linux/drivers/net/can/pch_can.c
Masayuki Ohtake b21d18b51b can: Topcliff: Add PCH_CAN driver.
CAN driver of Topcliff PCH

Topcliff PCH is the platform controller hub that is going to be used in
Intel's upcoming general embedded platform. All IO peripherals in
Topcliff PCH are actually devices sitting on AMBA bus.
Topcliff PCH has CAN I/F. This driver enables CAN function.

Signed-off-by: Masayuki Ohtake <masa-korg@dsn.okisemi.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
2010-10-24 14:42:57 -07:00

1464 lines
39 KiB
C

/*
* Copyright (C) 1999 - 2010 Intel Corporation.
* Copyright (C) 2010 OKI SEMICONDUCTOR Co., LTD.
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; version 2 of the License.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307, USA.
*/
#include <linux/interrupt.h>
#include <linux/delay.h>
#include <linux/io.h>
#include <linux/module.h>
#include <linux/sched.h>
#include <linux/pci.h>
#include <linux/init.h>
#include <linux/kernel.h>
#include <linux/types.h>
#include <linux/errno.h>
#include <linux/netdevice.h>
#include <linux/skbuff.h>
#include <linux/can.h>
#include <linux/can/dev.h>
#include <linux/can/error.h>
#define MAX_MSG_OBJ 32
#define MSG_OBJ_RX 0 /* The receive message object flag. */
#define MSG_OBJ_TX 1 /* The transmit message object flag. */
#define ENABLE 1 /* The enable flag */
#define DISABLE 0 /* The disable flag */
#define CAN_CTRL_INIT 0x0001 /* The INIT bit of CANCONT register. */
#define CAN_CTRL_IE 0x0002 /* The IE bit of CAN control register */
#define CAN_CTRL_IE_SIE_EIE 0x000e
#define CAN_CTRL_CCE 0x0040
#define CAN_CTRL_OPT 0x0080 /* The OPT bit of CANCONT register. */
#define CAN_OPT_SILENT 0x0008 /* The Silent bit of CANOPT reg. */
#define CAN_OPT_LBACK 0x0010 /* The LoopBack bit of CANOPT reg. */
#define CAN_CMASK_RX_TX_SET 0x00f3
#define CAN_CMASK_RX_TX_GET 0x0073
#define CAN_CMASK_ALL 0xff
#define CAN_CMASK_RDWR 0x80
#define CAN_CMASK_ARB 0x20
#define CAN_CMASK_CTRL 0x10
#define CAN_CMASK_MASK 0x40
#define CAN_CMASK_NEWDAT 0x04
#define CAN_CMASK_CLRINTPND 0x08
#define CAN_IF_MCONT_NEWDAT 0x8000
#define CAN_IF_MCONT_INTPND 0x2000
#define CAN_IF_MCONT_UMASK 0x1000
#define CAN_IF_MCONT_TXIE 0x0800
#define CAN_IF_MCONT_RXIE 0x0400
#define CAN_IF_MCONT_RMTEN 0x0200
#define CAN_IF_MCONT_TXRQXT 0x0100
#define CAN_IF_MCONT_EOB 0x0080
#define CAN_IF_MCONT_DLC 0x000f
#define CAN_IF_MCONT_MSGLOST 0x4000
#define CAN_MASK2_MDIR_MXTD 0xc000
#define CAN_ID2_DIR 0x2000
#define CAN_ID_MSGVAL 0x8000
#define CAN_STATUS_INT 0x8000
#define CAN_IF_CREQ_BUSY 0x8000
#define CAN_ID2_XTD 0x4000
#define CAN_REC 0x00007f00
#define CAN_TEC 0x000000ff
#define PCH_RX_OK 0x00000010
#define PCH_TX_OK 0x00000008
#define PCH_BUS_OFF 0x00000080
#define PCH_EWARN 0x00000040
#define PCH_EPASSIV 0x00000020
#define PCH_LEC0 0x00000001
#define PCH_LEC1 0x00000002
#define PCH_LEC2 0x00000004
#define PCH_LEC_ALL (PCH_LEC0 | PCH_LEC1 | PCH_LEC2)
#define PCH_STUF_ERR PCH_LEC0
#define PCH_FORM_ERR PCH_LEC1
#define PCH_ACK_ERR (PCH_LEC0 | PCH_LEC1)
#define PCH_BIT1_ERR PCH_LEC2
#define PCH_BIT0_ERR (PCH_LEC0 | PCH_LEC2)
#define PCH_CRC_ERR (PCH_LEC1 | PCH_LEC2)
/* bit position of certain controller bits. */
#define BIT_BITT_BRP 0
#define BIT_BITT_SJW 6
#define BIT_BITT_TSEG1 8
#define BIT_BITT_TSEG2 12
#define BIT_IF1_MCONT_RXIE 10
#define BIT_IF2_MCONT_TXIE 11
#define BIT_BRPE_BRPE 6
#define BIT_ES_TXERRCNT 0
#define BIT_ES_RXERRCNT 8
#define MSK_BITT_BRP 0x3f
#define MSK_BITT_SJW 0xc0
#define MSK_BITT_TSEG1 0xf00
#define MSK_BITT_TSEG2 0x7000
#define MSK_BRPE_BRPE 0x3c0
#define MSK_BRPE_GET 0x0f
#define MSK_CTRL_IE_SIE_EIE 0x07
#define MSK_MCONT_TXIE 0x08
#define MSK_MCONT_RXIE 0x10
#define PCH_CAN_NO_TX_BUFF 1
#define COUNTER_LIMIT 10
#define PCH_CAN_CLK 50000000 /* 50MHz */
/* Define the number of message object.
* PCH CAN communications are done via Message RAM.
* The Message RAM consists of 32 message objects. */
#define PCH_RX_OBJ_NUM 26 /* 1~ PCH_RX_OBJ_NUM is Rx*/
#define PCH_TX_OBJ_NUM 6 /* PCH_RX_OBJ_NUM is RX ~ Tx*/
#define PCH_OBJ_NUM (PCH_TX_OBJ_NUM + PCH_RX_OBJ_NUM)
#define PCH_FIFO_THRESH 16
enum pch_can_mode {
PCH_CAN_ENABLE,
PCH_CAN_DISABLE,
PCH_CAN_ALL,
PCH_CAN_NONE,
PCH_CAN_STOP,
PCH_CAN_RUN
};
struct pch_can_regs {
u32 cont;
u32 stat;
u32 errc;
u32 bitt;
u32 intr;
u32 opt;
u32 brpe;
u32 reserve1;
u32 if1_creq;
u32 if1_cmask;
u32 if1_mask1;
u32 if1_mask2;
u32 if1_id1;
u32 if1_id2;
u32 if1_mcont;
u32 if1_dataa1;
u32 if1_dataa2;
u32 if1_datab1;
u32 if1_datab2;
u32 reserve2;
u32 reserve3[12];
u32 if2_creq;
u32 if2_cmask;
u32 if2_mask1;
u32 if2_mask2;
u32 if2_id1;
u32 if2_id2;
u32 if2_mcont;
u32 if2_dataa1;
u32 if2_dataa2;
u32 if2_datab1;
u32 if2_datab2;
u32 reserve4;
u32 reserve5[20];
u32 treq1;
u32 treq2;
u32 reserve6[2];
u32 reserve7[56];
u32 reserve8[3];
u32 srst;
};
struct pch_can_priv {
struct can_priv can;
unsigned int can_num;
struct pci_dev *dev;
unsigned int tx_enable[MAX_MSG_OBJ];
unsigned int rx_enable[MAX_MSG_OBJ];
unsigned int rx_link[MAX_MSG_OBJ];
unsigned int int_enables;
unsigned int int_stat;
struct net_device *ndev;
spinlock_t msgif_reg_lock; /* Message Interface Registers Access Lock*/
unsigned int msg_obj[MAX_MSG_OBJ];
struct pch_can_regs __iomem *regs;
struct napi_struct napi;
unsigned int tx_obj; /* Point next Tx Obj index */
unsigned int use_msi;
};
static struct can_bittiming_const pch_can_bittiming_const = {
.name = KBUILD_MODNAME,
.tseg1_min = 1,
.tseg1_max = 16,
.tseg2_min = 1,
.tseg2_max = 8,
.sjw_max = 4,
.brp_min = 1,
.brp_max = 1024, /* 6bit + extended 4bit */
.brp_inc = 1,
};
static DEFINE_PCI_DEVICE_TABLE(pch_pci_tbl) = {
{PCI_VENDOR_ID_INTEL, 0x8818, PCI_ANY_ID, PCI_ANY_ID,},
{0,}
};
MODULE_DEVICE_TABLE(pci, pch_pci_tbl);
static inline void pch_can_bit_set(u32 *addr, u32 mask)
{
iowrite32(ioread32(addr) | mask, addr);
}
static inline void pch_can_bit_clear(u32 *addr, u32 mask)
{
iowrite32(ioread32(addr) & ~mask, addr);
}
static void pch_can_set_run_mode(struct pch_can_priv *priv,
enum pch_can_mode mode)
{
switch (mode) {
case PCH_CAN_RUN:
pch_can_bit_clear(&priv->regs->cont, CAN_CTRL_INIT);
break;
case PCH_CAN_STOP:
pch_can_bit_set(&priv->regs->cont, CAN_CTRL_INIT);
break;
default:
dev_err(&priv->ndev->dev, "%s -> Invalid Mode.\n", __func__);
break;
}
}
static void pch_can_set_optmode(struct pch_can_priv *priv)
{
u32 reg_val = ioread32(&priv->regs->opt);
if (priv->can.ctrlmode & CAN_CTRLMODE_LISTENONLY)
reg_val |= CAN_OPT_SILENT;
if (priv->can.ctrlmode & CAN_CTRLMODE_LOOPBACK)
reg_val |= CAN_OPT_LBACK;
pch_can_bit_set(&priv->regs->cont, CAN_CTRL_OPT);
iowrite32(reg_val, &priv->regs->opt);
}
static void pch_can_set_int_custom(struct pch_can_priv *priv)
{
/* Clearing the IE, SIE and EIE bits of Can control register. */
pch_can_bit_clear(&priv->regs->cont, CAN_CTRL_IE_SIE_EIE);
/* Appropriately setting them. */
pch_can_bit_set(&priv->regs->cont,
((priv->int_enables & MSK_CTRL_IE_SIE_EIE) << 1));
}
/* This function retrieves interrupt enabled for the CAN device. */
static void pch_can_get_int_enables(struct pch_can_priv *priv, u32 *enables)
{
/* Obtaining the status of IE, SIE and EIE interrupt bits. */
*enables = ((ioread32(&priv->regs->cont) & CAN_CTRL_IE_SIE_EIE) >> 1);
}
static void pch_can_set_int_enables(struct pch_can_priv *priv,
enum pch_can_mode interrupt_no)
{
switch (interrupt_no) {
case PCH_CAN_ENABLE:
pch_can_bit_set(&priv->regs->cont, CAN_CTRL_IE);
break;
case PCH_CAN_DISABLE:
pch_can_bit_clear(&priv->regs->cont, CAN_CTRL_IE);
break;
case PCH_CAN_ALL:
pch_can_bit_set(&priv->regs->cont, CAN_CTRL_IE_SIE_EIE);
break;
case PCH_CAN_NONE:
pch_can_bit_clear(&priv->regs->cont, CAN_CTRL_IE_SIE_EIE);
break;
default:
dev_err(&priv->ndev->dev, "Invalid interrupt number.\n");
break;
}
}
static void pch_can_check_if_busy(u32 __iomem *creq_addr, u32 num)
{
u32 counter = COUNTER_LIMIT;
u32 ifx_creq;
iowrite32(num, creq_addr);
while (counter) {
ifx_creq = ioread32(creq_addr) & CAN_IF_CREQ_BUSY;
if (!ifx_creq)
break;
counter--;
udelay(1);
}
if (!counter)
pr_err("%s:IF1 BUSY Flag is set forever.\n", __func__);
}
static void pch_can_set_rx_enable(struct pch_can_priv *priv, u32 buff_num,
u32 set)
{
unsigned long flags;
spin_lock_irqsave(&priv->msgif_reg_lock, flags);
/* Reading the receive buffer data from RAM to Interface1 registers */
iowrite32(CAN_CMASK_RX_TX_GET, &priv->regs->if1_cmask);
pch_can_check_if_busy(&priv->regs->if1_creq, buff_num);
/* Setting the IF1MASK1 register to access MsgVal and RxIE bits */
iowrite32(CAN_CMASK_RDWR | CAN_CMASK_ARB | CAN_CMASK_CTRL,
&priv->regs->if1_cmask);
if (set == ENABLE) {
/* Setting the MsgVal and RxIE bits */
pch_can_bit_set(&priv->regs->if1_mcont, CAN_IF_MCONT_RXIE);
pch_can_bit_set(&priv->regs->if1_id2, CAN_ID_MSGVAL);
} else if (set == DISABLE) {
/* Resetting the MsgVal and RxIE bits */
pch_can_bit_clear(&priv->regs->if1_mcont, CAN_IF_MCONT_RXIE);
pch_can_bit_clear(&priv->regs->if1_id2, CAN_ID_MSGVAL);
}
pch_can_check_if_busy(&priv->regs->if1_creq, buff_num);
spin_unlock_irqrestore(&priv->msgif_reg_lock, flags);
}
static void pch_can_rx_enable_all(struct pch_can_priv *priv)
{
int i;
/* Traversing to obtain the object configured as receivers. */
for (i = 0; i < PCH_OBJ_NUM; i++) {
if (priv->msg_obj[i] == MSG_OBJ_RX)
pch_can_set_rx_enable(priv, i + 1, ENABLE);
}
}
static void pch_can_rx_disable_all(struct pch_can_priv *priv)
{
int i;
/* Traversing to obtain the object configured as receivers. */
for (i = 0; i < PCH_OBJ_NUM; i++) {
if (priv->msg_obj[i] == MSG_OBJ_RX)
pch_can_set_rx_enable(priv, i + 1, DISABLE);
}
}
static void pch_can_set_tx_enable(struct pch_can_priv *priv, u32 buff_num,
u32 set)
{
unsigned long flags;
spin_lock_irqsave(&priv->msgif_reg_lock, flags);
/* Reading the Msg buffer from Message RAM to Interface2 registers. */
iowrite32(CAN_CMASK_RX_TX_GET, &priv->regs->if2_cmask);
pch_can_check_if_busy(&priv->regs->if2_creq, buff_num);
/* Setting the IF2CMASK register for accessing the
MsgVal and TxIE bits */
iowrite32(CAN_CMASK_RDWR | CAN_CMASK_ARB | CAN_CMASK_CTRL,
&priv->regs->if2_cmask);
if (set == ENABLE) {
/* Setting the MsgVal and TxIE bits */
pch_can_bit_set(&priv->regs->if2_mcont, CAN_IF_MCONT_TXIE);
pch_can_bit_set(&priv->regs->if2_id2, CAN_ID_MSGVAL);
} else if (set == DISABLE) {
/* Resetting the MsgVal and TxIE bits. */
pch_can_bit_clear(&priv->regs->if2_mcont, CAN_IF_MCONT_TXIE);
pch_can_bit_clear(&priv->regs->if2_id2, CAN_ID_MSGVAL);
}
pch_can_check_if_busy(&priv->regs->if2_creq, buff_num);
spin_unlock_irqrestore(&priv->msgif_reg_lock, flags);
}
static void pch_can_tx_enable_all(struct pch_can_priv *priv)
{
int i;
/* Traversing to obtain the object configured as transmit object. */
for (i = 0; i < PCH_OBJ_NUM; i++) {
if (priv->msg_obj[i] == MSG_OBJ_TX)
pch_can_set_tx_enable(priv, i + 1, ENABLE);
}
}
static void pch_can_tx_disable_all(struct pch_can_priv *priv)
{
int i;
/* Traversing to obtain the object configured as transmit object. */
for (i = 0; i < PCH_OBJ_NUM; i++) {
if (priv->msg_obj[i] == MSG_OBJ_TX)
pch_can_set_tx_enable(priv, i + 1, DISABLE);
}
}
static void pch_can_get_rx_enable(struct pch_can_priv *priv, u32 buff_num,
u32 *enable)
{
unsigned long flags;
spin_lock_irqsave(&priv->msgif_reg_lock, flags);
iowrite32(CAN_CMASK_RX_TX_GET, &priv->regs->if1_cmask);
pch_can_check_if_busy(&priv->regs->if1_creq, buff_num);
if (((ioread32(&priv->regs->if1_id2)) & CAN_ID_MSGVAL) &&
((ioread32(&priv->regs->if1_mcont)) &
CAN_IF_MCONT_RXIE))
*enable = ENABLE;
else
*enable = DISABLE;
spin_unlock_irqrestore(&priv->msgif_reg_lock, flags);
}
static void pch_can_get_tx_enable(struct pch_can_priv *priv, u32 buff_num,
u32 *enable)
{
unsigned long flags;
spin_lock_irqsave(&priv->msgif_reg_lock, flags);
iowrite32(CAN_CMASK_RX_TX_GET, &priv->regs->if2_cmask);
pch_can_check_if_busy(&priv->regs->if2_creq, buff_num);
if (((ioread32(&priv->regs->if2_id2)) & CAN_ID_MSGVAL) &&
((ioread32(&priv->regs->if2_mcont)) &
CAN_IF_MCONT_TXIE)) {
*enable = ENABLE;
} else {
*enable = DISABLE;
}
spin_unlock_irqrestore(&priv->msgif_reg_lock, flags);
}
static int pch_can_int_pending(struct pch_can_priv *priv)
{
return ioread32(&priv->regs->intr) & 0xffff;
}
static void pch_can_set_rx_buffer_link(struct pch_can_priv *priv,
u32 buffer_num, u32 set)
{
unsigned long flags;
spin_lock_irqsave(&priv->msgif_reg_lock, flags);
iowrite32(CAN_CMASK_RX_TX_GET, &priv->regs->if1_cmask);
pch_can_check_if_busy(&priv->regs->if1_creq, buffer_num);
iowrite32(CAN_CMASK_RDWR | CAN_CMASK_CTRL, &priv->regs->if1_cmask);
if (set == ENABLE)
pch_can_bit_clear(&priv->regs->if1_mcont, CAN_IF_MCONT_EOB);
else
pch_can_bit_set(&priv->regs->if1_mcont, CAN_IF_MCONT_EOB);
pch_can_check_if_busy(&priv->regs->if1_creq, buffer_num);
spin_unlock_irqrestore(&priv->msgif_reg_lock, flags);
}
static void pch_can_get_rx_buffer_link(struct pch_can_priv *priv,
u32 buffer_num, u32 *link)
{
unsigned long flags;
spin_lock_irqsave(&priv->msgif_reg_lock, flags);
iowrite32(CAN_CMASK_RX_TX_GET, &priv->regs->if1_cmask);
pch_can_check_if_busy(&priv->regs->if1_creq, buffer_num);
if (ioread32(&priv->regs->if1_mcont) & CAN_IF_MCONT_EOB)
*link = DISABLE;
else
*link = ENABLE;
spin_unlock_irqrestore(&priv->msgif_reg_lock, flags);
}
static void pch_can_clear_buffers(struct pch_can_priv *priv)
{
int i;
for (i = 0; i < PCH_RX_OBJ_NUM; i++) {
iowrite32(CAN_CMASK_RX_TX_SET, &priv->regs->if1_cmask);
iowrite32(0xffff, &priv->regs->if1_mask1);
iowrite32(0xffff, &priv->regs->if1_mask2);
iowrite32(0x0, &priv->regs->if1_id1);
iowrite32(0x0, &priv->regs->if1_id2);
iowrite32(0x0, &priv->regs->if1_mcont);
iowrite32(0x0, &priv->regs->if1_dataa1);
iowrite32(0x0, &priv->regs->if1_dataa2);
iowrite32(0x0, &priv->regs->if1_datab1);
iowrite32(0x0, &priv->regs->if1_datab2);
iowrite32(CAN_CMASK_RDWR | CAN_CMASK_MASK |
CAN_CMASK_ARB | CAN_CMASK_CTRL,
&priv->regs->if1_cmask);
pch_can_check_if_busy(&priv->regs->if1_creq, i+1);
}
for (i = i; i < PCH_OBJ_NUM; i++) {
iowrite32(CAN_CMASK_RX_TX_SET, &priv->regs->if2_cmask);
iowrite32(0xffff, &priv->regs->if2_mask1);
iowrite32(0xffff, &priv->regs->if2_mask2);
iowrite32(0x0, &priv->regs->if2_id1);
iowrite32(0x0, &priv->regs->if2_id2);
iowrite32(0x0, &priv->regs->if2_mcont);
iowrite32(0x0, &priv->regs->if2_dataa1);
iowrite32(0x0, &priv->regs->if2_dataa2);
iowrite32(0x0, &priv->regs->if2_datab1);
iowrite32(0x0, &priv->regs->if2_datab2);
iowrite32(CAN_CMASK_RDWR | CAN_CMASK_MASK |
CAN_CMASK_ARB | CAN_CMASK_CTRL,
&priv->regs->if2_cmask);
pch_can_check_if_busy(&priv->regs->if2_creq, i+1);
}
}
static void pch_can_config_rx_tx_buffers(struct pch_can_priv *priv)
{
int i;
unsigned long flags;
spin_lock_irqsave(&priv->msgif_reg_lock, flags);
for (i = 0; i < PCH_OBJ_NUM; i++) {
if (priv->msg_obj[i] == MSG_OBJ_RX) {
iowrite32(CAN_CMASK_RX_TX_GET,
&priv->regs->if1_cmask);
pch_can_check_if_busy(&priv->regs->if1_creq, i+1);
iowrite32(0x0, &priv->regs->if1_id1);
iowrite32(0x0, &priv->regs->if1_id2);
pch_can_bit_set(&priv->regs->if1_mcont,
CAN_IF_MCONT_UMASK);
/* Set FIFO mode set to 0 except last Rx Obj*/
pch_can_bit_clear(&priv->regs->if1_mcont,
CAN_IF_MCONT_EOB);
/* In case FIFO mode, Last EoB of Rx Obj must be 1 */
if (i == (PCH_RX_OBJ_NUM - 1))
pch_can_bit_set(&priv->regs->if1_mcont,
CAN_IF_MCONT_EOB);
iowrite32(0, &priv->regs->if1_mask1);
pch_can_bit_clear(&priv->regs->if1_mask2,
0x1fff | CAN_MASK2_MDIR_MXTD);
/* Setting CMASK for writing */
iowrite32(CAN_CMASK_RDWR | CAN_CMASK_MASK |
CAN_CMASK_ARB | CAN_CMASK_CTRL,
&priv->regs->if1_cmask);
pch_can_check_if_busy(&priv->regs->if1_creq, i+1);
} else if (priv->msg_obj[i] == MSG_OBJ_TX) {
iowrite32(CAN_CMASK_RX_TX_GET,
&priv->regs->if2_cmask);
pch_can_check_if_busy(&priv->regs->if2_creq, i+1);
/* Resetting DIR bit for reception */
iowrite32(0x0, &priv->regs->if2_id1);
iowrite32(0x0, &priv->regs->if2_id2);
pch_can_bit_set(&priv->regs->if2_id2, CAN_ID2_DIR);
/* Setting EOB bit for transmitter */
iowrite32(CAN_IF_MCONT_EOB, &priv->regs->if2_mcont);
pch_can_bit_set(&priv->regs->if2_mcont,
CAN_IF_MCONT_UMASK);
iowrite32(0, &priv->regs->if2_mask1);
pch_can_bit_clear(&priv->regs->if2_mask2, 0x1fff);
/* Setting CMASK for writing */
iowrite32(CAN_CMASK_RDWR | CAN_CMASK_MASK |
CAN_CMASK_ARB | CAN_CMASK_CTRL,
&priv->regs->if2_cmask);
pch_can_check_if_busy(&priv->regs->if2_creq, i+1);
}
}
spin_unlock_irqrestore(&priv->msgif_reg_lock, flags);
}
static void pch_can_init(struct pch_can_priv *priv)
{
/* Stopping the Can device. */
pch_can_set_run_mode(priv, PCH_CAN_STOP);
/* Clearing all the message object buffers. */
pch_can_clear_buffers(priv);
/* Configuring the respective message object as either rx/tx object. */
pch_can_config_rx_tx_buffers(priv);
/* Enabling the interrupts. */
pch_can_set_int_enables(priv, PCH_CAN_ALL);
}
static void pch_can_release(struct pch_can_priv *priv)
{
/* Stooping the CAN device. */
pch_can_set_run_mode(priv, PCH_CAN_STOP);
/* Disabling the interrupts. */
pch_can_set_int_enables(priv, PCH_CAN_NONE);
/* Disabling all the receive object. */
pch_can_rx_disable_all(priv);
/* Disabling all the transmit object. */
pch_can_tx_disable_all(priv);
}
/* This function clears interrupt(s) from the CAN device. */
static void pch_can_int_clr(struct pch_can_priv *priv, u32 mask)
{
if (mask == CAN_STATUS_INT) {
ioread32(&priv->regs->stat);
return;
}
/* Clear interrupt for transmit object */
if (priv->msg_obj[mask - 1] == MSG_OBJ_TX) {
/* Setting CMASK for clearing interrupts for
frame transmission. */
iowrite32(CAN_CMASK_RDWR | CAN_CMASK_CTRL | CAN_CMASK_ARB,
&priv->regs->if2_cmask);
/* Resetting the ID registers. */
pch_can_bit_set(&priv->regs->if2_id2,
CAN_ID2_DIR | (0x7ff << 2));
iowrite32(0x0, &priv->regs->if2_id1);
/* Claring NewDat, TxRqst & IntPnd */
pch_can_bit_clear(&priv->regs->if2_mcont,
CAN_IF_MCONT_NEWDAT | CAN_IF_MCONT_INTPND |
CAN_IF_MCONT_TXRQXT);
pch_can_check_if_busy(&priv->regs->if2_creq, mask);
} else if (priv->msg_obj[mask - 1] == MSG_OBJ_RX) {
/* Setting CMASK for clearing the reception interrupts. */
iowrite32(CAN_CMASK_RDWR | CAN_CMASK_CTRL | CAN_CMASK_ARB,
&priv->regs->if1_cmask);
/* Clearing the Dir bit. */
pch_can_bit_clear(&priv->regs->if1_id2, CAN_ID2_DIR);
/* Clearing NewDat & IntPnd */
pch_can_bit_clear(&priv->regs->if1_mcont,
CAN_IF_MCONT_NEWDAT | CAN_IF_MCONT_INTPND);
pch_can_check_if_busy(&priv->regs->if1_creq, mask);
}
}
static int pch_can_get_buffer_status(struct pch_can_priv *priv)
{
return (ioread32(&priv->regs->treq1) & 0xffff) |
((ioread32(&priv->regs->treq2) & 0xffff) << 16);
}
static void pch_can_reset(struct pch_can_priv *priv)
{
/* write to sw reset register */
iowrite32(1, &priv->regs->srst);
iowrite32(0, &priv->regs->srst);
}
static void pch_can_error(struct net_device *ndev, u32 status)
{
struct sk_buff *skb;
struct pch_can_priv *priv = netdev_priv(ndev);
struct can_frame *cf;
u32 errc;
struct net_device_stats *stats = &(priv->ndev->stats);
enum can_state state = priv->can.state;
skb = alloc_can_err_skb(ndev, &cf);
if (!skb)
return;
if (status & PCH_BUS_OFF) {
pch_can_tx_disable_all(priv);
pch_can_rx_disable_all(priv);
state = CAN_STATE_BUS_OFF;
cf->can_id |= CAN_ERR_BUSOFF;
can_bus_off(ndev);
pch_can_set_run_mode(priv, PCH_CAN_RUN);
dev_err(&ndev->dev, "%s -> Bus Off occurres.\n", __func__);
}
/* Warning interrupt. */
if (status & PCH_EWARN) {
state = CAN_STATE_ERROR_WARNING;
priv->can.can_stats.error_warning++;
cf->can_id |= CAN_ERR_CRTL;
errc = ioread32(&priv->regs->errc);
if (((errc & CAN_REC) >> 8) > 96)
cf->data[1] |= CAN_ERR_CRTL_RX_WARNING;
if ((errc & CAN_TEC) > 96)
cf->data[1] |= CAN_ERR_CRTL_TX_WARNING;
dev_warn(&ndev->dev,
"%s -> Error Counter is more than 96.\n", __func__);
}
/* Error passive interrupt. */
if (status & PCH_EPASSIV) {
priv->can.can_stats.error_passive++;
state = CAN_STATE_ERROR_PASSIVE;
cf->can_id |= CAN_ERR_CRTL;
errc = ioread32(&priv->regs->errc);
if (((errc & CAN_REC) >> 8) > 127)
cf->data[1] |= CAN_ERR_CRTL_RX_PASSIVE;
if ((errc & CAN_TEC) > 127)
cf->data[1] |= CAN_ERR_CRTL_TX_PASSIVE;
dev_err(&ndev->dev,
"%s -> CAN controller is ERROR PASSIVE .\n", __func__);
}
if (status & PCH_LEC_ALL) {
priv->can.can_stats.bus_error++;
stats->rx_errors++;
switch (status & PCH_LEC_ALL) {
case PCH_STUF_ERR:
cf->data[2] |= CAN_ERR_PROT_STUFF;
break;
case PCH_FORM_ERR:
cf->data[2] |= CAN_ERR_PROT_FORM;
break;
case PCH_ACK_ERR:
cf->data[2] |= CAN_ERR_PROT_LOC_ACK |
CAN_ERR_PROT_LOC_ACK_DEL;
break;
case PCH_BIT1_ERR:
case PCH_BIT0_ERR:
cf->data[2] |= CAN_ERR_PROT_BIT;
break;
case PCH_CRC_ERR:
cf->data[2] |= CAN_ERR_PROT_LOC_CRC_SEQ |
CAN_ERR_PROT_LOC_CRC_DEL;
break;
default:
iowrite32(status | PCH_LEC_ALL, &priv->regs->stat);
break;
}
}
priv->can.state = state;
netif_rx(skb);
stats->rx_packets++;
stats->rx_bytes += cf->can_dlc;
}
static irqreturn_t pch_can_interrupt(int irq, void *dev_id)
{
struct net_device *ndev = (struct net_device *)dev_id;
struct pch_can_priv *priv = netdev_priv(ndev);
pch_can_set_int_enables(priv, PCH_CAN_NONE);
napi_schedule(&priv->napi);
return IRQ_HANDLED;
}
static int pch_can_rx_normal(struct net_device *ndev, u32 int_stat)
{
u32 reg;
canid_t id;
u32 ide;
u32 rtr;
int i, j, k;
int rcv_pkts = 0;
struct sk_buff *skb;
struct can_frame *cf;
struct pch_can_priv *priv = netdev_priv(ndev);
struct net_device_stats *stats = &(priv->ndev->stats);
/* Reading the messsage object from the Message RAM */
iowrite32(CAN_CMASK_RX_TX_GET, &priv->regs->if1_cmask);
pch_can_check_if_busy(&priv->regs->if1_creq, int_stat);
/* Reading the MCONT register. */
reg = ioread32(&priv->regs->if1_mcont);
reg &= 0xffff;
for (k = int_stat; !(reg & CAN_IF_MCONT_EOB); k++) {
/* If MsgLost bit set. */
if (reg & CAN_IF_MCONT_MSGLOST) {
dev_err(&priv->ndev->dev, "Msg Obj is overwritten.\n");
pch_can_bit_clear(&priv->regs->if1_mcont,
CAN_IF_MCONT_MSGLOST);
iowrite32(CAN_CMASK_RDWR | CAN_CMASK_CTRL,
&priv->regs->if1_cmask);
pch_can_check_if_busy(&priv->regs->if1_creq, k);
skb = alloc_can_err_skb(ndev, &cf);
if (!skb)
return -ENOMEM;
priv->can.can_stats.error_passive++;
priv->can.state = CAN_STATE_ERROR_PASSIVE;
cf->can_id |= CAN_ERR_CRTL;
cf->data[1] |= CAN_ERR_CRTL_RX_OVERFLOW;
cf->data[2] |= CAN_ERR_PROT_OVERLOAD;
stats->rx_packets++;
stats->rx_bytes += cf->can_dlc;
netif_receive_skb(skb);
rcv_pkts++;
goto RX_NEXT;
}
if (!(reg & CAN_IF_MCONT_NEWDAT))
goto RX_NEXT;
skb = alloc_can_skb(priv->ndev, &cf);
if (!skb)
return -ENOMEM;
/* Get Received data */
ide = ((ioread32(&priv->regs->if1_id2)) & CAN_ID2_XTD) >> 14;
if (ide) {
id = (ioread32(&priv->regs->if1_id1) & 0xffff);
id |= (((ioread32(&priv->regs->if1_id2)) &
0x1fff) << 16);
cf->can_id = (id & CAN_EFF_MASK) | CAN_EFF_FLAG;
} else {
id = (((ioread32(&priv->regs->if1_id2)) &
(CAN_SFF_MASK << 2)) >> 2);
cf->can_id = (id & CAN_SFF_MASK);
}
rtr = (ioread32(&priv->regs->if1_id2) & CAN_ID2_DIR);
if (rtr) {
cf->can_dlc = 0;
cf->can_id |= CAN_RTR_FLAG;
} else {
cf->can_dlc = ((ioread32(&priv->regs->if1_mcont)) &
0x0f);
}
for (i = 0, j = 0; i < cf->can_dlc; j++) {
reg = ioread32(&priv->regs->if1_dataa1 + j*4);
cf->data[i++] = cpu_to_le32(reg & 0xff);
if (i == cf->can_dlc)
break;
cf->data[i++] = cpu_to_le32((reg >> 8) & 0xff);
}
netif_receive_skb(skb);
rcv_pkts++;
stats->rx_packets++;
stats->rx_bytes += cf->can_dlc;
if (k < PCH_FIFO_THRESH) {
iowrite32(CAN_CMASK_RDWR | CAN_CMASK_CTRL |
CAN_CMASK_ARB, &priv->regs->if1_cmask);
/* Clearing the Dir bit. */
pch_can_bit_clear(&priv->regs->if1_id2, CAN_ID2_DIR);
/* Clearing NewDat & IntPnd */
pch_can_bit_clear(&priv->regs->if1_mcont,
CAN_IF_MCONT_INTPND);
pch_can_check_if_busy(&priv->regs->if1_creq, k);
} else if (k > PCH_FIFO_THRESH) {
pch_can_int_clr(priv, k);
} else if (k == PCH_FIFO_THRESH) {
int cnt;
for (cnt = 0; cnt < PCH_FIFO_THRESH; cnt++)
pch_can_int_clr(priv, cnt+1);
}
RX_NEXT:
/* Reading the messsage object from the Message RAM */
iowrite32(CAN_CMASK_RX_TX_GET, &priv->regs->if1_cmask);
pch_can_check_if_busy(&priv->regs->if1_creq, k + 1);
reg = ioread32(&priv->regs->if1_mcont);
}
return rcv_pkts;
}
static int pch_can_rx_poll(struct napi_struct *napi, int quota)
{
struct net_device *ndev = napi->dev;
struct pch_can_priv *priv = netdev_priv(ndev);
struct net_device_stats *stats = &(priv->ndev->stats);
u32 dlc;
u32 int_stat;
int rcv_pkts = 0;
u32 reg_stat;
unsigned long flags;
int_stat = pch_can_int_pending(priv);
if (!int_stat)
return 0;
INT_STAT:
if (int_stat == CAN_STATUS_INT) {
reg_stat = ioread32(&priv->regs->stat);
if (reg_stat & (PCH_BUS_OFF | PCH_LEC_ALL)) {
if ((reg_stat & PCH_LEC_ALL) != PCH_LEC_ALL)
pch_can_error(ndev, reg_stat);
}
if (reg_stat & PCH_TX_OK) {
spin_lock_irqsave(&priv->msgif_reg_lock, flags);
iowrite32(CAN_CMASK_RX_TX_GET, &priv->regs->if2_cmask);
pch_can_check_if_busy(&priv->regs->if2_creq,
ioread32(&priv->regs->intr));
spin_unlock_irqrestore(&priv->msgif_reg_lock, flags);
pch_can_bit_clear(&priv->regs->stat, PCH_TX_OK);
}
if (reg_stat & PCH_RX_OK)
pch_can_bit_clear(&priv->regs->stat, PCH_RX_OK);
int_stat = pch_can_int_pending(priv);
if (int_stat == CAN_STATUS_INT)
goto INT_STAT;
}
MSG_OBJ:
if ((int_stat >= 1) && (int_stat <= PCH_RX_OBJ_NUM)) {
spin_lock_irqsave(&priv->msgif_reg_lock, flags);
rcv_pkts = pch_can_rx_normal(ndev, int_stat);
spin_unlock_irqrestore(&priv->msgif_reg_lock, flags);
if (rcv_pkts < 0)
return 0;
} else if ((int_stat > PCH_RX_OBJ_NUM) && (int_stat <= PCH_OBJ_NUM)) {
if (priv->msg_obj[int_stat - 1] == MSG_OBJ_TX) {
/* Handle transmission interrupt */
can_get_echo_skb(ndev, int_stat - PCH_RX_OBJ_NUM - 1);
spin_lock_irqsave(&priv->msgif_reg_lock, flags);
iowrite32(CAN_CMASK_RX_TX_GET | CAN_CMASK_CLRINTPND,
&priv->regs->if2_cmask);
dlc = ioread32(&priv->regs->if2_mcont) &
CAN_IF_MCONT_DLC;
pch_can_check_if_busy(&priv->regs->if2_creq, int_stat);
spin_unlock_irqrestore(&priv->msgif_reg_lock, flags);
if (dlc > 8)
dlc = 8;
stats->tx_bytes += dlc;
stats->tx_packets++;
}
}
int_stat = pch_can_int_pending(priv);
if (int_stat == CAN_STATUS_INT)
goto INT_STAT;
else if (int_stat >= 1 && int_stat <= 32)
goto MSG_OBJ;
napi_complete(napi);
pch_can_set_int_enables(priv, PCH_CAN_ALL);
return rcv_pkts;
}
static int pch_set_bittiming(struct net_device *ndev)
{
struct pch_can_priv *priv = netdev_priv(ndev);
const struct can_bittiming *bt = &priv->can.bittiming;
u32 canbit;
u32 bepe;
u32 brp;
/* Setting the CCE bit for accessing the Can Timing register. */
pch_can_bit_set(&priv->regs->cont, CAN_CTRL_CCE);
brp = (bt->tq) / (1000000000/PCH_CAN_CLK) - 1;
canbit = brp & MSK_BITT_BRP;
canbit |= (bt->sjw - 1) << BIT_BITT_SJW;
canbit |= (bt->phase_seg1 + bt->prop_seg - 1) << BIT_BITT_TSEG1;
canbit |= (bt->phase_seg2 - 1) << BIT_BITT_TSEG2;
bepe = (brp & MSK_BRPE_BRPE) >> BIT_BRPE_BRPE;
iowrite32(canbit, &priv->regs->bitt);
iowrite32(bepe, &priv->regs->brpe);
pch_can_bit_clear(&priv->regs->cont, CAN_CTRL_CCE);
return 0;
}
static void pch_can_start(struct net_device *ndev)
{
struct pch_can_priv *priv = netdev_priv(ndev);
if (priv->can.state != CAN_STATE_STOPPED)
pch_can_reset(priv);
pch_set_bittiming(ndev);
pch_can_set_optmode(priv);
pch_can_tx_enable_all(priv);
pch_can_rx_enable_all(priv);
/* Setting the CAN to run mode. */
pch_can_set_run_mode(priv, PCH_CAN_RUN);
priv->can.state = CAN_STATE_ERROR_ACTIVE;
return;
}
static int pch_can_do_set_mode(struct net_device *ndev, enum can_mode mode)
{
int ret = 0;
switch (mode) {
case CAN_MODE_START:
pch_can_start(ndev);
netif_wake_queue(ndev);
break;
default:
ret = -EOPNOTSUPP;
break;
}
return ret;
}
static int pch_can_open(struct net_device *ndev)
{
struct pch_can_priv *priv = netdev_priv(ndev);
int retval;
retval = pci_enable_msi(priv->dev);
if (retval) {
dev_info(&ndev->dev, "PCH CAN opened without MSI\n");
priv->use_msi = 0;
} else {
dev_info(&ndev->dev, "PCH CAN opened with MSI\n");
priv->use_msi = 1;
}
/* Regsitering the interrupt. */
retval = request_irq(priv->dev->irq, pch_can_interrupt, IRQF_SHARED,
ndev->name, ndev);
if (retval) {
dev_err(&ndev->dev, "request_irq failed.\n");
goto req_irq_err;
}
/* Open common can device */
retval = open_candev(ndev);
if (retval) {
dev_err(ndev->dev.parent, "open_candev() failed %d\n", retval);
goto err_open_candev;
}
pch_can_init(priv);
pch_can_start(ndev);
napi_enable(&priv->napi);
netif_start_queue(ndev);
return 0;
err_open_candev:
free_irq(priv->dev->irq, ndev);
req_irq_err:
if (priv->use_msi)
pci_disable_msi(priv->dev);
pch_can_release(priv);
return retval;
}
static int pch_close(struct net_device *ndev)
{
struct pch_can_priv *priv = netdev_priv(ndev);
netif_stop_queue(ndev);
napi_disable(&priv->napi);
pch_can_release(priv);
free_irq(priv->dev->irq, ndev);
if (priv->use_msi)
pci_disable_msi(priv->dev);
close_candev(ndev);
priv->can.state = CAN_STATE_STOPPED;
return 0;
}
static int pch_get_msg_obj_sts(struct net_device *ndev, u32 obj_id)
{
u32 buffer_status = 0;
struct pch_can_priv *priv = netdev_priv(ndev);
/* Getting the message object status. */
buffer_status = (u32) pch_can_get_buffer_status(priv);
return buffer_status & obj_id;
}
static netdev_tx_t pch_xmit(struct sk_buff *skb, struct net_device *ndev)
{
int i, j;
unsigned long flags;
struct pch_can_priv *priv = netdev_priv(ndev);
struct can_frame *cf = (struct can_frame *)skb->data;
int tx_buffer_avail = 0;
if (can_dropped_invalid_skb(ndev, skb))
return NETDEV_TX_OK;
if (priv->tx_obj == (PCH_OBJ_NUM + 1)) { /* Point tail Obj */
while (pch_get_msg_obj_sts(ndev, (((1 << PCH_TX_OBJ_NUM)-1) <<
PCH_RX_OBJ_NUM)))
udelay(500);
priv->tx_obj = PCH_RX_OBJ_NUM + 1; /* Point head of Tx Obj ID */
tx_buffer_avail = priv->tx_obj; /* Point Tail of Tx Obj */
} else {
tx_buffer_avail = priv->tx_obj;
}
priv->tx_obj++;
/* Attaining the lock. */
spin_lock_irqsave(&priv->msgif_reg_lock, flags);
/* Reading the Msg Obj from the Msg RAM to the Interface register. */
iowrite32(CAN_CMASK_RX_TX_GET, &priv->regs->if2_cmask);
pch_can_check_if_busy(&priv->regs->if2_creq, tx_buffer_avail);
/* Setting the CMASK register. */
pch_can_bit_set(&priv->regs->if2_cmask, CAN_CMASK_ALL);
/* If ID extended is set. */
pch_can_bit_clear(&priv->regs->if2_id1, 0xffff);
pch_can_bit_clear(&priv->regs->if2_id2, 0x1fff | CAN_ID2_XTD);
if (cf->can_id & CAN_EFF_FLAG) {
pch_can_bit_set(&priv->regs->if2_id1, cf->can_id & 0xffff);
pch_can_bit_set(&priv->regs->if2_id2,
((cf->can_id >> 16) & 0x1fff) | CAN_ID2_XTD);
} else {
pch_can_bit_set(&priv->regs->if2_id1, 0);
pch_can_bit_set(&priv->regs->if2_id2,
(cf->can_id & CAN_SFF_MASK) << 2);
}
/* If remote frame has to be transmitted.. */
if (cf->can_id & CAN_RTR_FLAG)
pch_can_bit_clear(&priv->regs->if2_id2, CAN_ID2_DIR);
for (i = 0, j = 0; i < cf->can_dlc; j++) {
iowrite32(le32_to_cpu(cf->data[i++]),
(&priv->regs->if2_dataa1) + j*4);
if (i == cf->can_dlc)
break;
iowrite32(le32_to_cpu(cf->data[i++] << 8),
(&priv->regs->if2_dataa1) + j*4);
}
can_put_echo_skb(skb, ndev, tx_buffer_avail - PCH_RX_OBJ_NUM - 1);
/* Updating the size of the data. */
pch_can_bit_clear(&priv->regs->if2_mcont, 0x0f);
pch_can_bit_set(&priv->regs->if2_mcont, cf->can_dlc);
/* Clearing IntPend, NewDat & TxRqst */
pch_can_bit_clear(&priv->regs->if2_mcont,
CAN_IF_MCONT_NEWDAT | CAN_IF_MCONT_INTPND |
CAN_IF_MCONT_TXRQXT);
/* Setting NewDat, TxRqst bits */
pch_can_bit_set(&priv->regs->if2_mcont,
CAN_IF_MCONT_NEWDAT | CAN_IF_MCONT_TXRQXT);
pch_can_check_if_busy(&priv->regs->if2_creq, tx_buffer_avail);
spin_unlock_irqrestore(&priv->msgif_reg_lock, flags);
return NETDEV_TX_OK;
}
static const struct net_device_ops pch_can_netdev_ops = {
.ndo_open = pch_can_open,
.ndo_stop = pch_close,
.ndo_start_xmit = pch_xmit,
};
static void __devexit pch_can_remove(struct pci_dev *pdev)
{
struct net_device *ndev = pci_get_drvdata(pdev);
struct pch_can_priv *priv = netdev_priv(ndev);
unregister_candev(priv->ndev);
free_candev(priv->ndev);
pci_iounmap(pdev, priv->regs);
pci_release_regions(pdev);
pci_disable_device(pdev);
pci_set_drvdata(pdev, NULL);
pch_can_reset(priv);
}
#ifdef CONFIG_PM
static int pch_can_suspend(struct pci_dev *pdev, pm_message_t state)
{
int i; /* Counter variable. */
int retval; /* Return value. */
u32 buf_stat; /* Variable for reading the transmit buffer status. */
u32 counter = 0xFFFFFF;
struct net_device *dev = pci_get_drvdata(pdev);
struct pch_can_priv *priv = netdev_priv(dev);
/* Stop the CAN controller */
pch_can_set_run_mode(priv, PCH_CAN_STOP);
/* Indicate that we are aboutto/in suspend */
priv->can.state = CAN_STATE_SLEEPING;
/* Waiting for all transmission to complete. */
while (counter) {
buf_stat = pch_can_get_buffer_status(priv);
if (!buf_stat)
break;
counter--;
udelay(1);
}
if (!counter)
dev_err(&pdev->dev, "%s -> Transmission time out.\n", __func__);
/* Save interrupt configuration and then disable them */
pch_can_get_int_enables(priv, &(priv->int_enables));
pch_can_set_int_enables(priv, PCH_CAN_DISABLE);
/* Save Tx buffer enable state */
for (i = 0; i < PCH_OBJ_NUM; i++) {
if (priv->msg_obj[i] == MSG_OBJ_TX)
pch_can_get_tx_enable(priv, i + 1,
&(priv->tx_enable[i]));
}
/* Disable all Transmit buffers */
pch_can_tx_disable_all(priv);
/* Save Rx buffer enable state */
for (i = 0; i < PCH_OBJ_NUM; i++) {
if (priv->msg_obj[i] == MSG_OBJ_RX) {
pch_can_get_rx_enable(priv, i + 1,
&(priv->rx_enable[i]));
pch_can_get_rx_buffer_link(priv, i + 1,
&(priv->rx_link[i]));
}
}
/* Disable all Receive buffers */
pch_can_rx_disable_all(priv);
retval = pci_save_state(pdev);
if (retval) {
dev_err(&pdev->dev, "pci_save_state failed.\n");
} else {
pci_enable_wake(pdev, PCI_D3hot, 0);
pci_disable_device(pdev);
pci_set_power_state(pdev, pci_choose_state(pdev, state));
}
return retval;
}
static int pch_can_resume(struct pci_dev *pdev)
{
int i; /* Counter variable. */
int retval; /* Return variable. */
struct net_device *dev = pci_get_drvdata(pdev);
struct pch_can_priv *priv = netdev_priv(dev);
pci_set_power_state(pdev, PCI_D0);
pci_restore_state(pdev);
retval = pci_enable_device(pdev);
if (retval) {
dev_err(&pdev->dev, "pci_enable_device failed.\n");
return retval;
}
pci_enable_wake(pdev, PCI_D3hot, 0);
priv->can.state = CAN_STATE_ERROR_ACTIVE;
/* Disabling all interrupts. */
pch_can_set_int_enables(priv, PCH_CAN_DISABLE);
/* Setting the CAN device in Stop Mode. */
pch_can_set_run_mode(priv, PCH_CAN_STOP);
/* Configuring the transmit and receive buffers. */
pch_can_config_rx_tx_buffers(priv);
/* Restore the CAN state */
pch_set_bittiming(dev);
/* Listen/Active */
pch_can_set_optmode(priv);
/* Enabling the transmit buffer. */
for (i = 0; i < PCH_OBJ_NUM; i++) {
if (priv->msg_obj[i] == MSG_OBJ_TX) {
pch_can_set_tx_enable(priv, i + 1,
priv->tx_enable[i]);
}
}
/* Configuring the receive buffer and enabling them. */
for (i = 0; i < PCH_OBJ_NUM; i++) {
if (priv->msg_obj[i] == MSG_OBJ_RX) {
/* Restore buffer link */
pch_can_set_rx_buffer_link(priv, i + 1,
priv->rx_link[i]);
/* Restore buffer enables */
pch_can_set_rx_enable(priv, i + 1, priv->rx_enable[i]);
}
}
/* Enable CAN Interrupts */
pch_can_set_int_custom(priv);
/* Restore Run Mode */
pch_can_set_run_mode(priv, PCH_CAN_RUN);
return retval;
}
#else
#define pch_can_suspend NULL
#define pch_can_resume NULL
#endif
static int pch_can_get_berr_counter(const struct net_device *dev,
struct can_berr_counter *bec)
{
struct pch_can_priv *priv = netdev_priv(dev);
bec->txerr = ioread32(&priv->regs->errc) & CAN_TEC;
bec->rxerr = (ioread32(&priv->regs->errc) & CAN_REC) >> 8;
return 0;
}
static int __devinit pch_can_probe(struct pci_dev *pdev,
const struct pci_device_id *id)
{
struct net_device *ndev;
struct pch_can_priv *priv;
int rc;
int index;
void __iomem *addr;
rc = pci_enable_device(pdev);
if (rc) {
dev_err(&pdev->dev, "Failed pci_enable_device %d\n", rc);
goto probe_exit_endev;
}
rc = pci_request_regions(pdev, KBUILD_MODNAME);
if (rc) {
dev_err(&pdev->dev, "Failed pci_request_regions %d\n", rc);
goto probe_exit_pcireq;
}
addr = pci_iomap(pdev, 1, 0);
if (!addr) {
rc = -EIO;
dev_err(&pdev->dev, "Failed pci_iomap\n");
goto probe_exit_ipmap;
}
ndev = alloc_candev(sizeof(struct pch_can_priv), PCH_TX_OBJ_NUM);
if (!ndev) {
rc = -ENOMEM;
dev_err(&pdev->dev, "Failed alloc_candev\n");
goto probe_exit_alloc_candev;
}
priv = netdev_priv(ndev);
priv->ndev = ndev;
priv->regs = addr;
priv->dev = pdev;
priv->can.bittiming_const = &pch_can_bittiming_const;
priv->can.do_set_mode = pch_can_do_set_mode;
priv->can.do_get_berr_counter = pch_can_get_berr_counter;
priv->can.ctrlmode_supported = CAN_CTRLMODE_LISTENONLY |
CAN_CTRLMODE_LOOPBACK;
priv->tx_obj = PCH_RX_OBJ_NUM + 1; /* Point head of Tx Obj */
ndev->irq = pdev->irq;
ndev->flags |= IFF_ECHO;
pci_set_drvdata(pdev, ndev);
SET_NETDEV_DEV(ndev, &pdev->dev);
ndev->netdev_ops = &pch_can_netdev_ops;
priv->can.clock.freq = PCH_CAN_CLK; /* Hz */
for (index = 0; index < PCH_RX_OBJ_NUM;)
priv->msg_obj[index++] = MSG_OBJ_RX;
for (index = index; index < PCH_OBJ_NUM;)
priv->msg_obj[index++] = MSG_OBJ_TX;
netif_napi_add(ndev, &priv->napi, pch_can_rx_poll, PCH_RX_OBJ_NUM);
rc = register_candev(ndev);
if (rc) {
dev_err(&pdev->dev, "Failed register_candev %d\n", rc);
goto probe_exit_reg_candev;
}
return 0;
probe_exit_reg_candev:
free_candev(ndev);
probe_exit_alloc_candev:
pci_iounmap(pdev, addr);
probe_exit_ipmap:
pci_release_regions(pdev);
probe_exit_pcireq:
pci_disable_device(pdev);
probe_exit_endev:
return rc;
}
static struct pci_driver pch_can_pcidev = {
.name = "pch_can",
.id_table = pch_pci_tbl,
.probe = pch_can_probe,
.remove = __devexit_p(pch_can_remove),
.suspend = pch_can_suspend,
.resume = pch_can_resume,
};
static int __init pch_can_pci_init(void)
{
return pci_register_driver(&pch_can_pcidev);
}
module_init(pch_can_pci_init);
static void __exit pch_can_pci_exit(void)
{
pci_unregister_driver(&pch_can_pcidev);
}
module_exit(pch_can_pci_exit);
MODULE_DESCRIPTION("Controller Area Network Driver");
MODULE_LICENSE("GPL v2");
MODULE_VERSION("0.94");