linux/lib/rhashtable.c
Thomas Graf b8e1943e9f rhashtable: Factor out bucket_tail() function
Subsequent patches will require access to the bucket tail. Access
to the tail is relatively cheap as the automatic resizing of the
table should keep the number of entries per bucket to no more
than 0.75 on average.

Signed-off-by: Thomas Graf <tgraf@suug.ch>
Signed-off-by: David S. Miller <davem@davemloft.net>
2015-01-03 14:32:57 -05:00

791 lines
20 KiB
C

/*
* Resizable, Scalable, Concurrent Hash Table
*
* Copyright (c) 2014 Thomas Graf <tgraf@suug.ch>
* Copyright (c) 2008-2014 Patrick McHardy <kaber@trash.net>
*
* Based on the following paper:
* https://www.usenix.org/legacy/event/atc11/tech/final_files/Triplett.pdf
*
* Code partially derived from nft_hash
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License version 2 as
* published by the Free Software Foundation.
*/
#include <linux/kernel.h>
#include <linux/init.h>
#include <linux/log2.h>
#include <linux/slab.h>
#include <linux/vmalloc.h>
#include <linux/mm.h>
#include <linux/jhash.h>
#include <linux/random.h>
#include <linux/rhashtable.h>
#define HASH_DEFAULT_SIZE 64UL
#define HASH_MIN_SIZE 4UL
#define ASSERT_RHT_MUTEX(HT) BUG_ON(!lockdep_rht_mutex_is_held(HT))
#ifdef CONFIG_PROVE_LOCKING
int lockdep_rht_mutex_is_held(const struct rhashtable *ht)
{
return ht->p.mutex_is_held(ht->p.parent);
}
EXPORT_SYMBOL_GPL(lockdep_rht_mutex_is_held);
int lockdep_rht_bucket_is_held(const struct bucket_table *tbl, u32 hash)
{
return 1;
}
EXPORT_SYMBOL_GPL(lockdep_rht_bucket_is_held);
#endif
static void *rht_obj(const struct rhashtable *ht, const struct rhash_head *he)
{
return (void *) he - ht->p.head_offset;
}
static u32 rht_bucket_index(const struct bucket_table *tbl, u32 hash)
{
return hash & (tbl->size - 1);
}
static u32 obj_raw_hashfn(const struct rhashtable *ht, const void *ptr)
{
u32 hash;
if (unlikely(!ht->p.key_len))
hash = ht->p.obj_hashfn(ptr, ht->p.hash_rnd);
else
hash = ht->p.hashfn(ptr + ht->p.key_offset, ht->p.key_len,
ht->p.hash_rnd);
return hash;
}
static u32 key_hashfn(const struct rhashtable *ht, const void *key, u32 len)
{
struct bucket_table *tbl = rht_dereference_rcu(ht->tbl, ht);
u32 hash;
hash = ht->p.hashfn(key, len, ht->p.hash_rnd);
return rht_bucket_index(tbl, hash);
}
static u32 head_hashfn(const struct rhashtable *ht,
const struct bucket_table *tbl,
const struct rhash_head *he)
{
return rht_bucket_index(tbl, obj_raw_hashfn(ht, rht_obj(ht, he)));
}
static struct rhash_head __rcu **bucket_tail(struct bucket_table *tbl, u32 n)
{
struct rhash_head __rcu **pprev;
for (pprev = &tbl->buckets[n];
rht_dereference_bucket(*pprev, tbl, n);
pprev = &rht_dereference_bucket(*pprev, tbl, n)->next)
;
return pprev;
}
static struct bucket_table *bucket_table_alloc(size_t nbuckets)
{
struct bucket_table *tbl;
size_t size;
size = sizeof(*tbl) + nbuckets * sizeof(tbl->buckets[0]);
tbl = kzalloc(size, GFP_KERNEL | __GFP_NOWARN);
if (tbl == NULL)
tbl = vzalloc(size);
if (tbl == NULL)
return NULL;
tbl->size = nbuckets;
return tbl;
}
static void bucket_table_free(const struct bucket_table *tbl)
{
kvfree(tbl);
}
/**
* rht_grow_above_75 - returns true if nelems > 0.75 * table-size
* @ht: hash table
* @new_size: new table size
*/
bool rht_grow_above_75(const struct rhashtable *ht, size_t new_size)
{
/* Expand table when exceeding 75% load */
return ht->nelems > (new_size / 4 * 3);
}
EXPORT_SYMBOL_GPL(rht_grow_above_75);
/**
* rht_shrink_below_30 - returns true if nelems < 0.3 * table-size
* @ht: hash table
* @new_size: new table size
*/
bool rht_shrink_below_30(const struct rhashtable *ht, size_t new_size)
{
/* Shrink table beneath 30% load */
return ht->nelems < (new_size * 3 / 10);
}
EXPORT_SYMBOL_GPL(rht_shrink_below_30);
static void hashtable_chain_unzip(const struct rhashtable *ht,
const struct bucket_table *new_tbl,
struct bucket_table *old_tbl, size_t n)
{
struct rhash_head *he, *p, *next;
unsigned int h;
/* Old bucket empty, no work needed. */
p = rht_dereference(old_tbl->buckets[n], ht);
if (!p)
return;
/* Advance the old bucket pointer one or more times until it
* reaches a node that doesn't hash to the same bucket as the
* previous node p. Call the previous node p;
*/
h = head_hashfn(ht, new_tbl, p);
rht_for_each_continue(he, p->next, old_tbl, n) {
if (head_hashfn(ht, new_tbl, he) != h)
break;
p = he;
}
RCU_INIT_POINTER(old_tbl->buckets[n], p->next);
/* Find the subsequent node which does hash to the same
* bucket as node P, or NULL if no such node exists.
*/
next = NULL;
if (he) {
rht_for_each_continue(he, he->next, old_tbl, n) {
if (head_hashfn(ht, new_tbl, he) == h) {
next = he;
break;
}
}
}
/* Set p's next pointer to that subsequent node pointer,
* bypassing the nodes which do not hash to p's bucket
*/
RCU_INIT_POINTER(p->next, next);
}
/**
* rhashtable_expand - Expand hash table while allowing concurrent lookups
* @ht: the hash table to expand
*
* A secondary bucket array is allocated and the hash entries are migrated
* while keeping them on both lists until the end of the RCU grace period.
*
* This function may only be called in a context where it is safe to call
* synchronize_rcu(), e.g. not within a rcu_read_lock() section.
*
* The caller must ensure that no concurrent table mutations take place.
* It is however valid to have concurrent lookups if they are RCU protected.
*/
int rhashtable_expand(struct rhashtable *ht)
{
struct bucket_table *new_tbl, *old_tbl = rht_dereference(ht->tbl, ht);
struct rhash_head *he;
unsigned int i, h;
bool complete;
ASSERT_RHT_MUTEX(ht);
if (ht->p.max_shift && ht->shift >= ht->p.max_shift)
return 0;
new_tbl = bucket_table_alloc(old_tbl->size * 2);
if (new_tbl == NULL)
return -ENOMEM;
ht->shift++;
/* For each new bucket, search the corresponding old bucket
* for the first entry that hashes to the new bucket, and
* link the new bucket to that entry. Since all the entries
* which will end up in the new bucket appear in the same
* old bucket, this constructs an entirely valid new hash
* table, but with multiple buckets "zipped" together into a
* single imprecise chain.
*/
for (i = 0; i < new_tbl->size; i++) {
h = rht_bucket_index(old_tbl, i);
rht_for_each(he, old_tbl, h) {
if (head_hashfn(ht, new_tbl, he) == i) {
RCU_INIT_POINTER(new_tbl->buckets[i], he);
break;
}
}
}
/* Publish the new table pointer. Lookups may now traverse
* the new table, but they will not benefit from any
* additional efficiency until later steps unzip the buckets.
*/
rcu_assign_pointer(ht->tbl, new_tbl);
/* Unzip interleaved hash chains */
do {
/* Wait for readers. All new readers will see the new
* table, and thus no references to the old table will
* remain.
*/
synchronize_rcu();
/* For each bucket in the old table (each of which
* contains items from multiple buckets of the new
* table): ...
*/
complete = true;
for (i = 0; i < old_tbl->size; i++) {
hashtable_chain_unzip(ht, new_tbl, old_tbl, i);
if (old_tbl->buckets[i] != NULL)
complete = false;
}
} while (!complete);
bucket_table_free(old_tbl);
return 0;
}
EXPORT_SYMBOL_GPL(rhashtable_expand);
/**
* rhashtable_shrink - Shrink hash table while allowing concurrent lookups
* @ht: the hash table to shrink
*
* This function may only be called in a context where it is safe to call
* synchronize_rcu(), e.g. not within a rcu_read_lock() section.
*
* The caller must ensure that no concurrent table mutations take place.
* It is however valid to have concurrent lookups if they are RCU protected.
*/
int rhashtable_shrink(struct rhashtable *ht)
{
struct bucket_table *ntbl, *tbl = rht_dereference(ht->tbl, ht);
unsigned int i;
ASSERT_RHT_MUTEX(ht);
if (ht->shift <= ht->p.min_shift)
return 0;
ntbl = bucket_table_alloc(tbl->size / 2);
if (ntbl == NULL)
return -ENOMEM;
ht->shift--;
/* Link each bucket in the new table to the first bucket
* in the old table that contains entries which will hash
* to the new bucket.
*/
for (i = 0; i < ntbl->size; i++) {
ntbl->buckets[i] = tbl->buckets[i];
RCU_INIT_POINTER(*bucket_tail(ntbl, i),
tbl->buckets[i + ntbl->size]);
}
/* Publish the new, valid hash table */
rcu_assign_pointer(ht->tbl, ntbl);
/* Wait for readers. No new readers will have references to the
* old hash table.
*/
synchronize_rcu();
bucket_table_free(tbl);
return 0;
}
EXPORT_SYMBOL_GPL(rhashtable_shrink);
/**
* rhashtable_insert - insert object into hash hash table
* @ht: hash table
* @obj: pointer to hash head inside object
*
* Will automatically grow the table via rhashtable_expand() if the the
* grow_decision function specified at rhashtable_init() returns true.
*
* The caller must ensure that no concurrent table mutations occur. It is
* however valid to have concurrent lookups if they are RCU protected.
*/
void rhashtable_insert(struct rhashtable *ht, struct rhash_head *obj)
{
struct bucket_table *tbl = rht_dereference(ht->tbl, ht);
u32 hash;
ASSERT_RHT_MUTEX(ht);
hash = head_hashfn(ht, tbl, obj);
RCU_INIT_POINTER(obj->next, tbl->buckets[hash]);
rcu_assign_pointer(tbl->buckets[hash], obj);
ht->nelems++;
if (ht->p.grow_decision && ht->p.grow_decision(ht, tbl->size))
rhashtable_expand(ht);
}
EXPORT_SYMBOL_GPL(rhashtable_insert);
/**
* rhashtable_remove_pprev - remove object from hash table given previous element
* @ht: hash table
* @obj: pointer to hash head inside object
* @pprev: pointer to previous element
*
* Identical to rhashtable_remove() but caller is alreayd aware of the element
* in front of the element to be deleted. This is in particular useful for
* deletion when combined with walking or lookup.
*/
void rhashtable_remove_pprev(struct rhashtable *ht, struct rhash_head *obj,
struct rhash_head __rcu **pprev)
{
struct bucket_table *tbl = rht_dereference(ht->tbl, ht);
ASSERT_RHT_MUTEX(ht);
RCU_INIT_POINTER(*pprev, obj->next);
ht->nelems--;
if (ht->p.shrink_decision &&
ht->p.shrink_decision(ht, tbl->size))
rhashtable_shrink(ht);
}
EXPORT_SYMBOL_GPL(rhashtable_remove_pprev);
/**
* rhashtable_remove - remove object from hash table
* @ht: hash table
* @obj: pointer to hash head inside object
*
* Since the hash chain is single linked, the removal operation needs to
* walk the bucket chain upon removal. The removal operation is thus
* considerable slow if the hash table is not correctly sized.
*
* Will automatically shrink the table via rhashtable_expand() if the the
* shrink_decision function specified at rhashtable_init() returns true.
*
* The caller must ensure that no concurrent table mutations occur. It is
* however valid to have concurrent lookups if they are RCU protected.
*/
bool rhashtable_remove(struct rhashtable *ht, struct rhash_head *obj)
{
struct bucket_table *tbl = rht_dereference(ht->tbl, ht);
struct rhash_head __rcu **pprev;
struct rhash_head *he;
u32 h;
ASSERT_RHT_MUTEX(ht);
h = head_hashfn(ht, tbl, obj);
pprev = &tbl->buckets[h];
rht_for_each(he, tbl, h) {
if (he != obj) {
pprev = &he->next;
continue;
}
rhashtable_remove_pprev(ht, he, pprev);
return true;
}
return false;
}
EXPORT_SYMBOL_GPL(rhashtable_remove);
/**
* rhashtable_lookup - lookup key in hash table
* @ht: hash table
* @key: pointer to key
*
* Computes the hash value for the key and traverses the bucket chain looking
* for a entry with an identical key. The first matching entry is returned.
*
* This lookup function may only be used for fixed key hash table (key_len
* paramter set). It will BUG() if used inappropriately.
*
* Lookups may occur in parallel with hash mutations as long as the lookup is
* guarded by rcu_read_lock(). The caller must take care of this.
*/
void *rhashtable_lookup(const struct rhashtable *ht, const void *key)
{
const struct bucket_table *tbl = rht_dereference_rcu(ht->tbl, ht);
struct rhash_head *he;
u32 h;
BUG_ON(!ht->p.key_len);
h = key_hashfn(ht, key, ht->p.key_len);
rht_for_each_rcu(he, tbl, h) {
if (memcmp(rht_obj(ht, he) + ht->p.key_offset, key,
ht->p.key_len))
continue;
return rht_obj(ht, he);
}
return NULL;
}
EXPORT_SYMBOL_GPL(rhashtable_lookup);
/**
* rhashtable_lookup_compare - search hash table with compare function
* @ht: hash table
* @key: the pointer to the key
* @compare: compare function, must return true on match
* @arg: argument passed on to compare function
*
* Traverses the bucket chain behind the provided hash value and calls the
* specified compare function for each entry.
*
* Lookups may occur in parallel with hash mutations as long as the lookup is
* guarded by rcu_read_lock(). The caller must take care of this.
*
* Returns the first entry on which the compare function returned true.
*/
void *rhashtable_lookup_compare(const struct rhashtable *ht, const void *key,
bool (*compare)(void *, void *), void *arg)
{
const struct bucket_table *tbl = rht_dereference_rcu(ht->tbl, ht);
struct rhash_head *he;
u32 hash;
hash = key_hashfn(ht, key, ht->p.key_len);
rht_for_each_rcu(he, tbl, hash) {
if (!compare(rht_obj(ht, he), arg))
continue;
return rht_obj(ht, he);
}
return NULL;
}
EXPORT_SYMBOL_GPL(rhashtable_lookup_compare);
static size_t rounded_hashtable_size(struct rhashtable_params *params)
{
return max(roundup_pow_of_two(params->nelem_hint * 4 / 3),
1UL << params->min_shift);
}
/**
* rhashtable_init - initialize a new hash table
* @ht: hash table to be initialized
* @params: configuration parameters
*
* Initializes a new hash table based on the provided configuration
* parameters. A table can be configured either with a variable or
* fixed length key:
*
* Configuration Example 1: Fixed length keys
* struct test_obj {
* int key;
* void * my_member;
* struct rhash_head node;
* };
*
* struct rhashtable_params params = {
* .head_offset = offsetof(struct test_obj, node),
* .key_offset = offsetof(struct test_obj, key),
* .key_len = sizeof(int),
* .hashfn = jhash,
* #ifdef CONFIG_PROVE_LOCKING
* .mutex_is_held = &my_mutex_is_held,
* #endif
* };
*
* Configuration Example 2: Variable length keys
* struct test_obj {
* [...]
* struct rhash_head node;
* };
*
* u32 my_hash_fn(const void *data, u32 seed)
* {
* struct test_obj *obj = data;
*
* return [... hash ...];
* }
*
* struct rhashtable_params params = {
* .head_offset = offsetof(struct test_obj, node),
* .hashfn = jhash,
* .obj_hashfn = my_hash_fn,
* #ifdef CONFIG_PROVE_LOCKING
* .mutex_is_held = &my_mutex_is_held,
* #endif
* };
*/
int rhashtable_init(struct rhashtable *ht, struct rhashtable_params *params)
{
struct bucket_table *tbl;
size_t size;
size = HASH_DEFAULT_SIZE;
if ((params->key_len && !params->hashfn) ||
(!params->key_len && !params->obj_hashfn))
return -EINVAL;
params->min_shift = max_t(size_t, params->min_shift,
ilog2(HASH_MIN_SIZE));
if (params->nelem_hint)
size = rounded_hashtable_size(params);
tbl = bucket_table_alloc(size);
if (tbl == NULL)
return -ENOMEM;
memset(ht, 0, sizeof(*ht));
ht->shift = ilog2(tbl->size);
memcpy(&ht->p, params, sizeof(*params));
RCU_INIT_POINTER(ht->tbl, tbl);
if (!ht->p.hash_rnd)
get_random_bytes(&ht->p.hash_rnd, sizeof(ht->p.hash_rnd));
return 0;
}
EXPORT_SYMBOL_GPL(rhashtable_init);
/**
* rhashtable_destroy - destroy hash table
* @ht: the hash table to destroy
*
* Frees the bucket array. This function is not rcu safe, therefore the caller
* has to make sure that no resizing may happen by unpublishing the hashtable
* and waiting for the quiescent cycle before releasing the bucket array.
*/
void rhashtable_destroy(const struct rhashtable *ht)
{
bucket_table_free(ht->tbl);
}
EXPORT_SYMBOL_GPL(rhashtable_destroy);
/**************************************************************************
* Self Test
**************************************************************************/
#ifdef CONFIG_TEST_RHASHTABLE
#define TEST_HT_SIZE 8
#define TEST_ENTRIES 2048
#define TEST_PTR ((void *) 0xdeadbeef)
#define TEST_NEXPANDS 4
#ifdef CONFIG_PROVE_LOCKING
static int test_mutex_is_held(void *parent)
{
return 1;
}
#endif
struct test_obj {
void *ptr;
int value;
struct rhash_head node;
};
static int __init test_rht_lookup(struct rhashtable *ht)
{
unsigned int i;
for (i = 0; i < TEST_ENTRIES * 2; i++) {
struct test_obj *obj;
bool expected = !(i % 2);
u32 key = i;
obj = rhashtable_lookup(ht, &key);
if (expected && !obj) {
pr_warn("Test failed: Could not find key %u\n", key);
return -ENOENT;
} else if (!expected && obj) {
pr_warn("Test failed: Unexpected entry found for key %u\n",
key);
return -EEXIST;
} else if (expected && obj) {
if (obj->ptr != TEST_PTR || obj->value != i) {
pr_warn("Test failed: Lookup value mismatch %p!=%p, %u!=%u\n",
obj->ptr, TEST_PTR, obj->value, i);
return -EINVAL;
}
}
}
return 0;
}
static void test_bucket_stats(struct rhashtable *ht, bool quiet)
{
unsigned int cnt, rcu_cnt, i, total = 0;
struct rhash_head *pos;
struct test_obj *obj;
struct bucket_table *tbl;
tbl = rht_dereference_rcu(ht->tbl, ht);
for (i = 0; i < tbl->size; i++) {
rcu_cnt = cnt = 0;
if (!quiet)
pr_info(" [%#4x/%zu]", i, tbl->size);
rht_for_each_entry_rcu(obj, pos, tbl, i, node) {
cnt++;
total++;
if (!quiet)
pr_cont(" [%p],", obj);
}
rht_for_each_entry_rcu(obj, pos, tbl, i, node)
rcu_cnt++;
if (rcu_cnt != cnt)
pr_warn("Test failed: Chain count mismach %d != %d",
cnt, rcu_cnt);
if (!quiet)
pr_cont("\n [%#x] first element: %p, chain length: %u\n",
i, tbl->buckets[i], cnt);
}
pr_info(" Traversal complete: counted=%u, nelems=%zu, entries=%d\n",
total, ht->nelems, TEST_ENTRIES);
if (total != ht->nelems || total != TEST_ENTRIES)
pr_warn("Test failed: Total count mismatch ^^^");
}
static int __init test_rhashtable(struct rhashtable *ht)
{
struct bucket_table *tbl;
struct test_obj *obj;
struct rhash_head *pos, *next;
int err;
unsigned int i;
/*
* Insertion Test:
* Insert TEST_ENTRIES into table with all keys even numbers
*/
pr_info(" Adding %d keys\n", TEST_ENTRIES);
for (i = 0; i < TEST_ENTRIES; i++) {
struct test_obj *obj;
obj = kzalloc(sizeof(*obj), GFP_KERNEL);
if (!obj) {
err = -ENOMEM;
goto error;
}
obj->ptr = TEST_PTR;
obj->value = i * 2;
rhashtable_insert(ht, &obj->node);
}
rcu_read_lock();
test_bucket_stats(ht, true);
test_rht_lookup(ht);
rcu_read_unlock();
for (i = 0; i < TEST_NEXPANDS; i++) {
pr_info(" Table expansion iteration %u...\n", i);
rhashtable_expand(ht);
rcu_read_lock();
pr_info(" Verifying lookups...\n");
test_rht_lookup(ht);
rcu_read_unlock();
}
for (i = 0; i < TEST_NEXPANDS; i++) {
pr_info(" Table shrinkage iteration %u...\n", i);
rhashtable_shrink(ht);
rcu_read_lock();
pr_info(" Verifying lookups...\n");
test_rht_lookup(ht);
rcu_read_unlock();
}
rcu_read_lock();
test_bucket_stats(ht, true);
rcu_read_unlock();
pr_info(" Deleting %d keys\n", TEST_ENTRIES);
for (i = 0; i < TEST_ENTRIES; i++) {
u32 key = i * 2;
obj = rhashtable_lookup(ht, &key);
BUG_ON(!obj);
rhashtable_remove(ht, &obj->node);
kfree(obj);
}
return 0;
error:
tbl = rht_dereference_rcu(ht->tbl, ht);
for (i = 0; i < tbl->size; i++)
rht_for_each_entry_safe(obj, pos, next, tbl, i, node)
kfree(obj);
return err;
}
static int __init test_rht_init(void)
{
struct rhashtable ht;
struct rhashtable_params params = {
.nelem_hint = TEST_HT_SIZE,
.head_offset = offsetof(struct test_obj, node),
.key_offset = offsetof(struct test_obj, value),
.key_len = sizeof(int),
.hashfn = jhash,
#ifdef CONFIG_PROVE_LOCKING
.mutex_is_held = &test_mutex_is_held,
#endif
.grow_decision = rht_grow_above_75,
.shrink_decision = rht_shrink_below_30,
};
int err;
pr_info("Running resizable hashtable tests...\n");
err = rhashtable_init(&ht, &params);
if (err < 0) {
pr_warn("Test failed: Unable to initialize hashtable: %d\n",
err);
return err;
}
err = test_rhashtable(&ht);
rhashtable_destroy(&ht);
return err;
}
subsys_initcall(test_rht_init);
#endif /* CONFIG_TEST_RHASHTABLE */