David Howells 7d12e780e0 IRQ: Maintain regs pointer globally rather than passing to IRQ handlers
Maintain a per-CPU global "struct pt_regs *" variable which can be used instead
of passing regs around manually through all ~1800 interrupt handlers in the
Linux kernel.

The regs pointer is used in few places, but it potentially costs both stack
space and code to pass it around.  On the FRV arch, removing the regs parameter
from all the genirq function results in a 20% speed up of the IRQ exit path
(ie: from leaving timer_interrupt() to leaving do_IRQ()).

Where appropriate, an arch may override the generic storage facility and do
something different with the variable.  On FRV, for instance, the address is
maintained in GR28 at all times inside the kernel as part of general exception
handling.

Having looked over the code, it appears that the parameter may be handed down
through up to twenty or so layers of functions.  Consider a USB character
device attached to a USB hub, attached to a USB controller that posts its
interrupts through a cascaded auxiliary interrupt controller.  A character
device driver may want to pass regs to the sysrq handler through the input
layer which adds another few layers of parameter passing.

I've build this code with allyesconfig for x86_64 and i386.  I've runtested the
main part of the code on FRV and i386, though I can't test most of the drivers.
I've also done partial conversion for powerpc and MIPS - these at least compile
with minimal configurations.

This will affect all archs.  Mostly the changes should be relatively easy.
Take do_IRQ(), store the regs pointer at the beginning, saving the old one:

	struct pt_regs *old_regs = set_irq_regs(regs);

And put the old one back at the end:

	set_irq_regs(old_regs);

Don't pass regs through to generic_handle_irq() or __do_IRQ().

In timer_interrupt(), this sort of change will be necessary:

	-	update_process_times(user_mode(regs));
	-	profile_tick(CPU_PROFILING, regs);
	+	update_process_times(user_mode(get_irq_regs()));
	+	profile_tick(CPU_PROFILING);

I'd like to move update_process_times()'s use of get_irq_regs() into itself,
except that i386, alone of the archs, uses something other than user_mode().

Some notes on the interrupt handling in the drivers:

 (*) input_dev() is now gone entirely.  The regs pointer is no longer stored in
     the input_dev struct.

 (*) finish_unlinks() in drivers/usb/host/ohci-q.c needs checking.  It does
     something different depending on whether it's been supplied with a regs
     pointer or not.

 (*) Various IRQ handler function pointers have been moved to type
     irq_handler_t.

Signed-Off-By: David Howells <dhowells@redhat.com>
(cherry picked from 1b16e7ac850969f38b375e511e3fa2f474a33867 commit)
2006-10-05 15:10:12 +01:00

1155 lines
25 KiB
C

/*
* acpi_osl.c - OS-dependent functions ($Revision: 83 $)
*
* Copyright (C) 2000 Andrew Henroid
* Copyright (C) 2001, 2002 Andy Grover <andrew.grover@intel.com>
* Copyright (C) 2001, 2002 Paul Diefenbaugh <paul.s.diefenbaugh@intel.com>
*
* ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
*
* ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
*
*/
#include <linux/module.h>
#include <linux/kernel.h>
#include <linux/slab.h>
#include <linux/mm.h>
#include <linux/pci.h>
#include <linux/smp_lock.h>
#include <linux/interrupt.h>
#include <linux/kmod.h>
#include <linux/delay.h>
#include <linux/workqueue.h>
#include <linux/nmi.h>
#include <acpi/acpi.h>
#include <asm/io.h>
#include <acpi/acpi_bus.h>
#include <acpi/processor.h>
#include <asm/uaccess.h>
#include <linux/efi.h>
#define _COMPONENT ACPI_OS_SERVICES
ACPI_MODULE_NAME("osl")
#define PREFIX "ACPI: "
struct acpi_os_dpc {
acpi_osd_exec_callback function;
void *context;
};
#ifdef CONFIG_ACPI_CUSTOM_DSDT
#include CONFIG_ACPI_CUSTOM_DSDT_FILE
#endif
#ifdef ENABLE_DEBUGGER
#include <linux/kdb.h>
/* stuff for debugger support */
int acpi_in_debugger;
EXPORT_SYMBOL(acpi_in_debugger);
extern char line_buf[80];
#endif /*ENABLE_DEBUGGER */
int acpi_specific_hotkey_enabled = TRUE;
EXPORT_SYMBOL(acpi_specific_hotkey_enabled);
static unsigned int acpi_irq_irq;
static acpi_osd_handler acpi_irq_handler;
static void *acpi_irq_context;
static struct workqueue_struct *kacpid_wq;
acpi_status acpi_os_initialize(void)
{
return AE_OK;
}
acpi_status acpi_os_initialize1(void)
{
/*
* Initialize PCI configuration space access, as we'll need to access
* it while walking the namespace (bus 0 and root bridges w/ _BBNs).
*/
if (!raw_pci_ops) {
printk(KERN_ERR PREFIX
"Access to PCI configuration space unavailable\n");
return AE_NULL_ENTRY;
}
kacpid_wq = create_singlethread_workqueue("kacpid");
BUG_ON(!kacpid_wq);
return AE_OK;
}
acpi_status acpi_os_terminate(void)
{
if (acpi_irq_handler) {
acpi_os_remove_interrupt_handler(acpi_irq_irq,
acpi_irq_handler);
}
destroy_workqueue(kacpid_wq);
return AE_OK;
}
void acpi_os_printf(const char *fmt, ...)
{
va_list args;
va_start(args, fmt);
acpi_os_vprintf(fmt, args);
va_end(args);
}
EXPORT_SYMBOL(acpi_os_printf);
void acpi_os_vprintf(const char *fmt, va_list args)
{
static char buffer[512];
vsprintf(buffer, fmt, args);
#ifdef ENABLE_DEBUGGER
if (acpi_in_debugger) {
kdb_printf("%s", buffer);
} else {
printk("%s", buffer);
}
#else
printk("%s", buffer);
#endif
}
acpi_status acpi_os_get_root_pointer(u32 flags, struct acpi_pointer *addr)
{
if (efi_enabled) {
addr->pointer_type = ACPI_PHYSICAL_POINTER;
if (efi.acpi20 != EFI_INVALID_TABLE_ADDR)
addr->pointer.physical = efi.acpi20;
else if (efi.acpi != EFI_INVALID_TABLE_ADDR)
addr->pointer.physical = efi.acpi;
else {
printk(KERN_ERR PREFIX
"System description tables not found\n");
return AE_NOT_FOUND;
}
} else {
if (ACPI_FAILURE(acpi_find_root_pointer(flags, addr))) {
printk(KERN_ERR PREFIX
"System description tables not found\n");
return AE_NOT_FOUND;
}
}
return AE_OK;
}
acpi_status
acpi_os_map_memory(acpi_physical_address phys, acpi_size size,
void __iomem ** virt)
{
if (phys > ULONG_MAX) {
printk(KERN_ERR PREFIX "Cannot map memory that high\n");
return AE_BAD_PARAMETER;
}
/*
* ioremap checks to ensure this is in reserved space
*/
*virt = ioremap((unsigned long)phys, size);
if (!*virt)
return AE_NO_MEMORY;
return AE_OK;
}
EXPORT_SYMBOL_GPL(acpi_os_map_memory);
void acpi_os_unmap_memory(void __iomem * virt, acpi_size size)
{
iounmap(virt);
}
EXPORT_SYMBOL_GPL(acpi_os_unmap_memory);
#ifdef ACPI_FUTURE_USAGE
acpi_status
acpi_os_get_physical_address(void *virt, acpi_physical_address * phys)
{
if (!phys || !virt)
return AE_BAD_PARAMETER;
*phys = virt_to_phys(virt);
return AE_OK;
}
#endif
#define ACPI_MAX_OVERRIDE_LEN 100
static char acpi_os_name[ACPI_MAX_OVERRIDE_LEN];
acpi_status
acpi_os_predefined_override(const struct acpi_predefined_names *init_val,
acpi_string * new_val)
{
if (!init_val || !new_val)
return AE_BAD_PARAMETER;
*new_val = NULL;
if (!memcmp(init_val->name, "_OS_", 4) && strlen(acpi_os_name)) {
printk(KERN_INFO PREFIX "Overriding _OS definition to '%s'\n",
acpi_os_name);
*new_val = acpi_os_name;
}
return AE_OK;
}
acpi_status
acpi_os_table_override(struct acpi_table_header * existing_table,
struct acpi_table_header ** new_table)
{
if (!existing_table || !new_table)
return AE_BAD_PARAMETER;
#ifdef CONFIG_ACPI_CUSTOM_DSDT
if (strncmp(existing_table->signature, "DSDT", 4) == 0)
*new_table = (struct acpi_table_header *)AmlCode;
else
*new_table = NULL;
#else
*new_table = NULL;
#endif
return AE_OK;
}
static irqreturn_t acpi_irq(int irq, void *dev_id)
{
return (*acpi_irq_handler) (acpi_irq_context) ? IRQ_HANDLED : IRQ_NONE;
}
acpi_status
acpi_os_install_interrupt_handler(u32 gsi, acpi_osd_handler handler,
void *context)
{
unsigned int irq;
/*
* Ignore the GSI from the core, and use the value in our copy of the
* FADT. It may not be the same if an interrupt source override exists
* for the SCI.
*/
gsi = acpi_fadt.sci_int;
if (acpi_gsi_to_irq(gsi, &irq) < 0) {
printk(KERN_ERR PREFIX "SCI (ACPI GSI %d) not registered\n",
gsi);
return AE_OK;
}
acpi_irq_handler = handler;
acpi_irq_context = context;
if (request_irq(irq, acpi_irq, IRQF_SHARED, "acpi", acpi_irq)) {
printk(KERN_ERR PREFIX "SCI (IRQ%d) allocation failed\n", irq);
return AE_NOT_ACQUIRED;
}
acpi_irq_irq = irq;
return AE_OK;
}
acpi_status acpi_os_remove_interrupt_handler(u32 irq, acpi_osd_handler handler)
{
if (irq) {
free_irq(irq, acpi_irq);
acpi_irq_handler = NULL;
acpi_irq_irq = 0;
}
return AE_OK;
}
/*
* Running in interpreter thread context, safe to sleep
*/
void acpi_os_sleep(acpi_integer ms)
{
schedule_timeout_interruptible(msecs_to_jiffies(ms));
}
EXPORT_SYMBOL(acpi_os_sleep);
void acpi_os_stall(u32 us)
{
while (us) {
u32 delay = 1000;
if (delay > us)
delay = us;
udelay(delay);
touch_nmi_watchdog();
us -= delay;
}
}
EXPORT_SYMBOL(acpi_os_stall);
/*
* Support ACPI 3.0 AML Timer operand
* Returns 64-bit free-running, monotonically increasing timer
* with 100ns granularity
*/
u64 acpi_os_get_timer(void)
{
static u64 t;
#ifdef CONFIG_HPET
/* TBD: use HPET if available */
#endif
#ifdef CONFIG_X86_PM_TIMER
/* TBD: default to PM timer if HPET was not available */
#endif
if (!t)
printk(KERN_ERR PREFIX "acpi_os_get_timer() TBD\n");
return ++t;
}
acpi_status acpi_os_read_port(acpi_io_address port, u32 * value, u32 width)
{
u32 dummy;
if (!value)
value = &dummy;
switch (width) {
case 8:
*(u8 *) value = inb(port);
break;
case 16:
*(u16 *) value = inw(port);
break;
case 32:
*(u32 *) value = inl(port);
break;
default:
BUG();
}
return AE_OK;
}
EXPORT_SYMBOL(acpi_os_read_port);
acpi_status acpi_os_write_port(acpi_io_address port, u32 value, u32 width)
{
switch (width) {
case 8:
outb(value, port);
break;
case 16:
outw(value, port);
break;
case 32:
outl(value, port);
break;
default:
BUG();
}
return AE_OK;
}
EXPORT_SYMBOL(acpi_os_write_port);
acpi_status
acpi_os_read_memory(acpi_physical_address phys_addr, u32 * value, u32 width)
{
u32 dummy;
void __iomem *virt_addr;
virt_addr = ioremap(phys_addr, width);
if (!value)
value = &dummy;
switch (width) {
case 8:
*(u8 *) value = readb(virt_addr);
break;
case 16:
*(u16 *) value = readw(virt_addr);
break;
case 32:
*(u32 *) value = readl(virt_addr);
break;
default:
BUG();
}
iounmap(virt_addr);
return AE_OK;
}
acpi_status
acpi_os_write_memory(acpi_physical_address phys_addr, u32 value, u32 width)
{
void __iomem *virt_addr;
virt_addr = ioremap(phys_addr, width);
switch (width) {
case 8:
writeb(value, virt_addr);
break;
case 16:
writew(value, virt_addr);
break;
case 32:
writel(value, virt_addr);
break;
default:
BUG();
}
iounmap(virt_addr);
return AE_OK;
}
acpi_status
acpi_os_read_pci_configuration(struct acpi_pci_id * pci_id, u32 reg,
void *value, u32 width)
{
int result, size;
if (!value)
return AE_BAD_PARAMETER;
switch (width) {
case 8:
size = 1;
break;
case 16:
size = 2;
break;
case 32:
size = 4;
break;
default:
return AE_ERROR;
}
BUG_ON(!raw_pci_ops);
result = raw_pci_ops->read(pci_id->segment, pci_id->bus,
PCI_DEVFN(pci_id->device, pci_id->function),
reg, size, value);
return (result ? AE_ERROR : AE_OK);
}
EXPORT_SYMBOL(acpi_os_read_pci_configuration);
acpi_status
acpi_os_write_pci_configuration(struct acpi_pci_id * pci_id, u32 reg,
acpi_integer value, u32 width)
{
int result, size;
switch (width) {
case 8:
size = 1;
break;
case 16:
size = 2;
break;
case 32:
size = 4;
break;
default:
return AE_ERROR;
}
BUG_ON(!raw_pci_ops);
result = raw_pci_ops->write(pci_id->segment, pci_id->bus,
PCI_DEVFN(pci_id->device, pci_id->function),
reg, size, value);
return (result ? AE_ERROR : AE_OK);
}
/* TODO: Change code to take advantage of driver model more */
static void acpi_os_derive_pci_id_2(acpi_handle rhandle, /* upper bound */
acpi_handle chandle, /* current node */
struct acpi_pci_id **id,
int *is_bridge, u8 * bus_number)
{
acpi_handle handle;
struct acpi_pci_id *pci_id = *id;
acpi_status status;
unsigned long temp;
acpi_object_type type;
u8 tu8;
acpi_get_parent(chandle, &handle);
if (handle != rhandle) {
acpi_os_derive_pci_id_2(rhandle, handle, &pci_id, is_bridge,
bus_number);
status = acpi_get_type(handle, &type);
if ((ACPI_FAILURE(status)) || (type != ACPI_TYPE_DEVICE))
return;
status =
acpi_evaluate_integer(handle, METHOD_NAME__ADR, NULL,
&temp);
if (ACPI_SUCCESS(status)) {
pci_id->device = ACPI_HIWORD(ACPI_LODWORD(temp));
pci_id->function = ACPI_LOWORD(ACPI_LODWORD(temp));
if (*is_bridge)
pci_id->bus = *bus_number;
/* any nicer way to get bus number of bridge ? */
status =
acpi_os_read_pci_configuration(pci_id, 0x0e, &tu8,
8);
if (ACPI_SUCCESS(status)
&& ((tu8 & 0x7f) == 1 || (tu8 & 0x7f) == 2)) {
status =
acpi_os_read_pci_configuration(pci_id, 0x18,
&tu8, 8);
if (!ACPI_SUCCESS(status)) {
/* Certainly broken... FIX ME */
return;
}
*is_bridge = 1;
pci_id->bus = tu8;
status =
acpi_os_read_pci_configuration(pci_id, 0x19,
&tu8, 8);
if (ACPI_SUCCESS(status)) {
*bus_number = tu8;
}
} else
*is_bridge = 0;
}
}
}
void acpi_os_derive_pci_id(acpi_handle rhandle, /* upper bound */
acpi_handle chandle, /* current node */
struct acpi_pci_id **id)
{
int is_bridge = 1;
u8 bus_number = (*id)->bus;
acpi_os_derive_pci_id_2(rhandle, chandle, id, &is_bridge, &bus_number);
}
static void acpi_os_execute_deferred(void *context)
{
struct acpi_os_dpc *dpc = NULL;
dpc = (struct acpi_os_dpc *)context;
if (!dpc) {
printk(KERN_ERR PREFIX "Invalid (NULL) context\n");
return;
}
dpc->function(dpc->context);
kfree(dpc);
return;
}
/*******************************************************************************
*
* FUNCTION: acpi_os_execute
*
* PARAMETERS: Type - Type of the callback
* Function - Function to be executed
* Context - Function parameters
*
* RETURN: Status
*
* DESCRIPTION: Depending on type, either queues function for deferred execution or
* immediately executes function on a separate thread.
*
******************************************************************************/
acpi_status acpi_os_execute(acpi_execute_type type,
acpi_osd_exec_callback function, void *context)
{
acpi_status status = AE_OK;
struct acpi_os_dpc *dpc;
struct work_struct *task;
ACPI_FUNCTION_TRACE("os_queue_for_execution");
ACPI_DEBUG_PRINT((ACPI_DB_EXEC,
"Scheduling function [%p(%p)] for deferred execution.\n",
function, context));
if (!function)
return_ACPI_STATUS(AE_BAD_PARAMETER);
/*
* Allocate/initialize DPC structure. Note that this memory will be
* freed by the callee. The kernel handles the tq_struct list in a
* way that allows us to also free its memory inside the callee.
* Because we may want to schedule several tasks with different
* parameters we can't use the approach some kernel code uses of
* having a static tq_struct.
* We can save time and code by allocating the DPC and tq_structs
* from the same memory.
*/
dpc =
kmalloc(sizeof(struct acpi_os_dpc) + sizeof(struct work_struct),
GFP_ATOMIC);
if (!dpc)
return_ACPI_STATUS(AE_NO_MEMORY);
dpc->function = function;
dpc->context = context;
task = (void *)(dpc + 1);
INIT_WORK(task, acpi_os_execute_deferred, (void *)dpc);
if (!queue_work(kacpid_wq, task)) {
ACPI_DEBUG_PRINT((ACPI_DB_ERROR,
"Call to queue_work() failed.\n"));
kfree(dpc);
status = AE_ERROR;
}
return_ACPI_STATUS(status);
}
EXPORT_SYMBOL(acpi_os_execute);
void acpi_os_wait_events_complete(void *context)
{
flush_workqueue(kacpid_wq);
}
EXPORT_SYMBOL(acpi_os_wait_events_complete);
/*
* Allocate the memory for a spinlock and initialize it.
*/
acpi_status acpi_os_create_lock(acpi_spinlock * handle)
{
spin_lock_init(*handle);
return AE_OK;
}
/*
* Deallocate the memory for a spinlock.
*/
void acpi_os_delete_lock(acpi_spinlock handle)
{
return;
}
acpi_status
acpi_os_create_semaphore(u32 max_units, u32 initial_units, acpi_handle * handle)
{
struct semaphore *sem = NULL;
sem = acpi_os_allocate(sizeof(struct semaphore));
if (!sem)
return AE_NO_MEMORY;
memset(sem, 0, sizeof(struct semaphore));
sema_init(sem, initial_units);
*handle = (acpi_handle *) sem;
ACPI_DEBUG_PRINT((ACPI_DB_MUTEX, "Creating semaphore[%p|%d].\n",
*handle, initial_units));
return AE_OK;
}
EXPORT_SYMBOL(acpi_os_create_semaphore);
/*
* TODO: A better way to delete semaphores? Linux doesn't have a
* 'delete_semaphore()' function -- may result in an invalid
* pointer dereference for non-synchronized consumers. Should
* we at least check for blocked threads and signal/cancel them?
*/
acpi_status acpi_os_delete_semaphore(acpi_handle handle)
{
struct semaphore *sem = (struct semaphore *)handle;
if (!sem)
return AE_BAD_PARAMETER;
ACPI_DEBUG_PRINT((ACPI_DB_MUTEX, "Deleting semaphore[%p].\n", handle));
kfree(sem);
sem = NULL;
return AE_OK;
}
EXPORT_SYMBOL(acpi_os_delete_semaphore);
/*
* TODO: The kernel doesn't have a 'down_timeout' function -- had to
* improvise. The process is to sleep for one scheduler quantum
* until the semaphore becomes available. Downside is that this
* may result in starvation for timeout-based waits when there's
* lots of semaphore activity.
*
* TODO: Support for units > 1?
*/
acpi_status acpi_os_wait_semaphore(acpi_handle handle, u32 units, u16 timeout)
{
acpi_status status = AE_OK;
struct semaphore *sem = (struct semaphore *)handle;
int ret = 0;
if (!sem || (units < 1))
return AE_BAD_PARAMETER;
if (units > 1)
return AE_SUPPORT;
ACPI_DEBUG_PRINT((ACPI_DB_MUTEX, "Waiting for semaphore[%p|%d|%d]\n",
handle, units, timeout));
/*
* This can be called during resume with interrupts off.
* Like boot-time, we should be single threaded and will
* always get the lock if we try -- timeout or not.
* If this doesn't succeed, then we will oops courtesy of
* might_sleep() in down().
*/
if (!down_trylock(sem))
return AE_OK;
switch (timeout) {
/*
* No Wait:
* --------
* A zero timeout value indicates that we shouldn't wait - just
* acquire the semaphore if available otherwise return AE_TIME
* (a.k.a. 'would block').
*/
case 0:
if (down_trylock(sem))
status = AE_TIME;
break;
/*
* Wait Indefinitely:
* ------------------
*/
case ACPI_WAIT_FOREVER:
down(sem);
break;
/*
* Wait w/ Timeout:
* ----------------
*/
default:
// TODO: A better timeout algorithm?
{
int i = 0;
static const int quantum_ms = 1000 / HZ;
ret = down_trylock(sem);
for (i = timeout; (i > 0 && ret != 0); i -= quantum_ms) {
schedule_timeout_interruptible(1);
ret = down_trylock(sem);
}
if (ret != 0)
status = AE_TIME;
}
break;
}
if (ACPI_FAILURE(status)) {
ACPI_DEBUG_PRINT((ACPI_DB_MUTEX,
"Failed to acquire semaphore[%p|%d|%d], %s",
handle, units, timeout,
acpi_format_exception(status)));
} else {
ACPI_DEBUG_PRINT((ACPI_DB_MUTEX,
"Acquired semaphore[%p|%d|%d]", handle,
units, timeout));
}
return status;
}
EXPORT_SYMBOL(acpi_os_wait_semaphore);
/*
* TODO: Support for units > 1?
*/
acpi_status acpi_os_signal_semaphore(acpi_handle handle, u32 units)
{
struct semaphore *sem = (struct semaphore *)handle;
if (!sem || (units < 1))
return AE_BAD_PARAMETER;
if (units > 1)
return AE_SUPPORT;
ACPI_DEBUG_PRINT((ACPI_DB_MUTEX, "Signaling semaphore[%p|%d]\n", handle,
units));
up(sem);
return AE_OK;
}
EXPORT_SYMBOL(acpi_os_signal_semaphore);
#ifdef ACPI_FUTURE_USAGE
u32 acpi_os_get_line(char *buffer)
{
#ifdef ENABLE_DEBUGGER
if (acpi_in_debugger) {
u32 chars;
kdb_read(buffer, sizeof(line_buf));
/* remove the CR kdb includes */
chars = strlen(buffer) - 1;
buffer[chars] = '\0';
}
#endif
return 0;
}
#endif /* ACPI_FUTURE_USAGE */
/* Assumes no unreadable holes inbetween */
u8 acpi_os_readable(void *ptr, acpi_size len)
{
#if defined(__i386__) || defined(__x86_64__)
char tmp;
return !__get_user(tmp, (char __user *)ptr)
&& !__get_user(tmp, (char __user *)ptr + len - 1);
#endif
return 1;
}
#ifdef ACPI_FUTURE_USAGE
u8 acpi_os_writable(void *ptr, acpi_size len)
{
/* could do dummy write (racy) or a kernel page table lookup.
The later may be difficult at early boot when kmap doesn't work yet. */
return 1;
}
#endif
acpi_status acpi_os_signal(u32 function, void *info)
{
switch (function) {
case ACPI_SIGNAL_FATAL:
printk(KERN_ERR PREFIX "Fatal opcode executed\n");
break;
case ACPI_SIGNAL_BREAKPOINT:
/*
* AML Breakpoint
* ACPI spec. says to treat it as a NOP unless
* you are debugging. So if/when we integrate
* AML debugger into the kernel debugger its
* hook will go here. But until then it is
* not useful to print anything on breakpoints.
*/
break;
default:
break;
}
return AE_OK;
}
EXPORT_SYMBOL(acpi_os_signal);
static int __init acpi_os_name_setup(char *str)
{
char *p = acpi_os_name;
int count = ACPI_MAX_OVERRIDE_LEN - 1;
if (!str || !*str)
return 0;
for (; count-- && str && *str; str++) {
if (isalnum(*str) || *str == ' ' || *str == ':')
*p++ = *str;
else if (*str == '\'' || *str == '"')
continue;
else
break;
}
*p = 0;
return 1;
}
__setup("acpi_os_name=", acpi_os_name_setup);
/*
* _OSI control
* empty string disables _OSI
* TBD additional string adds to _OSI
*/
static int __init acpi_osi_setup(char *str)
{
if (str == NULL || *str == '\0') {
printk(KERN_INFO PREFIX "_OSI method disabled\n");
acpi_gbl_create_osi_method = FALSE;
} else {
/* TBD */
printk(KERN_ERR PREFIX "_OSI additional string ignored -- %s\n",
str);
}
return 1;
}
__setup("acpi_osi=", acpi_osi_setup);
/* enable serialization to combat AE_ALREADY_EXISTS errors */
static int __init acpi_serialize_setup(char *str)
{
printk(KERN_INFO PREFIX "serialize enabled\n");
acpi_gbl_all_methods_serialized = TRUE;
return 1;
}
__setup("acpi_serialize", acpi_serialize_setup);
/*
* Wake and Run-Time GPES are expected to be separate.
* We disable wake-GPEs at run-time to prevent spurious
* interrupts.
*
* However, if a system exists that shares Wake and
* Run-time events on the same GPE this flag is available
* to tell Linux to keep the wake-time GPEs enabled at run-time.
*/
static int __init acpi_wake_gpes_always_on_setup(char *str)
{
printk(KERN_INFO PREFIX "wake GPEs not disabled\n");
acpi_gbl_leave_wake_gpes_disabled = FALSE;
return 1;
}
__setup("acpi_wake_gpes_always_on", acpi_wake_gpes_always_on_setup);
static int __init acpi_hotkey_setup(char *str)
{
acpi_specific_hotkey_enabled = FALSE;
return 1;
}
__setup("acpi_generic_hotkey", acpi_hotkey_setup);
/*
* max_cstate is defined in the base kernel so modules can
* change it w/o depending on the state of the processor module.
*/
unsigned int max_cstate = ACPI_PROCESSOR_MAX_POWER;
EXPORT_SYMBOL(max_cstate);
/*
* Acquire a spinlock.
*
* handle is a pointer to the spinlock_t.
*/
acpi_cpu_flags acpi_os_acquire_lock(acpi_spinlock lockp)
{
acpi_cpu_flags flags;
spin_lock_irqsave(lockp, flags);
return flags;
}
/*
* Release a spinlock. See above.
*/
void acpi_os_release_lock(acpi_spinlock lockp, acpi_cpu_flags flags)
{
spin_unlock_irqrestore(lockp, flags);
}
#ifndef ACPI_USE_LOCAL_CACHE
/*******************************************************************************
*
* FUNCTION: acpi_os_create_cache
*
* PARAMETERS: name - Ascii name for the cache
* size - Size of each cached object
* depth - Maximum depth of the cache (in objects) <ignored>
* cache - Where the new cache object is returned
*
* RETURN: status
*
* DESCRIPTION: Create a cache object
*
******************************************************************************/
acpi_status
acpi_os_create_cache(char *name, u16 size, u16 depth, acpi_cache_t ** cache)
{
*cache = kmem_cache_create(name, size, 0, 0, NULL, NULL);
if (cache == NULL)
return AE_ERROR;
else
return AE_OK;
}
/*******************************************************************************
*
* FUNCTION: acpi_os_purge_cache
*
* PARAMETERS: Cache - Handle to cache object
*
* RETURN: Status
*
* DESCRIPTION: Free all objects within the requested cache.
*
******************************************************************************/
acpi_status acpi_os_purge_cache(acpi_cache_t * cache)
{
(void)kmem_cache_shrink(cache);
return (AE_OK);
}
/*******************************************************************************
*
* FUNCTION: acpi_os_delete_cache
*
* PARAMETERS: Cache - Handle to cache object
*
* RETURN: Status
*
* DESCRIPTION: Free all objects within the requested cache and delete the
* cache object.
*
******************************************************************************/
acpi_status acpi_os_delete_cache(acpi_cache_t * cache)
{
kmem_cache_destroy(cache);
return (AE_OK);
}
/*******************************************************************************
*
* FUNCTION: acpi_os_release_object
*
* PARAMETERS: Cache - Handle to cache object
* Object - The object to be released
*
* RETURN: None
*
* DESCRIPTION: Release an object to the specified cache. If cache is full,
* the object is deleted.
*
******************************************************************************/
acpi_status acpi_os_release_object(acpi_cache_t * cache, void *object)
{
kmem_cache_free(cache, object);
return (AE_OK);
}
/******************************************************************************
*
* FUNCTION: acpi_os_validate_interface
*
* PARAMETERS: interface - Requested interface to be validated
*
* RETURN: AE_OK if interface is supported, AE_SUPPORT otherwise
*
* DESCRIPTION: Match an interface string to the interfaces supported by the
* host. Strings originate from an AML call to the _OSI method.
*
*****************************************************************************/
acpi_status
acpi_os_validate_interface (char *interface)
{
return AE_SUPPORT;
}
/******************************************************************************
*
* FUNCTION: acpi_os_validate_address
*
* PARAMETERS: space_id - ACPI space ID
* address - Physical address
* length - Address length
*
* RETURN: AE_OK if address/length is valid for the space_id. Otherwise,
* should return AE_AML_ILLEGAL_ADDRESS.
*
* DESCRIPTION: Validate a system address via the host OS. Used to validate
* the addresses accessed by AML operation regions.
*
*****************************************************************************/
acpi_status
acpi_os_validate_address (
u8 space_id,
acpi_physical_address address,
acpi_size length)
{
return AE_OK;
}
#endif