mirror of
https://github.com/FEX-Emu/linux.git
synced 2025-01-14 13:39:10 +00:00
b14e840d04
The document says: |2.1 Problem description | When at least two USB devices are simultaneously running, it is observed that | sometimes the INT corresponding to one of the USB devices stops occurring. This may | be observed sometimes with USB-to-serial or USB-to-network devices. | The problem is not noticed when only USB mass storage devices are running. |2.2 Implication | This issue is because of the clearing of the respective Done Map bit on reading the ATL | PTD Done Map register when an INT is generated by another PTD completion, but is not | found set on that read access. In this situation, the respective Done Map bit will remain | reset and no further INT will be asserted so the data transfer corresponding to that USB | device will stop. |2.3 Workaround | An SOF INT can be used instead of an ATL INT with polling on Done bits. A time-out can | be implemented and if a certain Done bit is never set, verification of the PTD completion | can be done by reading PTD contents (valid bit). | This is a proven workaround implemented in software. Russell King run into this with an USB-to-serial converter. This patch implements his suggestion to enable the high frequent SOF interrupt only at the time we have ATL packages queued. It goes even one step further and enables the SOF interrupt only if we have more than one ATL packet queued at the same time. Cc: <stable@kernel.org> # [2.6.35.x, 2.6.36.x, 2.6.37.x] Tested-by: Russell King <rmk+kernel@arm.linux.org.uk> Signed-off-by: Sebastian Andrzej Siewior <bigeasy@linutronix.de> Signed-off-by: Greg Kroah-Hartman <gregkh@suse.de>
To understand all the Linux-USB framework, you'll use these resources: * This source code. This is necessarily an evolving work, and includes kerneldoc that should help you get a current overview. ("make pdfdocs", and then look at "usb.pdf" for host side and "gadget.pdf" for peripheral side.) Also, Documentation/usb has more information. * The USB 2.0 specification (from www.usb.org), with supplements such as those for USB OTG and the various device classes. The USB specification has a good overview chapter, and USB peripherals conform to the widely known "Chapter 9". * Chip specifications for USB controllers. Examples include host controllers (on PCs, servers, and more); peripheral controllers (in devices with Linux firmware, like printers or cell phones); and hard-wired peripherals like Ethernet adapters. * Specifications for other protocols implemented by USB peripheral functions. Some are vendor-specific; others are vendor-neutral but just standardized outside of the www.usb.org team. Here is a list of what each subdirectory here is, and what is contained in them. core/ - This is for the core USB host code, including the usbfs files and the hub class driver ("khubd"). host/ - This is for USB host controller drivers. This includes UHCI, OHCI, EHCI, and others that might be used with more specialized "embedded" systems. gadget/ - This is for USB peripheral controller drivers and the various gadget drivers which talk to them. Individual USB driver directories. A new driver should be added to the first subdirectory in the list below that it fits into. image/ - This is for still image drivers, like scanners or digital cameras. ../input/ - This is for any driver that uses the input subsystem, like keyboard, mice, touchscreens, tablets, etc. ../media/ - This is for multimedia drivers, like video cameras, radios, and any other drivers that talk to the v4l subsystem. ../net/ - This is for network drivers. serial/ - This is for USB to serial drivers. storage/ - This is for USB mass-storage drivers. class/ - This is for all USB device drivers that do not fit into any of the above categories, and work for a range of USB Class specified devices. misc/ - This is for all USB device drivers that do not fit into any of the above categories.