mirror of
https://github.com/FEX-Emu/linux.git
synced 2024-12-31 22:15:38 +00:00
6cb4c159b0
The __cpuinit type of throwaway sections might have made sense
some time ago when RAM was more constrained, but now the savings
do not offset the cost and complications. For example, the fix in
commit 5e427ec2d0
("x86: Fix bit corruption at CPU resume time")
is a good example of the nasty type of bugs that can be created
with improper use of the various __init prefixes.
After a discussion on LKML[1] it was decided that cpuinit should go
the way of devinit and be phased out. Once all the users are gone,
we can then finally remove the macros themselves from linux/init.h.
Note that some harmless section mismatch warnings may result, since
notify_cpu_starting() and cpu_up() are arch independent (kernel/cpu.c)
are flagged as __cpuinit -- so if we remove the __cpuinit from
arch specific callers, we will also get section mismatch warnings.
As an intermediate step, we intend to turn the linux/init.h cpuinit
content into no-ops as early as possible, since that will get rid
of these warnings. In any case, they are temporary and harmless.
This removes all the arch/xtensa uses of the __cpuinit macros from
all C files. Currently xtensa does not have any __CPUINIT used in
assembly files.
[1] https://lkml.org/lkml/2013/5/20/589
Cc: Chris Zankel <chris@zankel.net>
Cc: Max Filippov <jcmvbkbc@gmail.com>
Cc: linux-xtensa@linux-xtensa.org
Signed-off-by: Paul Gortmaker <paul.gortmaker@windriver.com>
174 lines
4.1 KiB
C
174 lines
4.1 KiB
C
/*
|
|
* arch/xtensa/kernel/time.c
|
|
*
|
|
* Timer and clock support.
|
|
*
|
|
* This file is subject to the terms and conditions of the GNU General Public
|
|
* License. See the file "COPYING" in the main directory of this archive
|
|
* for more details.
|
|
*
|
|
* Copyright (C) 2005 Tensilica Inc.
|
|
*
|
|
* Chris Zankel <chris@zankel.net>
|
|
*/
|
|
|
|
#include <linux/errno.h>
|
|
#include <linux/sched.h>
|
|
#include <linux/time.h>
|
|
#include <linux/clocksource.h>
|
|
#include <linux/clockchips.h>
|
|
#include <linux/interrupt.h>
|
|
#include <linux/module.h>
|
|
#include <linux/init.h>
|
|
#include <linux/irq.h>
|
|
#include <linux/profile.h>
|
|
#include <linux/delay.h>
|
|
#include <linux/irqdomain.h>
|
|
#include <linux/sched_clock.h>
|
|
|
|
#include <asm/timex.h>
|
|
#include <asm/platform.h>
|
|
|
|
#ifdef CONFIG_XTENSA_CALIBRATE_CCOUNT
|
|
unsigned long ccount_freq; /* ccount Hz */
|
|
#endif
|
|
|
|
static cycle_t ccount_read(struct clocksource *cs)
|
|
{
|
|
return (cycle_t)get_ccount();
|
|
}
|
|
|
|
static u32 notrace ccount_sched_clock_read(void)
|
|
{
|
|
return get_ccount();
|
|
}
|
|
|
|
static struct clocksource ccount_clocksource = {
|
|
.name = "ccount",
|
|
.rating = 200,
|
|
.read = ccount_read,
|
|
.mask = CLOCKSOURCE_MASK(32),
|
|
};
|
|
|
|
static int ccount_timer_set_next_event(unsigned long delta,
|
|
struct clock_event_device *dev);
|
|
static void ccount_timer_set_mode(enum clock_event_mode mode,
|
|
struct clock_event_device *evt);
|
|
static struct ccount_timer_t {
|
|
struct clock_event_device evt;
|
|
int irq_enabled;
|
|
} ccount_timer = {
|
|
.evt = {
|
|
.name = "ccount_clockevent",
|
|
.features = CLOCK_EVT_FEAT_ONESHOT,
|
|
.rating = 300,
|
|
.set_next_event = ccount_timer_set_next_event,
|
|
.set_mode = ccount_timer_set_mode,
|
|
},
|
|
};
|
|
|
|
static int ccount_timer_set_next_event(unsigned long delta,
|
|
struct clock_event_device *dev)
|
|
{
|
|
unsigned long flags, next;
|
|
int ret = 0;
|
|
|
|
local_irq_save(flags);
|
|
next = get_ccount() + delta;
|
|
set_linux_timer(next);
|
|
if (next - get_ccount() > delta)
|
|
ret = -ETIME;
|
|
local_irq_restore(flags);
|
|
|
|
return ret;
|
|
}
|
|
|
|
static void ccount_timer_set_mode(enum clock_event_mode mode,
|
|
struct clock_event_device *evt)
|
|
{
|
|
struct ccount_timer_t *timer =
|
|
container_of(evt, struct ccount_timer_t, evt);
|
|
|
|
/*
|
|
* There is no way to disable the timer interrupt at the device level,
|
|
* only at the intenable register itself. Since enable_irq/disable_irq
|
|
* calls are nested, we need to make sure that these calls are
|
|
* balanced.
|
|
*/
|
|
switch (mode) {
|
|
case CLOCK_EVT_MODE_SHUTDOWN:
|
|
case CLOCK_EVT_MODE_UNUSED:
|
|
if (timer->irq_enabled) {
|
|
disable_irq(evt->irq);
|
|
timer->irq_enabled = 0;
|
|
}
|
|
break;
|
|
case CLOCK_EVT_MODE_RESUME:
|
|
case CLOCK_EVT_MODE_ONESHOT:
|
|
if (!timer->irq_enabled) {
|
|
enable_irq(evt->irq);
|
|
timer->irq_enabled = 1;
|
|
}
|
|
default:
|
|
break;
|
|
}
|
|
}
|
|
|
|
static irqreturn_t timer_interrupt(int irq, void *dev_id);
|
|
static struct irqaction timer_irqaction = {
|
|
.handler = timer_interrupt,
|
|
.flags = IRQF_TIMER,
|
|
.name = "timer",
|
|
.dev_id = &ccount_timer,
|
|
};
|
|
|
|
void __init time_init(void)
|
|
{
|
|
#ifdef CONFIG_XTENSA_CALIBRATE_CCOUNT
|
|
printk("Calibrating CPU frequency ");
|
|
platform_calibrate_ccount();
|
|
printk("%d.%02d MHz\n", (int)ccount_freq/1000000,
|
|
(int)(ccount_freq/10000)%100);
|
|
#endif
|
|
clocksource_register_hz(&ccount_clocksource, CCOUNT_PER_JIFFY * HZ);
|
|
|
|
ccount_timer.evt.cpumask = cpumask_of(0);
|
|
ccount_timer.evt.irq = irq_create_mapping(NULL, LINUX_TIMER_INT);
|
|
if (WARN(!ccount_timer.evt.irq, "error: can't map timer irq"))
|
|
return;
|
|
clockevents_config_and_register(&ccount_timer.evt, ccount_freq, 0xf,
|
|
0xffffffff);
|
|
setup_irq(ccount_timer.evt.irq, &timer_irqaction);
|
|
ccount_timer.irq_enabled = 1;
|
|
|
|
setup_sched_clock(ccount_sched_clock_read, 32, ccount_freq);
|
|
}
|
|
|
|
/*
|
|
* The timer interrupt is called HZ times per second.
|
|
*/
|
|
|
|
irqreturn_t timer_interrupt (int irq, void *dev_id)
|
|
{
|
|
struct ccount_timer_t *timer = dev_id;
|
|
struct clock_event_device *evt = &timer->evt;
|
|
|
|
evt->event_handler(evt);
|
|
|
|
/* Allow platform to do something useful (Wdog). */
|
|
platform_heartbeat();
|
|
|
|
return IRQ_HANDLED;
|
|
}
|
|
|
|
#ifndef CONFIG_GENERIC_CALIBRATE_DELAY
|
|
void calibrate_delay(void)
|
|
{
|
|
loops_per_jiffy = CCOUNT_PER_JIFFY;
|
|
printk("Calibrating delay loop (skipped)... "
|
|
"%lu.%02lu BogoMIPS preset\n",
|
|
loops_per_jiffy/(1000000/HZ),
|
|
(loops_per_jiffy/(10000/HZ)) % 100);
|
|
}
|
|
#endif
|