linux/drivers/net/wireless/rt2x00/rt2500usb.c
Ivo van Doorn d06193f311 rt2x00: Disable link tuning in rt2500usb
In the legacy rt2570 driver the link tuner was never
really called. And now the reason has finally become
apparent: It breaks TX capabilities

As soon as the device has been associated all following
TX frames will be queued in the hardware and never transmitted
to the air. Disabling sections of the link tuner did not
have the expected result, but completely disabling the
link tuner did have the right result (Both of my rt2570 devices
came back to life).

This should fix Fedora bug: 411481

v2: Fix typos

Signed-off-by: Ivo van Doorn <IvDoorn@gmail.com>
Signed-off-by: John W. Linville <linville@tuxdriver.com>
2008-08-04 15:09:11 -04:00

1926 lines
60 KiB
C

/*
Copyright (C) 2004 - 2008 rt2x00 SourceForge Project
<http://rt2x00.serialmonkey.com>
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program; if not, write to the
Free Software Foundation, Inc.,
59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
*/
/*
Module: rt2500usb
Abstract: rt2500usb device specific routines.
Supported chipsets: RT2570.
*/
#include <linux/delay.h>
#include <linux/etherdevice.h>
#include <linux/init.h>
#include <linux/kernel.h>
#include <linux/module.h>
#include <linux/usb.h>
#include "rt2x00.h"
#include "rt2x00usb.h"
#include "rt2500usb.h"
/*
* Register access.
* All access to the CSR registers will go through the methods
* rt2500usb_register_read and rt2500usb_register_write.
* BBP and RF register require indirect register access,
* and use the CSR registers BBPCSR and RFCSR to achieve this.
* These indirect registers work with busy bits,
* and we will try maximal REGISTER_BUSY_COUNT times to access
* the register while taking a REGISTER_BUSY_DELAY us delay
* between each attampt. When the busy bit is still set at that time,
* the access attempt is considered to have failed,
* and we will print an error.
* If the usb_cache_mutex is already held then the _lock variants must
* be used instead.
*/
static inline void rt2500usb_register_read(struct rt2x00_dev *rt2x00dev,
const unsigned int offset,
u16 *value)
{
__le16 reg;
rt2x00usb_vendor_request_buff(rt2x00dev, USB_MULTI_READ,
USB_VENDOR_REQUEST_IN, offset,
&reg, sizeof(u16), REGISTER_TIMEOUT);
*value = le16_to_cpu(reg);
}
static inline void rt2500usb_register_read_lock(struct rt2x00_dev *rt2x00dev,
const unsigned int offset,
u16 *value)
{
__le16 reg;
rt2x00usb_vendor_req_buff_lock(rt2x00dev, USB_MULTI_READ,
USB_VENDOR_REQUEST_IN, offset,
&reg, sizeof(u16), REGISTER_TIMEOUT);
*value = le16_to_cpu(reg);
}
static inline void rt2500usb_register_multiread(struct rt2x00_dev *rt2x00dev,
const unsigned int offset,
void *value, const u16 length)
{
rt2x00usb_vendor_request_buff(rt2x00dev, USB_MULTI_READ,
USB_VENDOR_REQUEST_IN, offset,
value, length,
REGISTER_TIMEOUT16(length));
}
static inline void rt2500usb_register_write(struct rt2x00_dev *rt2x00dev,
const unsigned int offset,
u16 value)
{
__le16 reg = cpu_to_le16(value);
rt2x00usb_vendor_request_buff(rt2x00dev, USB_MULTI_WRITE,
USB_VENDOR_REQUEST_OUT, offset,
&reg, sizeof(u16), REGISTER_TIMEOUT);
}
static inline void rt2500usb_register_write_lock(struct rt2x00_dev *rt2x00dev,
const unsigned int offset,
u16 value)
{
__le16 reg = cpu_to_le16(value);
rt2x00usb_vendor_req_buff_lock(rt2x00dev, USB_MULTI_WRITE,
USB_VENDOR_REQUEST_OUT, offset,
&reg, sizeof(u16), REGISTER_TIMEOUT);
}
static inline void rt2500usb_register_multiwrite(struct rt2x00_dev *rt2x00dev,
const unsigned int offset,
void *value, const u16 length)
{
rt2x00usb_vendor_request_buff(rt2x00dev, USB_MULTI_WRITE,
USB_VENDOR_REQUEST_OUT, offset,
value, length,
REGISTER_TIMEOUT16(length));
}
static u16 rt2500usb_bbp_check(struct rt2x00_dev *rt2x00dev)
{
u16 reg;
unsigned int i;
for (i = 0; i < REGISTER_BUSY_COUNT; i++) {
rt2500usb_register_read_lock(rt2x00dev, PHY_CSR8, &reg);
if (!rt2x00_get_field16(reg, PHY_CSR8_BUSY))
break;
udelay(REGISTER_BUSY_DELAY);
}
return reg;
}
static void rt2500usb_bbp_write(struct rt2x00_dev *rt2x00dev,
const unsigned int word, const u8 value)
{
u16 reg;
mutex_lock(&rt2x00dev->usb_cache_mutex);
/*
* Wait until the BBP becomes ready.
*/
reg = rt2500usb_bbp_check(rt2x00dev);
if (rt2x00_get_field16(reg, PHY_CSR8_BUSY))
goto exit_fail;
/*
* Write the data into the BBP.
*/
reg = 0;
rt2x00_set_field16(&reg, PHY_CSR7_DATA, value);
rt2x00_set_field16(&reg, PHY_CSR7_REG_ID, word);
rt2x00_set_field16(&reg, PHY_CSR7_READ_CONTROL, 0);
rt2500usb_register_write_lock(rt2x00dev, PHY_CSR7, reg);
mutex_unlock(&rt2x00dev->usb_cache_mutex);
return;
exit_fail:
mutex_unlock(&rt2x00dev->usb_cache_mutex);
ERROR(rt2x00dev, "PHY_CSR8 register busy. Write failed.\n");
}
static void rt2500usb_bbp_read(struct rt2x00_dev *rt2x00dev,
const unsigned int word, u8 *value)
{
u16 reg;
mutex_lock(&rt2x00dev->usb_cache_mutex);
/*
* Wait until the BBP becomes ready.
*/
reg = rt2500usb_bbp_check(rt2x00dev);
if (rt2x00_get_field16(reg, PHY_CSR8_BUSY))
goto exit_fail;
/*
* Write the request into the BBP.
*/
reg = 0;
rt2x00_set_field16(&reg, PHY_CSR7_REG_ID, word);
rt2x00_set_field16(&reg, PHY_CSR7_READ_CONTROL, 1);
rt2500usb_register_write_lock(rt2x00dev, PHY_CSR7, reg);
/*
* Wait until the BBP becomes ready.
*/
reg = rt2500usb_bbp_check(rt2x00dev);
if (rt2x00_get_field16(reg, PHY_CSR8_BUSY))
goto exit_fail;
rt2500usb_register_read_lock(rt2x00dev, PHY_CSR7, &reg);
*value = rt2x00_get_field16(reg, PHY_CSR7_DATA);
mutex_unlock(&rt2x00dev->usb_cache_mutex);
return;
exit_fail:
mutex_unlock(&rt2x00dev->usb_cache_mutex);
ERROR(rt2x00dev, "PHY_CSR8 register busy. Read failed.\n");
*value = 0xff;
}
static void rt2500usb_rf_write(struct rt2x00_dev *rt2x00dev,
const unsigned int word, const u32 value)
{
u16 reg;
unsigned int i;
if (!word)
return;
mutex_lock(&rt2x00dev->usb_cache_mutex);
for (i = 0; i < REGISTER_BUSY_COUNT; i++) {
rt2500usb_register_read_lock(rt2x00dev, PHY_CSR10, &reg);
if (!rt2x00_get_field16(reg, PHY_CSR10_RF_BUSY))
goto rf_write;
udelay(REGISTER_BUSY_DELAY);
}
mutex_unlock(&rt2x00dev->usb_cache_mutex);
ERROR(rt2x00dev, "PHY_CSR10 register busy. Write failed.\n");
return;
rf_write:
reg = 0;
rt2x00_set_field16(&reg, PHY_CSR9_RF_VALUE, value);
rt2500usb_register_write_lock(rt2x00dev, PHY_CSR9, reg);
reg = 0;
rt2x00_set_field16(&reg, PHY_CSR10_RF_VALUE, value >> 16);
rt2x00_set_field16(&reg, PHY_CSR10_RF_NUMBER_OF_BITS, 20);
rt2x00_set_field16(&reg, PHY_CSR10_RF_IF_SELECT, 0);
rt2x00_set_field16(&reg, PHY_CSR10_RF_BUSY, 1);
rt2500usb_register_write_lock(rt2x00dev, PHY_CSR10, reg);
rt2x00_rf_write(rt2x00dev, word, value);
mutex_unlock(&rt2x00dev->usb_cache_mutex);
}
#ifdef CONFIG_RT2X00_LIB_DEBUGFS
#define CSR_OFFSET(__word) ( CSR_REG_BASE + ((__word) * sizeof(u16)) )
static void rt2500usb_read_csr(struct rt2x00_dev *rt2x00dev,
const unsigned int word, u32 *data)
{
rt2500usb_register_read(rt2x00dev, CSR_OFFSET(word), (u16 *) data);
}
static void rt2500usb_write_csr(struct rt2x00_dev *rt2x00dev,
const unsigned int word, u32 data)
{
rt2500usb_register_write(rt2x00dev, CSR_OFFSET(word), data);
}
static const struct rt2x00debug rt2500usb_rt2x00debug = {
.owner = THIS_MODULE,
.csr = {
.read = rt2500usb_read_csr,
.write = rt2500usb_write_csr,
.word_size = sizeof(u16),
.word_count = CSR_REG_SIZE / sizeof(u16),
},
.eeprom = {
.read = rt2x00_eeprom_read,
.write = rt2x00_eeprom_write,
.word_size = sizeof(u16),
.word_count = EEPROM_SIZE / sizeof(u16),
},
.bbp = {
.read = rt2500usb_bbp_read,
.write = rt2500usb_bbp_write,
.word_size = sizeof(u8),
.word_count = BBP_SIZE / sizeof(u8),
},
.rf = {
.read = rt2x00_rf_read,
.write = rt2500usb_rf_write,
.word_size = sizeof(u32),
.word_count = RF_SIZE / sizeof(u32),
},
};
#endif /* CONFIG_RT2X00_LIB_DEBUGFS */
#ifdef CONFIG_RT2500USB_LEDS
static void rt2500usb_brightness_set(struct led_classdev *led_cdev,
enum led_brightness brightness)
{
struct rt2x00_led *led =
container_of(led_cdev, struct rt2x00_led, led_dev);
unsigned int enabled = brightness != LED_OFF;
u16 reg;
rt2500usb_register_read(led->rt2x00dev, MAC_CSR20, &reg);
if (led->type == LED_TYPE_RADIO || led->type == LED_TYPE_ASSOC)
rt2x00_set_field16(&reg, MAC_CSR20_LINK, enabled);
else if (led->type == LED_TYPE_ACTIVITY)
rt2x00_set_field16(&reg, MAC_CSR20_ACTIVITY, enabled);
rt2500usb_register_write(led->rt2x00dev, MAC_CSR20, reg);
}
static int rt2500usb_blink_set(struct led_classdev *led_cdev,
unsigned long *delay_on,
unsigned long *delay_off)
{
struct rt2x00_led *led =
container_of(led_cdev, struct rt2x00_led, led_dev);
u16 reg;
rt2500usb_register_read(led->rt2x00dev, MAC_CSR21, &reg);
rt2x00_set_field16(&reg, MAC_CSR21_ON_PERIOD, *delay_on);
rt2x00_set_field16(&reg, MAC_CSR21_OFF_PERIOD, *delay_off);
rt2500usb_register_write(led->rt2x00dev, MAC_CSR21, reg);
return 0;
}
static void rt2500usb_init_led(struct rt2x00_dev *rt2x00dev,
struct rt2x00_led *led,
enum led_type type)
{
led->rt2x00dev = rt2x00dev;
led->type = type;
led->led_dev.brightness_set = rt2500usb_brightness_set;
led->led_dev.blink_set = rt2500usb_blink_set;
led->flags = LED_INITIALIZED;
}
#endif /* CONFIG_RT2500USB_LEDS */
/*
* Configuration handlers.
*/
static void rt2500usb_config_filter(struct rt2x00_dev *rt2x00dev,
const unsigned int filter_flags)
{
u16 reg;
/*
* Start configuration steps.
* Note that the version error will always be dropped
* and broadcast frames will always be accepted since
* there is no filter for it at this time.
*/
rt2500usb_register_read(rt2x00dev, TXRX_CSR2, &reg);
rt2x00_set_field16(&reg, TXRX_CSR2_DROP_CRC,
!(filter_flags & FIF_FCSFAIL));
rt2x00_set_field16(&reg, TXRX_CSR2_DROP_PHYSICAL,
!(filter_flags & FIF_PLCPFAIL));
rt2x00_set_field16(&reg, TXRX_CSR2_DROP_CONTROL,
!(filter_flags & FIF_CONTROL));
rt2x00_set_field16(&reg, TXRX_CSR2_DROP_NOT_TO_ME,
!(filter_flags & FIF_PROMISC_IN_BSS));
rt2x00_set_field16(&reg, TXRX_CSR2_DROP_TODS,
!(filter_flags & FIF_PROMISC_IN_BSS) &&
!rt2x00dev->intf_ap_count);
rt2x00_set_field16(&reg, TXRX_CSR2_DROP_VERSION_ERROR, 1);
rt2x00_set_field16(&reg, TXRX_CSR2_DROP_MULTICAST,
!(filter_flags & FIF_ALLMULTI));
rt2x00_set_field16(&reg, TXRX_CSR2_DROP_BROADCAST, 0);
rt2500usb_register_write(rt2x00dev, TXRX_CSR2, reg);
}
static void rt2500usb_config_intf(struct rt2x00_dev *rt2x00dev,
struct rt2x00_intf *intf,
struct rt2x00intf_conf *conf,
const unsigned int flags)
{
unsigned int bcn_preload;
u16 reg;
if (flags & CONFIG_UPDATE_TYPE) {
/*
* Enable beacon config
*/
bcn_preload = PREAMBLE + get_duration(IEEE80211_HEADER, 20);
rt2500usb_register_read(rt2x00dev, TXRX_CSR20, &reg);
rt2x00_set_field16(&reg, TXRX_CSR20_OFFSET, bcn_preload >> 6);
rt2x00_set_field16(&reg, TXRX_CSR20_BCN_EXPECT_WINDOW,
2 * (conf->type != IEEE80211_IF_TYPE_STA));
rt2500usb_register_write(rt2x00dev, TXRX_CSR20, reg);
/*
* Enable synchronisation.
*/
rt2500usb_register_read(rt2x00dev, TXRX_CSR18, &reg);
rt2x00_set_field16(&reg, TXRX_CSR18_OFFSET, 0);
rt2500usb_register_write(rt2x00dev, TXRX_CSR18, reg);
rt2500usb_register_read(rt2x00dev, TXRX_CSR19, &reg);
rt2x00_set_field16(&reg, TXRX_CSR19_TSF_COUNT, 1);
rt2x00_set_field16(&reg, TXRX_CSR19_TSF_SYNC, conf->sync);
rt2x00_set_field16(&reg, TXRX_CSR19_TBCN, 1);
rt2500usb_register_write(rt2x00dev, TXRX_CSR19, reg);
}
if (flags & CONFIG_UPDATE_MAC)
rt2500usb_register_multiwrite(rt2x00dev, MAC_CSR2, conf->mac,
(3 * sizeof(__le16)));
if (flags & CONFIG_UPDATE_BSSID)
rt2500usb_register_multiwrite(rt2x00dev, MAC_CSR5, conf->bssid,
(3 * sizeof(__le16)));
}
static void rt2500usb_config_erp(struct rt2x00_dev *rt2x00dev,
struct rt2x00lib_erp *erp)
{
u16 reg;
rt2500usb_register_read(rt2x00dev, TXRX_CSR1, &reg);
rt2x00_set_field16(&reg, TXRX_CSR1_ACK_TIMEOUT, erp->ack_timeout);
rt2500usb_register_write(rt2x00dev, TXRX_CSR1, reg);
rt2500usb_register_read(rt2x00dev, TXRX_CSR10, &reg);
rt2x00_set_field16(&reg, TXRX_CSR10_AUTORESPOND_PREAMBLE,
!!erp->short_preamble);
rt2500usb_register_write(rt2x00dev, TXRX_CSR10, reg);
}
static void rt2500usb_config_phymode(struct rt2x00_dev *rt2x00dev,
const int basic_rate_mask)
{
rt2500usb_register_write(rt2x00dev, TXRX_CSR11, basic_rate_mask);
}
static void rt2500usb_config_channel(struct rt2x00_dev *rt2x00dev,
struct rf_channel *rf, const int txpower)
{
/*
* Set TXpower.
*/
rt2x00_set_field32(&rf->rf3, RF3_TXPOWER, TXPOWER_TO_DEV(txpower));
/*
* For RT2525E we should first set the channel to half band higher.
*/
if (rt2x00_rf(&rt2x00dev->chip, RF2525E)) {
static const u32 vals[] = {
0x000008aa, 0x000008ae, 0x000008ae, 0x000008b2,
0x000008b2, 0x000008b6, 0x000008b6, 0x000008ba,
0x000008ba, 0x000008be, 0x000008b7, 0x00000902,
0x00000902, 0x00000906
};
rt2500usb_rf_write(rt2x00dev, 2, vals[rf->channel - 1]);
if (rf->rf4)
rt2500usb_rf_write(rt2x00dev, 4, rf->rf4);
}
rt2500usb_rf_write(rt2x00dev, 1, rf->rf1);
rt2500usb_rf_write(rt2x00dev, 2, rf->rf2);
rt2500usb_rf_write(rt2x00dev, 3, rf->rf3);
if (rf->rf4)
rt2500usb_rf_write(rt2x00dev, 4, rf->rf4);
}
static void rt2500usb_config_txpower(struct rt2x00_dev *rt2x00dev,
const int txpower)
{
u32 rf3;
rt2x00_rf_read(rt2x00dev, 3, &rf3);
rt2x00_set_field32(&rf3, RF3_TXPOWER, TXPOWER_TO_DEV(txpower));
rt2500usb_rf_write(rt2x00dev, 3, rf3);
}
static void rt2500usb_config_antenna(struct rt2x00_dev *rt2x00dev,
struct antenna_setup *ant)
{
u8 r2;
u8 r14;
u16 csr5;
u16 csr6;
/*
* We should never come here because rt2x00lib is supposed
* to catch this and send us the correct antenna explicitely.
*/
BUG_ON(ant->rx == ANTENNA_SW_DIVERSITY ||
ant->tx == ANTENNA_SW_DIVERSITY);
rt2500usb_bbp_read(rt2x00dev, 2, &r2);
rt2500usb_bbp_read(rt2x00dev, 14, &r14);
rt2500usb_register_read(rt2x00dev, PHY_CSR5, &csr5);
rt2500usb_register_read(rt2x00dev, PHY_CSR6, &csr6);
/*
* Configure the TX antenna.
*/
switch (ant->tx) {
case ANTENNA_HW_DIVERSITY:
rt2x00_set_field8(&r2, BBP_R2_TX_ANTENNA, 1);
rt2x00_set_field16(&csr5, PHY_CSR5_CCK, 1);
rt2x00_set_field16(&csr6, PHY_CSR6_OFDM, 1);
break;
case ANTENNA_A:
rt2x00_set_field8(&r2, BBP_R2_TX_ANTENNA, 0);
rt2x00_set_field16(&csr5, PHY_CSR5_CCK, 0);
rt2x00_set_field16(&csr6, PHY_CSR6_OFDM, 0);
break;
case ANTENNA_B:
default:
rt2x00_set_field8(&r2, BBP_R2_TX_ANTENNA, 2);
rt2x00_set_field16(&csr5, PHY_CSR5_CCK, 2);
rt2x00_set_field16(&csr6, PHY_CSR6_OFDM, 2);
break;
}
/*
* Configure the RX antenna.
*/
switch (ant->rx) {
case ANTENNA_HW_DIVERSITY:
rt2x00_set_field8(&r14, BBP_R14_RX_ANTENNA, 1);
break;
case ANTENNA_A:
rt2x00_set_field8(&r14, BBP_R14_RX_ANTENNA, 0);
break;
case ANTENNA_B:
default:
rt2x00_set_field8(&r14, BBP_R14_RX_ANTENNA, 2);
break;
}
/*
* RT2525E and RT5222 need to flip TX I/Q
*/
if (rt2x00_rf(&rt2x00dev->chip, RF2525E) ||
rt2x00_rf(&rt2x00dev->chip, RF5222)) {
rt2x00_set_field8(&r2, BBP_R2_TX_IQ_FLIP, 1);
rt2x00_set_field16(&csr5, PHY_CSR5_CCK_FLIP, 1);
rt2x00_set_field16(&csr6, PHY_CSR6_OFDM_FLIP, 1);
/*
* RT2525E does not need RX I/Q Flip.
*/
if (rt2x00_rf(&rt2x00dev->chip, RF2525E))
rt2x00_set_field8(&r14, BBP_R14_RX_IQ_FLIP, 0);
} else {
rt2x00_set_field16(&csr5, PHY_CSR5_CCK_FLIP, 0);
rt2x00_set_field16(&csr6, PHY_CSR6_OFDM_FLIP, 0);
}
rt2500usb_bbp_write(rt2x00dev, 2, r2);
rt2500usb_bbp_write(rt2x00dev, 14, r14);
rt2500usb_register_write(rt2x00dev, PHY_CSR5, csr5);
rt2500usb_register_write(rt2x00dev, PHY_CSR6, csr6);
}
static void rt2500usb_config_duration(struct rt2x00_dev *rt2x00dev,
struct rt2x00lib_conf *libconf)
{
u16 reg;
rt2500usb_register_write(rt2x00dev, MAC_CSR10, libconf->slot_time);
rt2500usb_register_write(rt2x00dev, MAC_CSR11, libconf->sifs);
rt2500usb_register_write(rt2x00dev, MAC_CSR12, libconf->eifs);
rt2500usb_register_read(rt2x00dev, TXRX_CSR18, &reg);
rt2x00_set_field16(&reg, TXRX_CSR18_INTERVAL,
libconf->conf->beacon_int * 4);
rt2500usb_register_write(rt2x00dev, TXRX_CSR18, reg);
}
static void rt2500usb_config(struct rt2x00_dev *rt2x00dev,
struct rt2x00lib_conf *libconf,
const unsigned int flags)
{
if (flags & CONFIG_UPDATE_PHYMODE)
rt2500usb_config_phymode(rt2x00dev, libconf->basic_rates);
if (flags & CONFIG_UPDATE_CHANNEL)
rt2500usb_config_channel(rt2x00dev, &libconf->rf,
libconf->conf->power_level);
if ((flags & CONFIG_UPDATE_TXPOWER) && !(flags & CONFIG_UPDATE_CHANNEL))
rt2500usb_config_txpower(rt2x00dev,
libconf->conf->power_level);
if (flags & CONFIG_UPDATE_ANTENNA)
rt2500usb_config_antenna(rt2x00dev, &libconf->ant);
if (flags & (CONFIG_UPDATE_SLOT_TIME | CONFIG_UPDATE_BEACON_INT))
rt2500usb_config_duration(rt2x00dev, libconf);
}
/*
* Link tuning
*/
static void rt2500usb_link_stats(struct rt2x00_dev *rt2x00dev,
struct link_qual *qual)
{
u16 reg;
/*
* Update FCS error count from register.
*/
rt2500usb_register_read(rt2x00dev, STA_CSR0, &reg);
qual->rx_failed = rt2x00_get_field16(reg, STA_CSR0_FCS_ERROR);
/*
* Update False CCA count from register.
*/
rt2500usb_register_read(rt2x00dev, STA_CSR3, &reg);
qual->false_cca = rt2x00_get_field16(reg, STA_CSR3_FALSE_CCA_ERROR);
}
static void rt2500usb_reset_tuner(struct rt2x00_dev *rt2x00dev)
{
u16 eeprom;
u16 value;
rt2x00_eeprom_read(rt2x00dev, EEPROM_BBPTUNE_R24, &eeprom);
value = rt2x00_get_field16(eeprom, EEPROM_BBPTUNE_R24_LOW);
rt2500usb_bbp_write(rt2x00dev, 24, value);
rt2x00_eeprom_read(rt2x00dev, EEPROM_BBPTUNE_R25, &eeprom);
value = rt2x00_get_field16(eeprom, EEPROM_BBPTUNE_R25_LOW);
rt2500usb_bbp_write(rt2x00dev, 25, value);
rt2x00_eeprom_read(rt2x00dev, EEPROM_BBPTUNE_R61, &eeprom);
value = rt2x00_get_field16(eeprom, EEPROM_BBPTUNE_R61_LOW);
rt2500usb_bbp_write(rt2x00dev, 61, value);
rt2x00_eeprom_read(rt2x00dev, EEPROM_BBPTUNE_VGC, &eeprom);
value = rt2x00_get_field16(eeprom, EEPROM_BBPTUNE_VGCUPPER);
rt2500usb_bbp_write(rt2x00dev, 17, value);
rt2x00dev->link.vgc_level = value;
}
/*
* NOTE: This function is directly ported from legacy driver, but
* despite it being declared it was never called. Although link tuning
* sounds like a good idea, and usually works well for the other drivers,
* it does _not_ work with rt2500usb. Enabling this function will result
* in TX capabilities only until association kicks in. Immediately
* after the successful association all TX frames will be kept in the
* hardware queue and never transmitted.
*/
#if 0
static void rt2500usb_link_tuner(struct rt2x00_dev *rt2x00dev)
{
int rssi = rt2x00_get_link_rssi(&rt2x00dev->link);
u16 bbp_thresh;
u16 vgc_bound;
u16 sens;
u16 r24;
u16 r25;
u16 r61;
u16 r17_sens;
u8 r17;
u8 up_bound;
u8 low_bound;
/*
* Read current r17 value, as well as the sensitivity values
* for the r17 register.
*/
rt2500usb_bbp_read(rt2x00dev, 17, &r17);
rt2x00_eeprom_read(rt2x00dev, EEPROM_BBPTUNE_R17, &r17_sens);
rt2x00_eeprom_read(rt2x00dev, EEPROM_BBPTUNE_VGC, &vgc_bound);
up_bound = rt2x00_get_field16(vgc_bound, EEPROM_BBPTUNE_VGCUPPER);
low_bound = rt2x00_get_field16(vgc_bound, EEPROM_BBPTUNE_VGCLOWER);
/*
* If we are not associated, we should go straight to the
* dynamic CCA tuning.
*/
if (!rt2x00dev->intf_associated)
goto dynamic_cca_tune;
/*
* Determine the BBP tuning threshold and correctly
* set BBP 24, 25 and 61.
*/
rt2x00_eeprom_read(rt2x00dev, EEPROM_BBPTUNE, &bbp_thresh);
bbp_thresh = rt2x00_get_field16(bbp_thresh, EEPROM_BBPTUNE_THRESHOLD);
rt2x00_eeprom_read(rt2x00dev, EEPROM_BBPTUNE_R24, &r24);
rt2x00_eeprom_read(rt2x00dev, EEPROM_BBPTUNE_R25, &r25);
rt2x00_eeprom_read(rt2x00dev, EEPROM_BBPTUNE_R61, &r61);
if ((rssi + bbp_thresh) > 0) {
r24 = rt2x00_get_field16(r24, EEPROM_BBPTUNE_R24_HIGH);
r25 = rt2x00_get_field16(r25, EEPROM_BBPTUNE_R25_HIGH);
r61 = rt2x00_get_field16(r61, EEPROM_BBPTUNE_R61_HIGH);
} else {
r24 = rt2x00_get_field16(r24, EEPROM_BBPTUNE_R24_LOW);
r25 = rt2x00_get_field16(r25, EEPROM_BBPTUNE_R25_LOW);
r61 = rt2x00_get_field16(r61, EEPROM_BBPTUNE_R61_LOW);
}
rt2500usb_bbp_write(rt2x00dev, 24, r24);
rt2500usb_bbp_write(rt2x00dev, 25, r25);
rt2500usb_bbp_write(rt2x00dev, 61, r61);
/*
* A too low RSSI will cause too much false CCA which will
* then corrupt the R17 tuning. To remidy this the tuning should
* be stopped (While making sure the R17 value will not exceed limits)
*/
if (rssi >= -40) {
if (r17 != 0x60)
rt2500usb_bbp_write(rt2x00dev, 17, 0x60);
return;
}
/*
* Special big-R17 for short distance
*/
if (rssi >= -58) {
sens = rt2x00_get_field16(r17_sens, EEPROM_BBPTUNE_R17_LOW);
if (r17 != sens)
rt2500usb_bbp_write(rt2x00dev, 17, sens);
return;
}
/*
* Special mid-R17 for middle distance
*/
if (rssi >= -74) {
sens = rt2x00_get_field16(r17_sens, EEPROM_BBPTUNE_R17_HIGH);
if (r17 != sens)
rt2500usb_bbp_write(rt2x00dev, 17, sens);
return;
}
/*
* Leave short or middle distance condition, restore r17
* to the dynamic tuning range.
*/
low_bound = 0x32;
if (rssi < -77)
up_bound -= (-77 - rssi);
if (up_bound < low_bound)
up_bound = low_bound;
if (r17 > up_bound) {
rt2500usb_bbp_write(rt2x00dev, 17, up_bound);
rt2x00dev->link.vgc_level = up_bound;
return;
}
dynamic_cca_tune:
/*
* R17 is inside the dynamic tuning range,
* start tuning the link based on the false cca counter.
*/
if (rt2x00dev->link.qual.false_cca > 512 && r17 < up_bound) {
rt2500usb_bbp_write(rt2x00dev, 17, ++r17);
rt2x00dev->link.vgc_level = r17;
} else if (rt2x00dev->link.qual.false_cca < 100 && r17 > low_bound) {
rt2500usb_bbp_write(rt2x00dev, 17, --r17);
rt2x00dev->link.vgc_level = r17;
}
}
#else
#define rt2500usb_link_tuner NULL
#endif
/*
* Initialization functions.
*/
static int rt2500usb_init_registers(struct rt2x00_dev *rt2x00dev)
{
u16 reg;
rt2x00usb_vendor_request_sw(rt2x00dev, USB_DEVICE_MODE, 0x0001,
USB_MODE_TEST, REGISTER_TIMEOUT);
rt2x00usb_vendor_request_sw(rt2x00dev, USB_SINGLE_WRITE, 0x0308,
0x00f0, REGISTER_TIMEOUT);
rt2500usb_register_read(rt2x00dev, TXRX_CSR2, &reg);
rt2x00_set_field16(&reg, TXRX_CSR2_DISABLE_RX, 1);
rt2500usb_register_write(rt2x00dev, TXRX_CSR2, reg);
rt2500usb_register_write(rt2x00dev, MAC_CSR13, 0x1111);
rt2500usb_register_write(rt2x00dev, MAC_CSR14, 0x1e11);
rt2500usb_register_read(rt2x00dev, MAC_CSR1, &reg);
rt2x00_set_field16(&reg, MAC_CSR1_SOFT_RESET, 1);
rt2x00_set_field16(&reg, MAC_CSR1_BBP_RESET, 1);
rt2x00_set_field16(&reg, MAC_CSR1_HOST_READY, 0);
rt2500usb_register_write(rt2x00dev, MAC_CSR1, reg);
rt2500usb_register_read(rt2x00dev, MAC_CSR1, &reg);
rt2x00_set_field16(&reg, MAC_CSR1_SOFT_RESET, 0);
rt2x00_set_field16(&reg, MAC_CSR1_BBP_RESET, 0);
rt2x00_set_field16(&reg, MAC_CSR1_HOST_READY, 0);
rt2500usb_register_write(rt2x00dev, MAC_CSR1, reg);
rt2500usb_register_read(rt2x00dev, TXRX_CSR5, &reg);
rt2x00_set_field16(&reg, TXRX_CSR5_BBP_ID0, 13);
rt2x00_set_field16(&reg, TXRX_CSR5_BBP_ID0_VALID, 1);
rt2x00_set_field16(&reg, TXRX_CSR5_BBP_ID1, 12);
rt2x00_set_field16(&reg, TXRX_CSR5_BBP_ID1_VALID, 1);
rt2500usb_register_write(rt2x00dev, TXRX_CSR5, reg);
rt2500usb_register_read(rt2x00dev, TXRX_CSR6, &reg);
rt2x00_set_field16(&reg, TXRX_CSR6_BBP_ID0, 10);
rt2x00_set_field16(&reg, TXRX_CSR6_BBP_ID0_VALID, 1);
rt2x00_set_field16(&reg, TXRX_CSR6_BBP_ID1, 11);
rt2x00_set_field16(&reg, TXRX_CSR6_BBP_ID1_VALID, 1);
rt2500usb_register_write(rt2x00dev, TXRX_CSR6, reg);
rt2500usb_register_read(rt2x00dev, TXRX_CSR7, &reg);
rt2x00_set_field16(&reg, TXRX_CSR7_BBP_ID0, 7);
rt2x00_set_field16(&reg, TXRX_CSR7_BBP_ID0_VALID, 1);
rt2x00_set_field16(&reg, TXRX_CSR7_BBP_ID1, 6);
rt2x00_set_field16(&reg, TXRX_CSR7_BBP_ID1_VALID, 1);
rt2500usb_register_write(rt2x00dev, TXRX_CSR7, reg);
rt2500usb_register_read(rt2x00dev, TXRX_CSR8, &reg);
rt2x00_set_field16(&reg, TXRX_CSR8_BBP_ID0, 5);
rt2x00_set_field16(&reg, TXRX_CSR8_BBP_ID0_VALID, 1);
rt2x00_set_field16(&reg, TXRX_CSR8_BBP_ID1, 0);
rt2x00_set_field16(&reg, TXRX_CSR8_BBP_ID1_VALID, 0);
rt2500usb_register_write(rt2x00dev, TXRX_CSR8, reg);
rt2500usb_register_read(rt2x00dev, TXRX_CSR19, &reg);
rt2x00_set_field16(&reg, TXRX_CSR19_TSF_COUNT, 0);
rt2x00_set_field16(&reg, TXRX_CSR19_TSF_SYNC, 0);
rt2x00_set_field16(&reg, TXRX_CSR19_TBCN, 0);
rt2x00_set_field16(&reg, TXRX_CSR19_BEACON_GEN, 0);
rt2500usb_register_write(rt2x00dev, TXRX_CSR19, reg);
rt2500usb_register_write(rt2x00dev, TXRX_CSR21, 0xe78f);
rt2500usb_register_write(rt2x00dev, MAC_CSR9, 0xff1d);
if (rt2x00dev->ops->lib->set_device_state(rt2x00dev, STATE_AWAKE))
return -EBUSY;
rt2500usb_register_read(rt2x00dev, MAC_CSR1, &reg);
rt2x00_set_field16(&reg, MAC_CSR1_SOFT_RESET, 0);
rt2x00_set_field16(&reg, MAC_CSR1_BBP_RESET, 0);
rt2x00_set_field16(&reg, MAC_CSR1_HOST_READY, 1);
rt2500usb_register_write(rt2x00dev, MAC_CSR1, reg);
if (rt2x00_rev(&rt2x00dev->chip) >= RT2570_VERSION_C) {
rt2500usb_register_read(rt2x00dev, PHY_CSR2, &reg);
rt2x00_set_field16(&reg, PHY_CSR2_LNA, 0);
} else {
reg = 0;
rt2x00_set_field16(&reg, PHY_CSR2_LNA, 1);
rt2x00_set_field16(&reg, PHY_CSR2_LNA_MODE, 3);
}
rt2500usb_register_write(rt2x00dev, PHY_CSR2, reg);
rt2500usb_register_write(rt2x00dev, MAC_CSR11, 0x0002);
rt2500usb_register_write(rt2x00dev, MAC_CSR22, 0x0053);
rt2500usb_register_write(rt2x00dev, MAC_CSR15, 0x01ee);
rt2500usb_register_write(rt2x00dev, MAC_CSR16, 0x0000);
rt2500usb_register_read(rt2x00dev, MAC_CSR8, &reg);
rt2x00_set_field16(&reg, MAC_CSR8_MAX_FRAME_UNIT,
rt2x00dev->rx->data_size);
rt2500usb_register_write(rt2x00dev, MAC_CSR8, reg);
rt2500usb_register_read(rt2x00dev, TXRX_CSR0, &reg);
rt2x00_set_field16(&reg, TXRX_CSR0_IV_OFFSET, IEEE80211_HEADER);
rt2x00_set_field16(&reg, TXRX_CSR0_KEY_ID, 0xff);
rt2500usb_register_write(rt2x00dev, TXRX_CSR0, reg);
rt2500usb_register_read(rt2x00dev, MAC_CSR18, &reg);
rt2x00_set_field16(&reg, MAC_CSR18_DELAY_AFTER_BEACON, 90);
rt2500usb_register_write(rt2x00dev, MAC_CSR18, reg);
rt2500usb_register_read(rt2x00dev, PHY_CSR4, &reg);
rt2x00_set_field16(&reg, PHY_CSR4_LOW_RF_LE, 1);
rt2500usb_register_write(rt2x00dev, PHY_CSR4, reg);
rt2500usb_register_read(rt2x00dev, TXRX_CSR1, &reg);
rt2x00_set_field16(&reg, TXRX_CSR1_AUTO_SEQUENCE, 1);
rt2500usb_register_write(rt2x00dev, TXRX_CSR1, reg);
return 0;
}
static int rt2500usb_wait_bbp_ready(struct rt2x00_dev *rt2x00dev)
{
unsigned int i;
u8 value;
for (i = 0; i < REGISTER_BUSY_COUNT; i++) {
rt2500usb_bbp_read(rt2x00dev, 0, &value);
if ((value != 0xff) && (value != 0x00))
return 0;
udelay(REGISTER_BUSY_DELAY);
}
ERROR(rt2x00dev, "BBP register access failed, aborting.\n");
return -EACCES;
}
static int rt2500usb_init_bbp(struct rt2x00_dev *rt2x00dev)
{
unsigned int i;
u16 eeprom;
u8 value;
u8 reg_id;
if (unlikely(rt2500usb_wait_bbp_ready(rt2x00dev)))
return -EACCES;
rt2500usb_bbp_write(rt2x00dev, 3, 0x02);
rt2500usb_bbp_write(rt2x00dev, 4, 0x19);
rt2500usb_bbp_write(rt2x00dev, 14, 0x1c);
rt2500usb_bbp_write(rt2x00dev, 15, 0x30);
rt2500usb_bbp_write(rt2x00dev, 16, 0xac);
rt2500usb_bbp_write(rt2x00dev, 18, 0x18);
rt2500usb_bbp_write(rt2x00dev, 19, 0xff);
rt2500usb_bbp_write(rt2x00dev, 20, 0x1e);
rt2500usb_bbp_write(rt2x00dev, 21, 0x08);
rt2500usb_bbp_write(rt2x00dev, 22, 0x08);
rt2500usb_bbp_write(rt2x00dev, 23, 0x08);
rt2500usb_bbp_write(rt2x00dev, 24, 0x80);
rt2500usb_bbp_write(rt2x00dev, 25, 0x50);
rt2500usb_bbp_write(rt2x00dev, 26, 0x08);
rt2500usb_bbp_write(rt2x00dev, 27, 0x23);
rt2500usb_bbp_write(rt2x00dev, 30, 0x10);
rt2500usb_bbp_write(rt2x00dev, 31, 0x2b);
rt2500usb_bbp_write(rt2x00dev, 32, 0xb9);
rt2500usb_bbp_write(rt2x00dev, 34, 0x12);
rt2500usb_bbp_write(rt2x00dev, 35, 0x50);
rt2500usb_bbp_write(rt2x00dev, 39, 0xc4);
rt2500usb_bbp_write(rt2x00dev, 40, 0x02);
rt2500usb_bbp_write(rt2x00dev, 41, 0x60);
rt2500usb_bbp_write(rt2x00dev, 53, 0x10);
rt2500usb_bbp_write(rt2x00dev, 54, 0x18);
rt2500usb_bbp_write(rt2x00dev, 56, 0x08);
rt2500usb_bbp_write(rt2x00dev, 57, 0x10);
rt2500usb_bbp_write(rt2x00dev, 58, 0x08);
rt2500usb_bbp_write(rt2x00dev, 61, 0x60);
rt2500usb_bbp_write(rt2x00dev, 62, 0x10);
rt2500usb_bbp_write(rt2x00dev, 75, 0xff);
for (i = 0; i < EEPROM_BBP_SIZE; i++) {
rt2x00_eeprom_read(rt2x00dev, EEPROM_BBP_START + i, &eeprom);
if (eeprom != 0xffff && eeprom != 0x0000) {
reg_id = rt2x00_get_field16(eeprom, EEPROM_BBP_REG_ID);
value = rt2x00_get_field16(eeprom, EEPROM_BBP_VALUE);
rt2500usb_bbp_write(rt2x00dev, reg_id, value);
}
}
return 0;
}
/*
* Device state switch handlers.
*/
static void rt2500usb_toggle_rx(struct rt2x00_dev *rt2x00dev,
enum dev_state state)
{
u16 reg;
rt2500usb_register_read(rt2x00dev, TXRX_CSR2, &reg);
rt2x00_set_field16(&reg, TXRX_CSR2_DISABLE_RX,
(state == STATE_RADIO_RX_OFF) ||
(state == STATE_RADIO_RX_OFF_LINK));
rt2500usb_register_write(rt2x00dev, TXRX_CSR2, reg);
}
static int rt2500usb_enable_radio(struct rt2x00_dev *rt2x00dev)
{
/*
* Initialize all registers.
*/
if (unlikely(rt2500usb_init_registers(rt2x00dev) ||
rt2500usb_init_bbp(rt2x00dev)))
return -EIO;
return 0;
}
static void rt2500usb_disable_radio(struct rt2x00_dev *rt2x00dev)
{
rt2500usb_register_write(rt2x00dev, MAC_CSR13, 0x2121);
rt2500usb_register_write(rt2x00dev, MAC_CSR14, 0x2121);
/*
* Disable synchronisation.
*/
rt2500usb_register_write(rt2x00dev, TXRX_CSR19, 0);
rt2x00usb_disable_radio(rt2x00dev);
}
static int rt2500usb_set_state(struct rt2x00_dev *rt2x00dev,
enum dev_state state)
{
u16 reg;
u16 reg2;
unsigned int i;
char put_to_sleep;
char bbp_state;
char rf_state;
put_to_sleep = (state != STATE_AWAKE);
reg = 0;
rt2x00_set_field16(&reg, MAC_CSR17_BBP_DESIRE_STATE, state);
rt2x00_set_field16(&reg, MAC_CSR17_RF_DESIRE_STATE, state);
rt2x00_set_field16(&reg, MAC_CSR17_PUT_TO_SLEEP, put_to_sleep);
rt2500usb_register_write(rt2x00dev, MAC_CSR17, reg);
rt2x00_set_field16(&reg, MAC_CSR17_SET_STATE, 1);
rt2500usb_register_write(rt2x00dev, MAC_CSR17, reg);
/*
* Device is not guaranteed to be in the requested state yet.
* We must wait until the register indicates that the
* device has entered the correct state.
*/
for (i = 0; i < REGISTER_BUSY_COUNT; i++) {
rt2500usb_register_read(rt2x00dev, MAC_CSR17, &reg2);
bbp_state = rt2x00_get_field16(reg2, MAC_CSR17_BBP_CURR_STATE);
rf_state = rt2x00_get_field16(reg2, MAC_CSR17_RF_CURR_STATE);
if (bbp_state == state && rf_state == state)
return 0;
rt2500usb_register_write(rt2x00dev, MAC_CSR17, reg);
msleep(30);
}
return -EBUSY;
}
static int rt2500usb_set_device_state(struct rt2x00_dev *rt2x00dev,
enum dev_state state)
{
int retval = 0;
switch (state) {
case STATE_RADIO_ON:
retval = rt2500usb_enable_radio(rt2x00dev);
break;
case STATE_RADIO_OFF:
rt2500usb_disable_radio(rt2x00dev);
break;
case STATE_RADIO_RX_ON:
case STATE_RADIO_RX_ON_LINK:
case STATE_RADIO_RX_OFF:
case STATE_RADIO_RX_OFF_LINK:
rt2500usb_toggle_rx(rt2x00dev, state);
break;
case STATE_RADIO_IRQ_ON:
case STATE_RADIO_IRQ_OFF:
/* No support, but no error either */
break;
case STATE_DEEP_SLEEP:
case STATE_SLEEP:
case STATE_STANDBY:
case STATE_AWAKE:
retval = rt2500usb_set_state(rt2x00dev, state);
break;
default:
retval = -ENOTSUPP;
break;
}
if (unlikely(retval))
ERROR(rt2x00dev, "Device failed to enter state %d (%d).\n",
state, retval);
return retval;
}
/*
* TX descriptor initialization
*/
static void rt2500usb_write_tx_desc(struct rt2x00_dev *rt2x00dev,
struct sk_buff *skb,
struct txentry_desc *txdesc)
{
struct skb_frame_desc *skbdesc = get_skb_frame_desc(skb);
__le32 *txd = skbdesc->desc;
u32 word;
/*
* Start writing the descriptor words.
*/
rt2x00_desc_read(txd, 1, &word);
rt2x00_set_field32(&word, TXD_W1_IV_OFFSET, IEEE80211_HEADER);
rt2x00_set_field32(&word, TXD_W1_AIFS, txdesc->aifs);
rt2x00_set_field32(&word, TXD_W1_CWMIN, txdesc->cw_min);
rt2x00_set_field32(&word, TXD_W1_CWMAX, txdesc->cw_max);
rt2x00_desc_write(txd, 1, word);
rt2x00_desc_read(txd, 2, &word);
rt2x00_set_field32(&word, TXD_W2_PLCP_SIGNAL, txdesc->signal);
rt2x00_set_field32(&word, TXD_W2_PLCP_SERVICE, txdesc->service);
rt2x00_set_field32(&word, TXD_W2_PLCP_LENGTH_LOW, txdesc->length_low);
rt2x00_set_field32(&word, TXD_W2_PLCP_LENGTH_HIGH, txdesc->length_high);
rt2x00_desc_write(txd, 2, word);
rt2x00_desc_read(txd, 0, &word);
rt2x00_set_field32(&word, TXD_W0_RETRY_LIMIT, txdesc->retry_limit);
rt2x00_set_field32(&word, TXD_W0_MORE_FRAG,
test_bit(ENTRY_TXD_MORE_FRAG, &txdesc->flags));
rt2x00_set_field32(&word, TXD_W0_ACK,
test_bit(ENTRY_TXD_ACK, &txdesc->flags));
rt2x00_set_field32(&word, TXD_W0_TIMESTAMP,
test_bit(ENTRY_TXD_REQ_TIMESTAMP, &txdesc->flags));
rt2x00_set_field32(&word, TXD_W0_OFDM,
test_bit(ENTRY_TXD_OFDM_RATE, &txdesc->flags));
rt2x00_set_field32(&word, TXD_W0_NEW_SEQ,
test_bit(ENTRY_TXD_FIRST_FRAGMENT, &txdesc->flags));
rt2x00_set_field32(&word, TXD_W0_IFS, txdesc->ifs);
rt2x00_set_field32(&word, TXD_W0_DATABYTE_COUNT,
skb->len - skbdesc->desc_len);
rt2x00_set_field32(&word, TXD_W0_CIPHER, CIPHER_NONE);
rt2x00_desc_write(txd, 0, word);
}
/*
* TX data initialization
*/
static void rt2500usb_beacondone(struct urb *urb);
static void rt2500usb_write_beacon(struct queue_entry *entry)
{
struct rt2x00_dev *rt2x00dev = entry->queue->rt2x00dev;
struct usb_device *usb_dev = to_usb_device_intf(rt2x00dev->dev);
struct queue_entry_priv_usb_bcn *bcn_priv = entry->priv_data;
struct skb_frame_desc *skbdesc = get_skb_frame_desc(entry->skb);
int pipe = usb_sndbulkpipe(usb_dev, 1);
int length;
u16 reg;
u32 word, len;
/*
* Add the descriptor in front of the skb.
*/
skb_push(entry->skb, entry->queue->desc_size);
memcpy(entry->skb->data, skbdesc->desc, skbdesc->desc_len);
skbdesc->desc = entry->skb->data;
/*
* Adjust the beacon databyte count. The current number is
* calculated before this function gets called, but falsely
* assumes that the descriptor was already present in the SKB.
*/
rt2x00_desc_read(skbdesc->desc, 0, &word);
len = rt2x00_get_field32(word, TXD_W0_DATABYTE_COUNT);
len += skbdesc->desc_len;
rt2x00_set_field32(&word, TXD_W0_DATABYTE_COUNT, len);
rt2x00_desc_write(skbdesc->desc, 0, word);
/*
* Disable beaconing while we are reloading the beacon data,
* otherwise we might be sending out invalid data.
*/
rt2500usb_register_read(rt2x00dev, TXRX_CSR19, &reg);
rt2x00_set_field16(&reg, TXRX_CSR19_TSF_COUNT, 0);
rt2x00_set_field16(&reg, TXRX_CSR19_TBCN, 0);
rt2x00_set_field16(&reg, TXRX_CSR19_BEACON_GEN, 0);
rt2500usb_register_write(rt2x00dev, TXRX_CSR19, reg);
/*
* USB devices cannot blindly pass the skb->len as the
* length of the data to usb_fill_bulk_urb. Pass the skb
* to the driver to determine what the length should be.
*/
length = rt2x00dev->ops->lib->get_tx_data_len(rt2x00dev, entry->skb);
usb_fill_bulk_urb(bcn_priv->urb, usb_dev, pipe,
entry->skb->data, length, rt2500usb_beacondone,
entry);
/*
* Second we need to create the guardian byte.
* We only need a single byte, so lets recycle
* the 'flags' field we are not using for beacons.
*/
bcn_priv->guardian_data = 0;
usb_fill_bulk_urb(bcn_priv->guardian_urb, usb_dev, pipe,
&bcn_priv->guardian_data, 1, rt2500usb_beacondone,
entry);
/*
* Send out the guardian byte.
*/
usb_submit_urb(bcn_priv->guardian_urb, GFP_ATOMIC);
}
static int rt2500usb_get_tx_data_len(struct rt2x00_dev *rt2x00dev,
struct sk_buff *skb)
{
int length;
/*
* The length _must_ be a multiple of 2,
* but it must _not_ be a multiple of the USB packet size.
*/
length = roundup(skb->len, 2);
length += (2 * !(length % rt2x00dev->usb_maxpacket));
return length;
}
static void rt2500usb_kick_tx_queue(struct rt2x00_dev *rt2x00dev,
const enum data_queue_qid queue)
{
u16 reg;
if (queue != QID_BEACON) {
rt2x00usb_kick_tx_queue(rt2x00dev, queue);
return;
}
rt2500usb_register_read(rt2x00dev, TXRX_CSR19, &reg);
if (!rt2x00_get_field16(reg, TXRX_CSR19_BEACON_GEN)) {
rt2x00_set_field16(&reg, TXRX_CSR19_TSF_COUNT, 1);
rt2x00_set_field16(&reg, TXRX_CSR19_TBCN, 1);
rt2x00_set_field16(&reg, TXRX_CSR19_BEACON_GEN, 1);
/*
* Beacon generation will fail initially.
* To prevent this we need to register the TXRX_CSR19
* register several times.
*/
rt2500usb_register_write(rt2x00dev, TXRX_CSR19, reg);
rt2500usb_register_write(rt2x00dev, TXRX_CSR19, 0);
rt2500usb_register_write(rt2x00dev, TXRX_CSR19, reg);
rt2500usb_register_write(rt2x00dev, TXRX_CSR19, 0);
rt2500usb_register_write(rt2x00dev, TXRX_CSR19, reg);
}
}
/*
* RX control handlers
*/
static void rt2500usb_fill_rxdone(struct queue_entry *entry,
struct rxdone_entry_desc *rxdesc)
{
struct queue_entry_priv_usb *entry_priv = entry->priv_data;
struct skb_frame_desc *skbdesc = get_skb_frame_desc(entry->skb);
__le32 *rxd =
(__le32 *)(entry->skb->data +
(entry_priv->urb->actual_length -
entry->queue->desc_size));
u32 word0;
u32 word1;
/*
* Copy descriptor to the skbdesc->desc buffer, making it safe from moving of
* frame data in rt2x00usb.
*/
memcpy(skbdesc->desc, rxd, skbdesc->desc_len);
rxd = (__le32 *)skbdesc->desc;
/*
* It is now safe to read the descriptor on all architectures.
*/
rt2x00_desc_read(rxd, 0, &word0);
rt2x00_desc_read(rxd, 1, &word1);
if (rt2x00_get_field32(word0, RXD_W0_CRC_ERROR))
rxdesc->flags |= RX_FLAG_FAILED_FCS_CRC;
if (rt2x00_get_field32(word0, RXD_W0_PHYSICAL_ERROR))
rxdesc->flags |= RX_FLAG_FAILED_PLCP_CRC;
/*
* Obtain the status about this packet.
* When frame was received with an OFDM bitrate,
* the signal is the PLCP value. If it was received with
* a CCK bitrate the signal is the rate in 100kbit/s.
*/
rxdesc->signal = rt2x00_get_field32(word1, RXD_W1_SIGNAL);
rxdesc->rssi = rt2x00_get_field32(word1, RXD_W1_RSSI) -
entry->queue->rt2x00dev->rssi_offset;
rxdesc->size = rt2x00_get_field32(word0, RXD_W0_DATABYTE_COUNT);
if (rt2x00_get_field32(word0, RXD_W0_OFDM))
rxdesc->dev_flags |= RXDONE_SIGNAL_PLCP;
if (rt2x00_get_field32(word0, RXD_W0_MY_BSS))
rxdesc->dev_flags |= RXDONE_MY_BSS;
/*
* Adjust the skb memory window to the frame boundaries.
*/
skb_trim(entry->skb, rxdesc->size);
}
/*
* Interrupt functions.
*/
static void rt2500usb_beacondone(struct urb *urb)
{
struct queue_entry *entry = (struct queue_entry *)urb->context;
struct queue_entry_priv_usb_bcn *bcn_priv = entry->priv_data;
if (!test_bit(DEVICE_ENABLED_RADIO, &entry->queue->rt2x00dev->flags))
return;
/*
* Check if this was the guardian beacon,
* if that was the case we need to send the real beacon now.
* Otherwise we should free the sk_buffer, the device
* should be doing the rest of the work now.
*/
if (bcn_priv->guardian_urb == urb) {
usb_submit_urb(bcn_priv->urb, GFP_ATOMIC);
} else if (bcn_priv->urb == urb) {
dev_kfree_skb(entry->skb);
entry->skb = NULL;
}
}
/*
* Device probe functions.
*/
static int rt2500usb_validate_eeprom(struct rt2x00_dev *rt2x00dev)
{
u16 word;
u8 *mac;
u8 bbp;
rt2x00usb_eeprom_read(rt2x00dev, rt2x00dev->eeprom, EEPROM_SIZE);
/*
* Start validation of the data that has been read.
*/
mac = rt2x00_eeprom_addr(rt2x00dev, EEPROM_MAC_ADDR_0);
if (!is_valid_ether_addr(mac)) {
DECLARE_MAC_BUF(macbuf);
random_ether_addr(mac);
EEPROM(rt2x00dev, "MAC: %s\n", print_mac(macbuf, mac));
}
rt2x00_eeprom_read(rt2x00dev, EEPROM_ANTENNA, &word);
if (word == 0xffff) {
rt2x00_set_field16(&word, EEPROM_ANTENNA_NUM, 2);
rt2x00_set_field16(&word, EEPROM_ANTENNA_TX_DEFAULT,
ANTENNA_SW_DIVERSITY);
rt2x00_set_field16(&word, EEPROM_ANTENNA_RX_DEFAULT,
ANTENNA_SW_DIVERSITY);
rt2x00_set_field16(&word, EEPROM_ANTENNA_LED_MODE,
LED_MODE_DEFAULT);
rt2x00_set_field16(&word, EEPROM_ANTENNA_DYN_TXAGC, 0);
rt2x00_set_field16(&word, EEPROM_ANTENNA_HARDWARE_RADIO, 0);
rt2x00_set_field16(&word, EEPROM_ANTENNA_RF_TYPE, RF2522);
rt2x00_eeprom_write(rt2x00dev, EEPROM_ANTENNA, word);
EEPROM(rt2x00dev, "Antenna: 0x%04x\n", word);
}
rt2x00_eeprom_read(rt2x00dev, EEPROM_NIC, &word);
if (word == 0xffff) {
rt2x00_set_field16(&word, EEPROM_NIC_CARDBUS_ACCEL, 0);
rt2x00_set_field16(&word, EEPROM_NIC_DYN_BBP_TUNE, 0);
rt2x00_set_field16(&word, EEPROM_NIC_CCK_TX_POWER, 0);
rt2x00_eeprom_write(rt2x00dev, EEPROM_NIC, word);
EEPROM(rt2x00dev, "NIC: 0x%04x\n", word);
}
rt2x00_eeprom_read(rt2x00dev, EEPROM_CALIBRATE_OFFSET, &word);
if (word == 0xffff) {
rt2x00_set_field16(&word, EEPROM_CALIBRATE_OFFSET_RSSI,
DEFAULT_RSSI_OFFSET);
rt2x00_eeprom_write(rt2x00dev, EEPROM_CALIBRATE_OFFSET, word);
EEPROM(rt2x00dev, "Calibrate offset: 0x%04x\n", word);
}
rt2x00_eeprom_read(rt2x00dev, EEPROM_BBPTUNE, &word);
if (word == 0xffff) {
rt2x00_set_field16(&word, EEPROM_BBPTUNE_THRESHOLD, 45);
rt2x00_eeprom_write(rt2x00dev, EEPROM_BBPTUNE, word);
EEPROM(rt2x00dev, "BBPtune: 0x%04x\n", word);
}
/*
* Switch lower vgc bound to current BBP R17 value,
* lower the value a bit for better quality.
*/
rt2500usb_bbp_read(rt2x00dev, 17, &bbp);
bbp -= 6;
rt2x00_eeprom_read(rt2x00dev, EEPROM_BBPTUNE_VGC, &word);
if (word == 0xffff) {
rt2x00_set_field16(&word, EEPROM_BBPTUNE_VGCUPPER, 0x40);
rt2x00_set_field16(&word, EEPROM_BBPTUNE_VGCLOWER, bbp);
rt2x00_eeprom_write(rt2x00dev, EEPROM_BBPTUNE_VGC, word);
EEPROM(rt2x00dev, "BBPtune vgc: 0x%04x\n", word);
} else {
rt2x00_set_field16(&word, EEPROM_BBPTUNE_VGCLOWER, bbp);
rt2x00_eeprom_write(rt2x00dev, EEPROM_BBPTUNE_VGC, word);
}
rt2x00_eeprom_read(rt2x00dev, EEPROM_BBPTUNE_R17, &word);
if (word == 0xffff) {
rt2x00_set_field16(&word, EEPROM_BBPTUNE_R17_LOW, 0x48);
rt2x00_set_field16(&word, EEPROM_BBPTUNE_R17_HIGH, 0x41);
rt2x00_eeprom_write(rt2x00dev, EEPROM_BBPTUNE_R17, word);
EEPROM(rt2x00dev, "BBPtune r17: 0x%04x\n", word);
}
rt2x00_eeprom_read(rt2x00dev, EEPROM_BBPTUNE_R24, &word);
if (word == 0xffff) {
rt2x00_set_field16(&word, EEPROM_BBPTUNE_R24_LOW, 0x40);
rt2x00_set_field16(&word, EEPROM_BBPTUNE_R24_HIGH, 0x80);
rt2x00_eeprom_write(rt2x00dev, EEPROM_BBPTUNE_R24, word);
EEPROM(rt2x00dev, "BBPtune r24: 0x%04x\n", word);
}
rt2x00_eeprom_read(rt2x00dev, EEPROM_BBPTUNE_R25, &word);
if (word == 0xffff) {
rt2x00_set_field16(&word, EEPROM_BBPTUNE_R25_LOW, 0x40);
rt2x00_set_field16(&word, EEPROM_BBPTUNE_R25_HIGH, 0x50);
rt2x00_eeprom_write(rt2x00dev, EEPROM_BBPTUNE_R25, word);
EEPROM(rt2x00dev, "BBPtune r25: 0x%04x\n", word);
}
rt2x00_eeprom_read(rt2x00dev, EEPROM_BBPTUNE_R61, &word);
if (word == 0xffff) {
rt2x00_set_field16(&word, EEPROM_BBPTUNE_R61_LOW, 0x60);
rt2x00_set_field16(&word, EEPROM_BBPTUNE_R61_HIGH, 0x6d);
rt2x00_eeprom_write(rt2x00dev, EEPROM_BBPTUNE_R61, word);
EEPROM(rt2x00dev, "BBPtune r61: 0x%04x\n", word);
}
return 0;
}
static int rt2500usb_init_eeprom(struct rt2x00_dev *rt2x00dev)
{
u16 reg;
u16 value;
u16 eeprom;
/*
* Read EEPROM word for configuration.
*/
rt2x00_eeprom_read(rt2x00dev, EEPROM_ANTENNA, &eeprom);
/*
* Identify RF chipset.
*/
value = rt2x00_get_field16(eeprom, EEPROM_ANTENNA_RF_TYPE);
rt2500usb_register_read(rt2x00dev, MAC_CSR0, &reg);
rt2x00_set_chip(rt2x00dev, RT2570, value, reg);
if (!rt2x00_check_rev(&rt2x00dev->chip, 0)) {
ERROR(rt2x00dev, "Invalid RT chipset detected.\n");
return -ENODEV;
}
if (!rt2x00_rf(&rt2x00dev->chip, RF2522) &&
!rt2x00_rf(&rt2x00dev->chip, RF2523) &&
!rt2x00_rf(&rt2x00dev->chip, RF2524) &&
!rt2x00_rf(&rt2x00dev->chip, RF2525) &&
!rt2x00_rf(&rt2x00dev->chip, RF2525E) &&
!rt2x00_rf(&rt2x00dev->chip, RF5222)) {
ERROR(rt2x00dev, "Invalid RF chipset detected.\n");
return -ENODEV;
}
/*
* Identify default antenna configuration.
*/
rt2x00dev->default_ant.tx =
rt2x00_get_field16(eeprom, EEPROM_ANTENNA_TX_DEFAULT);
rt2x00dev->default_ant.rx =
rt2x00_get_field16(eeprom, EEPROM_ANTENNA_RX_DEFAULT);
/*
* When the eeprom indicates SW_DIVERSITY use HW_DIVERSITY instead.
* I am not 100% sure about this, but the legacy drivers do not
* indicate antenna swapping in software is required when
* diversity is enabled.
*/
if (rt2x00dev->default_ant.tx == ANTENNA_SW_DIVERSITY)
rt2x00dev->default_ant.tx = ANTENNA_HW_DIVERSITY;
if (rt2x00dev->default_ant.rx == ANTENNA_SW_DIVERSITY)
rt2x00dev->default_ant.rx = ANTENNA_HW_DIVERSITY;
/*
* Store led mode, for correct led behaviour.
*/
#ifdef CONFIG_RT2500USB_LEDS
value = rt2x00_get_field16(eeprom, EEPROM_ANTENNA_LED_MODE);
rt2500usb_init_led(rt2x00dev, &rt2x00dev->led_radio, LED_TYPE_RADIO);
if (value == LED_MODE_TXRX_ACTIVITY)
rt2500usb_init_led(rt2x00dev, &rt2x00dev->led_qual,
LED_TYPE_ACTIVITY);
#endif /* CONFIG_RT2500USB_LEDS */
/*
* Check if the BBP tuning should be disabled.
*/
rt2x00_eeprom_read(rt2x00dev, EEPROM_NIC, &eeprom);
if (rt2x00_get_field16(eeprom, EEPROM_NIC_DYN_BBP_TUNE))
__set_bit(CONFIG_DISABLE_LINK_TUNING, &rt2x00dev->flags);
/*
* Read the RSSI <-> dBm offset information.
*/
rt2x00_eeprom_read(rt2x00dev, EEPROM_CALIBRATE_OFFSET, &eeprom);
rt2x00dev->rssi_offset =
rt2x00_get_field16(eeprom, EEPROM_CALIBRATE_OFFSET_RSSI);
return 0;
}
/*
* RF value list for RF2522
* Supports: 2.4 GHz
*/
static const struct rf_channel rf_vals_bg_2522[] = {
{ 1, 0x00002050, 0x000c1fda, 0x00000101, 0 },
{ 2, 0x00002050, 0x000c1fee, 0x00000101, 0 },
{ 3, 0x00002050, 0x000c2002, 0x00000101, 0 },
{ 4, 0x00002050, 0x000c2016, 0x00000101, 0 },
{ 5, 0x00002050, 0x000c202a, 0x00000101, 0 },
{ 6, 0x00002050, 0x000c203e, 0x00000101, 0 },
{ 7, 0x00002050, 0x000c2052, 0x00000101, 0 },
{ 8, 0x00002050, 0x000c2066, 0x00000101, 0 },
{ 9, 0x00002050, 0x000c207a, 0x00000101, 0 },
{ 10, 0x00002050, 0x000c208e, 0x00000101, 0 },
{ 11, 0x00002050, 0x000c20a2, 0x00000101, 0 },
{ 12, 0x00002050, 0x000c20b6, 0x00000101, 0 },
{ 13, 0x00002050, 0x000c20ca, 0x00000101, 0 },
{ 14, 0x00002050, 0x000c20fa, 0x00000101, 0 },
};
/*
* RF value list for RF2523
* Supports: 2.4 GHz
*/
static const struct rf_channel rf_vals_bg_2523[] = {
{ 1, 0x00022010, 0x00000c9e, 0x000e0111, 0x00000a1b },
{ 2, 0x00022010, 0x00000ca2, 0x000e0111, 0x00000a1b },
{ 3, 0x00022010, 0x00000ca6, 0x000e0111, 0x00000a1b },
{ 4, 0x00022010, 0x00000caa, 0x000e0111, 0x00000a1b },
{ 5, 0x00022010, 0x00000cae, 0x000e0111, 0x00000a1b },
{ 6, 0x00022010, 0x00000cb2, 0x000e0111, 0x00000a1b },
{ 7, 0x00022010, 0x00000cb6, 0x000e0111, 0x00000a1b },
{ 8, 0x00022010, 0x00000cba, 0x000e0111, 0x00000a1b },
{ 9, 0x00022010, 0x00000cbe, 0x000e0111, 0x00000a1b },
{ 10, 0x00022010, 0x00000d02, 0x000e0111, 0x00000a1b },
{ 11, 0x00022010, 0x00000d06, 0x000e0111, 0x00000a1b },
{ 12, 0x00022010, 0x00000d0a, 0x000e0111, 0x00000a1b },
{ 13, 0x00022010, 0x00000d0e, 0x000e0111, 0x00000a1b },
{ 14, 0x00022010, 0x00000d1a, 0x000e0111, 0x00000a03 },
};
/*
* RF value list for RF2524
* Supports: 2.4 GHz
*/
static const struct rf_channel rf_vals_bg_2524[] = {
{ 1, 0x00032020, 0x00000c9e, 0x00000101, 0x00000a1b },
{ 2, 0x00032020, 0x00000ca2, 0x00000101, 0x00000a1b },
{ 3, 0x00032020, 0x00000ca6, 0x00000101, 0x00000a1b },
{ 4, 0x00032020, 0x00000caa, 0x00000101, 0x00000a1b },
{ 5, 0x00032020, 0x00000cae, 0x00000101, 0x00000a1b },
{ 6, 0x00032020, 0x00000cb2, 0x00000101, 0x00000a1b },
{ 7, 0x00032020, 0x00000cb6, 0x00000101, 0x00000a1b },
{ 8, 0x00032020, 0x00000cba, 0x00000101, 0x00000a1b },
{ 9, 0x00032020, 0x00000cbe, 0x00000101, 0x00000a1b },
{ 10, 0x00032020, 0x00000d02, 0x00000101, 0x00000a1b },
{ 11, 0x00032020, 0x00000d06, 0x00000101, 0x00000a1b },
{ 12, 0x00032020, 0x00000d0a, 0x00000101, 0x00000a1b },
{ 13, 0x00032020, 0x00000d0e, 0x00000101, 0x00000a1b },
{ 14, 0x00032020, 0x00000d1a, 0x00000101, 0x00000a03 },
};
/*
* RF value list for RF2525
* Supports: 2.4 GHz
*/
static const struct rf_channel rf_vals_bg_2525[] = {
{ 1, 0x00022020, 0x00080c9e, 0x00060111, 0x00000a1b },
{ 2, 0x00022020, 0x00080ca2, 0x00060111, 0x00000a1b },
{ 3, 0x00022020, 0x00080ca6, 0x00060111, 0x00000a1b },
{ 4, 0x00022020, 0x00080caa, 0x00060111, 0x00000a1b },
{ 5, 0x00022020, 0x00080cae, 0x00060111, 0x00000a1b },
{ 6, 0x00022020, 0x00080cb2, 0x00060111, 0x00000a1b },
{ 7, 0x00022020, 0x00080cb6, 0x00060111, 0x00000a1b },
{ 8, 0x00022020, 0x00080cba, 0x00060111, 0x00000a1b },
{ 9, 0x00022020, 0x00080cbe, 0x00060111, 0x00000a1b },
{ 10, 0x00022020, 0x00080d02, 0x00060111, 0x00000a1b },
{ 11, 0x00022020, 0x00080d06, 0x00060111, 0x00000a1b },
{ 12, 0x00022020, 0x00080d0a, 0x00060111, 0x00000a1b },
{ 13, 0x00022020, 0x00080d0e, 0x00060111, 0x00000a1b },
{ 14, 0x00022020, 0x00080d1a, 0x00060111, 0x00000a03 },
};
/*
* RF value list for RF2525e
* Supports: 2.4 GHz
*/
static const struct rf_channel rf_vals_bg_2525e[] = {
{ 1, 0x00022010, 0x0000089a, 0x00060111, 0x00000e1b },
{ 2, 0x00022010, 0x0000089e, 0x00060111, 0x00000e07 },
{ 3, 0x00022010, 0x0000089e, 0x00060111, 0x00000e1b },
{ 4, 0x00022010, 0x000008a2, 0x00060111, 0x00000e07 },
{ 5, 0x00022010, 0x000008a2, 0x00060111, 0x00000e1b },
{ 6, 0x00022010, 0x000008a6, 0x00060111, 0x00000e07 },
{ 7, 0x00022010, 0x000008a6, 0x00060111, 0x00000e1b },
{ 8, 0x00022010, 0x000008aa, 0x00060111, 0x00000e07 },
{ 9, 0x00022010, 0x000008aa, 0x00060111, 0x00000e1b },
{ 10, 0x00022010, 0x000008ae, 0x00060111, 0x00000e07 },
{ 11, 0x00022010, 0x000008ae, 0x00060111, 0x00000e1b },
{ 12, 0x00022010, 0x000008b2, 0x00060111, 0x00000e07 },
{ 13, 0x00022010, 0x000008b2, 0x00060111, 0x00000e1b },
{ 14, 0x00022010, 0x000008b6, 0x00060111, 0x00000e23 },
};
/*
* RF value list for RF5222
* Supports: 2.4 GHz & 5.2 GHz
*/
static const struct rf_channel rf_vals_5222[] = {
{ 1, 0x00022020, 0x00001136, 0x00000101, 0x00000a0b },
{ 2, 0x00022020, 0x0000113a, 0x00000101, 0x00000a0b },
{ 3, 0x00022020, 0x0000113e, 0x00000101, 0x00000a0b },
{ 4, 0x00022020, 0x00001182, 0x00000101, 0x00000a0b },
{ 5, 0x00022020, 0x00001186, 0x00000101, 0x00000a0b },
{ 6, 0x00022020, 0x0000118a, 0x00000101, 0x00000a0b },
{ 7, 0x00022020, 0x0000118e, 0x00000101, 0x00000a0b },
{ 8, 0x00022020, 0x00001192, 0x00000101, 0x00000a0b },
{ 9, 0x00022020, 0x00001196, 0x00000101, 0x00000a0b },
{ 10, 0x00022020, 0x0000119a, 0x00000101, 0x00000a0b },
{ 11, 0x00022020, 0x0000119e, 0x00000101, 0x00000a0b },
{ 12, 0x00022020, 0x000011a2, 0x00000101, 0x00000a0b },
{ 13, 0x00022020, 0x000011a6, 0x00000101, 0x00000a0b },
{ 14, 0x00022020, 0x000011ae, 0x00000101, 0x00000a1b },
/* 802.11 UNI / HyperLan 2 */
{ 36, 0x00022010, 0x00018896, 0x00000101, 0x00000a1f },
{ 40, 0x00022010, 0x0001889a, 0x00000101, 0x00000a1f },
{ 44, 0x00022010, 0x0001889e, 0x00000101, 0x00000a1f },
{ 48, 0x00022010, 0x000188a2, 0x00000101, 0x00000a1f },
{ 52, 0x00022010, 0x000188a6, 0x00000101, 0x00000a1f },
{ 66, 0x00022010, 0x000188aa, 0x00000101, 0x00000a1f },
{ 60, 0x00022010, 0x000188ae, 0x00000101, 0x00000a1f },
{ 64, 0x00022010, 0x000188b2, 0x00000101, 0x00000a1f },
/* 802.11 HyperLan 2 */
{ 100, 0x00022010, 0x00008802, 0x00000101, 0x00000a0f },
{ 104, 0x00022010, 0x00008806, 0x00000101, 0x00000a0f },
{ 108, 0x00022010, 0x0000880a, 0x00000101, 0x00000a0f },
{ 112, 0x00022010, 0x0000880e, 0x00000101, 0x00000a0f },
{ 116, 0x00022010, 0x00008812, 0x00000101, 0x00000a0f },
{ 120, 0x00022010, 0x00008816, 0x00000101, 0x00000a0f },
{ 124, 0x00022010, 0x0000881a, 0x00000101, 0x00000a0f },
{ 128, 0x00022010, 0x0000881e, 0x00000101, 0x00000a0f },
{ 132, 0x00022010, 0x00008822, 0x00000101, 0x00000a0f },
{ 136, 0x00022010, 0x00008826, 0x00000101, 0x00000a0f },
/* 802.11 UNII */
{ 140, 0x00022010, 0x0000882a, 0x00000101, 0x00000a0f },
{ 149, 0x00022020, 0x000090a6, 0x00000101, 0x00000a07 },
{ 153, 0x00022020, 0x000090ae, 0x00000101, 0x00000a07 },
{ 157, 0x00022020, 0x000090b6, 0x00000101, 0x00000a07 },
{ 161, 0x00022020, 0x000090be, 0x00000101, 0x00000a07 },
};
static void rt2500usb_probe_hw_mode(struct rt2x00_dev *rt2x00dev)
{
struct hw_mode_spec *spec = &rt2x00dev->spec;
u8 *txpower;
unsigned int i;
/*
* Initialize all hw fields.
*/
rt2x00dev->hw->flags =
IEEE80211_HW_RX_INCLUDES_FCS |
IEEE80211_HW_HOST_BROADCAST_PS_BUFFERING |
IEEE80211_HW_SIGNAL_DBM;
rt2x00dev->hw->extra_tx_headroom = TXD_DESC_SIZE;
SET_IEEE80211_DEV(rt2x00dev->hw, rt2x00dev->dev);
SET_IEEE80211_PERM_ADDR(rt2x00dev->hw,
rt2x00_eeprom_addr(rt2x00dev,
EEPROM_MAC_ADDR_0));
/*
* Convert tx_power array in eeprom.
*/
txpower = rt2x00_eeprom_addr(rt2x00dev, EEPROM_TXPOWER_START);
for (i = 0; i < 14; i++)
txpower[i] = TXPOWER_FROM_DEV(txpower[i]);
/*
* Initialize hw_mode information.
*/
spec->supported_bands = SUPPORT_BAND_2GHZ;
spec->supported_rates = SUPPORT_RATE_CCK | SUPPORT_RATE_OFDM;
spec->tx_power_a = NULL;
spec->tx_power_bg = txpower;
spec->tx_power_default = DEFAULT_TXPOWER;
if (rt2x00_rf(&rt2x00dev->chip, RF2522)) {
spec->num_channels = ARRAY_SIZE(rf_vals_bg_2522);
spec->channels = rf_vals_bg_2522;
} else if (rt2x00_rf(&rt2x00dev->chip, RF2523)) {
spec->num_channels = ARRAY_SIZE(rf_vals_bg_2523);
spec->channels = rf_vals_bg_2523;
} else if (rt2x00_rf(&rt2x00dev->chip, RF2524)) {
spec->num_channels = ARRAY_SIZE(rf_vals_bg_2524);
spec->channels = rf_vals_bg_2524;
} else if (rt2x00_rf(&rt2x00dev->chip, RF2525)) {
spec->num_channels = ARRAY_SIZE(rf_vals_bg_2525);
spec->channels = rf_vals_bg_2525;
} else if (rt2x00_rf(&rt2x00dev->chip, RF2525E)) {
spec->num_channels = ARRAY_SIZE(rf_vals_bg_2525e);
spec->channels = rf_vals_bg_2525e;
} else if (rt2x00_rf(&rt2x00dev->chip, RF5222)) {
spec->supported_bands |= SUPPORT_BAND_5GHZ;
spec->num_channels = ARRAY_SIZE(rf_vals_5222);
spec->channels = rf_vals_5222;
}
}
static int rt2500usb_probe_hw(struct rt2x00_dev *rt2x00dev)
{
int retval;
/*
* Allocate eeprom data.
*/
retval = rt2500usb_validate_eeprom(rt2x00dev);
if (retval)
return retval;
retval = rt2500usb_init_eeprom(rt2x00dev);
if (retval)
return retval;
/*
* Initialize hw specifications.
*/
rt2500usb_probe_hw_mode(rt2x00dev);
/*
* This device requires the atim queue
*/
__set_bit(DRIVER_REQUIRE_ATIM_QUEUE, &rt2x00dev->flags);
__set_bit(DRIVER_REQUIRE_BEACON_GUARD, &rt2x00dev->flags);
__set_bit(DRIVER_REQUIRE_SCHEDULED, &rt2x00dev->flags);
__set_bit(CONFIG_DISABLE_LINK_TUNING, &rt2x00dev->flags);
/*
* Set the rssi offset.
*/
rt2x00dev->rssi_offset = DEFAULT_RSSI_OFFSET;
return 0;
}
static const struct ieee80211_ops rt2500usb_mac80211_ops = {
.tx = rt2x00mac_tx,
.start = rt2x00mac_start,
.stop = rt2x00mac_stop,
.add_interface = rt2x00mac_add_interface,
.remove_interface = rt2x00mac_remove_interface,
.config = rt2x00mac_config,
.config_interface = rt2x00mac_config_interface,
.configure_filter = rt2x00mac_configure_filter,
.get_stats = rt2x00mac_get_stats,
.bss_info_changed = rt2x00mac_bss_info_changed,
.conf_tx = rt2x00mac_conf_tx,
.get_tx_stats = rt2x00mac_get_tx_stats,
};
static const struct rt2x00lib_ops rt2500usb_rt2x00_ops = {
.probe_hw = rt2500usb_probe_hw,
.initialize = rt2x00usb_initialize,
.uninitialize = rt2x00usb_uninitialize,
.init_rxentry = rt2x00usb_init_rxentry,
.init_txentry = rt2x00usb_init_txentry,
.set_device_state = rt2500usb_set_device_state,
.link_stats = rt2500usb_link_stats,
.reset_tuner = rt2500usb_reset_tuner,
.link_tuner = rt2500usb_link_tuner,
.write_tx_desc = rt2500usb_write_tx_desc,
.write_tx_data = rt2x00usb_write_tx_data,
.write_beacon = rt2500usb_write_beacon,
.get_tx_data_len = rt2500usb_get_tx_data_len,
.kick_tx_queue = rt2500usb_kick_tx_queue,
.fill_rxdone = rt2500usb_fill_rxdone,
.config_filter = rt2500usb_config_filter,
.config_intf = rt2500usb_config_intf,
.config_erp = rt2500usb_config_erp,
.config = rt2500usb_config,
};
static const struct data_queue_desc rt2500usb_queue_rx = {
.entry_num = RX_ENTRIES,
.data_size = DATA_FRAME_SIZE,
.desc_size = RXD_DESC_SIZE,
.priv_size = sizeof(struct queue_entry_priv_usb),
};
static const struct data_queue_desc rt2500usb_queue_tx = {
.entry_num = TX_ENTRIES,
.data_size = DATA_FRAME_SIZE,
.desc_size = TXD_DESC_SIZE,
.priv_size = sizeof(struct queue_entry_priv_usb),
};
static const struct data_queue_desc rt2500usb_queue_bcn = {
.entry_num = BEACON_ENTRIES,
.data_size = MGMT_FRAME_SIZE,
.desc_size = TXD_DESC_SIZE,
.priv_size = sizeof(struct queue_entry_priv_usb_bcn),
};
static const struct data_queue_desc rt2500usb_queue_atim = {
.entry_num = ATIM_ENTRIES,
.data_size = DATA_FRAME_SIZE,
.desc_size = TXD_DESC_SIZE,
.priv_size = sizeof(struct queue_entry_priv_usb),
};
static const struct rt2x00_ops rt2500usb_ops = {
.name = KBUILD_MODNAME,
.max_sta_intf = 1,
.max_ap_intf = 1,
.eeprom_size = EEPROM_SIZE,
.rf_size = RF_SIZE,
.tx_queues = NUM_TX_QUEUES,
.rx = &rt2500usb_queue_rx,
.tx = &rt2500usb_queue_tx,
.bcn = &rt2500usb_queue_bcn,
.atim = &rt2500usb_queue_atim,
.lib = &rt2500usb_rt2x00_ops,
.hw = &rt2500usb_mac80211_ops,
#ifdef CONFIG_RT2X00_LIB_DEBUGFS
.debugfs = &rt2500usb_rt2x00debug,
#endif /* CONFIG_RT2X00_LIB_DEBUGFS */
};
/*
* rt2500usb module information.
*/
static struct usb_device_id rt2500usb_device_table[] = {
/* ASUS */
{ USB_DEVICE(0x0b05, 0x1706), USB_DEVICE_DATA(&rt2500usb_ops) },
{ USB_DEVICE(0x0b05, 0x1707), USB_DEVICE_DATA(&rt2500usb_ops) },
/* Belkin */
{ USB_DEVICE(0x050d, 0x7050), USB_DEVICE_DATA(&rt2500usb_ops) },
{ USB_DEVICE(0x050d, 0x7051), USB_DEVICE_DATA(&rt2500usb_ops) },
{ USB_DEVICE(0x050d, 0x705a), USB_DEVICE_DATA(&rt2500usb_ops) },
/* Cisco Systems */
{ USB_DEVICE(0x13b1, 0x000d), USB_DEVICE_DATA(&rt2500usb_ops) },
{ USB_DEVICE(0x13b1, 0x0011), USB_DEVICE_DATA(&rt2500usb_ops) },
{ USB_DEVICE(0x13b1, 0x001a), USB_DEVICE_DATA(&rt2500usb_ops) },
/* Conceptronic */
{ USB_DEVICE(0x14b2, 0x3c02), USB_DEVICE_DATA(&rt2500usb_ops) },
/* D-LINK */
{ USB_DEVICE(0x2001, 0x3c00), USB_DEVICE_DATA(&rt2500usb_ops) },
/* Gigabyte */
{ USB_DEVICE(0x1044, 0x8001), USB_DEVICE_DATA(&rt2500usb_ops) },
{ USB_DEVICE(0x1044, 0x8007), USB_DEVICE_DATA(&rt2500usb_ops) },
/* Hercules */
{ USB_DEVICE(0x06f8, 0xe000), USB_DEVICE_DATA(&rt2500usb_ops) },
/* Melco */
{ USB_DEVICE(0x0411, 0x005e), USB_DEVICE_DATA(&rt2500usb_ops) },
{ USB_DEVICE(0x0411, 0x0066), USB_DEVICE_DATA(&rt2500usb_ops) },
{ USB_DEVICE(0x0411, 0x0067), USB_DEVICE_DATA(&rt2500usb_ops) },
{ USB_DEVICE(0x0411, 0x008b), USB_DEVICE_DATA(&rt2500usb_ops) },
{ USB_DEVICE(0x0411, 0x0097), USB_DEVICE_DATA(&rt2500usb_ops) },
/* MSI */
{ USB_DEVICE(0x0db0, 0x6861), USB_DEVICE_DATA(&rt2500usb_ops) },
{ USB_DEVICE(0x0db0, 0x6865), USB_DEVICE_DATA(&rt2500usb_ops) },
{ USB_DEVICE(0x0db0, 0x6869), USB_DEVICE_DATA(&rt2500usb_ops) },
/* Ralink */
{ USB_DEVICE(0x148f, 0x1706), USB_DEVICE_DATA(&rt2500usb_ops) },
{ USB_DEVICE(0x148f, 0x2570), USB_DEVICE_DATA(&rt2500usb_ops) },
{ USB_DEVICE(0x148f, 0x2573), USB_DEVICE_DATA(&rt2500usb_ops) },
{ USB_DEVICE(0x148f, 0x9020), USB_DEVICE_DATA(&rt2500usb_ops) },
/* Siemens */
{ USB_DEVICE(0x0681, 0x3c06), USB_DEVICE_DATA(&rt2500usb_ops) },
/* SMC */
{ USB_DEVICE(0x0707, 0xee13), USB_DEVICE_DATA(&rt2500usb_ops) },
/* Spairon */
{ USB_DEVICE(0x114b, 0x0110), USB_DEVICE_DATA(&rt2500usb_ops) },
/* Trust */
{ USB_DEVICE(0x0eb0, 0x9020), USB_DEVICE_DATA(&rt2500usb_ops) },
/* Zinwell */
{ USB_DEVICE(0x5a57, 0x0260), USB_DEVICE_DATA(&rt2500usb_ops) },
{ 0, }
};
MODULE_AUTHOR(DRV_PROJECT);
MODULE_VERSION(DRV_VERSION);
MODULE_DESCRIPTION("Ralink RT2500 USB Wireless LAN driver.");
MODULE_SUPPORTED_DEVICE("Ralink RT2570 USB chipset based cards");
MODULE_DEVICE_TABLE(usb, rt2500usb_device_table);
MODULE_LICENSE("GPL");
static struct usb_driver rt2500usb_driver = {
.name = KBUILD_MODNAME,
.id_table = rt2500usb_device_table,
.probe = rt2x00usb_probe,
.disconnect = rt2x00usb_disconnect,
.suspend = rt2x00usb_suspend,
.resume = rt2x00usb_resume,
};
static int __init rt2500usb_init(void)
{
return usb_register(&rt2500usb_driver);
}
static void __exit rt2500usb_exit(void)
{
usb_deregister(&rt2500usb_driver);
}
module_init(rt2500usb_init);
module_exit(rt2500usb_exit);