mirror of
https://github.com/FEX-Emu/linux.git
synced 2025-01-15 14:10:43 +00:00
e8cac8b1d1
If kernel_text_address() is called when RCU is not watching, it can cause an RCU bug because is_module_text_address(), the is_kprobe_*insn_slot() and is_bpf_text_address() functions require the use of RCU. Only enable RCU if it is not currently watching before it calls is_module_text_address(). The use of rcu_nmi_enter() is used to enable RCU because kernel_text_address() can happen pretty much anywhere (like an NMI), and even from within an NMI. It is called via save_stack_trace() that can be called by any WARN() or tracing function, which can happen while RCU is not watching (for example, going to or coming from idle, or during CPU take down or bring up). Cc: stable@vger.kernel.org Fixes: 0be964be0 ("module: Sanitize RCU usage and locking") Acked-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com> Signed-off-by: Steven Rostedt (VMware) <rostedt@goodmis.org>
175 lines
4.7 KiB
C
175 lines
4.7 KiB
C
/* Rewritten by Rusty Russell, on the backs of many others...
|
|
Copyright (C) 2001 Rusty Russell, 2002 Rusty Russell IBM.
|
|
|
|
This program is free software; you can redistribute it and/or modify
|
|
it under the terms of the GNU General Public License as published by
|
|
the Free Software Foundation; either version 2 of the License, or
|
|
(at your option) any later version.
|
|
|
|
This program is distributed in the hope that it will be useful,
|
|
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
GNU General Public License for more details.
|
|
|
|
You should have received a copy of the GNU General Public License
|
|
along with this program; if not, write to the Free Software
|
|
Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
|
|
*/
|
|
#include <linux/ftrace.h>
|
|
#include <linux/memory.h>
|
|
#include <linux/extable.h>
|
|
#include <linux/module.h>
|
|
#include <linux/mutex.h>
|
|
#include <linux/init.h>
|
|
#include <linux/kprobes.h>
|
|
#include <linux/filter.h>
|
|
|
|
#include <asm/sections.h>
|
|
#include <linux/uaccess.h>
|
|
|
|
/*
|
|
* mutex protecting text section modification (dynamic code patching).
|
|
* some users need to sleep (allocating memory...) while they hold this lock.
|
|
*
|
|
* NOT exported to modules - patching kernel text is a really delicate matter.
|
|
*/
|
|
DEFINE_MUTEX(text_mutex);
|
|
|
|
extern struct exception_table_entry __start___ex_table[];
|
|
extern struct exception_table_entry __stop___ex_table[];
|
|
|
|
/* Cleared by build time tools if the table is already sorted. */
|
|
u32 __initdata __visible main_extable_sort_needed = 1;
|
|
|
|
/* Sort the kernel's built-in exception table */
|
|
void __init sort_main_extable(void)
|
|
{
|
|
if (main_extable_sort_needed && __stop___ex_table > __start___ex_table) {
|
|
pr_notice("Sorting __ex_table...\n");
|
|
sort_extable(__start___ex_table, __stop___ex_table);
|
|
}
|
|
}
|
|
|
|
/* Given an address, look for it in the exception tables. */
|
|
const struct exception_table_entry *search_exception_tables(unsigned long addr)
|
|
{
|
|
const struct exception_table_entry *e;
|
|
|
|
e = search_extable(__start___ex_table,
|
|
__stop___ex_table - __start___ex_table, addr);
|
|
if (!e)
|
|
e = search_module_extables(addr);
|
|
return e;
|
|
}
|
|
|
|
static inline int init_kernel_text(unsigned long addr)
|
|
{
|
|
if (addr >= (unsigned long)_sinittext &&
|
|
addr < (unsigned long)_einittext)
|
|
return 1;
|
|
return 0;
|
|
}
|
|
|
|
int notrace core_kernel_text(unsigned long addr)
|
|
{
|
|
if (addr >= (unsigned long)_stext &&
|
|
addr < (unsigned long)_etext)
|
|
return 1;
|
|
|
|
if (system_state < SYSTEM_RUNNING &&
|
|
init_kernel_text(addr))
|
|
return 1;
|
|
return 0;
|
|
}
|
|
|
|
/**
|
|
* core_kernel_data - tell if addr points to kernel data
|
|
* @addr: address to test
|
|
*
|
|
* Returns true if @addr passed in is from the core kernel data
|
|
* section.
|
|
*
|
|
* Note: On some archs it may return true for core RODATA, and false
|
|
* for others. But will always be true for core RW data.
|
|
*/
|
|
int core_kernel_data(unsigned long addr)
|
|
{
|
|
if (addr >= (unsigned long)_sdata &&
|
|
addr < (unsigned long)_edata)
|
|
return 1;
|
|
return 0;
|
|
}
|
|
|
|
int __kernel_text_address(unsigned long addr)
|
|
{
|
|
if (kernel_text_address(addr))
|
|
return 1;
|
|
/*
|
|
* There might be init symbols in saved stacktraces.
|
|
* Give those symbols a chance to be printed in
|
|
* backtraces (such as lockdep traces).
|
|
*
|
|
* Since we are after the module-symbols check, there's
|
|
* no danger of address overlap:
|
|
*/
|
|
if (init_kernel_text(addr))
|
|
return 1;
|
|
return 0;
|
|
}
|
|
|
|
int kernel_text_address(unsigned long addr)
|
|
{
|
|
bool no_rcu;
|
|
int ret = 1;
|
|
|
|
if (core_kernel_text(addr))
|
|
return 1;
|
|
|
|
/*
|
|
* If a stack dump happens while RCU is not watching, then
|
|
* RCU needs to be notified that it requires to start
|
|
* watching again. This can happen either by tracing that
|
|
* triggers a stack trace, or a WARN() that happens during
|
|
* coming back from idle, or cpu on or offlining.
|
|
*
|
|
* is_module_text_address() as well as the kprobe slots
|
|
* and is_bpf_text_address() require RCU to be watching.
|
|
*/
|
|
no_rcu = !rcu_is_watching();
|
|
|
|
/* Treat this like an NMI as it can happen anywhere */
|
|
if (no_rcu)
|
|
rcu_nmi_enter();
|
|
|
|
if (is_module_text_address(addr))
|
|
goto out;
|
|
if (is_ftrace_trampoline(addr))
|
|
goto out;
|
|
if (is_kprobe_optinsn_slot(addr) || is_kprobe_insn_slot(addr))
|
|
goto out;
|
|
if (is_bpf_text_address(addr))
|
|
goto out;
|
|
ret = 0;
|
|
out:
|
|
if (no_rcu)
|
|
rcu_nmi_exit();
|
|
|
|
return ret;
|
|
}
|
|
|
|
/*
|
|
* On some architectures (PPC64, IA64) function pointers
|
|
* are actually only tokens to some data that then holds the
|
|
* real function address. As a result, to find if a function
|
|
* pointer is part of the kernel text, we need to do some
|
|
* special dereferencing first.
|
|
*/
|
|
int func_ptr_is_kernel_text(void *ptr)
|
|
{
|
|
unsigned long addr;
|
|
addr = (unsigned long) dereference_function_descriptor(ptr);
|
|
if (core_kernel_text(addr))
|
|
return 1;
|
|
return is_module_text_address(addr);
|
|
}
|