mirror of
https://github.com/FEX-Emu/linux.git
synced 2024-12-27 11:55:53 +00:00
5907630ffc
If the size of DRAM is not an exact power of two, we may not have covered DRAM in its entirety with large 16 and 4 MiB pages. If that is the case, we can get non-recoverable page faults when doing the final PTE mappings for the non-large page PTEs. Consequently, we restrict the top end of DRAM currently allocable by updating '__initial_memory_limit_addr' so that calls to the LMB to allocate PTEs for "tail" coverage with normal-sized pages (or other reasons) do not attempt to allocate outside the allowed range. Signed-off-by: Grant Erickson <gerickson@nuovations.com> Signed-off-by: Josh Boyer <jwboyer@linux.vnet.ibm.com>
147 lines
4.0 KiB
C
147 lines
4.0 KiB
C
/*
|
|
* This file contains the routines for initializing the MMU
|
|
* on the 4xx series of chips.
|
|
* -- paulus
|
|
*
|
|
* Derived from arch/ppc/mm/init.c:
|
|
* Copyright (C) 1995-1996 Gary Thomas (gdt@linuxppc.org)
|
|
*
|
|
* Modifications by Paul Mackerras (PowerMac) (paulus@cs.anu.edu.au)
|
|
* and Cort Dougan (PReP) (cort@cs.nmt.edu)
|
|
* Copyright (C) 1996 Paul Mackerras
|
|
*
|
|
* Derived from "arch/i386/mm/init.c"
|
|
* Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
|
|
*
|
|
* This program is free software; you can redistribute it and/or
|
|
* modify it under the terms of the GNU General Public License
|
|
* as published by the Free Software Foundation; either version
|
|
* 2 of the License, or (at your option) any later version.
|
|
*
|
|
*/
|
|
|
|
#include <linux/signal.h>
|
|
#include <linux/sched.h>
|
|
#include <linux/kernel.h>
|
|
#include <linux/errno.h>
|
|
#include <linux/string.h>
|
|
#include <linux/types.h>
|
|
#include <linux/ptrace.h>
|
|
#include <linux/mman.h>
|
|
#include <linux/mm.h>
|
|
#include <linux/swap.h>
|
|
#include <linux/stddef.h>
|
|
#include <linux/vmalloc.h>
|
|
#include <linux/init.h>
|
|
#include <linux/delay.h>
|
|
#include <linux/highmem.h>
|
|
|
|
#include <asm/pgalloc.h>
|
|
#include <asm/prom.h>
|
|
#include <asm/io.h>
|
|
#include <asm/mmu_context.h>
|
|
#include <asm/pgtable.h>
|
|
#include <asm/mmu.h>
|
|
#include <asm/uaccess.h>
|
|
#include <asm/smp.h>
|
|
#include <asm/bootx.h>
|
|
#include <asm/machdep.h>
|
|
#include <asm/setup.h>
|
|
#include "mmu_decl.h"
|
|
|
|
extern int __map_without_ltlbs;
|
|
/*
|
|
* MMU_init_hw does the chip-specific initialization of the MMU hardware.
|
|
*/
|
|
void __init MMU_init_hw(void)
|
|
{
|
|
/*
|
|
* The Zone Protection Register (ZPR) defines how protection will
|
|
* be applied to every page which is a member of a given zone. At
|
|
* present, we utilize only two of the 4xx's zones.
|
|
* The zone index bits (of ZSEL) in the PTE are used for software
|
|
* indicators, except the LSB. For user access, zone 1 is used,
|
|
* for kernel access, zone 0 is used. We set all but zone 1
|
|
* to zero, allowing only kernel access as indicated in the PTE.
|
|
* For zone 1, we set a 01 binary (a value of 10 will not work)
|
|
* to allow user access as indicated in the PTE. This also allows
|
|
* kernel access as indicated in the PTE.
|
|
*/
|
|
|
|
mtspr(SPRN_ZPR, 0x10000000);
|
|
|
|
flush_instruction_cache();
|
|
|
|
/*
|
|
* Set up the real-mode cache parameters for the exception vector
|
|
* handlers (which are run in real-mode).
|
|
*/
|
|
|
|
mtspr(SPRN_DCWR, 0x00000000); /* All caching is write-back */
|
|
|
|
/*
|
|
* Cache instruction and data space where the exception
|
|
* vectors and the kernel live in real-mode.
|
|
*/
|
|
|
|
mtspr(SPRN_DCCR, 0xF0000000); /* 512 MB of data space at 0x0. */
|
|
mtspr(SPRN_ICCR, 0xF0000000); /* 512 MB of instr. space at 0x0. */
|
|
}
|
|
|
|
#define LARGE_PAGE_SIZE_16M (1<<24)
|
|
#define LARGE_PAGE_SIZE_4M (1<<22)
|
|
|
|
unsigned long __init mmu_mapin_ram(void)
|
|
{
|
|
unsigned long v, s, mapped;
|
|
phys_addr_t p;
|
|
|
|
v = KERNELBASE;
|
|
p = 0;
|
|
s = total_lowmem;
|
|
|
|
if (__map_without_ltlbs)
|
|
return 0;
|
|
|
|
while (s >= LARGE_PAGE_SIZE_16M) {
|
|
pmd_t *pmdp;
|
|
unsigned long val = p | _PMD_SIZE_16M | _PAGE_HWEXEC | _PAGE_HWWRITE;
|
|
|
|
pmdp = pmd_offset(pud_offset(pgd_offset_k(v), v), v);
|
|
pmd_val(*pmdp++) = val;
|
|
pmd_val(*pmdp++) = val;
|
|
pmd_val(*pmdp++) = val;
|
|
pmd_val(*pmdp++) = val;
|
|
|
|
v += LARGE_PAGE_SIZE_16M;
|
|
p += LARGE_PAGE_SIZE_16M;
|
|
s -= LARGE_PAGE_SIZE_16M;
|
|
}
|
|
|
|
while (s >= LARGE_PAGE_SIZE_4M) {
|
|
pmd_t *pmdp;
|
|
unsigned long val = p | _PMD_SIZE_4M | _PAGE_HWEXEC | _PAGE_HWWRITE;
|
|
|
|
pmdp = pmd_offset(pud_offset(pgd_offset_k(v), v), v);
|
|
pmd_val(*pmdp) = val;
|
|
|
|
v += LARGE_PAGE_SIZE_4M;
|
|
p += LARGE_PAGE_SIZE_4M;
|
|
s -= LARGE_PAGE_SIZE_4M;
|
|
}
|
|
|
|
mapped = total_lowmem - s;
|
|
|
|
/* If the size of RAM is not an exact power of two, we may not
|
|
* have covered RAM in its entirety with 16 and 4 MiB
|
|
* pages. Consequently, restrict the top end of RAM currently
|
|
* allocable so that calls to the LMB to allocate PTEs for "tail"
|
|
* coverage with normal-sized pages (or other reasons) do not
|
|
* attempt to allocate outside the allowed range.
|
|
*/
|
|
|
|
__initial_memory_limit_addr = memstart_addr + mapped;
|
|
|
|
return mapped;
|
|
}
|