mirror of
https://github.com/FEX-Emu/linux.git
synced 2025-01-07 18:14:04 +00:00
30e46b574a
Type SETUP_PCI, added by setup_efi_pci(), may advertise a ROM size larger than early_memremap() is able to handle, which is currently limited to 256kB. If this occurs it leads to a NULL dereference in parse_setup_data(). To avoid this, remap the setup_data header and allow parsing functions for individual types to handle their own data remapping. Signed-off-by: Linn Crosetto <linn@hp.com> Link: http://lkml.kernel.org/r/1376430401-67445-1-git-send-email-linn@hp.com Acked-by: Yinghai Lu <yinghai@kernel.org> Reviewed-by: Pekka Enberg <penberg@kernel.org> Signed-off-by: H. Peter Anvin <hpa@linux.intel.com>
1133 lines
28 KiB
C
1133 lines
28 KiB
C
/*
|
|
* Handle the memory map.
|
|
* The functions here do the job until bootmem takes over.
|
|
*
|
|
* Getting sanitize_e820_map() in sync with i386 version by applying change:
|
|
* - Provisions for empty E820 memory regions (reported by certain BIOSes).
|
|
* Alex Achenbach <xela@slit.de>, December 2002.
|
|
* Venkatesh Pallipadi <venkatesh.pallipadi@intel.com>
|
|
*
|
|
*/
|
|
#include <linux/kernel.h>
|
|
#include <linux/types.h>
|
|
#include <linux/init.h>
|
|
#include <linux/crash_dump.h>
|
|
#include <linux/export.h>
|
|
#include <linux/bootmem.h>
|
|
#include <linux/pfn.h>
|
|
#include <linux/suspend.h>
|
|
#include <linux/acpi.h>
|
|
#include <linux/firmware-map.h>
|
|
#include <linux/memblock.h>
|
|
#include <linux/sort.h>
|
|
|
|
#include <asm/e820.h>
|
|
#include <asm/proto.h>
|
|
#include <asm/setup.h>
|
|
|
|
/*
|
|
* The e820 map is the map that gets modified e.g. with command line parameters
|
|
* and that is also registered with modifications in the kernel resource tree
|
|
* with the iomem_resource as parent.
|
|
*
|
|
* The e820_saved is directly saved after the BIOS-provided memory map is
|
|
* copied. It doesn't get modified afterwards. It's registered for the
|
|
* /sys/firmware/memmap interface.
|
|
*
|
|
* That memory map is not modified and is used as base for kexec. The kexec'd
|
|
* kernel should get the same memory map as the firmware provides. Then the
|
|
* user can e.g. boot the original kernel with mem=1G while still booting the
|
|
* next kernel with full memory.
|
|
*/
|
|
struct e820map e820;
|
|
struct e820map e820_saved;
|
|
|
|
/* For PCI or other memory-mapped resources */
|
|
unsigned long pci_mem_start = 0xaeedbabe;
|
|
#ifdef CONFIG_PCI
|
|
EXPORT_SYMBOL(pci_mem_start);
|
|
#endif
|
|
|
|
/*
|
|
* This function checks if any part of the range <start,end> is mapped
|
|
* with type.
|
|
*/
|
|
int
|
|
e820_any_mapped(u64 start, u64 end, unsigned type)
|
|
{
|
|
int i;
|
|
|
|
for (i = 0; i < e820.nr_map; i++) {
|
|
struct e820entry *ei = &e820.map[i];
|
|
|
|
if (type && ei->type != type)
|
|
continue;
|
|
if (ei->addr >= end || ei->addr + ei->size <= start)
|
|
continue;
|
|
return 1;
|
|
}
|
|
return 0;
|
|
}
|
|
EXPORT_SYMBOL_GPL(e820_any_mapped);
|
|
|
|
/*
|
|
* This function checks if the entire range <start,end> is mapped with type.
|
|
*
|
|
* Note: this function only works correct if the e820 table is sorted and
|
|
* not-overlapping, which is the case
|
|
*/
|
|
int __init e820_all_mapped(u64 start, u64 end, unsigned type)
|
|
{
|
|
int i;
|
|
|
|
for (i = 0; i < e820.nr_map; i++) {
|
|
struct e820entry *ei = &e820.map[i];
|
|
|
|
if (type && ei->type != type)
|
|
continue;
|
|
/* is the region (part) in overlap with the current region ?*/
|
|
if (ei->addr >= end || ei->addr + ei->size <= start)
|
|
continue;
|
|
|
|
/* if the region is at the beginning of <start,end> we move
|
|
* start to the end of the region since it's ok until there
|
|
*/
|
|
if (ei->addr <= start)
|
|
start = ei->addr + ei->size;
|
|
/*
|
|
* if start is now at or beyond end, we're done, full
|
|
* coverage
|
|
*/
|
|
if (start >= end)
|
|
return 1;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* Add a memory region to the kernel e820 map.
|
|
*/
|
|
static void __init __e820_add_region(struct e820map *e820x, u64 start, u64 size,
|
|
int type)
|
|
{
|
|
int x = e820x->nr_map;
|
|
|
|
if (x >= ARRAY_SIZE(e820x->map)) {
|
|
printk(KERN_ERR "e820: too many entries; ignoring [mem %#010llx-%#010llx]\n",
|
|
(unsigned long long) start,
|
|
(unsigned long long) (start + size - 1));
|
|
return;
|
|
}
|
|
|
|
e820x->map[x].addr = start;
|
|
e820x->map[x].size = size;
|
|
e820x->map[x].type = type;
|
|
e820x->nr_map++;
|
|
}
|
|
|
|
void __init e820_add_region(u64 start, u64 size, int type)
|
|
{
|
|
__e820_add_region(&e820, start, size, type);
|
|
}
|
|
|
|
static void __init e820_print_type(u32 type)
|
|
{
|
|
switch (type) {
|
|
case E820_RAM:
|
|
case E820_RESERVED_KERN:
|
|
printk(KERN_CONT "usable");
|
|
break;
|
|
case E820_RESERVED:
|
|
printk(KERN_CONT "reserved");
|
|
break;
|
|
case E820_ACPI:
|
|
printk(KERN_CONT "ACPI data");
|
|
break;
|
|
case E820_NVS:
|
|
printk(KERN_CONT "ACPI NVS");
|
|
break;
|
|
case E820_UNUSABLE:
|
|
printk(KERN_CONT "unusable");
|
|
break;
|
|
default:
|
|
printk(KERN_CONT "type %u", type);
|
|
break;
|
|
}
|
|
}
|
|
|
|
void __init e820_print_map(char *who)
|
|
{
|
|
int i;
|
|
|
|
for (i = 0; i < e820.nr_map; i++) {
|
|
printk(KERN_INFO "%s: [mem %#018Lx-%#018Lx] ", who,
|
|
(unsigned long long) e820.map[i].addr,
|
|
(unsigned long long)
|
|
(e820.map[i].addr + e820.map[i].size - 1));
|
|
e820_print_type(e820.map[i].type);
|
|
printk(KERN_CONT "\n");
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Sanitize the BIOS e820 map.
|
|
*
|
|
* Some e820 responses include overlapping entries. The following
|
|
* replaces the original e820 map with a new one, removing overlaps,
|
|
* and resolving conflicting memory types in favor of highest
|
|
* numbered type.
|
|
*
|
|
* The input parameter biosmap points to an array of 'struct
|
|
* e820entry' which on entry has elements in the range [0, *pnr_map)
|
|
* valid, and which has space for up to max_nr_map entries.
|
|
* On return, the resulting sanitized e820 map entries will be in
|
|
* overwritten in the same location, starting at biosmap.
|
|
*
|
|
* The integer pointed to by pnr_map must be valid on entry (the
|
|
* current number of valid entries located at biosmap) and will
|
|
* be updated on return, with the new number of valid entries
|
|
* (something no more than max_nr_map.)
|
|
*
|
|
* The return value from sanitize_e820_map() is zero if it
|
|
* successfully 'sanitized' the map entries passed in, and is -1
|
|
* if it did nothing, which can happen if either of (1) it was
|
|
* only passed one map entry, or (2) any of the input map entries
|
|
* were invalid (start + size < start, meaning that the size was
|
|
* so big the described memory range wrapped around through zero.)
|
|
*
|
|
* Visually we're performing the following
|
|
* (1,2,3,4 = memory types)...
|
|
*
|
|
* Sample memory map (w/overlaps):
|
|
* ____22__________________
|
|
* ______________________4_
|
|
* ____1111________________
|
|
* _44_____________________
|
|
* 11111111________________
|
|
* ____________________33__
|
|
* ___________44___________
|
|
* __________33333_________
|
|
* ______________22________
|
|
* ___________________2222_
|
|
* _________111111111______
|
|
* _____________________11_
|
|
* _________________4______
|
|
*
|
|
* Sanitized equivalent (no overlap):
|
|
* 1_______________________
|
|
* _44_____________________
|
|
* ___1____________________
|
|
* ____22__________________
|
|
* ______11________________
|
|
* _________1______________
|
|
* __________3_____________
|
|
* ___________44___________
|
|
* _____________33_________
|
|
* _______________2________
|
|
* ________________1_______
|
|
* _________________4______
|
|
* ___________________2____
|
|
* ____________________33__
|
|
* ______________________4_
|
|
*/
|
|
struct change_member {
|
|
struct e820entry *pbios; /* pointer to original bios entry */
|
|
unsigned long long addr; /* address for this change point */
|
|
};
|
|
|
|
static int __init cpcompare(const void *a, const void *b)
|
|
{
|
|
struct change_member * const *app = a, * const *bpp = b;
|
|
const struct change_member *ap = *app, *bp = *bpp;
|
|
|
|
/*
|
|
* Inputs are pointers to two elements of change_point[]. If their
|
|
* addresses are unequal, their difference dominates. If the addresses
|
|
* are equal, then consider one that represents the end of its region
|
|
* to be greater than one that does not.
|
|
*/
|
|
if (ap->addr != bp->addr)
|
|
return ap->addr > bp->addr ? 1 : -1;
|
|
|
|
return (ap->addr != ap->pbios->addr) - (bp->addr != bp->pbios->addr);
|
|
}
|
|
|
|
int __init sanitize_e820_map(struct e820entry *biosmap, int max_nr_map,
|
|
u32 *pnr_map)
|
|
{
|
|
static struct change_member change_point_list[2*E820_X_MAX] __initdata;
|
|
static struct change_member *change_point[2*E820_X_MAX] __initdata;
|
|
static struct e820entry *overlap_list[E820_X_MAX] __initdata;
|
|
static struct e820entry new_bios[E820_X_MAX] __initdata;
|
|
unsigned long current_type, last_type;
|
|
unsigned long long last_addr;
|
|
int chgidx;
|
|
int overlap_entries;
|
|
int new_bios_entry;
|
|
int old_nr, new_nr, chg_nr;
|
|
int i;
|
|
|
|
/* if there's only one memory region, don't bother */
|
|
if (*pnr_map < 2)
|
|
return -1;
|
|
|
|
old_nr = *pnr_map;
|
|
BUG_ON(old_nr > max_nr_map);
|
|
|
|
/* bail out if we find any unreasonable addresses in bios map */
|
|
for (i = 0; i < old_nr; i++)
|
|
if (biosmap[i].addr + biosmap[i].size < biosmap[i].addr)
|
|
return -1;
|
|
|
|
/* create pointers for initial change-point information (for sorting) */
|
|
for (i = 0; i < 2 * old_nr; i++)
|
|
change_point[i] = &change_point_list[i];
|
|
|
|
/* record all known change-points (starting and ending addresses),
|
|
omitting those that are for empty memory regions */
|
|
chgidx = 0;
|
|
for (i = 0; i < old_nr; i++) {
|
|
if (biosmap[i].size != 0) {
|
|
change_point[chgidx]->addr = biosmap[i].addr;
|
|
change_point[chgidx++]->pbios = &biosmap[i];
|
|
change_point[chgidx]->addr = biosmap[i].addr +
|
|
biosmap[i].size;
|
|
change_point[chgidx++]->pbios = &biosmap[i];
|
|
}
|
|
}
|
|
chg_nr = chgidx;
|
|
|
|
/* sort change-point list by memory addresses (low -> high) */
|
|
sort(change_point, chg_nr, sizeof *change_point, cpcompare, NULL);
|
|
|
|
/* create a new bios memory map, removing overlaps */
|
|
overlap_entries = 0; /* number of entries in the overlap table */
|
|
new_bios_entry = 0; /* index for creating new bios map entries */
|
|
last_type = 0; /* start with undefined memory type */
|
|
last_addr = 0; /* start with 0 as last starting address */
|
|
|
|
/* loop through change-points, determining affect on the new bios map */
|
|
for (chgidx = 0; chgidx < chg_nr; chgidx++) {
|
|
/* keep track of all overlapping bios entries */
|
|
if (change_point[chgidx]->addr ==
|
|
change_point[chgidx]->pbios->addr) {
|
|
/*
|
|
* add map entry to overlap list (> 1 entry
|
|
* implies an overlap)
|
|
*/
|
|
overlap_list[overlap_entries++] =
|
|
change_point[chgidx]->pbios;
|
|
} else {
|
|
/*
|
|
* remove entry from list (order independent,
|
|
* so swap with last)
|
|
*/
|
|
for (i = 0; i < overlap_entries; i++) {
|
|
if (overlap_list[i] ==
|
|
change_point[chgidx]->pbios)
|
|
overlap_list[i] =
|
|
overlap_list[overlap_entries-1];
|
|
}
|
|
overlap_entries--;
|
|
}
|
|
/*
|
|
* if there are overlapping entries, decide which
|
|
* "type" to use (larger value takes precedence --
|
|
* 1=usable, 2,3,4,4+=unusable)
|
|
*/
|
|
current_type = 0;
|
|
for (i = 0; i < overlap_entries; i++)
|
|
if (overlap_list[i]->type > current_type)
|
|
current_type = overlap_list[i]->type;
|
|
/*
|
|
* continue building up new bios map based on this
|
|
* information
|
|
*/
|
|
if (current_type != last_type) {
|
|
if (last_type != 0) {
|
|
new_bios[new_bios_entry].size =
|
|
change_point[chgidx]->addr - last_addr;
|
|
/*
|
|
* move forward only if the new size
|
|
* was non-zero
|
|
*/
|
|
if (new_bios[new_bios_entry].size != 0)
|
|
/*
|
|
* no more space left for new
|
|
* bios entries ?
|
|
*/
|
|
if (++new_bios_entry >= max_nr_map)
|
|
break;
|
|
}
|
|
if (current_type != 0) {
|
|
new_bios[new_bios_entry].addr =
|
|
change_point[chgidx]->addr;
|
|
new_bios[new_bios_entry].type = current_type;
|
|
last_addr = change_point[chgidx]->addr;
|
|
}
|
|
last_type = current_type;
|
|
}
|
|
}
|
|
/* retain count for new bios entries */
|
|
new_nr = new_bios_entry;
|
|
|
|
/* copy new bios mapping into original location */
|
|
memcpy(biosmap, new_bios, new_nr * sizeof(struct e820entry));
|
|
*pnr_map = new_nr;
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int __init __append_e820_map(struct e820entry *biosmap, int nr_map)
|
|
{
|
|
while (nr_map) {
|
|
u64 start = biosmap->addr;
|
|
u64 size = biosmap->size;
|
|
u64 end = start + size;
|
|
u32 type = biosmap->type;
|
|
|
|
/* Overflow in 64 bits? Ignore the memory map. */
|
|
if (start > end)
|
|
return -1;
|
|
|
|
e820_add_region(start, size, type);
|
|
|
|
biosmap++;
|
|
nr_map--;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* Copy the BIOS e820 map into a safe place.
|
|
*
|
|
* Sanity-check it while we're at it..
|
|
*
|
|
* If we're lucky and live on a modern system, the setup code
|
|
* will have given us a memory map that we can use to properly
|
|
* set up memory. If we aren't, we'll fake a memory map.
|
|
*/
|
|
static int __init append_e820_map(struct e820entry *biosmap, int nr_map)
|
|
{
|
|
/* Only one memory region (or negative)? Ignore it */
|
|
if (nr_map < 2)
|
|
return -1;
|
|
|
|
return __append_e820_map(biosmap, nr_map);
|
|
}
|
|
|
|
static u64 __init __e820_update_range(struct e820map *e820x, u64 start,
|
|
u64 size, unsigned old_type,
|
|
unsigned new_type)
|
|
{
|
|
u64 end;
|
|
unsigned int i;
|
|
u64 real_updated_size = 0;
|
|
|
|
BUG_ON(old_type == new_type);
|
|
|
|
if (size > (ULLONG_MAX - start))
|
|
size = ULLONG_MAX - start;
|
|
|
|
end = start + size;
|
|
printk(KERN_DEBUG "e820: update [mem %#010Lx-%#010Lx] ",
|
|
(unsigned long long) start, (unsigned long long) (end - 1));
|
|
e820_print_type(old_type);
|
|
printk(KERN_CONT " ==> ");
|
|
e820_print_type(new_type);
|
|
printk(KERN_CONT "\n");
|
|
|
|
for (i = 0; i < e820x->nr_map; i++) {
|
|
struct e820entry *ei = &e820x->map[i];
|
|
u64 final_start, final_end;
|
|
u64 ei_end;
|
|
|
|
if (ei->type != old_type)
|
|
continue;
|
|
|
|
ei_end = ei->addr + ei->size;
|
|
/* totally covered by new range? */
|
|
if (ei->addr >= start && ei_end <= end) {
|
|
ei->type = new_type;
|
|
real_updated_size += ei->size;
|
|
continue;
|
|
}
|
|
|
|
/* new range is totally covered? */
|
|
if (ei->addr < start && ei_end > end) {
|
|
__e820_add_region(e820x, start, size, new_type);
|
|
__e820_add_region(e820x, end, ei_end - end, ei->type);
|
|
ei->size = start - ei->addr;
|
|
real_updated_size += size;
|
|
continue;
|
|
}
|
|
|
|
/* partially covered */
|
|
final_start = max(start, ei->addr);
|
|
final_end = min(end, ei_end);
|
|
if (final_start >= final_end)
|
|
continue;
|
|
|
|
__e820_add_region(e820x, final_start, final_end - final_start,
|
|
new_type);
|
|
|
|
real_updated_size += final_end - final_start;
|
|
|
|
/*
|
|
* left range could be head or tail, so need to update
|
|
* size at first.
|
|
*/
|
|
ei->size -= final_end - final_start;
|
|
if (ei->addr < final_start)
|
|
continue;
|
|
ei->addr = final_end;
|
|
}
|
|
return real_updated_size;
|
|
}
|
|
|
|
u64 __init e820_update_range(u64 start, u64 size, unsigned old_type,
|
|
unsigned new_type)
|
|
{
|
|
return __e820_update_range(&e820, start, size, old_type, new_type);
|
|
}
|
|
|
|
static u64 __init e820_update_range_saved(u64 start, u64 size,
|
|
unsigned old_type, unsigned new_type)
|
|
{
|
|
return __e820_update_range(&e820_saved, start, size, old_type,
|
|
new_type);
|
|
}
|
|
|
|
/* make e820 not cover the range */
|
|
u64 __init e820_remove_range(u64 start, u64 size, unsigned old_type,
|
|
int checktype)
|
|
{
|
|
int i;
|
|
u64 end;
|
|
u64 real_removed_size = 0;
|
|
|
|
if (size > (ULLONG_MAX - start))
|
|
size = ULLONG_MAX - start;
|
|
|
|
end = start + size;
|
|
printk(KERN_DEBUG "e820: remove [mem %#010Lx-%#010Lx] ",
|
|
(unsigned long long) start, (unsigned long long) (end - 1));
|
|
if (checktype)
|
|
e820_print_type(old_type);
|
|
printk(KERN_CONT "\n");
|
|
|
|
for (i = 0; i < e820.nr_map; i++) {
|
|
struct e820entry *ei = &e820.map[i];
|
|
u64 final_start, final_end;
|
|
u64 ei_end;
|
|
|
|
if (checktype && ei->type != old_type)
|
|
continue;
|
|
|
|
ei_end = ei->addr + ei->size;
|
|
/* totally covered? */
|
|
if (ei->addr >= start && ei_end <= end) {
|
|
real_removed_size += ei->size;
|
|
memset(ei, 0, sizeof(struct e820entry));
|
|
continue;
|
|
}
|
|
|
|
/* new range is totally covered? */
|
|
if (ei->addr < start && ei_end > end) {
|
|
e820_add_region(end, ei_end - end, ei->type);
|
|
ei->size = start - ei->addr;
|
|
real_removed_size += size;
|
|
continue;
|
|
}
|
|
|
|
/* partially covered */
|
|
final_start = max(start, ei->addr);
|
|
final_end = min(end, ei_end);
|
|
if (final_start >= final_end)
|
|
continue;
|
|
real_removed_size += final_end - final_start;
|
|
|
|
/*
|
|
* left range could be head or tail, so need to update
|
|
* size at first.
|
|
*/
|
|
ei->size -= final_end - final_start;
|
|
if (ei->addr < final_start)
|
|
continue;
|
|
ei->addr = final_end;
|
|
}
|
|
return real_removed_size;
|
|
}
|
|
|
|
void __init update_e820(void)
|
|
{
|
|
u32 nr_map;
|
|
|
|
nr_map = e820.nr_map;
|
|
if (sanitize_e820_map(e820.map, ARRAY_SIZE(e820.map), &nr_map))
|
|
return;
|
|
e820.nr_map = nr_map;
|
|
printk(KERN_INFO "e820: modified physical RAM map:\n");
|
|
e820_print_map("modified");
|
|
}
|
|
static void __init update_e820_saved(void)
|
|
{
|
|
u32 nr_map;
|
|
|
|
nr_map = e820_saved.nr_map;
|
|
if (sanitize_e820_map(e820_saved.map, ARRAY_SIZE(e820_saved.map), &nr_map))
|
|
return;
|
|
e820_saved.nr_map = nr_map;
|
|
}
|
|
#define MAX_GAP_END 0x100000000ull
|
|
/*
|
|
* Search for a gap in the e820 memory space from start_addr to end_addr.
|
|
*/
|
|
__init int e820_search_gap(unsigned long *gapstart, unsigned long *gapsize,
|
|
unsigned long start_addr, unsigned long long end_addr)
|
|
{
|
|
unsigned long long last;
|
|
int i = e820.nr_map;
|
|
int found = 0;
|
|
|
|
last = (end_addr && end_addr < MAX_GAP_END) ? end_addr : MAX_GAP_END;
|
|
|
|
while (--i >= 0) {
|
|
unsigned long long start = e820.map[i].addr;
|
|
unsigned long long end = start + e820.map[i].size;
|
|
|
|
if (end < start_addr)
|
|
continue;
|
|
|
|
/*
|
|
* Since "last" is at most 4GB, we know we'll
|
|
* fit in 32 bits if this condition is true
|
|
*/
|
|
if (last > end) {
|
|
unsigned long gap = last - end;
|
|
|
|
if (gap >= *gapsize) {
|
|
*gapsize = gap;
|
|
*gapstart = end;
|
|
found = 1;
|
|
}
|
|
}
|
|
if (start < last)
|
|
last = start;
|
|
}
|
|
return found;
|
|
}
|
|
|
|
/*
|
|
* Search for the biggest gap in the low 32 bits of the e820
|
|
* memory space. We pass this space to PCI to assign MMIO resources
|
|
* for hotplug or unconfigured devices in.
|
|
* Hopefully the BIOS let enough space left.
|
|
*/
|
|
__init void e820_setup_gap(void)
|
|
{
|
|
unsigned long gapstart, gapsize;
|
|
int found;
|
|
|
|
gapstart = 0x10000000;
|
|
gapsize = 0x400000;
|
|
found = e820_search_gap(&gapstart, &gapsize, 0, MAX_GAP_END);
|
|
|
|
#ifdef CONFIG_X86_64
|
|
if (!found) {
|
|
gapstart = (max_pfn << PAGE_SHIFT) + 1024*1024;
|
|
printk(KERN_ERR
|
|
"e820: cannot find a gap in the 32bit address range\n"
|
|
"e820: PCI devices with unassigned 32bit BARs may break!\n");
|
|
}
|
|
#endif
|
|
|
|
/*
|
|
* e820_reserve_resources_late protect stolen RAM already
|
|
*/
|
|
pci_mem_start = gapstart;
|
|
|
|
printk(KERN_INFO
|
|
"e820: [mem %#010lx-%#010lx] available for PCI devices\n",
|
|
gapstart, gapstart + gapsize - 1);
|
|
}
|
|
|
|
/**
|
|
* Because of the size limitation of struct boot_params, only first
|
|
* 128 E820 memory entries are passed to kernel via
|
|
* boot_params.e820_map, others are passed via SETUP_E820_EXT node of
|
|
* linked list of struct setup_data, which is parsed here.
|
|
*/
|
|
void __init parse_e820_ext(u64 phys_addr, u32 data_len)
|
|
{
|
|
int entries;
|
|
struct e820entry *extmap;
|
|
struct setup_data *sdata;
|
|
|
|
sdata = early_memremap(phys_addr, data_len);
|
|
entries = sdata->len / sizeof(struct e820entry);
|
|
extmap = (struct e820entry *)(sdata->data);
|
|
__append_e820_map(extmap, entries);
|
|
sanitize_e820_map(e820.map, ARRAY_SIZE(e820.map), &e820.nr_map);
|
|
early_iounmap(sdata, data_len);
|
|
printk(KERN_INFO "e820: extended physical RAM map:\n");
|
|
e820_print_map("extended");
|
|
}
|
|
|
|
#if defined(CONFIG_X86_64) || \
|
|
(defined(CONFIG_X86_32) && defined(CONFIG_HIBERNATION))
|
|
/**
|
|
* Find the ranges of physical addresses that do not correspond to
|
|
* e820 RAM areas and mark the corresponding pages as nosave for
|
|
* hibernation (32 bit) or software suspend and suspend to RAM (64 bit).
|
|
*
|
|
* This function requires the e820 map to be sorted and without any
|
|
* overlapping entries and assumes the first e820 area to be RAM.
|
|
*/
|
|
void __init e820_mark_nosave_regions(unsigned long limit_pfn)
|
|
{
|
|
int i;
|
|
unsigned long pfn;
|
|
|
|
pfn = PFN_DOWN(e820.map[0].addr + e820.map[0].size);
|
|
for (i = 1; i < e820.nr_map; i++) {
|
|
struct e820entry *ei = &e820.map[i];
|
|
|
|
if (pfn < PFN_UP(ei->addr))
|
|
register_nosave_region(pfn, PFN_UP(ei->addr));
|
|
|
|
pfn = PFN_DOWN(ei->addr + ei->size);
|
|
if (ei->type != E820_RAM && ei->type != E820_RESERVED_KERN)
|
|
register_nosave_region(PFN_UP(ei->addr), pfn);
|
|
|
|
if (pfn >= limit_pfn)
|
|
break;
|
|
}
|
|
}
|
|
#endif
|
|
|
|
#ifdef CONFIG_ACPI
|
|
/**
|
|
* Mark ACPI NVS memory region, so that we can save/restore it during
|
|
* hibernation and the subsequent resume.
|
|
*/
|
|
static int __init e820_mark_nvs_memory(void)
|
|
{
|
|
int i;
|
|
|
|
for (i = 0; i < e820.nr_map; i++) {
|
|
struct e820entry *ei = &e820.map[i];
|
|
|
|
if (ei->type == E820_NVS)
|
|
acpi_nvs_register(ei->addr, ei->size);
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
core_initcall(e820_mark_nvs_memory);
|
|
#endif
|
|
|
|
/*
|
|
* pre allocated 4k and reserved it in memblock and e820_saved
|
|
*/
|
|
u64 __init early_reserve_e820(u64 size, u64 align)
|
|
{
|
|
u64 addr;
|
|
|
|
addr = __memblock_alloc_base(size, align, MEMBLOCK_ALLOC_ACCESSIBLE);
|
|
if (addr) {
|
|
e820_update_range_saved(addr, size, E820_RAM, E820_RESERVED);
|
|
printk(KERN_INFO "e820: update e820_saved for early_reserve_e820\n");
|
|
update_e820_saved();
|
|
}
|
|
|
|
return addr;
|
|
}
|
|
|
|
#ifdef CONFIG_X86_32
|
|
# ifdef CONFIG_X86_PAE
|
|
# define MAX_ARCH_PFN (1ULL<<(36-PAGE_SHIFT))
|
|
# else
|
|
# define MAX_ARCH_PFN (1ULL<<(32-PAGE_SHIFT))
|
|
# endif
|
|
#else /* CONFIG_X86_32 */
|
|
# define MAX_ARCH_PFN MAXMEM>>PAGE_SHIFT
|
|
#endif
|
|
|
|
/*
|
|
* Find the highest page frame number we have available
|
|
*/
|
|
static unsigned long __init e820_end_pfn(unsigned long limit_pfn, unsigned type)
|
|
{
|
|
int i;
|
|
unsigned long last_pfn = 0;
|
|
unsigned long max_arch_pfn = MAX_ARCH_PFN;
|
|
|
|
for (i = 0; i < e820.nr_map; i++) {
|
|
struct e820entry *ei = &e820.map[i];
|
|
unsigned long start_pfn;
|
|
unsigned long end_pfn;
|
|
|
|
if (ei->type != type)
|
|
continue;
|
|
|
|
start_pfn = ei->addr >> PAGE_SHIFT;
|
|
end_pfn = (ei->addr + ei->size) >> PAGE_SHIFT;
|
|
|
|
if (start_pfn >= limit_pfn)
|
|
continue;
|
|
if (end_pfn > limit_pfn) {
|
|
last_pfn = limit_pfn;
|
|
break;
|
|
}
|
|
if (end_pfn > last_pfn)
|
|
last_pfn = end_pfn;
|
|
}
|
|
|
|
if (last_pfn > max_arch_pfn)
|
|
last_pfn = max_arch_pfn;
|
|
|
|
printk(KERN_INFO "e820: last_pfn = %#lx max_arch_pfn = %#lx\n",
|
|
last_pfn, max_arch_pfn);
|
|
return last_pfn;
|
|
}
|
|
unsigned long __init e820_end_of_ram_pfn(void)
|
|
{
|
|
return e820_end_pfn(MAX_ARCH_PFN, E820_RAM);
|
|
}
|
|
|
|
unsigned long __init e820_end_of_low_ram_pfn(void)
|
|
{
|
|
return e820_end_pfn(1UL<<(32 - PAGE_SHIFT), E820_RAM);
|
|
}
|
|
|
|
static void early_panic(char *msg)
|
|
{
|
|
early_printk(msg);
|
|
panic(msg);
|
|
}
|
|
|
|
static int userdef __initdata;
|
|
|
|
/* "mem=nopentium" disables the 4MB page tables. */
|
|
static int __init parse_memopt(char *p)
|
|
{
|
|
u64 mem_size;
|
|
|
|
if (!p)
|
|
return -EINVAL;
|
|
|
|
if (!strcmp(p, "nopentium")) {
|
|
#ifdef CONFIG_X86_32
|
|
setup_clear_cpu_cap(X86_FEATURE_PSE);
|
|
return 0;
|
|
#else
|
|
printk(KERN_WARNING "mem=nopentium ignored! (only supported on x86_32)\n");
|
|
return -EINVAL;
|
|
#endif
|
|
}
|
|
|
|
userdef = 1;
|
|
mem_size = memparse(p, &p);
|
|
/* don't remove all of memory when handling "mem={invalid}" param */
|
|
if (mem_size == 0)
|
|
return -EINVAL;
|
|
e820_remove_range(mem_size, ULLONG_MAX - mem_size, E820_RAM, 1);
|
|
|
|
return 0;
|
|
}
|
|
early_param("mem", parse_memopt);
|
|
|
|
static int __init parse_memmap_one(char *p)
|
|
{
|
|
char *oldp;
|
|
u64 start_at, mem_size;
|
|
|
|
if (!p)
|
|
return -EINVAL;
|
|
|
|
if (!strncmp(p, "exactmap", 8)) {
|
|
#ifdef CONFIG_CRASH_DUMP
|
|
/*
|
|
* If we are doing a crash dump, we still need to know
|
|
* the real mem size before original memory map is
|
|
* reset.
|
|
*/
|
|
saved_max_pfn = e820_end_of_ram_pfn();
|
|
#endif
|
|
e820.nr_map = 0;
|
|
userdef = 1;
|
|
return 0;
|
|
}
|
|
|
|
oldp = p;
|
|
mem_size = memparse(p, &p);
|
|
if (p == oldp)
|
|
return -EINVAL;
|
|
|
|
userdef = 1;
|
|
if (*p == '@') {
|
|
start_at = memparse(p+1, &p);
|
|
e820_add_region(start_at, mem_size, E820_RAM);
|
|
} else if (*p == '#') {
|
|
start_at = memparse(p+1, &p);
|
|
e820_add_region(start_at, mem_size, E820_ACPI);
|
|
} else if (*p == '$') {
|
|
start_at = memparse(p+1, &p);
|
|
e820_add_region(start_at, mem_size, E820_RESERVED);
|
|
} else
|
|
e820_remove_range(mem_size, ULLONG_MAX - mem_size, E820_RAM, 1);
|
|
|
|
return *p == '\0' ? 0 : -EINVAL;
|
|
}
|
|
static int __init parse_memmap_opt(char *str)
|
|
{
|
|
while (str) {
|
|
char *k = strchr(str, ',');
|
|
|
|
if (k)
|
|
*k++ = 0;
|
|
|
|
parse_memmap_one(str);
|
|
str = k;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
early_param("memmap", parse_memmap_opt);
|
|
|
|
void __init finish_e820_parsing(void)
|
|
{
|
|
if (userdef) {
|
|
u32 nr = e820.nr_map;
|
|
|
|
if (sanitize_e820_map(e820.map, ARRAY_SIZE(e820.map), &nr) < 0)
|
|
early_panic("Invalid user supplied memory map");
|
|
e820.nr_map = nr;
|
|
|
|
printk(KERN_INFO "e820: user-defined physical RAM map:\n");
|
|
e820_print_map("user");
|
|
}
|
|
}
|
|
|
|
static inline const char *e820_type_to_string(int e820_type)
|
|
{
|
|
switch (e820_type) {
|
|
case E820_RESERVED_KERN:
|
|
case E820_RAM: return "System RAM";
|
|
case E820_ACPI: return "ACPI Tables";
|
|
case E820_NVS: return "ACPI Non-volatile Storage";
|
|
case E820_UNUSABLE: return "Unusable memory";
|
|
default: return "reserved";
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Mark e820 reserved areas as busy for the resource manager.
|
|
*/
|
|
static struct resource __initdata *e820_res;
|
|
void __init e820_reserve_resources(void)
|
|
{
|
|
int i;
|
|
struct resource *res;
|
|
u64 end;
|
|
|
|
res = alloc_bootmem(sizeof(struct resource) * e820.nr_map);
|
|
e820_res = res;
|
|
for (i = 0; i < e820.nr_map; i++) {
|
|
end = e820.map[i].addr + e820.map[i].size - 1;
|
|
if (end != (resource_size_t)end) {
|
|
res++;
|
|
continue;
|
|
}
|
|
res->name = e820_type_to_string(e820.map[i].type);
|
|
res->start = e820.map[i].addr;
|
|
res->end = end;
|
|
|
|
res->flags = IORESOURCE_MEM;
|
|
|
|
/*
|
|
* don't register the region that could be conflicted with
|
|
* pci device BAR resource and insert them later in
|
|
* pcibios_resource_survey()
|
|
*/
|
|
if (e820.map[i].type != E820_RESERVED || res->start < (1ULL<<20)) {
|
|
res->flags |= IORESOURCE_BUSY;
|
|
insert_resource(&iomem_resource, res);
|
|
}
|
|
res++;
|
|
}
|
|
|
|
for (i = 0; i < e820_saved.nr_map; i++) {
|
|
struct e820entry *entry = &e820_saved.map[i];
|
|
firmware_map_add_early(entry->addr,
|
|
entry->addr + entry->size,
|
|
e820_type_to_string(entry->type));
|
|
}
|
|
}
|
|
|
|
/* How much should we pad RAM ending depending on where it is? */
|
|
static unsigned long ram_alignment(resource_size_t pos)
|
|
{
|
|
unsigned long mb = pos >> 20;
|
|
|
|
/* To 64kB in the first megabyte */
|
|
if (!mb)
|
|
return 64*1024;
|
|
|
|
/* To 1MB in the first 16MB */
|
|
if (mb < 16)
|
|
return 1024*1024;
|
|
|
|
/* To 64MB for anything above that */
|
|
return 64*1024*1024;
|
|
}
|
|
|
|
#define MAX_RESOURCE_SIZE ((resource_size_t)-1)
|
|
|
|
void __init e820_reserve_resources_late(void)
|
|
{
|
|
int i;
|
|
struct resource *res;
|
|
|
|
res = e820_res;
|
|
for (i = 0; i < e820.nr_map; i++) {
|
|
if (!res->parent && res->end)
|
|
insert_resource_expand_to_fit(&iomem_resource, res);
|
|
res++;
|
|
}
|
|
|
|
/*
|
|
* Try to bump up RAM regions to reasonable boundaries to
|
|
* avoid stolen RAM:
|
|
*/
|
|
for (i = 0; i < e820.nr_map; i++) {
|
|
struct e820entry *entry = &e820.map[i];
|
|
u64 start, end;
|
|
|
|
if (entry->type != E820_RAM)
|
|
continue;
|
|
start = entry->addr + entry->size;
|
|
end = round_up(start, ram_alignment(start)) - 1;
|
|
if (end > MAX_RESOURCE_SIZE)
|
|
end = MAX_RESOURCE_SIZE;
|
|
if (start >= end)
|
|
continue;
|
|
printk(KERN_DEBUG
|
|
"e820: reserve RAM buffer [mem %#010llx-%#010llx]\n",
|
|
start, end);
|
|
reserve_region_with_split(&iomem_resource, start, end,
|
|
"RAM buffer");
|
|
}
|
|
}
|
|
|
|
char *__init default_machine_specific_memory_setup(void)
|
|
{
|
|
char *who = "BIOS-e820";
|
|
u32 new_nr;
|
|
/*
|
|
* Try to copy the BIOS-supplied E820-map.
|
|
*
|
|
* Otherwise fake a memory map; one section from 0k->640k,
|
|
* the next section from 1mb->appropriate_mem_k
|
|
*/
|
|
new_nr = boot_params.e820_entries;
|
|
sanitize_e820_map(boot_params.e820_map,
|
|
ARRAY_SIZE(boot_params.e820_map),
|
|
&new_nr);
|
|
boot_params.e820_entries = new_nr;
|
|
if (append_e820_map(boot_params.e820_map, boot_params.e820_entries)
|
|
< 0) {
|
|
u64 mem_size;
|
|
|
|
/* compare results from other methods and take the greater */
|
|
if (boot_params.alt_mem_k
|
|
< boot_params.screen_info.ext_mem_k) {
|
|
mem_size = boot_params.screen_info.ext_mem_k;
|
|
who = "BIOS-88";
|
|
} else {
|
|
mem_size = boot_params.alt_mem_k;
|
|
who = "BIOS-e801";
|
|
}
|
|
|
|
e820.nr_map = 0;
|
|
e820_add_region(0, LOWMEMSIZE(), E820_RAM);
|
|
e820_add_region(HIGH_MEMORY, mem_size << 10, E820_RAM);
|
|
}
|
|
|
|
/* In case someone cares... */
|
|
return who;
|
|
}
|
|
|
|
void __init setup_memory_map(void)
|
|
{
|
|
char *who;
|
|
|
|
who = x86_init.resources.memory_setup();
|
|
memcpy(&e820_saved, &e820, sizeof(struct e820map));
|
|
printk(KERN_INFO "e820: BIOS-provided physical RAM map:\n");
|
|
e820_print_map(who);
|
|
}
|
|
|
|
void __init memblock_x86_fill(void)
|
|
{
|
|
int i;
|
|
u64 end;
|
|
|
|
/*
|
|
* EFI may have more than 128 entries
|
|
* We are safe to enable resizing, beause memblock_x86_fill()
|
|
* is rather later for x86
|
|
*/
|
|
memblock_allow_resize();
|
|
|
|
for (i = 0; i < e820.nr_map; i++) {
|
|
struct e820entry *ei = &e820.map[i];
|
|
|
|
end = ei->addr + ei->size;
|
|
if (end != (resource_size_t)end)
|
|
continue;
|
|
|
|
if (ei->type != E820_RAM && ei->type != E820_RESERVED_KERN)
|
|
continue;
|
|
|
|
memblock_add(ei->addr, ei->size);
|
|
}
|
|
|
|
/* throw away partial pages */
|
|
memblock_trim_memory(PAGE_SIZE);
|
|
|
|
memblock_dump_all();
|
|
}
|
|
|
|
void __init memblock_find_dma_reserve(void)
|
|
{
|
|
#ifdef CONFIG_X86_64
|
|
u64 nr_pages = 0, nr_free_pages = 0;
|
|
unsigned long start_pfn, end_pfn;
|
|
phys_addr_t start, end;
|
|
int i;
|
|
u64 u;
|
|
|
|
/*
|
|
* need to find out used area below MAX_DMA_PFN
|
|
* need to use memblock to get free size in [0, MAX_DMA_PFN]
|
|
* at first, and assume boot_mem will not take below MAX_DMA_PFN
|
|
*/
|
|
for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, NULL) {
|
|
start_pfn = min_t(unsigned long, start_pfn, MAX_DMA_PFN);
|
|
end_pfn = min_t(unsigned long, end_pfn, MAX_DMA_PFN);
|
|
nr_pages += end_pfn - start_pfn;
|
|
}
|
|
|
|
for_each_free_mem_range(u, MAX_NUMNODES, &start, &end, NULL) {
|
|
start_pfn = min_t(unsigned long, PFN_UP(start), MAX_DMA_PFN);
|
|
end_pfn = min_t(unsigned long, PFN_DOWN(end), MAX_DMA_PFN);
|
|
if (start_pfn < end_pfn)
|
|
nr_free_pages += end_pfn - start_pfn;
|
|
}
|
|
|
|
set_dma_reserve(nr_pages - nr_free_pages);
|
|
#endif
|
|
}
|