mirror of
https://github.com/FEX-Emu/linux.git
synced 2024-12-22 09:22:37 +00:00
881245dcff
This patch adds a simple description of the various block tracepoints available in the kernel. Signed-off-by: William Cohen <wcohen@redhat.com> Acked-by: Randy Dunlap <randy.dunlap@oracle.com> Signed-off-by: Jens Axboe <jens.axboe@oracle.com>
575 lines
15 KiB
C
575 lines
15 KiB
C
#undef TRACE_SYSTEM
|
|
#define TRACE_SYSTEM block
|
|
|
|
#if !defined(_TRACE_BLOCK_H) || defined(TRACE_HEADER_MULTI_READ)
|
|
#define _TRACE_BLOCK_H
|
|
|
|
#include <linux/blktrace_api.h>
|
|
#include <linux/blkdev.h>
|
|
#include <linux/tracepoint.h>
|
|
|
|
DECLARE_EVENT_CLASS(block_rq_with_error,
|
|
|
|
TP_PROTO(struct request_queue *q, struct request *rq),
|
|
|
|
TP_ARGS(q, rq),
|
|
|
|
TP_STRUCT__entry(
|
|
__field( dev_t, dev )
|
|
__field( sector_t, sector )
|
|
__field( unsigned int, nr_sector )
|
|
__field( int, errors )
|
|
__array( char, rwbs, 6 )
|
|
__dynamic_array( char, cmd, blk_cmd_buf_len(rq) )
|
|
),
|
|
|
|
TP_fast_assign(
|
|
__entry->dev = rq->rq_disk ? disk_devt(rq->rq_disk) : 0;
|
|
__entry->sector = blk_pc_request(rq) ? 0 : blk_rq_pos(rq);
|
|
__entry->nr_sector = blk_pc_request(rq) ? 0 : blk_rq_sectors(rq);
|
|
__entry->errors = rq->errors;
|
|
|
|
blk_fill_rwbs_rq(__entry->rwbs, rq);
|
|
blk_dump_cmd(__get_str(cmd), rq);
|
|
),
|
|
|
|
TP_printk("%d,%d %s (%s) %llu + %u [%d]",
|
|
MAJOR(__entry->dev), MINOR(__entry->dev),
|
|
__entry->rwbs, __get_str(cmd),
|
|
(unsigned long long)__entry->sector,
|
|
__entry->nr_sector, __entry->errors)
|
|
);
|
|
|
|
/**
|
|
* block_rq_abort - abort block operation request
|
|
* @q: queue containing the block operation request
|
|
* @rq: block IO operation request
|
|
*
|
|
* Called immediately after pending block IO operation request @rq in
|
|
* queue @q is aborted. The fields in the operation request @rq
|
|
* can be examined to determine which device and sectors the pending
|
|
* operation would access.
|
|
*/
|
|
DEFINE_EVENT(block_rq_with_error, block_rq_abort,
|
|
|
|
TP_PROTO(struct request_queue *q, struct request *rq),
|
|
|
|
TP_ARGS(q, rq)
|
|
);
|
|
|
|
/**
|
|
* block_rq_requeue - place block IO request back on a queue
|
|
* @q: queue holding operation
|
|
* @rq: block IO operation request
|
|
*
|
|
* The block operation request @rq is being placed back into queue
|
|
* @q. For some reason the request was not completed and needs to be
|
|
* put back in the queue.
|
|
*/
|
|
DEFINE_EVENT(block_rq_with_error, block_rq_requeue,
|
|
|
|
TP_PROTO(struct request_queue *q, struct request *rq),
|
|
|
|
TP_ARGS(q, rq)
|
|
);
|
|
|
|
/**
|
|
* block_rq_complete - block IO operation completed by device driver
|
|
* @q: queue containing the block operation request
|
|
* @rq: block operations request
|
|
*
|
|
* The block_rq_complete tracepoint event indicates that some portion
|
|
* of operation request has been completed by the device driver. If
|
|
* the @rq->bio is %NULL, then there is absolutely no additional work to
|
|
* do for the request. If @rq->bio is non-NULL then there is
|
|
* additional work required to complete the request.
|
|
*/
|
|
DEFINE_EVENT(block_rq_with_error, block_rq_complete,
|
|
|
|
TP_PROTO(struct request_queue *q, struct request *rq),
|
|
|
|
TP_ARGS(q, rq)
|
|
);
|
|
|
|
DECLARE_EVENT_CLASS(block_rq,
|
|
|
|
TP_PROTO(struct request_queue *q, struct request *rq),
|
|
|
|
TP_ARGS(q, rq),
|
|
|
|
TP_STRUCT__entry(
|
|
__field( dev_t, dev )
|
|
__field( sector_t, sector )
|
|
__field( unsigned int, nr_sector )
|
|
__field( unsigned int, bytes )
|
|
__array( char, rwbs, 6 )
|
|
__array( char, comm, TASK_COMM_LEN )
|
|
__dynamic_array( char, cmd, blk_cmd_buf_len(rq) )
|
|
),
|
|
|
|
TP_fast_assign(
|
|
__entry->dev = rq->rq_disk ? disk_devt(rq->rq_disk) : 0;
|
|
__entry->sector = blk_pc_request(rq) ? 0 : blk_rq_pos(rq);
|
|
__entry->nr_sector = blk_pc_request(rq) ? 0 : blk_rq_sectors(rq);
|
|
__entry->bytes = blk_pc_request(rq) ? blk_rq_bytes(rq) : 0;
|
|
|
|
blk_fill_rwbs_rq(__entry->rwbs, rq);
|
|
blk_dump_cmd(__get_str(cmd), rq);
|
|
memcpy(__entry->comm, current->comm, TASK_COMM_LEN);
|
|
),
|
|
|
|
TP_printk("%d,%d %s %u (%s) %llu + %u [%s]",
|
|
MAJOR(__entry->dev), MINOR(__entry->dev),
|
|
__entry->rwbs, __entry->bytes, __get_str(cmd),
|
|
(unsigned long long)__entry->sector,
|
|
__entry->nr_sector, __entry->comm)
|
|
);
|
|
|
|
/**
|
|
* block_rq_insert - insert block operation request into queue
|
|
* @q: target queue
|
|
* @rq: block IO operation request
|
|
*
|
|
* Called immediately before block operation request @rq is inserted
|
|
* into queue @q. The fields in the operation request @rq struct can
|
|
* be examined to determine which device and sectors the pending
|
|
* operation would access.
|
|
*/
|
|
DEFINE_EVENT(block_rq, block_rq_insert,
|
|
|
|
TP_PROTO(struct request_queue *q, struct request *rq),
|
|
|
|
TP_ARGS(q, rq)
|
|
);
|
|
|
|
/**
|
|
* block_rq_issue - issue pending block IO request operation to device driver
|
|
* @q: queue holding operation
|
|
* @rq: block IO operation operation request
|
|
*
|
|
* Called when block operation request @rq from queue @q is sent to a
|
|
* device driver for processing.
|
|
*/
|
|
DEFINE_EVENT(block_rq, block_rq_issue,
|
|
|
|
TP_PROTO(struct request_queue *q, struct request *rq),
|
|
|
|
TP_ARGS(q, rq)
|
|
);
|
|
|
|
/**
|
|
* block_bio_bounce - used bounce buffer when processing block operation
|
|
* @q: queue holding the block operation
|
|
* @bio: block operation
|
|
*
|
|
* A bounce buffer was used to handle the block operation @bio in @q.
|
|
* This occurs when hardware limitations prevent a direct transfer of
|
|
* data between the @bio data memory area and the IO device. Use of a
|
|
* bounce buffer requires extra copying of data and decreases
|
|
* performance.
|
|
*/
|
|
TRACE_EVENT(block_bio_bounce,
|
|
|
|
TP_PROTO(struct request_queue *q, struct bio *bio),
|
|
|
|
TP_ARGS(q, bio),
|
|
|
|
TP_STRUCT__entry(
|
|
__field( dev_t, dev )
|
|
__field( sector_t, sector )
|
|
__field( unsigned int, nr_sector )
|
|
__array( char, rwbs, 6 )
|
|
__array( char, comm, TASK_COMM_LEN )
|
|
),
|
|
|
|
TP_fast_assign(
|
|
__entry->dev = bio->bi_bdev ?
|
|
bio->bi_bdev->bd_dev : 0;
|
|
__entry->sector = bio->bi_sector;
|
|
__entry->nr_sector = bio->bi_size >> 9;
|
|
blk_fill_rwbs(__entry->rwbs, bio->bi_rw, bio->bi_size);
|
|
memcpy(__entry->comm, current->comm, TASK_COMM_LEN);
|
|
),
|
|
|
|
TP_printk("%d,%d %s %llu + %u [%s]",
|
|
MAJOR(__entry->dev), MINOR(__entry->dev), __entry->rwbs,
|
|
(unsigned long long)__entry->sector,
|
|
__entry->nr_sector, __entry->comm)
|
|
);
|
|
|
|
/**
|
|
* block_bio_complete - completed all work on the block operation
|
|
* @q: queue holding the block operation
|
|
* @bio: block operation completed
|
|
*
|
|
* This tracepoint indicates there is no further work to do on this
|
|
* block IO operation @bio.
|
|
*/
|
|
TRACE_EVENT(block_bio_complete,
|
|
|
|
TP_PROTO(struct request_queue *q, struct bio *bio),
|
|
|
|
TP_ARGS(q, bio),
|
|
|
|
TP_STRUCT__entry(
|
|
__field( dev_t, dev )
|
|
__field( sector_t, sector )
|
|
__field( unsigned, nr_sector )
|
|
__field( int, error )
|
|
__array( char, rwbs, 6 )
|
|
),
|
|
|
|
TP_fast_assign(
|
|
__entry->dev = bio->bi_bdev->bd_dev;
|
|
__entry->sector = bio->bi_sector;
|
|
__entry->nr_sector = bio->bi_size >> 9;
|
|
blk_fill_rwbs(__entry->rwbs, bio->bi_rw, bio->bi_size);
|
|
),
|
|
|
|
TP_printk("%d,%d %s %llu + %u [%d]",
|
|
MAJOR(__entry->dev), MINOR(__entry->dev), __entry->rwbs,
|
|
(unsigned long long)__entry->sector,
|
|
__entry->nr_sector, __entry->error)
|
|
);
|
|
|
|
DECLARE_EVENT_CLASS(block_bio,
|
|
|
|
TP_PROTO(struct request_queue *q, struct bio *bio),
|
|
|
|
TP_ARGS(q, bio),
|
|
|
|
TP_STRUCT__entry(
|
|
__field( dev_t, dev )
|
|
__field( sector_t, sector )
|
|
__field( unsigned int, nr_sector )
|
|
__array( char, rwbs, 6 )
|
|
__array( char, comm, TASK_COMM_LEN )
|
|
),
|
|
|
|
TP_fast_assign(
|
|
__entry->dev = bio->bi_bdev->bd_dev;
|
|
__entry->sector = bio->bi_sector;
|
|
__entry->nr_sector = bio->bi_size >> 9;
|
|
blk_fill_rwbs(__entry->rwbs, bio->bi_rw, bio->bi_size);
|
|
memcpy(__entry->comm, current->comm, TASK_COMM_LEN);
|
|
),
|
|
|
|
TP_printk("%d,%d %s %llu + %u [%s]",
|
|
MAJOR(__entry->dev), MINOR(__entry->dev), __entry->rwbs,
|
|
(unsigned long long)__entry->sector,
|
|
__entry->nr_sector, __entry->comm)
|
|
);
|
|
|
|
/**
|
|
* block_bio_backmerge - merging block operation to the end of an existing operation
|
|
* @q: queue holding operation
|
|
* @bio: new block operation to merge
|
|
*
|
|
* Merging block request @bio to the end of an existing block request
|
|
* in queue @q.
|
|
*/
|
|
DEFINE_EVENT(block_bio, block_bio_backmerge,
|
|
|
|
TP_PROTO(struct request_queue *q, struct bio *bio),
|
|
|
|
TP_ARGS(q, bio)
|
|
);
|
|
|
|
/**
|
|
* block_bio_frontmerge - merging block operation to the beginning of an existing operation
|
|
* @q: queue holding operation
|
|
* @bio: new block operation to merge
|
|
*
|
|
* Merging block IO operation @bio to the beginning of an existing block
|
|
* operation in queue @q.
|
|
*/
|
|
DEFINE_EVENT(block_bio, block_bio_frontmerge,
|
|
|
|
TP_PROTO(struct request_queue *q, struct bio *bio),
|
|
|
|
TP_ARGS(q, bio)
|
|
);
|
|
|
|
/**
|
|
* block_bio_queue - putting new block IO operation in queue
|
|
* @q: queue holding operation
|
|
* @bio: new block operation
|
|
*
|
|
* About to place the block IO operation @bio into queue @q.
|
|
*/
|
|
DEFINE_EVENT(block_bio, block_bio_queue,
|
|
|
|
TP_PROTO(struct request_queue *q, struct bio *bio),
|
|
|
|
TP_ARGS(q, bio)
|
|
);
|
|
|
|
DECLARE_EVENT_CLASS(block_get_rq,
|
|
|
|
TP_PROTO(struct request_queue *q, struct bio *bio, int rw),
|
|
|
|
TP_ARGS(q, bio, rw),
|
|
|
|
TP_STRUCT__entry(
|
|
__field( dev_t, dev )
|
|
__field( sector_t, sector )
|
|
__field( unsigned int, nr_sector )
|
|
__array( char, rwbs, 6 )
|
|
__array( char, comm, TASK_COMM_LEN )
|
|
),
|
|
|
|
TP_fast_assign(
|
|
__entry->dev = bio ? bio->bi_bdev->bd_dev : 0;
|
|
__entry->sector = bio ? bio->bi_sector : 0;
|
|
__entry->nr_sector = bio ? bio->bi_size >> 9 : 0;
|
|
blk_fill_rwbs(__entry->rwbs,
|
|
bio ? bio->bi_rw : 0, __entry->nr_sector);
|
|
memcpy(__entry->comm, current->comm, TASK_COMM_LEN);
|
|
),
|
|
|
|
TP_printk("%d,%d %s %llu + %u [%s]",
|
|
MAJOR(__entry->dev), MINOR(__entry->dev), __entry->rwbs,
|
|
(unsigned long long)__entry->sector,
|
|
__entry->nr_sector, __entry->comm)
|
|
);
|
|
|
|
/**
|
|
* block_getrq - get a free request entry in queue for block IO operations
|
|
* @q: queue for operations
|
|
* @bio: pending block IO operation
|
|
* @rw: low bit indicates a read (%0) or a write (%1)
|
|
*
|
|
* A request struct for queue @q has been allocated to handle the
|
|
* block IO operation @bio.
|
|
*/
|
|
DEFINE_EVENT(block_get_rq, block_getrq,
|
|
|
|
TP_PROTO(struct request_queue *q, struct bio *bio, int rw),
|
|
|
|
TP_ARGS(q, bio, rw)
|
|
);
|
|
|
|
/**
|
|
* block_sleeprq - waiting to get a free request entry in queue for block IO operation
|
|
* @q: queue for operation
|
|
* @bio: pending block IO operation
|
|
* @rw: low bit indicates a read (%0) or a write (%1)
|
|
*
|
|
* In the case where a request struct cannot be provided for queue @q
|
|
* the process needs to wait for an request struct to become
|
|
* available. This tracepoint event is generated each time the
|
|
* process goes to sleep waiting for request struct become available.
|
|
*/
|
|
DEFINE_EVENT(block_get_rq, block_sleeprq,
|
|
|
|
TP_PROTO(struct request_queue *q, struct bio *bio, int rw),
|
|
|
|
TP_ARGS(q, bio, rw)
|
|
);
|
|
|
|
/**
|
|
* block_plug - keep operations requests in request queue
|
|
* @q: request queue to plug
|
|
*
|
|
* Plug the request queue @q. Do not allow block operation requests
|
|
* to be sent to the device driver. Instead, accumulate requests in
|
|
* the queue to improve throughput performance of the block device.
|
|
*/
|
|
TRACE_EVENT(block_plug,
|
|
|
|
TP_PROTO(struct request_queue *q),
|
|
|
|
TP_ARGS(q),
|
|
|
|
TP_STRUCT__entry(
|
|
__array( char, comm, TASK_COMM_LEN )
|
|
),
|
|
|
|
TP_fast_assign(
|
|
memcpy(__entry->comm, current->comm, TASK_COMM_LEN);
|
|
),
|
|
|
|
TP_printk("[%s]", __entry->comm)
|
|
);
|
|
|
|
DECLARE_EVENT_CLASS(block_unplug,
|
|
|
|
TP_PROTO(struct request_queue *q),
|
|
|
|
TP_ARGS(q),
|
|
|
|
TP_STRUCT__entry(
|
|
__field( int, nr_rq )
|
|
__array( char, comm, TASK_COMM_LEN )
|
|
),
|
|
|
|
TP_fast_assign(
|
|
__entry->nr_rq = q->rq.count[READ] + q->rq.count[WRITE];
|
|
memcpy(__entry->comm, current->comm, TASK_COMM_LEN);
|
|
),
|
|
|
|
TP_printk("[%s] %d", __entry->comm, __entry->nr_rq)
|
|
);
|
|
|
|
/**
|
|
* block_unplug_timer - timed release of operations requests in queue to device driver
|
|
* @q: request queue to unplug
|
|
*
|
|
* Unplug the request queue @q because a timer expired and allow block
|
|
* operation requests to be sent to the device driver.
|
|
*/
|
|
DEFINE_EVENT(block_unplug, block_unplug_timer,
|
|
|
|
TP_PROTO(struct request_queue *q),
|
|
|
|
TP_ARGS(q)
|
|
);
|
|
|
|
/**
|
|
* block_unplug_io - release of operations requests in request queue
|
|
* @q: request queue to unplug
|
|
*
|
|
* Unplug request queue @q because device driver is scheduled to work
|
|
* on elements in the request queue.
|
|
*/
|
|
DEFINE_EVENT(block_unplug, block_unplug_io,
|
|
|
|
TP_PROTO(struct request_queue *q),
|
|
|
|
TP_ARGS(q)
|
|
);
|
|
|
|
/**
|
|
* block_split - split a single bio struct into two bio structs
|
|
* @q: queue containing the bio
|
|
* @bio: block operation being split
|
|
* @new_sector: The starting sector for the new bio
|
|
*
|
|
* The bio request @bio in request queue @q needs to be split into two
|
|
* bio requests. The newly created @bio request starts at
|
|
* @new_sector. This split may be required due to hardware limitation
|
|
* such as operation crossing device boundaries in a RAID system.
|
|
*/
|
|
TRACE_EVENT(block_split,
|
|
|
|
TP_PROTO(struct request_queue *q, struct bio *bio,
|
|
unsigned int new_sector),
|
|
|
|
TP_ARGS(q, bio, new_sector),
|
|
|
|
TP_STRUCT__entry(
|
|
__field( dev_t, dev )
|
|
__field( sector_t, sector )
|
|
__field( sector_t, new_sector )
|
|
__array( char, rwbs, 6 )
|
|
__array( char, comm, TASK_COMM_LEN )
|
|
),
|
|
|
|
TP_fast_assign(
|
|
__entry->dev = bio->bi_bdev->bd_dev;
|
|
__entry->sector = bio->bi_sector;
|
|
__entry->new_sector = new_sector;
|
|
blk_fill_rwbs(__entry->rwbs, bio->bi_rw, bio->bi_size);
|
|
memcpy(__entry->comm, current->comm, TASK_COMM_LEN);
|
|
),
|
|
|
|
TP_printk("%d,%d %s %llu / %llu [%s]",
|
|
MAJOR(__entry->dev), MINOR(__entry->dev), __entry->rwbs,
|
|
(unsigned long long)__entry->sector,
|
|
(unsigned long long)__entry->new_sector,
|
|
__entry->comm)
|
|
);
|
|
|
|
/**
|
|
* block_remap - map request for a partition to the raw device
|
|
* @q: queue holding the operation
|
|
* @bio: revised operation
|
|
* @dev: device for the operation
|
|
* @from: original sector for the operation
|
|
*
|
|
* An operation for a partition on a block device has been mapped to the
|
|
* raw block device.
|
|
*/
|
|
TRACE_EVENT(block_remap,
|
|
|
|
TP_PROTO(struct request_queue *q, struct bio *bio, dev_t dev,
|
|
sector_t from),
|
|
|
|
TP_ARGS(q, bio, dev, from),
|
|
|
|
TP_STRUCT__entry(
|
|
__field( dev_t, dev )
|
|
__field( sector_t, sector )
|
|
__field( unsigned int, nr_sector )
|
|
__field( dev_t, old_dev )
|
|
__field( sector_t, old_sector )
|
|
__array( char, rwbs, 6 )
|
|
),
|
|
|
|
TP_fast_assign(
|
|
__entry->dev = bio->bi_bdev->bd_dev;
|
|
__entry->sector = bio->bi_sector;
|
|
__entry->nr_sector = bio->bi_size >> 9;
|
|
__entry->old_dev = dev;
|
|
__entry->old_sector = from;
|
|
blk_fill_rwbs(__entry->rwbs, bio->bi_rw, bio->bi_size);
|
|
),
|
|
|
|
TP_printk("%d,%d %s %llu + %u <- (%d,%d) %llu",
|
|
MAJOR(__entry->dev), MINOR(__entry->dev), __entry->rwbs,
|
|
(unsigned long long)__entry->sector,
|
|
__entry->nr_sector,
|
|
MAJOR(__entry->old_dev), MINOR(__entry->old_dev),
|
|
(unsigned long long)__entry->old_sector)
|
|
);
|
|
|
|
/**
|
|
* block_rq_remap - map request for a block operation request
|
|
* @q: queue holding the operation
|
|
* @rq: block IO operation request
|
|
* @dev: device for the operation
|
|
* @from: original sector for the operation
|
|
*
|
|
* The block operation request @rq in @q has been remapped. The block
|
|
* operation request @rq holds the current information and @from hold
|
|
* the original sector.
|
|
*/
|
|
TRACE_EVENT(block_rq_remap,
|
|
|
|
TP_PROTO(struct request_queue *q, struct request *rq, dev_t dev,
|
|
sector_t from),
|
|
|
|
TP_ARGS(q, rq, dev, from),
|
|
|
|
TP_STRUCT__entry(
|
|
__field( dev_t, dev )
|
|
__field( sector_t, sector )
|
|
__field( unsigned int, nr_sector )
|
|
__field( dev_t, old_dev )
|
|
__field( sector_t, old_sector )
|
|
__array( char, rwbs, 6 )
|
|
),
|
|
|
|
TP_fast_assign(
|
|
__entry->dev = disk_devt(rq->rq_disk);
|
|
__entry->sector = blk_rq_pos(rq);
|
|
__entry->nr_sector = blk_rq_sectors(rq);
|
|
__entry->old_dev = dev;
|
|
__entry->old_sector = from;
|
|
blk_fill_rwbs_rq(__entry->rwbs, rq);
|
|
),
|
|
|
|
TP_printk("%d,%d %s %llu + %u <- (%d,%d) %llu",
|
|
MAJOR(__entry->dev), MINOR(__entry->dev), __entry->rwbs,
|
|
(unsigned long long)__entry->sector,
|
|
__entry->nr_sector,
|
|
MAJOR(__entry->old_dev), MINOR(__entry->old_dev),
|
|
(unsigned long long)__entry->old_sector)
|
|
);
|
|
|
|
#endif /* _TRACE_BLOCK_H */
|
|
|
|
/* This part must be outside protection */
|
|
#include <trace/define_trace.h>
|
|
|