linux/drivers/usb/host/ehci-sched.c
Alan Stern b35c5009bb USB: EHCI: create per-TT bandwidth tables
This patch continues the scheduling changes in ehci-hcd by adding a
table to store the bandwidth allocation below each TT.  This will
speed up the scheduling code, as it will no longer need to read
through the entire schedule to compute the bandwidth currently in use.

Properly speaking, the FS/LS budget calculations should be done in
terms of full-speed bytes per microframe, as described in the USB-2
spec.  However the driver currently uses microseconds per microframe,
and the scheduling code isn't robust enough at this point to change
over.  For the time being, we leave the calculations as they are.

Signed-off-by: Alan Stern <stern@rowland.harvard.edu>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2013-10-14 11:04:38 -07:00

2514 lines
65 KiB
C

/*
* Copyright (c) 2001-2004 by David Brownell
* Copyright (c) 2003 Michal Sojka, for high-speed iso transfers
*
* This program is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License as published by the
* Free Software Foundation; either version 2 of the License, or (at your
* option) any later version.
*
* This program is distributed in the hope that it will be useful, but
* WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
* or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
* for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software Foundation,
* Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
*/
/* this file is part of ehci-hcd.c */
/*-------------------------------------------------------------------------*/
/*
* EHCI scheduled transaction support: interrupt, iso, split iso
* These are called "periodic" transactions in the EHCI spec.
*
* Note that for interrupt transfers, the QH/QTD manipulation is shared
* with the "asynchronous" transaction support (control/bulk transfers).
* The only real difference is in how interrupt transfers are scheduled.
*
* For ISO, we make an "iso_stream" head to serve the same role as a QH.
* It keeps track of every ITD (or SITD) that's linked, and holds enough
* pre-calculated schedule data to make appending to the queue be quick.
*/
static int ehci_get_frame (struct usb_hcd *hcd);
/*
* periodic_next_shadow - return "next" pointer on shadow list
* @periodic: host pointer to qh/itd/sitd
* @tag: hardware tag for type of this record
*/
static union ehci_shadow *
periodic_next_shadow(struct ehci_hcd *ehci, union ehci_shadow *periodic,
__hc32 tag)
{
switch (hc32_to_cpu(ehci, tag)) {
case Q_TYPE_QH:
return &periodic->qh->qh_next;
case Q_TYPE_FSTN:
return &periodic->fstn->fstn_next;
case Q_TYPE_ITD:
return &periodic->itd->itd_next;
// case Q_TYPE_SITD:
default:
return &periodic->sitd->sitd_next;
}
}
static __hc32 *
shadow_next_periodic(struct ehci_hcd *ehci, union ehci_shadow *periodic,
__hc32 tag)
{
switch (hc32_to_cpu(ehci, tag)) {
/* our ehci_shadow.qh is actually software part */
case Q_TYPE_QH:
return &periodic->qh->hw->hw_next;
/* others are hw parts */
default:
return periodic->hw_next;
}
}
/* caller must hold ehci->lock */
static void periodic_unlink (struct ehci_hcd *ehci, unsigned frame, void *ptr)
{
union ehci_shadow *prev_p = &ehci->pshadow[frame];
__hc32 *hw_p = &ehci->periodic[frame];
union ehci_shadow here = *prev_p;
/* find predecessor of "ptr"; hw and shadow lists are in sync */
while (here.ptr && here.ptr != ptr) {
prev_p = periodic_next_shadow(ehci, prev_p,
Q_NEXT_TYPE(ehci, *hw_p));
hw_p = shadow_next_periodic(ehci, &here,
Q_NEXT_TYPE(ehci, *hw_p));
here = *prev_p;
}
/* an interrupt entry (at list end) could have been shared */
if (!here.ptr)
return;
/* update shadow and hardware lists ... the old "next" pointers
* from ptr may still be in use, the caller updates them.
*/
*prev_p = *periodic_next_shadow(ehci, &here,
Q_NEXT_TYPE(ehci, *hw_p));
if (!ehci->use_dummy_qh ||
*shadow_next_periodic(ehci, &here, Q_NEXT_TYPE(ehci, *hw_p))
!= EHCI_LIST_END(ehci))
*hw_p = *shadow_next_periodic(ehci, &here,
Q_NEXT_TYPE(ehci, *hw_p));
else
*hw_p = ehci->dummy->qh_dma;
}
/*-------------------------------------------------------------------------*/
/* Bandwidth and TT management */
/* Find the TT data structure for this device; create it if necessary */
static struct ehci_tt *find_tt(struct usb_device *udev)
{
struct usb_tt *utt = udev->tt;
struct ehci_tt *tt, **tt_index, **ptt;
unsigned port;
bool allocated_index = false;
if (!utt)
return NULL; /* Not below a TT */
/*
* Find/create our data structure.
* For hubs with a single TT, we get it directly.
* For hubs with multiple TTs, there's an extra level of pointers.
*/
tt_index = NULL;
if (utt->multi) {
tt_index = utt->hcpriv;
if (!tt_index) { /* Create the index array */
tt_index = kzalloc(utt->hub->maxchild *
sizeof(*tt_index), GFP_ATOMIC);
if (!tt_index)
return ERR_PTR(-ENOMEM);
utt->hcpriv = tt_index;
allocated_index = true;
}
port = udev->ttport - 1;
ptt = &tt_index[port];
} else {
port = 0;
ptt = (struct ehci_tt **) &utt->hcpriv;
}
tt = *ptt;
if (!tt) { /* Create the ehci_tt */
struct ehci_hcd *ehci =
hcd_to_ehci(bus_to_hcd(udev->bus));
tt = kzalloc(sizeof(*tt), GFP_ATOMIC);
if (!tt) {
if (allocated_index) {
utt->hcpriv = NULL;
kfree(tt_index);
}
return ERR_PTR(-ENOMEM);
}
list_add_tail(&tt->tt_list, &ehci->tt_list);
INIT_LIST_HEAD(&tt->ps_list);
tt->usb_tt = utt;
tt->tt_port = port;
*ptt = tt;
}
return tt;
}
/* Release the TT above udev, if it's not in use */
static void drop_tt(struct usb_device *udev)
{
struct usb_tt *utt = udev->tt;
struct ehci_tt *tt, **tt_index, **ptt;
int cnt, i;
if (!utt || !utt->hcpriv)
return; /* Not below a TT, or never allocated */
cnt = 0;
if (utt->multi) {
tt_index = utt->hcpriv;
ptt = &tt_index[udev->ttport - 1];
/* How many entries are left in tt_index? */
for (i = 0; i < utt->hub->maxchild; ++i)
cnt += !!tt_index[i];
} else {
tt_index = NULL;
ptt = (struct ehci_tt **) &utt->hcpriv;
}
tt = *ptt;
if (!tt || !list_empty(&tt->ps_list))
return; /* never allocated, or still in use */
list_del(&tt->tt_list);
*ptt = NULL;
kfree(tt);
if (cnt == 1) {
utt->hcpriv = NULL;
kfree(tt_index);
}
}
static void bandwidth_dbg(struct ehci_hcd *ehci, int sign, char *type,
struct ehci_per_sched *ps)
{
dev_dbg(&ps->udev->dev,
"ep %02x: %s %s @ %u+%u (%u.%u+%u) [%u/%u us] mask %04x\n",
ps->ep->desc.bEndpointAddress,
(sign >= 0 ? "reserve" : "release"), type,
(ps->bw_phase << 3) + ps->phase_uf, ps->bw_uperiod,
ps->phase, ps->phase_uf, ps->period,
ps->usecs, ps->c_usecs, ps->cs_mask);
}
static void reserve_release_intr_bandwidth(struct ehci_hcd *ehci,
struct ehci_qh *qh, int sign)
{
unsigned start_uf;
unsigned i, j, m;
int usecs = qh->ps.usecs;
int c_usecs = qh->ps.c_usecs;
int tt_usecs = qh->ps.tt_usecs;
struct ehci_tt *tt;
if (qh->ps.phase == NO_FRAME) /* Bandwidth wasn't reserved */
return;
start_uf = qh->ps.bw_phase << 3;
bandwidth_dbg(ehci, sign, "intr", &qh->ps);
if (sign < 0) { /* Release bandwidth */
usecs = -usecs;
c_usecs = -c_usecs;
tt_usecs = -tt_usecs;
}
/* Entire transaction (high speed) or start-split (full/low speed) */
for (i = start_uf + qh->ps.phase_uf; i < EHCI_BANDWIDTH_SIZE;
i += qh->ps.bw_uperiod)
ehci->bandwidth[i] += usecs;
/* Complete-split (full/low speed) */
if (qh->ps.c_usecs) {
/* NOTE: adjustments needed for FSTN */
for (i = start_uf; i < EHCI_BANDWIDTH_SIZE;
i += qh->ps.bw_uperiod) {
for ((j = 2, m = 1 << (j+8)); j < 8; (++j, m <<= 1)) {
if (qh->ps.cs_mask & m)
ehci->bandwidth[i+j] += c_usecs;
}
}
}
/* FS/LS bus bandwidth */
if (tt_usecs) {
tt = find_tt(qh->ps.udev);
if (sign > 0)
list_add_tail(&qh->ps.ps_list, &tt->ps_list);
else
list_del(&qh->ps.ps_list);
for (i = start_uf >> 3; i < EHCI_BANDWIDTH_FRAMES;
i += qh->ps.bw_period)
tt->bandwidth[i] += tt_usecs;
}
}
/*-------------------------------------------------------------------------*/
static void compute_tt_budget(u8 budget_table[EHCI_BANDWIDTH_SIZE],
struct ehci_tt *tt)
{
struct ehci_per_sched *ps;
unsigned uframe, uf, x;
u8 *budget_line;
if (!tt)
return;
memset(budget_table, 0, EHCI_BANDWIDTH_SIZE);
/* Add up the contributions from all the endpoints using this TT */
list_for_each_entry(ps, &tt->ps_list, ps_list) {
for (uframe = ps->bw_phase << 3; uframe < EHCI_BANDWIDTH_SIZE;
uframe += ps->bw_uperiod) {
budget_line = &budget_table[uframe];
x = ps->tt_usecs;
/* propagate the time forward */
for (uf = ps->phase_uf; uf < 8; ++uf) {
x += budget_line[uf];
/* Each microframe lasts 125 us */
if (x <= 125) {
budget_line[uf] = x;
break;
} else {
budget_line[uf] = 125;
x -= 125;
}
}
}
}
}
static int __maybe_unused same_tt(struct usb_device *dev1,
struct usb_device *dev2)
{
if (!dev1->tt || !dev2->tt)
return 0;
if (dev1->tt != dev2->tt)
return 0;
if (dev1->tt->multi)
return dev1->ttport == dev2->ttport;
else
return 1;
}
#ifdef CONFIG_USB_EHCI_TT_NEWSCHED
/* Which uframe does the low/fullspeed transfer start in?
*
* The parameter is the mask of ssplits in "H-frame" terms
* and this returns the transfer start uframe in "B-frame" terms,
* which allows both to match, e.g. a ssplit in "H-frame" uframe 0
* will cause a transfer in "B-frame" uframe 0. "B-frames" lag
* "H-frames" by 1 uframe. See the EHCI spec sec 4.5 and figure 4.7.
*/
static inline unsigned char tt_start_uframe(struct ehci_hcd *ehci, __hc32 mask)
{
unsigned char smask = QH_SMASK & hc32_to_cpu(ehci, mask);
if (!smask) {
ehci_err(ehci, "invalid empty smask!\n");
/* uframe 7 can't have bw so this will indicate failure */
return 7;
}
return ffs(smask) - 1;
}
static const unsigned char
max_tt_usecs[] = { 125, 125, 125, 125, 125, 125, 30, 0 };
/* carryover low/fullspeed bandwidth that crosses uframe boundries */
static inline void carryover_tt_bandwidth(unsigned short tt_usecs[8])
{
int i;
for (i=0; i<7; i++) {
if (max_tt_usecs[i] < tt_usecs[i]) {
tt_usecs[i+1] += tt_usecs[i] - max_tt_usecs[i];
tt_usecs[i] = max_tt_usecs[i];
}
}
}
/*
* Return true if the device's tt's downstream bus is available for a
* periodic transfer of the specified length (usecs), starting at the
* specified frame/uframe. Note that (as summarized in section 11.19
* of the usb 2.0 spec) TTs can buffer multiple transactions for each
* uframe.
*
* The uframe parameter is when the fullspeed/lowspeed transfer
* should be executed in "B-frame" terms, which is the same as the
* highspeed ssplit's uframe (which is in "H-frame" terms). For example
* a ssplit in "H-frame" 0 causes a transfer in "B-frame" 0.
* See the EHCI spec sec 4.5 and fig 4.7.
*
* This checks if the full/lowspeed bus, at the specified starting uframe,
* has the specified bandwidth available, according to rules listed
* in USB 2.0 spec section 11.18.1 fig 11-60.
*
* This does not check if the transfer would exceed the max ssplit
* limit of 16, specified in USB 2.0 spec section 11.18.4 requirement #4,
* since proper scheduling limits ssplits to less than 16 per uframe.
*/
static int tt_available (
struct ehci_hcd *ehci,
struct ehci_per_sched *ps,
struct ehci_tt *tt,
unsigned frame,
unsigned uframe
)
{
unsigned period = ps->bw_period;
unsigned usecs = ps->tt_usecs;
if ((period == 0) || (uframe >= 7)) /* error */
return 0;
for (frame &= period - 1; frame < EHCI_BANDWIDTH_FRAMES;
frame += period) {
unsigned i, uf;
unsigned short tt_usecs[8];
if (tt->bandwidth[frame] + usecs > 900)
return 0;
uf = frame << 3;
for (i = 0; i < 8; (++i, ++uf))
tt_usecs[i] = ehci->tt_budget[uf];
if (max_tt_usecs[uframe] <= tt_usecs[uframe])
return 0;
/* special case for isoc transfers larger than 125us:
* the first and each subsequent fully used uframe
* must be empty, so as to not illegally delay
* already scheduled transactions
*/
if (125 < usecs) {
int ufs = (usecs / 125);
for (i = uframe; i < (uframe + ufs) && i < 8; i++)
if (0 < tt_usecs[i])
return 0;
}
tt_usecs[uframe] += usecs;
carryover_tt_bandwidth(tt_usecs);
/* fail if the carryover pushed bw past the last uframe's limit */
if (max_tt_usecs[7] < tt_usecs[7])
return 0;
}
return 1;
}
#else
/* return true iff the device's transaction translator is available
* for a periodic transfer starting at the specified frame, using
* all the uframes in the mask.
*/
static int tt_no_collision (
struct ehci_hcd *ehci,
unsigned period,
struct usb_device *dev,
unsigned frame,
u32 uf_mask
)
{
if (period == 0) /* error */
return 0;
/* note bandwidth wastage: split never follows csplit
* (different dev or endpoint) until the next uframe.
* calling convention doesn't make that distinction.
*/
for (; frame < ehci->periodic_size; frame += period) {
union ehci_shadow here;
__hc32 type;
struct ehci_qh_hw *hw;
here = ehci->pshadow [frame];
type = Q_NEXT_TYPE(ehci, ehci->periodic [frame]);
while (here.ptr) {
switch (hc32_to_cpu(ehci, type)) {
case Q_TYPE_ITD:
type = Q_NEXT_TYPE(ehci, here.itd->hw_next);
here = here.itd->itd_next;
continue;
case Q_TYPE_QH:
hw = here.qh->hw;
if (same_tt(dev, here.qh->ps.udev)) {
u32 mask;
mask = hc32_to_cpu(ehci,
hw->hw_info2);
/* "knows" no gap is needed */
mask |= mask >> 8;
if (mask & uf_mask)
break;
}
type = Q_NEXT_TYPE(ehci, hw->hw_next);
here = here.qh->qh_next;
continue;
case Q_TYPE_SITD:
if (same_tt (dev, here.sitd->urb->dev)) {
u16 mask;
mask = hc32_to_cpu(ehci, here.sitd
->hw_uframe);
/* FIXME assumes no gap for IN! */
mask |= mask >> 8;
if (mask & uf_mask)
break;
}
type = Q_NEXT_TYPE(ehci, here.sitd->hw_next);
here = here.sitd->sitd_next;
continue;
// case Q_TYPE_FSTN:
default:
ehci_dbg (ehci,
"periodic frame %d bogus type %d\n",
frame, type);
}
/* collision or error */
return 0;
}
}
/* no collision */
return 1;
}
#endif /* CONFIG_USB_EHCI_TT_NEWSCHED */
/*-------------------------------------------------------------------------*/
static void enable_periodic(struct ehci_hcd *ehci)
{
if (ehci->periodic_count++)
return;
/* Stop waiting to turn off the periodic schedule */
ehci->enabled_hrtimer_events &= ~BIT(EHCI_HRTIMER_DISABLE_PERIODIC);
/* Don't start the schedule until PSS is 0 */
ehci_poll_PSS(ehci);
turn_on_io_watchdog(ehci);
}
static void disable_periodic(struct ehci_hcd *ehci)
{
if (--ehci->periodic_count)
return;
/* Don't turn off the schedule until PSS is 1 */
ehci_poll_PSS(ehci);
}
/*-------------------------------------------------------------------------*/
/* periodic schedule slots have iso tds (normal or split) first, then a
* sparse tree for active interrupt transfers.
*
* this just links in a qh; caller guarantees uframe masks are set right.
* no FSTN support (yet; ehci 0.96+)
*/
static void qh_link_periodic(struct ehci_hcd *ehci, struct ehci_qh *qh)
{
unsigned i;
unsigned period = qh->ps.period;
dev_dbg(&qh->ps.udev->dev,
"link qh%d-%04x/%p start %d [%d/%d us]\n",
period, hc32_to_cpup(ehci, &qh->hw->hw_info2)
& (QH_CMASK | QH_SMASK),
qh, qh->ps.phase, qh->ps.usecs, qh->ps.c_usecs);
/* high bandwidth, or otherwise every microframe */
if (period == 0)
period = 1;
for (i = qh->ps.phase; i < ehci->periodic_size; i += period) {
union ehci_shadow *prev = &ehci->pshadow[i];
__hc32 *hw_p = &ehci->periodic[i];
union ehci_shadow here = *prev;
__hc32 type = 0;
/* skip the iso nodes at list head */
while (here.ptr) {
type = Q_NEXT_TYPE(ehci, *hw_p);
if (type == cpu_to_hc32(ehci, Q_TYPE_QH))
break;
prev = periodic_next_shadow(ehci, prev, type);
hw_p = shadow_next_periodic(ehci, &here, type);
here = *prev;
}
/* sorting each branch by period (slow-->fast)
* enables sharing interior tree nodes
*/
while (here.ptr && qh != here.qh) {
if (qh->ps.period > here.qh->ps.period)
break;
prev = &here.qh->qh_next;
hw_p = &here.qh->hw->hw_next;
here = *prev;
}
/* link in this qh, unless some earlier pass did that */
if (qh != here.qh) {
qh->qh_next = here;
if (here.qh)
qh->hw->hw_next = *hw_p;
wmb ();
prev->qh = qh;
*hw_p = QH_NEXT (ehci, qh->qh_dma);
}
}
qh->qh_state = QH_STATE_LINKED;
qh->xacterrs = 0;
qh->exception = 0;
/* update per-qh bandwidth for debugfs */
ehci_to_hcd(ehci)->self.bandwidth_allocated += qh->ps.bw_period
? ((qh->ps.usecs + qh->ps.c_usecs) / qh->ps.bw_period)
: (qh->ps.usecs * 8);
list_add(&qh->intr_node, &ehci->intr_qh_list);
/* maybe enable periodic schedule processing */
++ehci->intr_count;
enable_periodic(ehci);
}
static void qh_unlink_periodic(struct ehci_hcd *ehci, struct ehci_qh *qh)
{
unsigned i;
unsigned period;
/*
* If qh is for a low/full-speed device, simply unlinking it
* could interfere with an ongoing split transaction. To unlink
* it safely would require setting the QH_INACTIVATE bit and
* waiting at least one frame, as described in EHCI 4.12.2.5.
*
* We won't bother with any of this. Instead, we assume that the
* only reason for unlinking an interrupt QH while the current URB
* is still active is to dequeue all the URBs (flush the whole
* endpoint queue).
*
* If rebalancing the periodic schedule is ever implemented, this
* approach will no longer be valid.
*/
/* high bandwidth, or otherwise part of every microframe */
period = qh->ps.period ? : 1;
for (i = qh->ps.phase; i < ehci->periodic_size; i += period)
periodic_unlink (ehci, i, qh);
/* update per-qh bandwidth for debugfs */
ehci_to_hcd(ehci)->self.bandwidth_allocated -= qh->ps.bw_period
? ((qh->ps.usecs + qh->ps.c_usecs) / qh->ps.bw_period)
: (qh->ps.usecs * 8);
dev_dbg(&qh->ps.udev->dev,
"unlink qh%d-%04x/%p start %d [%d/%d us]\n",
qh->ps.period,
hc32_to_cpup(ehci, &qh->hw->hw_info2) & (QH_CMASK | QH_SMASK),
qh, qh->ps.phase, qh->ps.usecs, qh->ps.c_usecs);
/* qh->qh_next still "live" to HC */
qh->qh_state = QH_STATE_UNLINK;
qh->qh_next.ptr = NULL;
if (ehci->qh_scan_next == qh)
ehci->qh_scan_next = list_entry(qh->intr_node.next,
struct ehci_qh, intr_node);
list_del(&qh->intr_node);
}
static void cancel_unlink_wait_intr(struct ehci_hcd *ehci, struct ehci_qh *qh)
{
if (qh->qh_state != QH_STATE_LINKED ||
list_empty(&qh->unlink_node))
return;
list_del_init(&qh->unlink_node);
/*
* TODO: disable the event of EHCI_HRTIMER_START_UNLINK_INTR for
* avoiding unnecessary CPU wakeup
*/
}
static void start_unlink_intr(struct ehci_hcd *ehci, struct ehci_qh *qh)
{
/* If the QH isn't linked then there's nothing we can do. */
if (qh->qh_state != QH_STATE_LINKED)
return;
/* if the qh is waiting for unlink, cancel it now */
cancel_unlink_wait_intr(ehci, qh);
qh_unlink_periodic (ehci, qh);
/* Make sure the unlinks are visible before starting the timer */
wmb();
/*
* The EHCI spec doesn't say how long it takes the controller to
* stop accessing an unlinked interrupt QH. The timer delay is
* 9 uframes; presumably that will be long enough.
*/
qh->unlink_cycle = ehci->intr_unlink_cycle;
/* New entries go at the end of the intr_unlink list */
list_add_tail(&qh->unlink_node, &ehci->intr_unlink);
if (ehci->intr_unlinking)
; /* Avoid recursive calls */
else if (ehci->rh_state < EHCI_RH_RUNNING)
ehci_handle_intr_unlinks(ehci);
else if (ehci->intr_unlink.next == &qh->unlink_node) {
ehci_enable_event(ehci, EHCI_HRTIMER_UNLINK_INTR, true);
++ehci->intr_unlink_cycle;
}
}
/*
* It is common only one intr URB is scheduled on one qh, and
* given complete() is run in tasklet context, introduce a bit
* delay to avoid unlink qh too early.
*/
static void start_unlink_intr_wait(struct ehci_hcd *ehci,
struct ehci_qh *qh)
{
qh->unlink_cycle = ehci->intr_unlink_wait_cycle;
/* New entries go at the end of the intr_unlink_wait list */
list_add_tail(&qh->unlink_node, &ehci->intr_unlink_wait);
if (ehci->rh_state < EHCI_RH_RUNNING)
ehci_handle_start_intr_unlinks(ehci);
else if (ehci->intr_unlink_wait.next == &qh->unlink_node) {
ehci_enable_event(ehci, EHCI_HRTIMER_START_UNLINK_INTR, true);
++ehci->intr_unlink_wait_cycle;
}
}
static void end_unlink_intr(struct ehci_hcd *ehci, struct ehci_qh *qh)
{
struct ehci_qh_hw *hw = qh->hw;
int rc;
qh->qh_state = QH_STATE_IDLE;
hw->hw_next = EHCI_LIST_END(ehci);
if (!list_empty(&qh->qtd_list))
qh_completions(ehci, qh);
/* reschedule QH iff another request is queued */
if (!list_empty(&qh->qtd_list) && ehci->rh_state == EHCI_RH_RUNNING) {
rc = qh_schedule(ehci, qh);
if (rc == 0) {
qh_refresh(ehci, qh);
qh_link_periodic(ehci, qh);
}
/* An error here likely indicates handshake failure
* or no space left in the schedule. Neither fault
* should happen often ...
*
* FIXME kill the now-dysfunctional queued urbs
*/
else {
ehci_err(ehci, "can't reschedule qh %p, err %d\n",
qh, rc);
}
}
/* maybe turn off periodic schedule */
--ehci->intr_count;
disable_periodic(ehci);
}
/*-------------------------------------------------------------------------*/
static int check_period (
struct ehci_hcd *ehci,
unsigned frame,
unsigned uframe,
unsigned uperiod,
unsigned usecs
) {
/* complete split running into next frame?
* given FSTN support, we could sometimes check...
*/
if (uframe >= 8)
return 0;
/* convert "usecs we need" to "max already claimed" */
usecs = ehci->uframe_periodic_max - usecs;
for (uframe += frame << 3; uframe < EHCI_BANDWIDTH_SIZE;
uframe += uperiod) {
if (ehci->bandwidth[uframe] > usecs)
return 0;
}
// success!
return 1;
}
static int check_intr_schedule (
struct ehci_hcd *ehci,
unsigned frame,
unsigned uframe,
struct ehci_qh *qh,
__hc32 *c_maskp,
struct ehci_tt *tt
)
{
int retval = -ENOSPC;
u8 mask = 0;
if (qh->ps.c_usecs && uframe >= 6) /* FSTN territory? */
goto done;
if (!check_period(ehci, frame, uframe, qh->ps.bw_uperiod, qh->ps.usecs))
goto done;
if (!qh->ps.c_usecs) {
retval = 0;
*c_maskp = 0;
goto done;
}
#ifdef CONFIG_USB_EHCI_TT_NEWSCHED
if (tt_available(ehci, &qh->ps, tt, frame, uframe)) {
unsigned i;
/* TODO : this may need FSTN for SSPLIT in uframe 5. */
for (i = uframe+2; i < 8 && i <= uframe+4; i++)
if (!check_period(ehci, frame, i,
qh->ps.bw_uperiod, qh->ps.c_usecs))
goto done;
else
mask |= 1 << i;
retval = 0;
*c_maskp = mask;
}
#else
/* Make sure this tt's buffer is also available for CSPLITs.
* We pessimize a bit; probably the typical full speed case
* doesn't need the second CSPLIT.
*
* NOTE: both SPLIT and CSPLIT could be checked in just
* one smart pass...
*/
mask = 0x03 << (uframe + qh->gap_uf);
*c_maskp = mask;
mask |= 1 << uframe;
if (tt_no_collision(ehci, qh->ps.bw_period, qh->ps.udev, frame, mask)) {
if (!check_period(ehci, frame, uframe + qh->gap_uf + 1,
qh->ps.bw_uperiod, qh->ps.c_usecs))
goto done;
if (!check_period(ehci, frame, uframe + qh->gap_uf,
qh->ps.bw_uperiod, qh->ps.c_usecs))
goto done;
retval = 0;
}
#endif
done:
return retval;
}
/* "first fit" scheduling policy used the first time through,
* or when the previous schedule slot can't be re-used.
*/
static int qh_schedule(struct ehci_hcd *ehci, struct ehci_qh *qh)
{
int status = 0;
unsigned uframe;
unsigned c_mask;
struct ehci_qh_hw *hw = qh->hw;
struct ehci_tt *tt;
hw->hw_next = EHCI_LIST_END(ehci);
/* reuse the previous schedule slots, if we can */
if (qh->ps.phase != NO_FRAME) {
ehci_dbg(ehci, "reused qh %p schedule\n", qh);
return 0;
}
uframe = 0;
c_mask = 0;
tt = find_tt(qh->ps.udev);
if (IS_ERR(tt)) {
status = PTR_ERR(tt);
goto done;
}
compute_tt_budget(ehci->tt_budget, tt);
/* else scan the schedule to find a group of slots such that all
* uframes have enough periodic bandwidth available.
*/
/* "normal" case, uframing flexible except with splits */
if (qh->ps.bw_period) {
int i;
unsigned frame;
for (i = qh->ps.bw_period; i > 0; --i) {
frame = ++ehci->random_frame & (qh->ps.bw_period - 1);
for (uframe = 0; uframe < 8; uframe++) {
status = check_intr_schedule(ehci,
frame, uframe, qh, &c_mask, tt);
if (status == 0)
goto got_it;
}
}
/* qh->ps.bw_period == 0 means every uframe */
} else {
status = check_intr_schedule(ehci, 0, 0, qh, &c_mask, tt);
}
if (status)
goto done;
got_it:
qh->ps.phase = (qh->ps.period ? ehci->random_frame &
(qh->ps.period - 1) : 0);
qh->ps.bw_phase = qh->ps.phase & (qh->ps.bw_period - 1);
qh->ps.phase_uf = uframe;
qh->ps.cs_mask = qh->ps.period ?
(c_mask << 8) | (1 << uframe) :
QH_SMASK;
/* reset S-frame and (maybe) C-frame masks */
hw->hw_info2 &= cpu_to_hc32(ehci, ~(QH_CMASK | QH_SMASK));
hw->hw_info2 |= cpu_to_hc32(ehci, qh->ps.cs_mask);
reserve_release_intr_bandwidth(ehci, qh, 1);
done:
return status;
}
static int intr_submit (
struct ehci_hcd *ehci,
struct urb *urb,
struct list_head *qtd_list,
gfp_t mem_flags
) {
unsigned epnum;
unsigned long flags;
struct ehci_qh *qh;
int status;
struct list_head empty;
/* get endpoint and transfer/schedule data */
epnum = urb->ep->desc.bEndpointAddress;
spin_lock_irqsave (&ehci->lock, flags);
if (unlikely(!HCD_HW_ACCESSIBLE(ehci_to_hcd(ehci)))) {
status = -ESHUTDOWN;
goto done_not_linked;
}
status = usb_hcd_link_urb_to_ep(ehci_to_hcd(ehci), urb);
if (unlikely(status))
goto done_not_linked;
/* get qh and force any scheduling errors */
INIT_LIST_HEAD (&empty);
qh = qh_append_tds(ehci, urb, &empty, epnum, &urb->ep->hcpriv);
if (qh == NULL) {
status = -ENOMEM;
goto done;
}
if (qh->qh_state == QH_STATE_IDLE) {
if ((status = qh_schedule (ehci, qh)) != 0)
goto done;
}
/* then queue the urb's tds to the qh */
qh = qh_append_tds(ehci, urb, qtd_list, epnum, &urb->ep->hcpriv);
BUG_ON (qh == NULL);
/* stuff into the periodic schedule */
if (qh->qh_state == QH_STATE_IDLE) {
qh_refresh(ehci, qh);
qh_link_periodic(ehci, qh);
} else {
/* cancel unlink wait for the qh */
cancel_unlink_wait_intr(ehci, qh);
}
/* ... update usbfs periodic stats */
ehci_to_hcd(ehci)->self.bandwidth_int_reqs++;
done:
if (unlikely(status))
usb_hcd_unlink_urb_from_ep(ehci_to_hcd(ehci), urb);
done_not_linked:
spin_unlock_irqrestore (&ehci->lock, flags);
if (status)
qtd_list_free (ehci, urb, qtd_list);
return status;
}
static void scan_intr(struct ehci_hcd *ehci)
{
struct ehci_qh *qh;
list_for_each_entry_safe(qh, ehci->qh_scan_next, &ehci->intr_qh_list,
intr_node) {
/* clean any finished work for this qh */
if (!list_empty(&qh->qtd_list)) {
int temp;
/*
* Unlinks could happen here; completion reporting
* drops the lock. That's why ehci->qh_scan_next
* always holds the next qh to scan; if the next qh
* gets unlinked then ehci->qh_scan_next is adjusted
* in qh_unlink_periodic().
*/
temp = qh_completions(ehci, qh);
if (unlikely(temp))
start_unlink_intr(ehci, qh);
else if (unlikely(list_empty(&qh->qtd_list) &&
qh->qh_state == QH_STATE_LINKED))
start_unlink_intr_wait(ehci, qh);
}
}
}
/*-------------------------------------------------------------------------*/
/* ehci_iso_stream ops work with both ITD and SITD */
static struct ehci_iso_stream *
iso_stream_alloc (gfp_t mem_flags)
{
struct ehci_iso_stream *stream;
stream = kzalloc(sizeof *stream, mem_flags);
if (likely (stream != NULL)) {
INIT_LIST_HEAD(&stream->td_list);
INIT_LIST_HEAD(&stream->free_list);
stream->next_uframe = NO_FRAME;
stream->ps.phase = NO_FRAME;
}
return stream;
}
static void
iso_stream_init (
struct ehci_hcd *ehci,
struct ehci_iso_stream *stream,
struct urb *urb
)
{
static const u8 smask_out [] = { 0x01, 0x03, 0x07, 0x0f, 0x1f, 0x3f };
struct usb_device *dev = urb->dev;
u32 buf1;
unsigned epnum, maxp;
int is_input;
unsigned tmp;
/*
* this might be a "high bandwidth" highspeed endpoint,
* as encoded in the ep descriptor's wMaxPacket field
*/
epnum = usb_pipeendpoint(urb->pipe);
is_input = usb_pipein(urb->pipe) ? USB_DIR_IN : 0;
maxp = usb_endpoint_maxp(&urb->ep->desc);
if (is_input) {
buf1 = (1 << 11);
} else {
buf1 = 0;
}
/* knows about ITD vs SITD */
if (dev->speed == USB_SPEED_HIGH) {
unsigned multi = hb_mult(maxp);
stream->highspeed = 1;
maxp = max_packet(maxp);
buf1 |= maxp;
maxp *= multi;
stream->buf0 = cpu_to_hc32(ehci, (epnum << 8) | dev->devnum);
stream->buf1 = cpu_to_hc32(ehci, buf1);
stream->buf2 = cpu_to_hc32(ehci, multi);
/* usbfs wants to report the average usecs per frame tied up
* when transfers on this endpoint are scheduled ...
*/
stream->ps.usecs = HS_USECS_ISO(maxp);
/* period for bandwidth allocation */
tmp = min_t(unsigned, EHCI_BANDWIDTH_SIZE,
1 << (urb->ep->desc.bInterval - 1));
/* Allow urb->interval to override */
stream->ps.bw_uperiod = min_t(unsigned, tmp, urb->interval);
stream->uperiod = urb->interval;
stream->ps.period = urb->interval >> 3;
stream->bandwidth = stream->ps.usecs * 8 /
stream->ps.bw_uperiod;
} else {
u32 addr;
int think_time;
int hs_transfers;
addr = dev->ttport << 24;
if (!ehci_is_TDI(ehci)
|| (dev->tt->hub !=
ehci_to_hcd(ehci)->self.root_hub))
addr |= dev->tt->hub->devnum << 16;
addr |= epnum << 8;
addr |= dev->devnum;
stream->ps.usecs = HS_USECS_ISO(maxp);
think_time = dev->tt ? dev->tt->think_time : 0;
stream->ps.tt_usecs = NS_TO_US(think_time + usb_calc_bus_time(
dev->speed, is_input, 1, maxp));
hs_transfers = max (1u, (maxp + 187) / 188);
if (is_input) {
u32 tmp;
addr |= 1 << 31;
stream->ps.c_usecs = stream->ps.usecs;
stream->ps.usecs = HS_USECS_ISO(1);
stream->ps.cs_mask = 1;
/* c-mask as specified in USB 2.0 11.18.4 3.c */
tmp = (1 << (hs_transfers + 2)) - 1;
stream->ps.cs_mask |= tmp << (8 + 2);
} else
stream->ps.cs_mask = smask_out[hs_transfers - 1];
/* period for bandwidth allocation */
tmp = min_t(unsigned, EHCI_BANDWIDTH_FRAMES,
1 << (urb->ep->desc.bInterval - 1));
/* Allow urb->interval to override */
stream->ps.bw_period = min_t(unsigned, tmp, urb->interval);
stream->ps.bw_uperiod = stream->ps.bw_period << 3;
stream->ps.period = urb->interval;
stream->uperiod = urb->interval << 3;
stream->bandwidth = (stream->ps.usecs + stream->ps.c_usecs) /
stream->ps.bw_period;
/* stream->splits gets created from cs_mask later */
stream->address = cpu_to_hc32(ehci, addr);
}
stream->ps.udev = dev;
stream->ps.ep = urb->ep;
stream->bEndpointAddress = is_input | epnum;
stream->maxp = maxp;
}
static struct ehci_iso_stream *
iso_stream_find (struct ehci_hcd *ehci, struct urb *urb)
{
unsigned epnum;
struct ehci_iso_stream *stream;
struct usb_host_endpoint *ep;
unsigned long flags;
epnum = usb_pipeendpoint (urb->pipe);
if (usb_pipein(urb->pipe))
ep = urb->dev->ep_in[epnum];
else
ep = urb->dev->ep_out[epnum];
spin_lock_irqsave (&ehci->lock, flags);
stream = ep->hcpriv;
if (unlikely (stream == NULL)) {
stream = iso_stream_alloc(GFP_ATOMIC);
if (likely (stream != NULL)) {
ep->hcpriv = stream;
iso_stream_init(ehci, stream, urb);
}
/* if dev->ep [epnum] is a QH, hw is set */
} else if (unlikely (stream->hw != NULL)) {
ehci_dbg (ehci, "dev %s ep%d%s, not iso??\n",
urb->dev->devpath, epnum,
usb_pipein(urb->pipe) ? "in" : "out");
stream = NULL;
}
spin_unlock_irqrestore (&ehci->lock, flags);
return stream;
}
/*-------------------------------------------------------------------------*/
/* ehci_iso_sched ops can be ITD-only or SITD-only */
static struct ehci_iso_sched *
iso_sched_alloc (unsigned packets, gfp_t mem_flags)
{
struct ehci_iso_sched *iso_sched;
int size = sizeof *iso_sched;
size += packets * sizeof (struct ehci_iso_packet);
iso_sched = kzalloc(size, mem_flags);
if (likely (iso_sched != NULL)) {
INIT_LIST_HEAD (&iso_sched->td_list);
}
return iso_sched;
}
static inline void
itd_sched_init(
struct ehci_hcd *ehci,
struct ehci_iso_sched *iso_sched,
struct ehci_iso_stream *stream,
struct urb *urb
)
{
unsigned i;
dma_addr_t dma = urb->transfer_dma;
/* how many uframes are needed for these transfers */
iso_sched->span = urb->number_of_packets * stream->uperiod;
/* figure out per-uframe itd fields that we'll need later
* when we fit new itds into the schedule.
*/
for (i = 0; i < urb->number_of_packets; i++) {
struct ehci_iso_packet *uframe = &iso_sched->packet [i];
unsigned length;
dma_addr_t buf;
u32 trans;
length = urb->iso_frame_desc [i].length;
buf = dma + urb->iso_frame_desc [i].offset;
trans = EHCI_ISOC_ACTIVE;
trans |= buf & 0x0fff;
if (unlikely (((i + 1) == urb->number_of_packets))
&& !(urb->transfer_flags & URB_NO_INTERRUPT))
trans |= EHCI_ITD_IOC;
trans |= length << 16;
uframe->transaction = cpu_to_hc32(ehci, trans);
/* might need to cross a buffer page within a uframe */
uframe->bufp = (buf & ~(u64)0x0fff);
buf += length;
if (unlikely ((uframe->bufp != (buf & ~(u64)0x0fff))))
uframe->cross = 1;
}
}
static void
iso_sched_free (
struct ehci_iso_stream *stream,
struct ehci_iso_sched *iso_sched
)
{
if (!iso_sched)
return;
// caller must hold ehci->lock!
list_splice (&iso_sched->td_list, &stream->free_list);
kfree (iso_sched);
}
static int
itd_urb_transaction (
struct ehci_iso_stream *stream,
struct ehci_hcd *ehci,
struct urb *urb,
gfp_t mem_flags
)
{
struct ehci_itd *itd;
dma_addr_t itd_dma;
int i;
unsigned num_itds;
struct ehci_iso_sched *sched;
unsigned long flags;
sched = iso_sched_alloc (urb->number_of_packets, mem_flags);
if (unlikely (sched == NULL))
return -ENOMEM;
itd_sched_init(ehci, sched, stream, urb);
if (urb->interval < 8)
num_itds = 1 + (sched->span + 7) / 8;
else
num_itds = urb->number_of_packets;
/* allocate/init ITDs */
spin_lock_irqsave (&ehci->lock, flags);
for (i = 0; i < num_itds; i++) {
/*
* Use iTDs from the free list, but not iTDs that may
* still be in use by the hardware.
*/
if (likely(!list_empty(&stream->free_list))) {
itd = list_first_entry(&stream->free_list,
struct ehci_itd, itd_list);
if (itd->frame == ehci->now_frame)
goto alloc_itd;
list_del (&itd->itd_list);
itd_dma = itd->itd_dma;
} else {
alloc_itd:
spin_unlock_irqrestore (&ehci->lock, flags);
itd = dma_pool_alloc (ehci->itd_pool, mem_flags,
&itd_dma);
spin_lock_irqsave (&ehci->lock, flags);
if (!itd) {
iso_sched_free(stream, sched);
spin_unlock_irqrestore(&ehci->lock, flags);
return -ENOMEM;
}
}
memset (itd, 0, sizeof *itd);
itd->itd_dma = itd_dma;
itd->frame = NO_FRAME;
list_add (&itd->itd_list, &sched->td_list);
}
spin_unlock_irqrestore (&ehci->lock, flags);
/* temporarily store schedule info in hcpriv */
urb->hcpriv = sched;
urb->error_count = 0;
return 0;
}
/*-------------------------------------------------------------------------*/
static void reserve_release_iso_bandwidth(struct ehci_hcd *ehci,
struct ehci_iso_stream *stream, int sign)
{
unsigned uframe;
unsigned i, j;
unsigned s_mask, c_mask, m;
int usecs = stream->ps.usecs;
int c_usecs = stream->ps.c_usecs;
int tt_usecs = stream->ps.tt_usecs;
struct ehci_tt *tt;
if (stream->ps.phase == NO_FRAME) /* Bandwidth wasn't reserved */
return;
uframe = stream->ps.bw_phase << 3;
bandwidth_dbg(ehci, sign, "iso", &stream->ps);
if (sign < 0) { /* Release bandwidth */
usecs = -usecs;
c_usecs = -c_usecs;
tt_usecs = -tt_usecs;
}
if (!stream->splits) { /* High speed */
for (i = uframe + stream->ps.phase_uf; i < EHCI_BANDWIDTH_SIZE;
i += stream->ps.bw_uperiod)
ehci->bandwidth[i] += usecs;
} else { /* Full speed */
s_mask = stream->ps.cs_mask;
c_mask = s_mask >> 8;
/* NOTE: adjustment needed for frame overflow */
for (i = uframe; i < EHCI_BANDWIDTH_SIZE;
i += stream->ps.bw_uperiod) {
for ((j = stream->ps.phase_uf, m = 1 << j); j < 8;
(++j, m <<= 1)) {
if (s_mask & m)
ehci->bandwidth[i+j] += usecs;
else if (c_mask & m)
ehci->bandwidth[i+j] += c_usecs;
}
}
tt = find_tt(stream->ps.udev);
if (sign > 0)
list_add_tail(&stream->ps.ps_list, &tt->ps_list);
else
list_del(&stream->ps.ps_list);
for (i = uframe >> 3; i < EHCI_BANDWIDTH_FRAMES;
i += stream->ps.bw_period)
tt->bandwidth[i] += tt_usecs;
}
}
static inline int
itd_slot_ok (
struct ehci_hcd *ehci,
struct ehci_iso_stream *stream,
unsigned uframe
)
{
unsigned usecs;
/* convert "usecs we need" to "max already claimed" */
usecs = ehci->uframe_periodic_max - stream->ps.usecs;
for (uframe &= stream->ps.bw_uperiod - 1; uframe < EHCI_BANDWIDTH_SIZE;
uframe += stream->ps.bw_uperiod) {
if (ehci->bandwidth[uframe] > usecs)
return 0;
}
return 1;
}
static inline int
sitd_slot_ok (
struct ehci_hcd *ehci,
struct ehci_iso_stream *stream,
unsigned uframe,
struct ehci_iso_sched *sched,
struct ehci_tt *tt
)
{
unsigned mask, tmp;
unsigned frame, uf;
mask = stream->ps.cs_mask << (uframe & 7);
/* for OUT, don't wrap SSPLIT into H-microframe 7 */
if (((stream->ps.cs_mask & 0xff) << (uframe & 7)) >= (1 << 7))
return 0;
/* for IN, don't wrap CSPLIT into the next frame */
if (mask & ~0xffff)
return 0;
/* check bandwidth */
uframe &= stream->ps.bw_uperiod - 1;
frame = uframe >> 3;
#ifdef CONFIG_USB_EHCI_TT_NEWSCHED
/* The tt's fullspeed bus bandwidth must be available.
* tt_available scheduling guarantees 10+% for control/bulk.
*/
uf = uframe & 7;
if (!tt_available(ehci, &stream->ps, tt, frame, uf))
return 0;
#else
/* tt must be idle for start(s), any gap, and csplit.
* assume scheduling slop leaves 10+% for control/bulk.
*/
if (!tt_no_collision(ehci, stream->ps.bw_period,
stream->ps.udev, frame, mask))
return 0;
#endif
do {
unsigned max_used;
unsigned i;
/* check starts (OUT uses more than one) */
uf = uframe;
max_used = ehci->uframe_periodic_max - stream->ps.usecs;
for (tmp = stream->ps.cs_mask & 0xff; tmp; tmp >>= 1, uf++) {
if (ehci->bandwidth[uf] > max_used)
return 0;
}
/* for IN, check CSPLIT */
if (stream->ps.c_usecs) {
max_used = ehci->uframe_periodic_max -
stream->ps.c_usecs;
uf = uframe & ~7;
tmp = 1 << (2+8);
for (i = (uframe & 7) + 2; i < 8; (++i, tmp <<= 1)) {
if ((stream->ps.cs_mask & tmp) == 0)
continue;
if (ehci->bandwidth[uf+i] > max_used)
return 0;
}
}
uframe += stream->ps.bw_uperiod;
} while (uframe < EHCI_BANDWIDTH_SIZE);
stream->ps.cs_mask <<= uframe & 7;
stream->splits = cpu_to_hc32(ehci, stream->ps.cs_mask);
return 1;
}
/*
* This scheduler plans almost as far into the future as it has actual
* periodic schedule slots. (Affected by TUNE_FLS, which defaults to
* "as small as possible" to be cache-friendlier.) That limits the size
* transfers you can stream reliably; avoid more than 64 msec per urb.
* Also avoid queue depths of less than ehci's worst irq latency (affected
* by the per-urb URB_NO_INTERRUPT hint, the log2_irq_thresh module parameter,
* and other factors); or more than about 230 msec total (for portability,
* given EHCI_TUNE_FLS and the slop). Or, write a smarter scheduler!
*/
#define SCHEDULING_DELAY 40 /* microframes */
static int
iso_stream_schedule (
struct ehci_hcd *ehci,
struct urb *urb,
struct ehci_iso_stream *stream
)
{
u32 now, base, next, start, period, span, now2;
u32 wrap = 0, skip = 0;
int status = 0;
unsigned mod = ehci->periodic_size << 3;
struct ehci_iso_sched *sched = urb->hcpriv;
bool empty = list_empty(&stream->td_list);
period = stream->uperiod;
span = sched->span;
if (!stream->highspeed)
span <<= 3;
now = ehci_read_frame_index(ehci) & (mod - 1);
/* Take the isochronous scheduling threshold into account */
if (ehci->i_thresh)
next = now + ehci->i_thresh; /* uframe cache */
else
next = (now + 2 + 7) & ~0x07; /* full frame cache */
/*
* Use ehci->last_iso_frame as the base. There can't be any
* TDs scheduled for earlier than that.
*/
base = ehci->last_iso_frame << 3;
next = (next - base) & (mod - 1);
/* Start a new isochronous stream? */
if (unlikely(empty && !hcd_periodic_completion_in_progress(
ehci_to_hcd(ehci), urb->ep))) {
/* Schedule the endpoint */
if (stream->ps.phase == NO_FRAME) {
int done = 0;
struct ehci_tt *tt = find_tt(stream->ps.udev);
if (IS_ERR(tt)) {
status = PTR_ERR(tt);
goto fail;
}
compute_tt_budget(ehci->tt_budget, tt);
start = (now & ~0x07) + SCHEDULING_DELAY;
/* find a uframe slot with enough bandwidth.
* Early uframes are more precious because full-speed
* iso IN transfers can't use late uframes,
* and therefore they should be allocated last.
*/
next = start;
start += period;
do {
start--;
/* check schedule: enough space? */
if (stream->highspeed) {
if (itd_slot_ok(ehci, stream, start))
done = 1;
} else {
if ((start % 8) >= 6)
continue;
if (sitd_slot_ok(ehci, stream, start,
sched, tt))
done = 1;
}
} while (start > next && !done);
/* no room in the schedule */
if (!done) {
ehci_dbg(ehci, "iso sched full %p", urb);
status = -ENOSPC;
goto fail;
}
stream->ps.phase = (start >> 3) &
(stream->ps.period - 1);
stream->ps.bw_phase = stream->ps.phase &
(stream->ps.bw_period - 1);
stream->ps.phase_uf = start & 7;
reserve_release_iso_bandwidth(ehci, stream, 1);
}
/* New stream is already scheduled; use the upcoming slot */
else {
start = (stream->ps.phase << 3) + stream->ps.phase_uf;
}
start = (start - base) & (mod - 1);
goto use_start;
}
/*
* Typical case: reuse current schedule, stream may still be active.
* Hopefully there are no gaps from the host falling behind
* (irq delays etc). If there are, the behavior depends on
* whether URB_ISO_ASAP is set.
*/
start = (stream->next_uframe - base) & (mod - 1);
now2 = (now - base) & (mod - 1);
/* Is the schedule already full? */
if (unlikely(!empty && start < period)) {
ehci_dbg(ehci, "iso sched full %p (%u-%u < %u mod %u)\n",
urb, stream->next_uframe, base, period, mod);
status = -ENOSPC;
goto fail;
}
/* Is the next packet scheduled after the base time? */
if (likely(!empty || start <= now2 + period)) {
/* URB_ISO_ASAP: make sure that start >= next */
if (unlikely(start < next &&
(urb->transfer_flags & URB_ISO_ASAP)))
goto do_ASAP;
/* Otherwise use start, if it's not in the past */
if (likely(start >= now2))
goto use_start;
/* Otherwise we got an underrun while the queue was empty */
} else {
if (urb->transfer_flags & URB_ISO_ASAP)
goto do_ASAP;
wrap = mod;
now2 += mod;
}
/* How many uframes and packets do we need to skip? */
skip = (now2 - start + period - 1) & -period;
if (skip >= span) { /* Entirely in the past? */
ehci_dbg(ehci, "iso underrun %p (%u+%u < %u) [%u]\n",
urb, start + base, span - period, now2 + base,
base);
/* Try to keep the last TD intact for scanning later */
skip = span - period;
/* Will it come before the current scan position? */
if (empty) {
skip = span; /* Skip the entire URB */
status = 1; /* and give it back immediately */
iso_sched_free(stream, sched);
sched = NULL;
}
}
urb->error_count = skip / period;
if (sched)
sched->first_packet = urb->error_count;
goto use_start;
do_ASAP:
/* Use the first slot after "next" */
start = next + ((start - next) & (period - 1));
use_start:
/* Tried to schedule too far into the future? */
if (unlikely(start + span - period >= mod + wrap)) {
ehci_dbg(ehci, "request %p would overflow (%u+%u >= %u)\n",
urb, start, span - period, mod + wrap);
status = -EFBIG;
goto fail;
}
start += base;
stream->next_uframe = (start + skip) & (mod - 1);
/* report high speed start in uframes; full speed, in frames */
urb->start_frame = start & (mod - 1);
if (!stream->highspeed)
urb->start_frame >>= 3;
/* Make sure scan_isoc() sees these */
if (ehci->isoc_count == 0)
ehci->last_iso_frame = now >> 3;
return status;
fail:
iso_sched_free(stream, sched);
urb->hcpriv = NULL;
return status;
}
/*-------------------------------------------------------------------------*/
static inline void
itd_init(struct ehci_hcd *ehci, struct ehci_iso_stream *stream,
struct ehci_itd *itd)
{
int i;
/* it's been recently zeroed */
itd->hw_next = EHCI_LIST_END(ehci);
itd->hw_bufp [0] = stream->buf0;
itd->hw_bufp [1] = stream->buf1;
itd->hw_bufp [2] = stream->buf2;
for (i = 0; i < 8; i++)
itd->index[i] = -1;
/* All other fields are filled when scheduling */
}
static inline void
itd_patch(
struct ehci_hcd *ehci,
struct ehci_itd *itd,
struct ehci_iso_sched *iso_sched,
unsigned index,
u16 uframe
)
{
struct ehci_iso_packet *uf = &iso_sched->packet [index];
unsigned pg = itd->pg;
// BUG_ON (pg == 6 && uf->cross);
uframe &= 0x07;
itd->index [uframe] = index;
itd->hw_transaction[uframe] = uf->transaction;
itd->hw_transaction[uframe] |= cpu_to_hc32(ehci, pg << 12);
itd->hw_bufp[pg] |= cpu_to_hc32(ehci, uf->bufp & ~(u32)0);
itd->hw_bufp_hi[pg] |= cpu_to_hc32(ehci, (u32)(uf->bufp >> 32));
/* iso_frame_desc[].offset must be strictly increasing */
if (unlikely (uf->cross)) {
u64 bufp = uf->bufp + 4096;
itd->pg = ++pg;
itd->hw_bufp[pg] |= cpu_to_hc32(ehci, bufp & ~(u32)0);
itd->hw_bufp_hi[pg] |= cpu_to_hc32(ehci, (u32)(bufp >> 32));
}
}
static inline void
itd_link (struct ehci_hcd *ehci, unsigned frame, struct ehci_itd *itd)
{
union ehci_shadow *prev = &ehci->pshadow[frame];
__hc32 *hw_p = &ehci->periodic[frame];
union ehci_shadow here = *prev;
__hc32 type = 0;
/* skip any iso nodes which might belong to previous microframes */
while (here.ptr) {
type = Q_NEXT_TYPE(ehci, *hw_p);
if (type == cpu_to_hc32(ehci, Q_TYPE_QH))
break;
prev = periodic_next_shadow(ehci, prev, type);
hw_p = shadow_next_periodic(ehci, &here, type);
here = *prev;
}
itd->itd_next = here;
itd->hw_next = *hw_p;
prev->itd = itd;
itd->frame = frame;
wmb ();
*hw_p = cpu_to_hc32(ehci, itd->itd_dma | Q_TYPE_ITD);
}
/* fit urb's itds into the selected schedule slot; activate as needed */
static void itd_link_urb(
struct ehci_hcd *ehci,
struct urb *urb,
unsigned mod,
struct ehci_iso_stream *stream
)
{
int packet;
unsigned next_uframe, uframe, frame;
struct ehci_iso_sched *iso_sched = urb->hcpriv;
struct ehci_itd *itd;
next_uframe = stream->next_uframe & (mod - 1);
if (unlikely (list_empty(&stream->td_list)))
ehci_to_hcd(ehci)->self.bandwidth_allocated
+= stream->bandwidth;
if (ehci_to_hcd(ehci)->self.bandwidth_isoc_reqs == 0) {
if (ehci->amd_pll_fix == 1)
usb_amd_quirk_pll_disable();
}
ehci_to_hcd(ehci)->self.bandwidth_isoc_reqs++;
/* fill iTDs uframe by uframe */
for (packet = iso_sched->first_packet, itd = NULL;
packet < urb->number_of_packets;) {
if (itd == NULL) {
/* ASSERT: we have all necessary itds */
// BUG_ON (list_empty (&iso_sched->td_list));
/* ASSERT: no itds for this endpoint in this uframe */
itd = list_entry (iso_sched->td_list.next,
struct ehci_itd, itd_list);
list_move_tail (&itd->itd_list, &stream->td_list);
itd->stream = stream;
itd->urb = urb;
itd_init (ehci, stream, itd);
}
uframe = next_uframe & 0x07;
frame = next_uframe >> 3;
itd_patch(ehci, itd, iso_sched, packet, uframe);
next_uframe += stream->uperiod;
next_uframe &= mod - 1;
packet++;
/* link completed itds into the schedule */
if (((next_uframe >> 3) != frame)
|| packet == urb->number_of_packets) {
itd_link(ehci, frame & (ehci->periodic_size - 1), itd);
itd = NULL;
}
}
stream->next_uframe = next_uframe;
/* don't need that schedule data any more */
iso_sched_free (stream, iso_sched);
urb->hcpriv = stream;
++ehci->isoc_count;
enable_periodic(ehci);
}
#define ISO_ERRS (EHCI_ISOC_BUF_ERR | EHCI_ISOC_BABBLE | EHCI_ISOC_XACTERR)
/* Process and recycle a completed ITD. Return true iff its urb completed,
* and hence its completion callback probably added things to the hardware
* schedule.
*
* Note that we carefully avoid recycling this descriptor until after any
* completion callback runs, so that it won't be reused quickly. That is,
* assuming (a) no more than two urbs per frame on this endpoint, and also
* (b) only this endpoint's completions submit URBs. It seems some silicon
* corrupts things if you reuse completed descriptors very quickly...
*/
static bool itd_complete(struct ehci_hcd *ehci, struct ehci_itd *itd)
{
struct urb *urb = itd->urb;
struct usb_iso_packet_descriptor *desc;
u32 t;
unsigned uframe;
int urb_index = -1;
struct ehci_iso_stream *stream = itd->stream;
struct usb_device *dev;
bool retval = false;
/* for each uframe with a packet */
for (uframe = 0; uframe < 8; uframe++) {
if (likely (itd->index[uframe] == -1))
continue;
urb_index = itd->index[uframe];
desc = &urb->iso_frame_desc [urb_index];
t = hc32_to_cpup(ehci, &itd->hw_transaction [uframe]);
itd->hw_transaction [uframe] = 0;
/* report transfer status */
if (unlikely (t & ISO_ERRS)) {
urb->error_count++;
if (t & EHCI_ISOC_BUF_ERR)
desc->status = usb_pipein (urb->pipe)
? -ENOSR /* hc couldn't read */
: -ECOMM; /* hc couldn't write */
else if (t & EHCI_ISOC_BABBLE)
desc->status = -EOVERFLOW;
else /* (t & EHCI_ISOC_XACTERR) */
desc->status = -EPROTO;
/* HC need not update length with this error */
if (!(t & EHCI_ISOC_BABBLE)) {
desc->actual_length = EHCI_ITD_LENGTH(t);
urb->actual_length += desc->actual_length;
}
} else if (likely ((t & EHCI_ISOC_ACTIVE) == 0)) {
desc->status = 0;
desc->actual_length = EHCI_ITD_LENGTH(t);
urb->actual_length += desc->actual_length;
} else {
/* URB was too late */
urb->error_count++;
}
}
/* handle completion now? */
if (likely ((urb_index + 1) != urb->number_of_packets))
goto done;
/* ASSERT: it's really the last itd for this urb
list_for_each_entry (itd, &stream->td_list, itd_list)
BUG_ON (itd->urb == urb);
*/
/* give urb back to the driver; completion often (re)submits */
dev = urb->dev;
ehci_urb_done(ehci, urb, 0);
retval = true;
urb = NULL;
--ehci->isoc_count;
disable_periodic(ehci);
ehci_to_hcd(ehci)->self.bandwidth_isoc_reqs--;
if (ehci_to_hcd(ehci)->self.bandwidth_isoc_reqs == 0) {
if (ehci->amd_pll_fix == 1)
usb_amd_quirk_pll_enable();
}
if (unlikely(list_is_singular(&stream->td_list)))
ehci_to_hcd(ehci)->self.bandwidth_allocated
-= stream->bandwidth;
done:
itd->urb = NULL;
/* Add to the end of the free list for later reuse */
list_move_tail(&itd->itd_list, &stream->free_list);
/* Recycle the iTDs when the pipeline is empty (ep no longer in use) */
if (list_empty(&stream->td_list)) {
list_splice_tail_init(&stream->free_list,
&ehci->cached_itd_list);
start_free_itds(ehci);
}
return retval;
}
/*-------------------------------------------------------------------------*/
static int itd_submit (struct ehci_hcd *ehci, struct urb *urb,
gfp_t mem_flags)
{
int status = -EINVAL;
unsigned long flags;
struct ehci_iso_stream *stream;
/* Get iso_stream head */
stream = iso_stream_find (ehci, urb);
if (unlikely (stream == NULL)) {
ehci_dbg (ehci, "can't get iso stream\n");
return -ENOMEM;
}
if (unlikely(urb->interval != stream->uperiod)) {
ehci_dbg (ehci, "can't change iso interval %d --> %d\n",
stream->uperiod, urb->interval);
goto done;
}
#ifdef EHCI_URB_TRACE
ehci_dbg (ehci,
"%s %s urb %p ep%d%s len %d, %d pkts %d uframes [%p]\n",
__func__, urb->dev->devpath, urb,
usb_pipeendpoint (urb->pipe),
usb_pipein (urb->pipe) ? "in" : "out",
urb->transfer_buffer_length,
urb->number_of_packets, urb->interval,
stream);
#endif
/* allocate ITDs w/o locking anything */
status = itd_urb_transaction (stream, ehci, urb, mem_flags);
if (unlikely (status < 0)) {
ehci_dbg (ehci, "can't init itds\n");
goto done;
}
/* schedule ... need to lock */
spin_lock_irqsave (&ehci->lock, flags);
if (unlikely(!HCD_HW_ACCESSIBLE(ehci_to_hcd(ehci)))) {
status = -ESHUTDOWN;
goto done_not_linked;
}
status = usb_hcd_link_urb_to_ep(ehci_to_hcd(ehci), urb);
if (unlikely(status))
goto done_not_linked;
status = iso_stream_schedule(ehci, urb, stream);
if (likely(status == 0)) {
itd_link_urb (ehci, urb, ehci->periodic_size << 3, stream);
} else if (status > 0) {
status = 0;
ehci_urb_done(ehci, urb, 0);
} else {
usb_hcd_unlink_urb_from_ep(ehci_to_hcd(ehci), urb);
}
done_not_linked:
spin_unlock_irqrestore (&ehci->lock, flags);
done:
return status;
}
/*-------------------------------------------------------------------------*/
/*
* "Split ISO TDs" ... used for USB 1.1 devices going through the
* TTs in USB 2.0 hubs. These need microframe scheduling.
*/
static inline void
sitd_sched_init(
struct ehci_hcd *ehci,
struct ehci_iso_sched *iso_sched,
struct ehci_iso_stream *stream,
struct urb *urb
)
{
unsigned i;
dma_addr_t dma = urb->transfer_dma;
/* how many frames are needed for these transfers */
iso_sched->span = urb->number_of_packets * stream->ps.period;
/* figure out per-frame sitd fields that we'll need later
* when we fit new sitds into the schedule.
*/
for (i = 0; i < urb->number_of_packets; i++) {
struct ehci_iso_packet *packet = &iso_sched->packet [i];
unsigned length;
dma_addr_t buf;
u32 trans;
length = urb->iso_frame_desc [i].length & 0x03ff;
buf = dma + urb->iso_frame_desc [i].offset;
trans = SITD_STS_ACTIVE;
if (((i + 1) == urb->number_of_packets)
&& !(urb->transfer_flags & URB_NO_INTERRUPT))
trans |= SITD_IOC;
trans |= length << 16;
packet->transaction = cpu_to_hc32(ehci, trans);
/* might need to cross a buffer page within a td */
packet->bufp = buf;
packet->buf1 = (buf + length) & ~0x0fff;
if (packet->buf1 != (buf & ~(u64)0x0fff))
packet->cross = 1;
/* OUT uses multiple start-splits */
if (stream->bEndpointAddress & USB_DIR_IN)
continue;
length = (length + 187) / 188;
if (length > 1) /* BEGIN vs ALL */
length |= 1 << 3;
packet->buf1 |= length;
}
}
static int
sitd_urb_transaction (
struct ehci_iso_stream *stream,
struct ehci_hcd *ehci,
struct urb *urb,
gfp_t mem_flags
)
{
struct ehci_sitd *sitd;
dma_addr_t sitd_dma;
int i;
struct ehci_iso_sched *iso_sched;
unsigned long flags;
iso_sched = iso_sched_alloc (urb->number_of_packets, mem_flags);
if (iso_sched == NULL)
return -ENOMEM;
sitd_sched_init(ehci, iso_sched, stream, urb);
/* allocate/init sITDs */
spin_lock_irqsave (&ehci->lock, flags);
for (i = 0; i < urb->number_of_packets; i++) {
/* NOTE: for now, we don't try to handle wraparound cases
* for IN (using sitd->hw_backpointer, like a FSTN), which
* means we never need two sitds for full speed packets.
*/
/*
* Use siTDs from the free list, but not siTDs that may
* still be in use by the hardware.
*/
if (likely(!list_empty(&stream->free_list))) {
sitd = list_first_entry(&stream->free_list,
struct ehci_sitd, sitd_list);
if (sitd->frame == ehci->now_frame)
goto alloc_sitd;
list_del (&sitd->sitd_list);
sitd_dma = sitd->sitd_dma;
} else {
alloc_sitd:
spin_unlock_irqrestore (&ehci->lock, flags);
sitd = dma_pool_alloc (ehci->sitd_pool, mem_flags,
&sitd_dma);
spin_lock_irqsave (&ehci->lock, flags);
if (!sitd) {
iso_sched_free(stream, iso_sched);
spin_unlock_irqrestore(&ehci->lock, flags);
return -ENOMEM;
}
}
memset (sitd, 0, sizeof *sitd);
sitd->sitd_dma = sitd_dma;
sitd->frame = NO_FRAME;
list_add (&sitd->sitd_list, &iso_sched->td_list);
}
/* temporarily store schedule info in hcpriv */
urb->hcpriv = iso_sched;
urb->error_count = 0;
spin_unlock_irqrestore (&ehci->lock, flags);
return 0;
}
/*-------------------------------------------------------------------------*/
static inline void
sitd_patch(
struct ehci_hcd *ehci,
struct ehci_iso_stream *stream,
struct ehci_sitd *sitd,
struct ehci_iso_sched *iso_sched,
unsigned index
)
{
struct ehci_iso_packet *uf = &iso_sched->packet [index];
u64 bufp = uf->bufp;
sitd->hw_next = EHCI_LIST_END(ehci);
sitd->hw_fullspeed_ep = stream->address;
sitd->hw_uframe = stream->splits;
sitd->hw_results = uf->transaction;
sitd->hw_backpointer = EHCI_LIST_END(ehci);
bufp = uf->bufp;
sitd->hw_buf[0] = cpu_to_hc32(ehci, bufp);
sitd->hw_buf_hi[0] = cpu_to_hc32(ehci, bufp >> 32);
sitd->hw_buf[1] = cpu_to_hc32(ehci, uf->buf1);
if (uf->cross)
bufp += 4096;
sitd->hw_buf_hi[1] = cpu_to_hc32(ehci, bufp >> 32);
sitd->index = index;
}
static inline void
sitd_link (struct ehci_hcd *ehci, unsigned frame, struct ehci_sitd *sitd)
{
/* note: sitd ordering could matter (CSPLIT then SSPLIT) */
sitd->sitd_next = ehci->pshadow [frame];
sitd->hw_next = ehci->periodic [frame];
ehci->pshadow [frame].sitd = sitd;
sitd->frame = frame;
wmb ();
ehci->periodic[frame] = cpu_to_hc32(ehci, sitd->sitd_dma | Q_TYPE_SITD);
}
/* fit urb's sitds into the selected schedule slot; activate as needed */
static void sitd_link_urb(
struct ehci_hcd *ehci,
struct urb *urb,
unsigned mod,
struct ehci_iso_stream *stream
)
{
int packet;
unsigned next_uframe;
struct ehci_iso_sched *sched = urb->hcpriv;
struct ehci_sitd *sitd;
next_uframe = stream->next_uframe;
if (list_empty(&stream->td_list))
/* usbfs ignores TT bandwidth */
ehci_to_hcd(ehci)->self.bandwidth_allocated
+= stream->bandwidth;
if (ehci_to_hcd(ehci)->self.bandwidth_isoc_reqs == 0) {
if (ehci->amd_pll_fix == 1)
usb_amd_quirk_pll_disable();
}
ehci_to_hcd(ehci)->self.bandwidth_isoc_reqs++;
/* fill sITDs frame by frame */
for (packet = sched->first_packet, sitd = NULL;
packet < urb->number_of_packets;
packet++) {
/* ASSERT: we have all necessary sitds */
BUG_ON (list_empty (&sched->td_list));
/* ASSERT: no itds for this endpoint in this frame */
sitd = list_entry (sched->td_list.next,
struct ehci_sitd, sitd_list);
list_move_tail (&sitd->sitd_list, &stream->td_list);
sitd->stream = stream;
sitd->urb = urb;
sitd_patch(ehci, stream, sitd, sched, packet);
sitd_link(ehci, (next_uframe >> 3) & (ehci->periodic_size - 1),
sitd);
next_uframe += stream->uperiod;
}
stream->next_uframe = next_uframe & (mod - 1);
/* don't need that schedule data any more */
iso_sched_free (stream, sched);
urb->hcpriv = stream;
++ehci->isoc_count;
enable_periodic(ehci);
}
/*-------------------------------------------------------------------------*/
#define SITD_ERRS (SITD_STS_ERR | SITD_STS_DBE | SITD_STS_BABBLE \
| SITD_STS_XACT | SITD_STS_MMF)
/* Process and recycle a completed SITD. Return true iff its urb completed,
* and hence its completion callback probably added things to the hardware
* schedule.
*
* Note that we carefully avoid recycling this descriptor until after any
* completion callback runs, so that it won't be reused quickly. That is,
* assuming (a) no more than two urbs per frame on this endpoint, and also
* (b) only this endpoint's completions submit URBs. It seems some silicon
* corrupts things if you reuse completed descriptors very quickly...
*/
static bool sitd_complete(struct ehci_hcd *ehci, struct ehci_sitd *sitd)
{
struct urb *urb = sitd->urb;
struct usb_iso_packet_descriptor *desc;
u32 t;
int urb_index = -1;
struct ehci_iso_stream *stream = sitd->stream;
struct usb_device *dev;
bool retval = false;
urb_index = sitd->index;
desc = &urb->iso_frame_desc [urb_index];
t = hc32_to_cpup(ehci, &sitd->hw_results);
/* report transfer status */
if (unlikely(t & SITD_ERRS)) {
urb->error_count++;
if (t & SITD_STS_DBE)
desc->status = usb_pipein (urb->pipe)
? -ENOSR /* hc couldn't read */
: -ECOMM; /* hc couldn't write */
else if (t & SITD_STS_BABBLE)
desc->status = -EOVERFLOW;
else /* XACT, MMF, etc */
desc->status = -EPROTO;
} else if (unlikely(t & SITD_STS_ACTIVE)) {
/* URB was too late */
urb->error_count++;
} else {
desc->status = 0;
desc->actual_length = desc->length - SITD_LENGTH(t);
urb->actual_length += desc->actual_length;
}
/* handle completion now? */
if ((urb_index + 1) != urb->number_of_packets)
goto done;
/* ASSERT: it's really the last sitd for this urb
list_for_each_entry (sitd, &stream->td_list, sitd_list)
BUG_ON (sitd->urb == urb);
*/
/* give urb back to the driver; completion often (re)submits */
dev = urb->dev;
ehci_urb_done(ehci, urb, 0);
retval = true;
urb = NULL;
--ehci->isoc_count;
disable_periodic(ehci);
ehci_to_hcd(ehci)->self.bandwidth_isoc_reqs--;
if (ehci_to_hcd(ehci)->self.bandwidth_isoc_reqs == 0) {
if (ehci->amd_pll_fix == 1)
usb_amd_quirk_pll_enable();
}
if (list_is_singular(&stream->td_list))
ehci_to_hcd(ehci)->self.bandwidth_allocated
-= stream->bandwidth;
done:
sitd->urb = NULL;
/* Add to the end of the free list for later reuse */
list_move_tail(&sitd->sitd_list, &stream->free_list);
/* Recycle the siTDs when the pipeline is empty (ep no longer in use) */
if (list_empty(&stream->td_list)) {
list_splice_tail_init(&stream->free_list,
&ehci->cached_sitd_list);
start_free_itds(ehci);
}
return retval;
}
static int sitd_submit (struct ehci_hcd *ehci, struct urb *urb,
gfp_t mem_flags)
{
int status = -EINVAL;
unsigned long flags;
struct ehci_iso_stream *stream;
/* Get iso_stream head */
stream = iso_stream_find (ehci, urb);
if (stream == NULL) {
ehci_dbg (ehci, "can't get iso stream\n");
return -ENOMEM;
}
if (urb->interval != stream->ps.period) {
ehci_dbg (ehci, "can't change iso interval %d --> %d\n",
stream->ps.period, urb->interval);
goto done;
}
#ifdef EHCI_URB_TRACE
ehci_dbg (ehci,
"submit %p dev%s ep%d%s-iso len %d\n",
urb, urb->dev->devpath,
usb_pipeendpoint (urb->pipe),
usb_pipein (urb->pipe) ? "in" : "out",
urb->transfer_buffer_length);
#endif
/* allocate SITDs */
status = sitd_urb_transaction (stream, ehci, urb, mem_flags);
if (status < 0) {
ehci_dbg (ehci, "can't init sitds\n");
goto done;
}
/* schedule ... need to lock */
spin_lock_irqsave (&ehci->lock, flags);
if (unlikely(!HCD_HW_ACCESSIBLE(ehci_to_hcd(ehci)))) {
status = -ESHUTDOWN;
goto done_not_linked;
}
status = usb_hcd_link_urb_to_ep(ehci_to_hcd(ehci), urb);
if (unlikely(status))
goto done_not_linked;
status = iso_stream_schedule(ehci, urb, stream);
if (likely(status == 0)) {
sitd_link_urb (ehci, urb, ehci->periodic_size << 3, stream);
} else if (status > 0) {
status = 0;
ehci_urb_done(ehci, urb, 0);
} else {
usb_hcd_unlink_urb_from_ep(ehci_to_hcd(ehci), urb);
}
done_not_linked:
spin_unlock_irqrestore (&ehci->lock, flags);
done:
return status;
}
/*-------------------------------------------------------------------------*/
static void scan_isoc(struct ehci_hcd *ehci)
{
unsigned uf, now_frame, frame;
unsigned fmask = ehci->periodic_size - 1;
bool modified, live;
/*
* When running, scan from last scan point up to "now"
* else clean up by scanning everything that's left.
* Touches as few pages as possible: cache-friendly.
*/
if (ehci->rh_state >= EHCI_RH_RUNNING) {
uf = ehci_read_frame_index(ehci);
now_frame = (uf >> 3) & fmask;
live = true;
} else {
now_frame = (ehci->last_iso_frame - 1) & fmask;
live = false;
}
ehci->now_frame = now_frame;
frame = ehci->last_iso_frame;
for (;;) {
union ehci_shadow q, *q_p;
__hc32 type, *hw_p;
restart:
/* scan each element in frame's queue for completions */
q_p = &ehci->pshadow [frame];
hw_p = &ehci->periodic [frame];
q.ptr = q_p->ptr;
type = Q_NEXT_TYPE(ehci, *hw_p);
modified = false;
while (q.ptr != NULL) {
switch (hc32_to_cpu(ehci, type)) {
case Q_TYPE_ITD:
/* If this ITD is still active, leave it for
* later processing ... check the next entry.
* No need to check for activity unless the
* frame is current.
*/
if (frame == now_frame && live) {
rmb();
for (uf = 0; uf < 8; uf++) {
if (q.itd->hw_transaction[uf] &
ITD_ACTIVE(ehci))
break;
}
if (uf < 8) {
q_p = &q.itd->itd_next;
hw_p = &q.itd->hw_next;
type = Q_NEXT_TYPE(ehci,
q.itd->hw_next);
q = *q_p;
break;
}
}
/* Take finished ITDs out of the schedule
* and process them: recycle, maybe report
* URB completion. HC won't cache the
* pointer for much longer, if at all.
*/
*q_p = q.itd->itd_next;
if (!ehci->use_dummy_qh ||
q.itd->hw_next != EHCI_LIST_END(ehci))
*hw_p = q.itd->hw_next;
else
*hw_p = ehci->dummy->qh_dma;
type = Q_NEXT_TYPE(ehci, q.itd->hw_next);
wmb();
modified = itd_complete (ehci, q.itd);
q = *q_p;
break;
case Q_TYPE_SITD:
/* If this SITD is still active, leave it for
* later processing ... check the next entry.
* No need to check for activity unless the
* frame is current.
*/
if (((frame == now_frame) ||
(((frame + 1) & fmask) == now_frame))
&& live
&& (q.sitd->hw_results &
SITD_ACTIVE(ehci))) {
q_p = &q.sitd->sitd_next;
hw_p = &q.sitd->hw_next;
type = Q_NEXT_TYPE(ehci,
q.sitd->hw_next);
q = *q_p;
break;
}
/* Take finished SITDs out of the schedule
* and process them: recycle, maybe report
* URB completion.
*/
*q_p = q.sitd->sitd_next;
if (!ehci->use_dummy_qh ||
q.sitd->hw_next != EHCI_LIST_END(ehci))
*hw_p = q.sitd->hw_next;
else
*hw_p = ehci->dummy->qh_dma;
type = Q_NEXT_TYPE(ehci, q.sitd->hw_next);
wmb();
modified = sitd_complete (ehci, q.sitd);
q = *q_p;
break;
default:
ehci_dbg(ehci, "corrupt type %d frame %d shadow %p\n",
type, frame, q.ptr);
// BUG ();
/* FALL THROUGH */
case Q_TYPE_QH:
case Q_TYPE_FSTN:
/* End of the iTDs and siTDs */
q.ptr = NULL;
break;
}
/* assume completion callbacks modify the queue */
if (unlikely(modified && ehci->isoc_count > 0))
goto restart;
}
/* Stop when we have reached the current frame */
if (frame == now_frame)
break;
/* The last frame may still have active siTDs */
ehci->last_iso_frame = frame;
frame = (frame + 1) & fmask;
}
}