linux/arch/x86/include/asm/spinlock.h
Linus Torvalds bc08b449ee lockref: implement lockless reference count updates using cmpxchg()
Instead of taking the spinlock, the lockless versions atomically check
that the lock is not taken, and do the reference count update using a
cmpxchg() loop.  This is semantically identical to doing the reference
count update protected by the lock, but avoids the "wait for lock"
contention that you get when accesses to the reference count are
contended.

Note that a "lockref" is absolutely _not_ equivalent to an atomic_t.
Even when the lockref reference counts are updated atomically with
cmpxchg, the fact that they also verify the state of the spinlock means
that the lockless updates can never happen while somebody else holds the
spinlock.

So while "lockref_put_or_lock()" looks a lot like just another name for
"atomic_dec_and_lock()", and both optimize to lockless updates, they are
fundamentally different: the decrement done by atomic_dec_and_lock() is
truly independent of any lock (as long as it doesn't decrement to zero),
so a locked region can still see the count change.

The lockref structure, in contrast, really is a *locked* reference
count.  If you hold the spinlock, the reference count will be stable and
you can modify the reference count without using atomics, because even
the lockless updates will see and respect the state of the lock.

In order to enable the cmpxchg lockless code, the architecture needs to
do three things:

 (1) Make sure that the "arch_spinlock_t" and an "unsigned int" can fit
     in an aligned u64, and have a "cmpxchg()" implementation that works
     on such a u64 data type.

 (2) define a helper function to test for a spinlock being unlocked
     ("arch_spin_value_unlocked()")

 (3) select the "ARCH_USE_CMPXCHG_LOCKREF" config variable in its
     Kconfig file.

This enables it for x86-64 (but not 32-bit, we'd need to make sure
cmpxchg() turns into the proper cmpxchg8b in order to enable it for
32-bit mode).

Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2013-09-02 12:12:15 -07:00

242 lines
6.2 KiB
C

#ifndef _ASM_X86_SPINLOCK_H
#define _ASM_X86_SPINLOCK_H
#include <linux/atomic.h>
#include <asm/page.h>
#include <asm/processor.h>
#include <linux/compiler.h>
#include <asm/paravirt.h>
/*
* Your basic SMP spinlocks, allowing only a single CPU anywhere
*
* Simple spin lock operations. There are two variants, one clears IRQ's
* on the local processor, one does not.
*
* These are fair FIFO ticket locks, which support up to 2^16 CPUs.
*
* (the type definitions are in asm/spinlock_types.h)
*/
#ifdef CONFIG_X86_32
# define LOCK_PTR_REG "a"
#else
# define LOCK_PTR_REG "D"
#endif
#if defined(CONFIG_X86_32) && \
(defined(CONFIG_X86_OOSTORE) || defined(CONFIG_X86_PPRO_FENCE))
/*
* On PPro SMP or if we are using OOSTORE, we use a locked operation to unlock
* (PPro errata 66, 92)
*/
# define UNLOCK_LOCK_PREFIX LOCK_PREFIX
#else
# define UNLOCK_LOCK_PREFIX
#endif
static __always_inline int arch_spin_value_unlocked(arch_spinlock_t lock)
{
return lock.tickets.head == lock.tickets.tail;
}
/*
* Ticket locks are conceptually two parts, one indicating the current head of
* the queue, and the other indicating the current tail. The lock is acquired
* by atomically noting the tail and incrementing it by one (thus adding
* ourself to the queue and noting our position), then waiting until the head
* becomes equal to the the initial value of the tail.
*
* We use an xadd covering *both* parts of the lock, to increment the tail and
* also load the position of the head, which takes care of memory ordering
* issues and should be optimal for the uncontended case. Note the tail must be
* in the high part, because a wide xadd increment of the low part would carry
* up and contaminate the high part.
*/
static __always_inline void __ticket_spin_lock(arch_spinlock_t *lock)
{
register struct __raw_tickets inc = { .tail = 1 };
inc = xadd(&lock->tickets, inc);
for (;;) {
if (inc.head == inc.tail)
break;
cpu_relax();
inc.head = ACCESS_ONCE(lock->tickets.head);
}
barrier(); /* make sure nothing creeps before the lock is taken */
}
static __always_inline int __ticket_spin_trylock(arch_spinlock_t *lock)
{
arch_spinlock_t old, new;
old.tickets = ACCESS_ONCE(lock->tickets);
if (old.tickets.head != old.tickets.tail)
return 0;
new.head_tail = old.head_tail + (1 << TICKET_SHIFT);
/* cmpxchg is a full barrier, so nothing can move before it */
return cmpxchg(&lock->head_tail, old.head_tail, new.head_tail) == old.head_tail;
}
static __always_inline void __ticket_spin_unlock(arch_spinlock_t *lock)
{
__add(&lock->tickets.head, 1, UNLOCK_LOCK_PREFIX);
}
static inline int __ticket_spin_is_locked(arch_spinlock_t *lock)
{
struct __raw_tickets tmp = ACCESS_ONCE(lock->tickets);
return tmp.tail != tmp.head;
}
static inline int __ticket_spin_is_contended(arch_spinlock_t *lock)
{
struct __raw_tickets tmp = ACCESS_ONCE(lock->tickets);
return (__ticket_t)(tmp.tail - tmp.head) > 1;
}
#ifndef CONFIG_PARAVIRT_SPINLOCKS
static inline int arch_spin_is_locked(arch_spinlock_t *lock)
{
return __ticket_spin_is_locked(lock);
}
static inline int arch_spin_is_contended(arch_spinlock_t *lock)
{
return __ticket_spin_is_contended(lock);
}
#define arch_spin_is_contended arch_spin_is_contended
static __always_inline void arch_spin_lock(arch_spinlock_t *lock)
{
__ticket_spin_lock(lock);
}
static __always_inline int arch_spin_trylock(arch_spinlock_t *lock)
{
return __ticket_spin_trylock(lock);
}
static __always_inline void arch_spin_unlock(arch_spinlock_t *lock)
{
__ticket_spin_unlock(lock);
}
static __always_inline void arch_spin_lock_flags(arch_spinlock_t *lock,
unsigned long flags)
{
arch_spin_lock(lock);
}
#endif /* CONFIG_PARAVIRT_SPINLOCKS */
static inline void arch_spin_unlock_wait(arch_spinlock_t *lock)
{
while (arch_spin_is_locked(lock))
cpu_relax();
}
/*
* Read-write spinlocks, allowing multiple readers
* but only one writer.
*
* NOTE! it is quite common to have readers in interrupts
* but no interrupt writers. For those circumstances we
* can "mix" irq-safe locks - any writer needs to get a
* irq-safe write-lock, but readers can get non-irqsafe
* read-locks.
*
* On x86, we implement read-write locks as a 32-bit counter
* with the high bit (sign) being the "contended" bit.
*/
/**
* read_can_lock - would read_trylock() succeed?
* @lock: the rwlock in question.
*/
static inline int arch_read_can_lock(arch_rwlock_t *lock)
{
return lock->lock > 0;
}
/**
* write_can_lock - would write_trylock() succeed?
* @lock: the rwlock in question.
*/
static inline int arch_write_can_lock(arch_rwlock_t *lock)
{
return lock->write == WRITE_LOCK_CMP;
}
static inline void arch_read_lock(arch_rwlock_t *rw)
{
asm volatile(LOCK_PREFIX READ_LOCK_SIZE(dec) " (%0)\n\t"
"jns 1f\n"
"call __read_lock_failed\n\t"
"1:\n"
::LOCK_PTR_REG (rw) : "memory");
}
static inline void arch_write_lock(arch_rwlock_t *rw)
{
asm volatile(LOCK_PREFIX WRITE_LOCK_SUB(%1) "(%0)\n\t"
"jz 1f\n"
"call __write_lock_failed\n\t"
"1:\n"
::LOCK_PTR_REG (&rw->write), "i" (RW_LOCK_BIAS)
: "memory");
}
static inline int arch_read_trylock(arch_rwlock_t *lock)
{
READ_LOCK_ATOMIC(t) *count = (READ_LOCK_ATOMIC(t) *)lock;
if (READ_LOCK_ATOMIC(dec_return)(count) >= 0)
return 1;
READ_LOCK_ATOMIC(inc)(count);
return 0;
}
static inline int arch_write_trylock(arch_rwlock_t *lock)
{
atomic_t *count = (atomic_t *)&lock->write;
if (atomic_sub_and_test(WRITE_LOCK_CMP, count))
return 1;
atomic_add(WRITE_LOCK_CMP, count);
return 0;
}
static inline void arch_read_unlock(arch_rwlock_t *rw)
{
asm volatile(LOCK_PREFIX READ_LOCK_SIZE(inc) " %0"
:"+m" (rw->lock) : : "memory");
}
static inline void arch_write_unlock(arch_rwlock_t *rw)
{
asm volatile(LOCK_PREFIX WRITE_LOCK_ADD(%1) "%0"
: "+m" (rw->write) : "i" (RW_LOCK_BIAS) : "memory");
}
#define arch_read_lock_flags(lock, flags) arch_read_lock(lock)
#define arch_write_lock_flags(lock, flags) arch_write_lock(lock)
#undef READ_LOCK_SIZE
#undef READ_LOCK_ATOMIC
#undef WRITE_LOCK_ADD
#undef WRITE_LOCK_SUB
#undef WRITE_LOCK_CMP
#define arch_spin_relax(lock) cpu_relax()
#define arch_read_relax(lock) cpu_relax()
#define arch_write_relax(lock) cpu_relax()
#endif /* _ASM_X86_SPINLOCK_H */