNC_CTL(cpu_transcoder), temp);
}
void intel_ddi_enable_transcoder_func(struct drm_crtc *crtc)
{
struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
struct intel_encoder *intel_encoder = intel_ddi_get_crtc_encoder(crtc);
struct drm_encoder *encoder = &intel_encoder->base;
struct drm_device *dev = crtc->dev;
struct drm_i915_private *dev_priv = to_i915(dev);
enum pipe pipe = intel_crtc->pipe;
enum transcoder cpu_transcoder = intel_crtc->config->cpu_transcoder;
enum port port = intel_ddi_get_encoder_port(intel_encoder);
int type = intel_encoder->type;
uint32_t temp;
/* Enable TRANS_DDI_FUNC_CTL for the pipe to work in HDMI mode */
temp = TRANS_DDI_FUNC_ENABLE;
temp |= TRANS_DDI_SELECT_PORT(port);
switch (intel_crtc->config->pipe_bpp) {
case 18:
temp |= TRANS_DDI_BPC_6;
break;
case 24:
temp |= TRANS_DDI_BPC_8;
break;
case 30:
temp |= TRANS_DDI_BPC_10;
break;
case 36:
temp |= TRANS_DDI_BPC_12;
break;
default:
BUG();
}
if (intel_crtc->config->base.adjusted_mode.flags & DRM_MODE_FLAG_PVSYNC)
temp |= TRANS_DDI_PVSYNC;
if (intel_crtc->config->base.adjusted_mode.flags & DRM_MODE_FLAG_PHSYNC)
temp |= TRANS_DDI_PHSYNC;
if (cpu_transcoder == TRANSCODER_EDP) {
switch (pipe) {
case PIPE_A:
/* On Haswell, can only use the always-on power well for
* eDP when not using the panel fitter, and when not
* using motion blur mitigation (which we don't
* support). */
if (IS_HASWELL(dev) &&
(intel_crtc->config->pch_pfit.enabled ||
intel_crtc->config->pch_pfit.force_thru))
temp |= TRANS_DDI_EDP_INPUT_A_ONOFF;
else
temp |= TRANS_DDI_EDP_INPUT_A_ON;
break;
case PIPE_B:
temp |= TRANS_DDI_EDP_INPUT_B_ONOFF;
break;
case PIPE_C:
temp |= TRANS_DDI_EDP_INPUT_C_ONOFF;
break;
default:
BUG();
break;
}
}
if (type == INTEL_OUTPUT_HDMI) {
if (intel_crtc->config->has_hdmi_sink)
temp |= TRANS_DDI_MODE_SELECT_HDMI;
else
temp |= TRANS_DDI_MODE_SELECT_DVI;
} else if (type == INTEL_OUTPUT_ANALOG) {
temp |= TRANS_DDI_MODE_SELECT_FDI;
temp |= (intel_crtc->config->fdi_lanes - 1) << 1;
} else if (type == INTEL_OUTPUT_DP ||
type == INTEL_OUTPUT_EDP) {
struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
if (intel_dp->is_mst) {
temp |= TRANS_DDI_MODE_SELECT_DP_MST;
} else
temp |= TRANS_DDI_MODE_SELECT_DP_SST;
temp |= DDI_PORT_WIDTH(intel_crtc->config->lane_count);
} else if (type == INTEL_OUTPUT_DP_MST) {
struct intel_dp *intel_dp = &enc_to_mst(encoder)->primary->dp;
if (intel_dp->is_mst) {
temp |= TRANS_DDI_MODE_SELECT_DP_MST;
} else
temp |= TRANS_DDI_MODE_SELECT_DP_SST;
temp |= DDI_PORT_WIDTH(intel_crtc->config->lane_count);
} else {
WARN(1, "Invalid encoder type %d for pipe %c\n",
intel_encoder->type, pipe_name(pipe));
}
I915_WRITE(TRANS_DDI_FUNC_CTL(cpu_transcoder), temp);
}
void intel_ddi_disable_transcoder_func(struct drm_i915_private *dev_priv,
enum transcoder cpu_transcoder)
{
i915_reg_t reg = TRANS_DDI_FUNC_CTL(cpu_transcoder);
uint32_t val = I915_READ(reg);
val &= ~(TRANS_DDI_FUNC_ENABLE | TRANS_DDI_PORT_MASK | TRANS_DDI_DP_VC_PAYLOAD_ALLOC);
val |= TRANS_DDI_PORT_NONE;
I915_WRITE(reg, val);
}
bool intel_ddi_connector_get_hw_state(struct intel_connector *intel_connector)
{
struct drm_device *dev = intel_connector->base.dev;
struct drm_i915_private *dev_priv = to_i915(dev);
struct intel_encoder *intel_encoder = intel_connector->encoder;
int type = intel_connector->base.connector_type;
enum port port = intel_ddi_get_encoder_port(intel_encoder);
enum pipe pipe = 0;
enum transcoder cpu_transcoder;
enum intel_display_power_domain power_domain;
uint32_t tmp;
bool ret;
power_domain = intel_display_port_power_domain(intel_encoder);
if (!intel_display_power_get_if_enabled(dev_priv, power_domain))
return false;
if (!intel_encoder->get_hw_state(intel_encoder, &pipe)) {
ret = false;
goto out;
}
if (port == PORT_A)
cpu_transcoder = TRANSCODER_EDP;
else
cpu_transcoder = (enum transcoder) pipe;
tmp = I915_READ(TRANS_DDI_FUNC_CTL(cpu_transcoder));
switch (tmp & TRANS_DDI_MODE_SELECT_MASK) {
case TRANS_DDI_MODE_SELECT_HDMI:
case TRANS_DDI_MODE_SELECT_DVI:
ret = type == DRM_MODE_CONNECTOR_HDMIA;
break;
case TRANS_DDI_MODE_SELECT_DP_SST:
ret = type == DRM_MODE_CONNECTOR_eDP ||
type == DRM_MODE_CONNECTOR_DisplayPort;
break;
case TRANS_DDI_MODE_SELECT_DP_MST:
/* if the transcoder is in MST state then
* connector isn't connected */
ret = false;
break;
case TRANS_DDI_MODE_SELECT_FDI:
ret = type == DRM_MODE_CONNECTOR_VGA;
break;
default:
ret = false;
break;
}
out:
intel_display_power_put(dev_priv, power_domain);
return ret;
}
bool intel_ddi_get_hw_state(struct intel_encoder *encoder,
enum pipe *pipe)
{
struct drm_device *dev = encoder->base.dev;
struct drm_i915_private *dev_priv = to_i915(dev);
enum port port = intel_ddi_get_encoder_port(encoder);
enum intel_display_power_domain power_domain;
u32 tmp;
int i;
bool ret;
power_domain = intel_display_port_power_domain(encoder);
if (!intel_display_power_get_if_enabled(dev_priv, power_domain))
return false;
ret = false;
tmp = I915_READ(DDI_BUF_CTL(port));
if (!(tmp & DDI_BUF_CTL_ENABLE))
goto out;
if (port == PORT_A) {
tmp = I915_READ(TRANS_DDI_FUNC_CTL(TRANSCODER_EDP));
switch (tmp & TRANS_DDI_EDP_INPUT_MASK) {
case TRANS_DDI_EDP_INPUT_A_ON:
case TRANS_DDI_EDP_INPUT_A_ONOFF:
*pipe = PIPE_A;
break;
case TRANS_DDI_EDP_INPUT_B_ONOFF:
*pipe = PIPE_B;
break;
case TRANS_DDI_EDP_INPUT_C_ONOFF:
*pipe = PIPE_C;
break;
}
ret = true;
goto out;
}
for (i = TRANSCODER_A; i <= TRANSCODER_C; i++) {
tmp = I915_READ(TRANS_DDI_FUNC_CTL(i));
if ((tmp & TRANS_DDI_PORT_MASK) == TRANS_DDI_SELECT_PORT(port)) {
if ((tmp & TRANS_DDI_MODE_SELECT_MASK) ==
TRANS_DDI_MODE_SELECT_DP_MST)
goto out;
*pipe = i;
ret = true;
goto out;
}
}
DRM_DEBUG_KMS("No pipe for ddi port %c found\n", port_name(port));
out:
if (ret && IS_BROXTON(dev_priv)) {
tmp = I915_READ(BXT_PHY_CTL(port));
if ((tmp & (BXT_PHY_LANE_POWERDOWN_ACK |
BXT_PHY_LANE_ENABLED)) != BXT_PHY_LANE_ENABLED)
DRM_ERROR("Port %c enabled but PHY powered down? "
"(PHY_CTL %08x)\n", port_name(port), tmp);
}
intel_display_power_put(dev_priv, power_domain);
return ret;
}
void intel_ddi_enable_pipe_clock(struct intel_crtc *intel_crtc)
{
struct drm_crtc *crtc = &intel_crtc->base;
struct drm_device *dev = crtc->dev;
struct drm_i915_private *dev_priv = to_i915(dev);
struct intel_encoder *intel_encoder = intel_ddi_get_crtc_encoder(crtc);
enum port port = intel_ddi_get_encoder_port(intel_encoder);
enum transcoder cpu_transcoder = intel_crtc->config->cpu_transcoder;
if (cpu_transcoder != TRANSCODER_EDP)
I915_WRITE(TRANS_CLK_SEL(cpu_transcoder),
TRANS_CLK_SEL_PORT(port));
}
void intel_ddi_disable_pipe_clock(struct intel_crtc *intel_crtc)
{
struct drm_i915_private *dev_priv = to_i915(intel_crtc->base.dev);
enum transcoder cpu_transcoder = intel_crtc->config->cpu_transcoder;
if (cpu_transcoder != TRANSCODER_EDP)
I915_WRITE(TRANS_CLK_SEL(cpu_transcoder),
TRANS_CLK_SEL_DISABLED);
}
static void _skl_ddi_set_iboost(struct drm_i915_private *dev_priv,
enum port port, uint8_t iboost)
{
u32 tmp;
tmp = I915_READ(DISPIO_CR_TX_BMU_CR0);
tmp &= ~(BALANCE_LEG_MASK(port) | BALANCE_LEG_DISABLE(port));
if (iboost)
tmp |= iboost << BALANCE_LEG_SHIFT(port);
else
tmp |= BALANCE_LEG_DISABLE(port);
I915_WRITE(DISPIO_CR_TX_BMU_CR0, tmp);
}
static void skl_ddi_set_iboost(struct intel_encoder *encoder, u32 level)
{
struct intel_digital_port *intel_dig_port = enc_to_dig_port(&encoder->base);
struct drm_i915_private *dev_priv = to_i915(intel_dig_port->base.base.dev);
enum port port = intel_dig_port->port;
int type = encoder->type;
const struct ddi_buf_trans *ddi_translations;
uint8_t iboost;
uint8_t dp_iboost, hdmi_iboost;
int n_entries;
/* VBT may override standard boost values */
dp_iboost = dev_priv->vbt.ddi_port_info[port].dp_boost_level;
hdmi_iboost = dev_priv->vbt.ddi_port_info[port].hdmi_boost_level;
if (type == INTEL_OUTPUT_DP) {
if (dp_iboost) {
iboost = dp_iboost;
} else {
ddi_translations = skl_get_buf_trans_dp(dev_priv, &n_entries);
iboost = ddi_translations[level].i_boost;
}
} else if (type == INTEL_OUTPUT_EDP) {
if (dp_iboost) {
iboost = dp_iboost;
} else {
ddi_translations = skl_get_buf_trans_edp(dev_priv, &n_entries);
if (WARN_ON(port != PORT_A &&
port != PORT_E && n_entries > 9))
n_entries = 9;
iboost = ddi_translations[level].i_boost;
}
} else if (type == INTEL_OUTPUT_HDMI) {
if (hdmi_iboost) {
iboost = hdmi_iboost;
} else {
ddi_translations = skl_get_buf_trans_hdmi(dev_priv, &n_entries);
iboost = ddi_translations[level].i_boost;
}
} else {
return;
}
/* Make sure that the requested I_boost is valid */
if (iboost && iboost != 0x1 && iboost != 0x3 && iboost != 0x7) {
DRM_ERROR("Invalid I_boost value %u\n", iboost);
return;
}
_skl_ddi_set_iboost(dev_priv, port, iboost);
if (port == PORT_A && intel_dig_port->max_lanes == 4)
_skl_ddi_set_iboost(dev_priv, PORT_E, iboost);
}
static void bxt_ddi_vswing_sequence(struct drm_i915_private *dev_priv,
u32 level, enum port port, int type)
{
const struct bxt_ddi_buf_trans *ddi_translations;
u32 n_entries, i;
uint32_t val;
if (type == INTEL_OUTPUT_EDP && dev_priv->vbt.edp.low_vswing) {
n_entries = ARRAY_SIZE(bxt_ddi_translations_edp);
ddi_translations = bxt_ddi_translations_edp;
} else if (type == INTEL_OUTPUT_DP
|| type == INTEL_OUTPUT_EDP) {
n_entries = ARRAY_SIZE(bxt_ddi_translations_dp);
ddi_translations = bxt_ddi_translations_dp;
} else if (type == INTEL_OUTPUT_HDMI) {
n_entries = ARRAY_SIZE(bxt_ddi_translations_hdmi);
ddi_translations = bxt_ddi_translations_hdmi;
} else {
DRM_DEBUG_KMS("Vswing programming not done for encoder %d\n",
type);
return;
}
/* Check if default value has to be used */
if (level >= n_entries ||
(type == INTEL_OUTPUT_HDMI && level == HDMI_LEVEL_SHIFT_UNKNOWN)) {
for (i = 0; i < n_entries; i++) {
if (ddi_translations[i].default_index) {
level = i;
break;
}
}
}
/*
* While we write to the group register to program all lanes at once we
* can read only lane registers and we pick lanes 0/1 for that.
*/
val = I915_READ(BXT_PORT_PCS_DW10_LN01(port));
val &= ~(TX2_SWING_CALC_INIT | TX1_SWING_CALC_INIT);
I915_WRITE(BXT_PORT_PCS_DW10_GRP(port), val);
val = I915_READ(BXT_PORT_TX_DW2_LN0(port));
val &= ~(MARGIN_000 | UNIQ_TRANS_SCALE);
val |= ddi_translations[level].margin << MARGIN_000_SHIFT |
ddi_translations[level].scale << UNIQ_TRANS_SCALE_SHIFT;
I915_WRITE(BXT_PORT_TX_DW2_GRP(port), val);
val = I915_READ(BXT_PORT_TX_DW3_LN0(port));
val &= ~SCALE_DCOMP_METHOD;
if (ddi_translations[level].enable)
val |= SCALE_DCOMP_METHOD;
if ((val & UNIQUE_TRANGE_EN_METHOD) && !(val & SCALE_DCOMP_METHOD))
DRM_ERROR("Disabled scaling while ouniqetrangenmethod was set");
I915_WRITE(BXT_PORT_TX_DW3_GRP(port), val);
val = I915_READ(BXT_PORT_TX_DW4_LN0(port));
val &= ~DE_EMPHASIS;
val |= ddi_translations[level].deemphasis << DEEMPH_SHIFT;
I915_WRITE(BXT_PORT_TX_DW4_GRP(port), val);
val = I915_READ(BXT_PORT_PCS_DW10_LN01(port));
val |= TX2_SWING_CALC_INIT | TX1_SWING_CALC_INIT;
I915_WRITE(BXT_PORT_PCS_DW10_GRP(port), val);
}
static uint32_t translate_signal_level(int signal_levels)
{
uint32_t level;
switch (signal_levels) {
default:
DRM_DEBUG_KMS("Unsupported voltage swing/pre-emphasis level: 0x%x\n",
signal_levels);
case DP_TRAIN_VOLTAGE_SWING_LEVEL_0 | DP_TRAIN_PRE_EMPH_LEVEL_0:
level = 0;
break;
case DP_TRAIN_VOLTAGE_SWING_LEVEL_0 | DP_TRAIN_PRE_EMPH_LEVEL_1:
level = 1;
break;
case DP_TRAIN_VOLTAGE_SWING_LEVEL_0 | DP_TRAIN_PRE_EMPH_LEVEL_2:
level = 2;
break;
case DP_TRAIN_VOLTAGE_SWING_LEVEL_0 | DP_TRAIN_PRE_EMPH_LEVEL_3:
level = 3;
break;
case DP_TRAIN_VOLTAGE_SWING_LEVEL_1 | DP_TRAIN_PRE_EMPH_LEVEL_0:
level = 4;
break;
case DP_TRAIN_VOLTAGE_SWING_LEVEL_1 | DP_TRAIN_PRE_EMPH_LEVEL_1:
level = 5;
break;
case DP_TRAIN_VOLTAGE_SWING_LEVEL_1 | DP_TRAIN_PRE_EMPH_LEVEL_2:
level = 6;
break;
case DP_TRAIN_VOLTAGE_SWING_LEVEL_2 | DP_TRAIN_PRE_EMPH_LEVEL_0:
level = 7;
break;
case DP_TRAIN_VOLTAGE_SWING_LEVEL_2 | DP_TRAIN_PRE_EMPH_LEVEL_1:
level = 8;
break;
case DP_TRAIN_VOLTAGE_SWING_LEVEL_3 | DP_TRAIN_PRE_EMPH_LEVEL_0:
level = 9;
break;
}
return level;
}
uint32_t ddi_signal_levels(struct intel_dp *intel_dp)
{
struct intel_digital_port *dport = dp_to_dig_port(intel_dp);
struct drm_i915_private *dev_priv = to_i915(dport->base.base.dev);
struct intel_encoder *encoder = &dport->base;
uint8_t train_set = intel_dp->train_set[0];
int signal_levels = train_set & (DP_TRAIN_VOLTAGE_SWING_MASK |
DP_TRAIN_PRE_EMPHASIS_MASK);
enum port port = dport->port;
uint32_t level;
level = translate_signal_level(signal_levels);
if (IS_SKYLAKE(dev_priv) || IS_KABYLAKE(dev_priv))
skl_ddi_set_iboost(encoder, level);
else if (IS_BROXTON(dev_priv))
bxt_ddi_vswing_sequence(dev_priv, level, port, encoder->type);
return DDI_BUF_TRANS_SELECT(level);
}
void intel_ddi_clk_select(struct intel_encoder *encoder,
const struct intel_crtc_state *pipe_config)
{
struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
enum port port = intel_ddi_get_encoder_port(encoder);
if (IS_SKYLAKE(dev_priv) || IS_KABYLAKE(dev_priv)) {
uint32_t dpll = pipe_config->ddi_pll_sel;
uint32_t val;
/* DDI -> PLL mapping */
val = I915_READ(DPLL_CTRL2);
val &= ~(DPLL_CTRL2_DDI_CLK_OFF(port) |
DPLL_CTRL2_DDI_CLK_SEL_MASK(port));
val |= (DPLL_CTRL2_DDI_CLK_SEL(dpll, port) |
DPLL_CTRL2_DDI_SEL_OVERRIDE(port));
I915_WRITE(DPLL_CTRL2, val);
} else if (INTEL_INFO(dev_priv)->gen < 9) {
WARN_ON(pipe_config->ddi_pll_sel == PORT_CLK_SEL_NONE);
I915_WRITE(PORT_CLK_SEL(port), pipe_config->ddi_pll_sel);
}
}
static void intel_ddi_pre_enable(struct intel_encoder *intel_encoder)
{
struct drm_encoder *encoder = &intel_encoder->base;
struct drm_i915_private *dev_priv = to_i915(encoder->dev);
struct intel_crtc *crtc = to_intel_crtc(encoder->crtc);
enum port port = intel_ddi_get_encoder_port(intel_encoder);
int type = intel_encoder->type;
if (type == INTEL_OUTPUT_HDMI) {
struct intel_hdmi *intel_hdmi = enc_to_intel_hdmi(encoder);
intel_dp_dual_mode_set_tmds_output(intel_hdmi, true);
}
if (type == INTEL_OUTPUT_EDP) {
struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
intel_edp_panel_on(intel_dp);
}
intel_ddi_clk_select(intel_encoder, crtc->config);
if (type == INTEL_OUTPUT_DP || type == INTEL_OUTPUT_EDP) {
struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
intel_prepare_dp_ddi_buffers(intel_encoder);
intel_dp_set_link_params(intel_dp, crtc->config);
intel_ddi_init_dp_buf_reg(intel_encoder);
intel_dp_sink_dpms(intel_dp, DRM_MODE_DPMS_ON);
intel_dp_start_link_train(intel_dp);
if (port != PORT_A || INTEL_INFO(dev_priv)->gen >= 9)
intel_dp_stop_link_train(intel_dp);
} else if (type == INTEL_OUTPUT_HDMI) {
struct intel_hdmi *intel_hdmi = enc_to_intel_hdmi(encoder);
int level = intel_ddi_hdmi_level(dev_priv, port);
intel_prepare_hdmi_ddi_buffers(intel_encoder);
if (IS_SKYLAKE(dev_priv) || IS_KABYLAKE(dev_priv))
skl_ddi_set_iboost(intel_encoder, level);
else if (IS_BROXTON(dev_priv))
bxt_ddi_vswing_sequence(dev_priv, level, port,
INTEL_OUTPUT_HDMI);
intel_hdmi->set_infoframes(encoder,
crtc->config->has_hdmi_sink,
&crtc->config->base.adjusted_mode);
}
}
static void intel_ddi_post_disable(struct intel_encoder *intel_encoder)
{
struct drm_encoder *encoder = &intel_encoder->base;
struct drm_device *dev = encoder->dev;
struct drm_i915_private *dev_priv = to_i915(dev);
enum port port = intel_ddi_get_encoder_port(intel_encoder);
int type = intel_encoder->type;
uint32_t val;
bool wait = false;
val = I915_READ(DDI_BUF_CTL(port));
if (val & DDI_BUF_CTL_ENABLE) {
val &= ~DDI_BUF_CTL_ENABLE;
I915_WRITE(DDI_BUF_CTL(port), val);
wait = true;
}
val = I915_READ(DP_TP_CTL(port));
val &= ~(DP_TP_CTL_ENABLE | DP_TP_CTL_LINK_TRAIN_MASK);
val |= DP_TP_CTL_LINK_TRAIN_PAT1;
I915_WRITE(DP_TP_CTL(port), val);
if (wait)
intel_wait_ddi_buf_idle(dev_priv, port);
if (type == INTEL_OUTPUT_DP || type == INTEL_OUTPUT_EDP) {
struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
intel_dp_sink_dpms(intel_dp, DRM_MODE_DPMS_OFF);
intel_edp_panel_vdd_on(intel_dp);
intel_edp_panel_off(intel_dp);
}
if (IS_SKYLAKE(dev) || IS_KABYLAKE(dev))
I915_WRITE(DPLL_CTRL2, (I915_READ(DPLL_CTRL2) |
DPLL_CTRL2_DDI_CLK_OFF(port)));
else if (INTEL_INFO(dev)->gen < 9)
I915_WRITE(PORT_CLK_SEL(port), PORT_CLK_SEL_NONE);
if (type == INTEL_OUTPUT_HDMI) {
struct intel_hdmi *intel_hdmi = enc_to_intel_hdmi(encoder);
intel_dp_dual_mode_set_tmds_output(intel_hdmi, false);
}
}
static void intel_enable_ddi(struct intel_encoder *intel_encoder)
{
struct drm_encoder *encoder = &intel_encoder->base;
struct drm_crtc *crtc = encoder->crtc;
struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
struct drm_device *dev = encoder->dev;
struct drm_i915_private *dev_priv = to_i915(dev);
enum port port = intel_ddi_get_encoder_port(intel_encoder);
int type = intel_encoder->type;
if (type == INTEL_OUTPUT_HDMI) {
struct intel_digital_port *intel_dig_port =
enc_to_dig_port(encoder);
/* In HDMI/DVI mode, the port width, and swing/emphasis values
* are ignored so nothing special needs to be done besides
* enabling the port.
*/
I915_WRITE(DDI_BUF_CTL(port),
intel_dig_port->saved_port_bits |
DDI_BUF_CTL_ENABLE);
} else if (type == INTEL_OUTPUT_EDP) {
struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
if (port == PORT_A && INTEL_INFO(dev)->gen < 9)
intel_dp_stop_link_train(intel_dp);
intel_edp_backlight_on(intel_dp);
intel_psr_enable(intel_dp);
intel_edp_drrs_enable(intel_dp);
}
if (intel_crtc->config->has_audio) {
intel_display_power_get(dev_priv, POWER_DOMAIN_AUDIO);
intel_audio_codec_enable(intel_encoder);
}
}
static void intel_disable_ddi(struct intel_encoder *intel_encoder)
{
struct drm_encoder *encoder = &intel_encoder->base;
struct drm_crtc *crtc = encoder->crtc;
struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
int type = intel_encoder->type;
struct drm_device *dev = encoder->dev;
struct drm_i915_private *dev_priv = to_i915(dev);
if (intel_crtc->config->has_audio) {
intel_audio_codec_disable(intel_encoder);
intel_display_power_put(dev_priv, POWER_DOMAIN_AUDIO);
}
if (type == INTEL_OUTPUT_EDP) {
struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
intel_edp_drrs_disable(intel_dp);
intel_psr_disable(intel_dp);
intel_edp_backlight_off(intel_dp);
}
}
bool bxt_ddi_phy_is_enabled(struct drm_i915_private *dev_priv,
enum dpio_phy phy)
{
enum port port;
if (!(I915_READ(BXT_P_CR_GT_DISP_PWRON) & GT_DISPLAY_POWER_ON(phy)))
return false;
if ((I915_READ(BXT_PORT_CL1CM_DW0(phy)) &
(PHY_POWER_GOOD | PHY_RESERVED)) != PHY_POWER_GOOD) {
DRM_DEBUG_DRIVER("DDI PHY %d powered, but power hasn't settled\n",
phy);
return false;
}
if (phy == DPIO_PHY1 &&
!(I915_READ(BXT_PORT_REF_DW3(DPIO_PHY1)) & GRC_DONE)) {
DRM_DEBUG_DRIVER("DDI PHY 1 powered, but GRC isn't done\n");
return false;
}
if (!(I915_READ(BXT_PHY_CTL_FAMILY(phy)) & COMMON_RESET_DIS)) {
DRM_DEBUG_DRIVER("DDI PHY %d powered, but still in reset\n",
phy);
return false;
}
for_each_port_masked(port,
phy == DPIO_PHY0 ? BIT(PORT_B) | BIT(PORT_C) :
BIT(PORT_A)) {
u32 tmp = I915_READ(BXT_PHY_CTL(port));
if (tmp & BXT_PHY_CMNLANE_POWERDOWN_ACK) {
DRM_DEBUG_DRIVER("DDI PHY %d powered, but common lane "
"for port %c powered down "
"(PHY_CTL %08x)\n",
phy, port_name(port), tmp);
return false;
}
}
return true;
}
static u32 bxt_get_grc(struct drm_i915_private *dev_priv, enum dpio_phy phy)
{
u32 val = I915_READ(BXT_PORT_REF_DW6(phy));
return (val & GRC_CODE_MASK) >> GRC_CODE_SHIFT;
}
static void bxt_phy_wait_grc_done(struct drm_i915_private *dev_priv,
enum dpio_phy phy)
{
if (intel_wait_for_register(dev_priv,
BXT_PORT_REF_DW3(phy),
GRC_DONE, GRC_DONE,
10))
DRM_ERROR("timeout waiting for PHY%d GRC\n", phy);
}
void bxt_ddi_phy_init(struct drm_i915_private *dev_priv, enum dpio_phy phy)
{
u32 val;
if (bxt_ddi_phy_is_enabled(dev_priv, phy)) {
/* Still read out the GRC value for state verification */
if (phy == DPIO_PHY0)
dev_priv->bxt_phy_grc = bxt_get_grc(dev_priv, phy);
if (bxt_ddi_phy_verify_state(dev_priv, phy)) {
DRM_DEBUG_DRIVER("DDI PHY %d already enabled, "
"won't reprogram it\n", phy);
return;
}
DRM_DEBUG_DRIVER("DDI PHY %d enabled with invalid state, "
"force reprogramming it\n", phy);
}
val = I915_READ(BXT_P_CR_GT_DISP_PWRON);
val |= GT_DISPLAY_POWER_ON(phy);
I915_WRITE(BXT_P_CR_GT_DISP_PWRON, val);
/*
* The PHY registers start out inaccessible and respond to reads with
* all 1s. Eventually they become accessible as they power up, then
* the reserved bit will give the default 0. Poll on the reserved bit
* becoming 0 to find when the PHY is accessible.
* HW team confirmed that the time to reach phypowergood status is
* anywhere between 50 us and 100us.
*/
if (wait_for_us(((I915_READ(BXT_PORT_CL1CM_DW0(phy)) &
(PHY_RESERVED | PHY_POWER_GOOD)) == PHY_POWER_GOOD), 100)) {
DRM_ERROR("timeout during PHY%d power on\n", phy);
}
/* Program PLL Rcomp code offset */
val = I915_READ(BXT_PORT_CL1CM_DW9(phy));
val &= ~IREF0RC_OFFSET_MASK;
val |= 0xE4 << IREF0RC_OFFSET_SHIFT;
I915_WRITE(BXT_PORT_CL1CM_DW9(phy), val);
val = I915_READ(BXT_PORT_CL1CM_DW10(phy));
val &= ~IREF1RC_OFFSET_MASK;
val |= 0xE4 << IREF1RC_OFFSET_SHIFT;
I915_WRITE(BXT_PORT_CL1CM_DW10(phy), val);
/* Program power gating */
val = I915_READ(BXT_PORT_CL1CM_DW28(phy));
val |= OCL1_POWER_DOWN_EN | DW28_OLDO_DYN_PWR_DOWN_EN |
SUS_CLK_CONFIG;
I915_WRITE(BXT_PORT_CL1CM_DW28(phy), val);
if (phy == DPIO_PHY0) {
val = I915_READ(BXT_PORT_CL2CM_DW6_BC);
val |= DW6_OLDO_DYN_PWR_DOWN_EN;
I915_WRITE(BXT_PORT_CL2CM_DW6_BC, val);
}
val = I915_READ(BXT_PORT_CL1CM_DW30(phy));
val &= ~OCL2_LDOFUSE_PWR_DIS;
/*
* On PHY1 disable power on the second channel, since no port is
* connected there. On PHY0 both channels have a port, so leave it
* enabled.
* TODO: port C is only connected on BXT-P, so on BXT0/1 we should
* power down the second channel on PHY0 as well.
*
* FIXME: Clarify programming of the following, the register is
* read-only with bit 6 fixed at 0 at least in stepping A.
*/
if (phy == DPIO_PHY1)
val |= OCL2_LDOFUSE_PWR_DIS;
I915_WRITE(BXT_PORT_CL1CM_DW30(phy), val);
if (phy == DPIO_PHY0) {
uint32_t grc_code;
/*
* PHY0 isn't connected to an RCOMP resistor so copy over
* the corresponding calibrated value from PHY1, and disable
* the automatic calibration on PHY0.
*/
val = dev_priv->bxt_phy_grc = bxt_get_grc(dev_priv, DPIO_PHY1);
grc_code = val << GRC_CODE_FAST_SHIFT |
val << GRC_CODE_SLOW_SHIFT |
val;
I915_WRITE(BXT_PORT_REF_DW6(DPIO_PHY0), grc_code);
val = I915_READ(BXT_PORT_REF_DW8(DPIO_PHY0));
val |= GRC_DIS | GRC_RDY_OVRD;
I915_WRITE(BXT_PORT_REF_DW8(DPIO_PHY0), val);
}
val = I915_READ(BXT_PHY_CTL_FAMILY(phy));
val |= COMMON_RESET_DIS;
I915_WRITE(BXT_PHY_CTL_FAMILY(phy), val);
if (phy == DPIO_PHY1)
bxt_phy_wait_grc_done(dev_priv, DPIO_PHY1);
}
void bxt_ddi_phy_uninit(struct drm_i915_private *dev_priv, enum dpio_phy phy)
{
uint32_t val;
val = I915_READ(BXT_PHY_CTL_FAMILY(phy));
val &= ~COMMON_RESET_DIS;
I915_WRITE(BXT_PHY_CTL_FAMILY(phy), val);
val = I915_READ(BXT_P_CR_GT_DISP_PWRON);
val &= ~GT_DISPLAY_POWER_ON(phy);
I915_WRITE(BXT_P_CR_GT_DISP_PWRON, val);
}
static bool __printf(6, 7)
__phy_reg_verify_state(struct drm_i915_private *dev_priv, enum dpio_phy phy,
i915_reg_t reg, u32 mask, u32 expected,
const char *reg_fmt, ...)
{
struct va_format vaf;
va_list args;
u32 val;
val = I915_READ(reg);
if ((val & mask) == expected)
return true;
va_start(args, reg_fmt);
vaf.fmt = reg_fmt;
vaf.va = &args;
DRM_DEBUG_DRIVER("DDI PHY %d reg %pV [%08x] state mismatch: "
"current %08x, expected %08x (mask %08x)\n",
phy, &vaf, reg.reg, val, (val & ~mask) | expected,
mask);
va_end(args);
return false;
}
bool bxt_ddi_phy_verify_state(struct drm_i915_private *dev_priv,
enum dpio_phy phy)
{
uint32_t mask;
bool ok;
#define _CHK(reg, mask, exp, fmt, ...) \
__phy_reg_verify_state(dev_priv, phy, reg, mask, exp, fmt, \
## __VA_ARGS__)
if (!bxt_ddi_phy_is_enabled(dev_priv, phy))
return false;
ok = true;
/* PLL Rcomp code offset */
ok &= _CHK(BXT_PORT_CL1CM_DW9(phy),
IREF0RC_OFFSET_MASK, 0xe4 << IREF0RC_OFFSET_SHIFT,
"BXT_PORT_CL1CM_DW9(%d)", phy);
ok &= _CHK(BXT_PORT_CL1CM_DW10(phy),
IREF1RC_OFFSET_MASK, 0xe4 << IREF1RC_OFFSET_SHIFT,
"BXT_PORT_CL1CM_DW10(%d)", phy);
/* Power gating */
mask = OCL1_POWER_DOWN_EN | DW28_OLDO_DYN_PWR_DOWN_EN | SUS_CLK_CONFIG;
ok &= _CHK(BXT_PORT_CL1CM_DW28(phy), mask, mask,
"BXT_PORT_CL1CM_DW28(%d)", phy);
if (phy == DPIO_PHY0)
ok &= _CHK(BXT_PORT_CL2CM_DW6_BC,
DW6_OLDO_DYN_PWR_DOWN_EN, DW6_OLDO_DYN_PWR_DOWN_EN,
"BXT_PORT_CL2CM_DW6_BC");
/*
* TODO: Verify BXT_PORT_CL1CM_DW30 bit OCL2_LDOFUSE_PWR_DIS,
* at least on stepping A this bit is read-only and fixed at 0.
*/
if (phy == DPIO_PHY0) {
u32 grc_code = dev_priv->bxt_phy_grc;
grc_code = grc_code << GRC_CODE_FAST_SHIFT |
grc_code << GRC_CODE_SLOW_SHIFT |
grc_code;
mask = GRC_CODE_FAST_MASK | GRC_CODE_SLOW_MASK |
GRC_CODE_NOM_MASK;
ok &= _CHK(BXT_PORT_REF_DW6(DPIO_PHY0), mask, grc_code,
"BXT_PORT_REF_DW6(%d)", DPIO_PHY0);
mask = GRC_DIS | GRC_RDY_OVRD;
ok &= _CHK(BXT_PORT_REF_DW8(DPIO_PHY0), mask, mask,
"BXT_PORT_REF_DW8(%d)", DPIO_PHY0);
}
return ok;
#undef _CHK
}
static uint8_t
bxt_ddi_phy_calc_lane_lat_optim_mask(struct intel_encoder *encoder,
struct intel_crtc_state *pipe_config)
{
switch (pipe_config->lane_count) {
case 1:
return 0;
case 2:
return BIT(2) | BIT(0);
case 4:
return BIT(3) | BIT(2) | BIT(0);
default:
MISSING_CASE(pipe_config->lane_count);
return 0;
}
}
static void bxt_ddi_pre_pll_enable(struct intel_encoder *encoder)
{
struct intel_digital_port *dport = enc_to_dig_port(&encoder->base);
struct drm_i915_private *dev_priv = to_i915(dport->base.base.dev);
enum port port = dport->port;
struct intel_crtc *intel_crtc = to_intel_crtc(encoder->base.crtc);
int lane;
for (lane = 0; lane < 4; lane++) {
u32 val = I915_READ(BXT_PORT_TX_DW14_LN(port, lane));
/*
* Note that on CHV this flag is called UPAR, but has
* the same function.
*/
val &= ~LATENCY_OPTIM;
if (intel_crtc->config->lane_lat_optim_mask & BIT(lane))
val |= LATENCY_OPTIM;
I915_WRITE(BXT_PORT_TX_DW14_LN(port, lane), val);
}
}
static uint8_t
bxt_ddi_phy_get_lane_lat_optim_mask(struct intel_encoder *encoder)
{
struct intel_digital_port *dport = enc_to_dig_port(&encoder->base);
struct drm_i915_private *dev_priv = to_i915(dport->base.base.dev);
enum port port = dport->port;
int lane;
uint8_t mask;
mask = 0;
for (lane = 0; lane < 4; lane++) {
u32 val = I915_READ(BXT_PORT_TX_DW14_LN(port, lane));
if (val & LATENCY_OPTIM)
mask |= BIT(lane);
}
return mask;
}
void intel_ddi_prepare_link_retrain(struct intel_dp *intel_dp)
{
struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
struct drm_i915_private *dev_priv =
to_i915(intel_dig_port->base.base.dev);
enum port port = intel_dig_port->port;
uint32_t val;
bool wait = false;
if (I915_READ(DP_TP_CTL(port)) & DP_TP_CTL_ENABLE) {
val = I915_READ(DDI_BUF_CTL(port));
if (val & DDI_BUF_CTL_ENABLE) {
val &= ~DDI_BUF_CTL_ENABLE;
I915_WRITE(DDI_BUF_CTL(port), val);
wait = true;
}
val = I915_READ(DP_TP_CTL(port));
val &= ~(DP_TP_CTL_ENABLE | DP_TP_CTL_LINK_TRAIN_MASK);
val |= DP_TP_CTL_LINK_TRAIN_PAT1;
I915_WRITE(DP_TP_CTL(port), val);
POSTING_READ(DP_TP_CTL(port));
if (wait)
intel_wait_ddi_buf_idle(dev_priv, port);
}
val = DP_TP_CTL_ENABLE |
DP_TP_CTL_LINK_TRAIN_PAT1 | DP_TP_CTL_SCRAMBLE_DISABLE;
if (intel_dp->is_mst)
val |= DP_TP_CTL_MODE_MST;
else {
val |= DP_TP_CTL_MODE_SST;
if (drm_dp_enhanced_frame_cap(intel_dp->dpcd))
val |= DP_TP_CTL_ENHANCED_FRAME_ENABLE;
}
I915_WRITE(DP_TP_CTL(port), val);
POSTING_READ(DP_TP_CTL(port));
intel_dp->DP |= DDI_BUF_CTL_ENABLE;
I915_WRITE(DDI_BUF_CTL(port), intel_dp->DP);
POSTING_READ(DDI_BUF_CTL(port));
udelay(600);
}
void intel_ddi_fdi_disable(struct drm_crtc *crtc)
{
struct drm_i915_private *dev_priv = to_i915(crtc->dev);
struct intel_encoder *intel_encoder = intel_ddi_get_crtc_encoder(crtc);
uint32_t val;
/*
* Bspec lists this as both step 13 (before DDI_BUF_CTL disable)
* and step 18 (after clearing PORT_CLK_SEL). Based on a BUN,
* step 13 is the correct place for it. Step 18 is where it was
* originally before the BUN.
*/
val = I915_READ(FDI_RX_CTL(PIPE_A));
val &= ~FDI_RX_ENABLE;
I915_WRITE(FDI_RX_CTL(PIPE_A), val);
intel_ddi_post_disable(intel_encoder);
val = I915_READ(FDI_RX_MISC(PIPE_A));
val &= ~(FDI_RX_PWRDN_LANE1_MASK | FDI_RX_PWRDN_LANE0_MASK);
val |= FDI_RX_PWRDN_LANE1_VAL(2) | FDI_RX_PWRDN_LANE0_VAL(2);
I915_WRITE(FDI_RX_MISC(PIPE_A), val);
val = I915_READ(FDI_RX_CTL(PIPE_A));
val &= ~FDI_PCDCLK;
I915_WRITE(FDI_RX_CTL(PIPE_A), val);
val = I915_READ(FDI_RX_CTL(PIPE_A));
val &= ~FDI_RX_PLL_ENABLE;
I915_WRITE(FDI_RX_CTL(PIPE_A), val);
}
void intel_ddi_get_config(struct intel_encoder *encoder,
struct intel_crtc_state *pipe_config)
{
struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
struct intel_crtc *intel_crtc = to_intel_crtc(encoder->base.crtc);
enum transcoder cpu_transcoder = pipe_config->cpu_transcoder;
struct intel_hdmi *intel_hdmi;
u32 temp, flags = 0;
/* XXX: DSI transcoder paranoia */
if (WARN_ON(transcoder_is_dsi(cpu_transcoder)))
return;
temp = I915_READ(TRANS_DDI_FUNC_CTL(cpu_transcoder));
if (temp & TRANS_DDI_PHSYNC)
flags |= DRM_MODE_FLAG_PHSYNC;
else
flags |= DRM_MODE_FLAG_NHSYNC;
if (temp & TRANS_DDI_PVSYNC)
flags |= DRM_MODE_FLAG_PVSYNC;
else
flags |= DRM_MODE_FLAG_NVSYNC;
pipe_config->base.adjusted_mode.flags |= flags;
switch (temp & TRANS_DDI_BPC_MASK) {
case TRANS_DDI_BPC_6:
pipe_config->pipe_bpp = 18;
break;
case TRANS_DDI_BPC_8:
pipe_config->pipe_bpp = 24;
break;
case TRANS_DDI_BPC_10:
pipe_config->pipe_bpp = 30;
break;
case TRANS_DDI_BPC_12:
pipe_config->pipe_bpp = 36;
break;
default:
break;
}
switch (temp & TRANS_DDI_MODE_SELECT_MASK) {
case TRANS_DDI_MODE_SELECT_HDMI:
pipe_config->has_hdmi_sink = true;
intel_hdmi = enc_to_intel_hdmi(&encoder->base);
if (intel_hdmi->infoframe_enabled(&encoder->base, pipe_config))
pipe_config->has_infoframe = true;
/* fall through */
case TRANS_DDI_MODE_SELECT_DVI:
pipe_config->lane_count = 4;
break;
case TRANS_DDI_MODE_SELECT_FDI:
break;
case TRANS_DDI_MODE_SELECT_DP_SST:
case TRANS_DDI_MODE_SELECT_DP_MST:
pipe_config->lane_count =
((temp & DDI_PORT_WIDTH_MASK) >> DDI_PORT_WIDTH_SHIFT) + 1;
intel_dp_get_m_n(intel_crtc, pipe_config);
break;
default:
break;
}
if (intel_display_power_is_enabled(dev_priv, POWER_DOMAIN_AUDIO)) {
temp = I915_READ(HSW_AUD_PIN_ELD_CP_VLD);
if (temp & AUDIO_OUTPUT_ENABLE(intel_crtc->pipe))
pipe_config->has_audio = true;
}
if (encoder->type == INTEL_OUTPUT_EDP && dev_priv->vbt.edp.bpp &&
pipe_config->pipe_bpp > dev_priv->vbt.edp.bpp) {
/*
* This is a big fat ugly hack.
*
* Some machines in UEFI boot mode provide us a VBT that has 18
* bpp and 1.62 GHz link bandwidth for eDP, which for reasons
* unknown we fail to light up. Yet the same BIOS boots up with
* 24 bpp and 2.7 GHz link. Use the same bpp as the BIOS uses as
* max, not what it tells us to use.
*
* Note: This will still be broken if the eDP panel is not lit
* up by the BIOS, and thus we can't get the mode at module
* load.
*/
DRM_DEBUG_KMS("pipe has %d bpp for eDP panel, overriding BIOS-provided max %d bpp\n",
pipe_config->pipe_bpp, dev_priv->vbt.edp.bpp);
dev_priv->vbt.edp.bpp = pipe_config->pipe_bpp;
}
intel_ddi_clock_get(encoder, pipe_config);
if (IS_BROXTON(dev_priv))
pipe_config->lane_lat_optim_mask =
bxt_ddi_phy_get_lane_lat_optim_mask(encoder);
}
static bool intel_ddi_compute_config(struct intel_encoder *encoder,
struct intel_crtc_state *pipe_config)
{
struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
int type = encoder->type;
int port = intel_ddi_get_encoder_port(encoder);
int ret;
WARN(type == INTEL_OUTPUT_UNKNOWN, "compute_config() on unknown output!\n");
if (port == PORT_A)
pipe_config->cpu_transcoder = TRANSCODER_EDP;
if (type == INTEL_OUTPUT_HDMI)
ret = intel_hdmi_compute_config(encoder, pipe_config);
else
ret = intel_dp_compute_config(encoder, pipe_config);
if (IS_BROXTON(dev_priv) && ret)
pipe_config->lane_lat_optim_mask =
bxt_ddi_phy_calc_lane_lat_optim_mask(encoder,
pipe_config);
return ret;
}
static const struct drm_encoder_funcs intel_ddi_funcs = {
.reset = intel_dp_encoder_reset,
.destroy = intel_dp_encoder_destroy,
};
static struct intel_connector *
intel_ddi_init_dp_connector(struct intel_digital_port *intel_dig_port)
{
struct intel_connector *connector;
enum port port = intel_dig_port->port;
connector = intel_connector_alloc();
if (!connector)
return NULL;
intel_dig_port->dp.output_reg = DDI_BUF_CTL(port);
if (!intel_dp_init_connector(intel_dig_port, connector)) {
kfree(connector);
return NULL;
}
return connector;
}
static struct intel_connector *
intel_ddi_init_hdmi_connector(struct intel_digital_port *intel_dig_port)
{
struct intel_connector *connector;
enum port port = intel_dig_port->port;
connector = intel_connector_alloc();
if (!connector)
return NULL;
intel_dig_port->hdmi.hdmi_reg = DDI_BUF_CTL(port);
intel_hdmi_init_connector(intel_dig_port, connector);
return connector;
}
void intel_ddi_init(struct drm_device *dev, enum port port)
{
struct drm_i915_private *dev_priv = to_i915(dev);
struct intel_digital_port *intel_dig_port;
struct intel_encoder *intel_encoder;
struct drm_encoder *encoder;
bool init_hdmi, init_dp;
int max_lanes;
if (I915_READ(DDI_BUF_CTL(PORT_A)) & DDI_A_4_LANES) {
switch (port) {
case PORT_A:
max_lanes = 4;
break;
case PORT_E:
max_lanes = 0;
break;
default:
max_lanes = 4;
break;
}
} else {
switch (port) {
case PORT_A:
max_lanes = 2;
break;
case PORT_E:
max_lanes = 2;
break;
default:
max_lanes = 4;
break;
}
}
init_hdmi = (dev_priv->vbt.ddi_port_info[port].supports_dvi ||
dev_priv->vbt.ddi_port_info[port].supports_hdmi);
init_dp = dev_priv->vbt.ddi_port_info[port].supports_dp;
if (!init_dp && !init_hdmi) {
DRM_DEBUG_KMS("VBT says port %c is not DVI/HDMI/DP compatible, respect it\n",
port_name(port));
return;
}
intel_dig_port = kzalloc(sizeof(*intel_dig_port), GFP_KERNEL);
if (!intel_dig_port)
return;
intel_encoder = &intel_dig_port->base;
encoder = &intel_encoder->base;
drm_encoder_init(dev, encoder, &intel_ddi_funcs,
DRM_MODE_ENCODER_TMDS, "DDI %c", port_name(port));
intel_encoder->compute_config = intel_ddi_compute_config;
intel_encoder->enable = intel_enable_ddi;
if (IS_BROXTON(dev_priv))
intel_encoder->pre_pll_enable = bxt_ddi_pre_pll_enable;
intel_encoder->pre_enable = intel_ddi_pre_enable;
intel_encoder->disable = intel_disable_ddi;
intel_encoder->post_disable = intel_ddi_post_disable;
intel_encoder->get_hw_state = intel_ddi_get_hw_state;
intel_encoder->get_config = intel_ddi_get_config;
intel_encoder->suspend = intel_dp_encoder_suspend;
intel_dig_port->port = port;
intel_dig_port->saved_port_bits = I915_READ(DDI_BUF_CTL(port)) &
(DDI_BUF_PORT_REVERSAL |
DDI_A_4_LANES);
/*
* Bspec says that DDI_A_4_LANES is the only supported configuration
* for Broxton. Yet some BIOS fail to set this bit on port A if eDP
* wasn't lit up at boot. Force this bit on in our internal
* configuration so that we use the proper lane count for our
* calculations.
*/
if (IS_BROXTON(dev) && port == PORT_A) {
if (!(intel_dig_port->saved_port_bits & DDI_A_4_LANES)) {
DRM_DEBUG_KMS("BXT BIOS forgot to set DDI_A_4_LANES for port A; fixing\n");
intel_dig_port->saved_port_bits |= DDI_A_4_LANES;
max_lanes = 4;
}
}
intel_dig_port->max_lanes = max_lanes;
intel_encoder->type = INTEL_OUTPUT_UNKNOWN;
intel_encoder->crtc_mask = (1 << 0) | (1 << 1) | (1 << 2);
intel_encoder->cloneable = 0;
if (init_dp) {
if (!intel_ddi_init_dp_connector(intel_dig_port))
goto err;
intel_dig_port->hpd_pulse = intel_dp_hpd_pulse;
/*
* On BXT A0/A1, sw needs to activate DDIA HPD logic and
* interrupts to check the external panel connection.
*/
if (IS_BXT_REVID(dev, 0, BXT_REVID_A1) && port == PORT_B)
dev_priv->hotplug.irq_port[PORT_A] = intel_dig_port;
else
dev_priv->hotplug.irq_port[port] = intel_dig_port;
}
/* In theory we don't need the encoder->type check, but leave it just in
* case we have some really bad VBTs... */
if (intel_encoder->type != INTEL_OUTPUT_EDP && init_hdmi) {
if (!intel_ddi_init_hdmi_connector(intel_dig_port))
goto err;
}
return;
err:
drm_encoder_cleanup(encoder);
kfree(intel_dig_port);
}