mirror of
https://github.com/FEX-Emu/linux.git
synced 2024-12-16 22:10:24 +00:00
3386 lines
89 KiB
C
3386 lines
89 KiB
C
/*
|
|
* New driver for Marvell Yukon chipset and SysKonnect Gigabit
|
|
* Ethernet adapters. Based on earlier sk98lin, e100 and
|
|
* FreeBSD if_sk drivers.
|
|
*
|
|
* This driver intentionally does not support all the features
|
|
* of the original driver such as link fail-over and link management because
|
|
* those should be done at higher levels.
|
|
*
|
|
* Copyright (C) 2004, Stephen Hemminger <shemminger@osdl.org>
|
|
*
|
|
* This program is free software; you can redistribute it and/or modify
|
|
* it under the terms of the GNU General Public License as published by
|
|
* the Free Software Foundation; either version 2 of the License, or
|
|
* (at your option) any later version.
|
|
*
|
|
* This program is distributed in the hope that it will be useful,
|
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
* GNU General Public License for more details.
|
|
*
|
|
* You should have received a copy of the GNU General Public License
|
|
* along with this program; if not, write to the Free Software
|
|
* Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
|
|
*/
|
|
|
|
#include <linux/config.h>
|
|
#include <linux/kernel.h>
|
|
#include <linux/module.h>
|
|
#include <linux/moduleparam.h>
|
|
#include <linux/netdevice.h>
|
|
#include <linux/etherdevice.h>
|
|
#include <linux/ethtool.h>
|
|
#include <linux/pci.h>
|
|
#include <linux/if_vlan.h>
|
|
#include <linux/ip.h>
|
|
#include <linux/delay.h>
|
|
#include <linux/crc32.h>
|
|
#include <asm/irq.h>
|
|
|
|
#include "skge.h"
|
|
|
|
#define DRV_NAME "skge"
|
|
#define DRV_VERSION "0.6"
|
|
#define PFX DRV_NAME " "
|
|
|
|
#define DEFAULT_TX_RING_SIZE 128
|
|
#define DEFAULT_RX_RING_SIZE 512
|
|
#define MAX_TX_RING_SIZE 1024
|
|
#define MAX_RX_RING_SIZE 4096
|
|
#define PHY_RETRIES 1000
|
|
#define ETH_JUMBO_MTU 9000
|
|
#define TX_WATCHDOG (5 * HZ)
|
|
#define NAPI_WEIGHT 64
|
|
#define BLINK_HZ (HZ/4)
|
|
#define LINK_POLL_HZ (HZ/10)
|
|
|
|
MODULE_DESCRIPTION("SysKonnect Gigabit Ethernet driver");
|
|
MODULE_AUTHOR("Stephen Hemminger <shemminger@osdl.org>");
|
|
MODULE_LICENSE("GPL");
|
|
MODULE_VERSION(DRV_VERSION);
|
|
|
|
static const u32 default_msg
|
|
= NETIF_MSG_DRV| NETIF_MSG_PROBE| NETIF_MSG_LINK
|
|
| NETIF_MSG_IFUP| NETIF_MSG_IFDOWN;
|
|
|
|
static int debug = -1; /* defaults above */
|
|
module_param(debug, int, 0);
|
|
MODULE_PARM_DESC(debug, "Debug level (0=none,...,16=all)");
|
|
|
|
static const struct pci_device_id skge_id_table[] = {
|
|
{ PCI_VENDOR_ID_3COM, PCI_DEVICE_ID_3COM_3C940,
|
|
PCI_ANY_ID, PCI_ANY_ID },
|
|
{ PCI_VENDOR_ID_3COM, PCI_DEVICE_ID_3COM_3C940B,
|
|
PCI_ANY_ID, PCI_ANY_ID },
|
|
{ PCI_VENDOR_ID_SYSKONNECT, PCI_DEVICE_ID_SYSKONNECT_GE,
|
|
PCI_ANY_ID, PCI_ANY_ID },
|
|
{ PCI_VENDOR_ID_SYSKONNECT, PCI_DEVICE_ID_SYSKONNECT_YU,
|
|
PCI_ANY_ID, PCI_ANY_ID },
|
|
{ PCI_VENDOR_ID_SYSKONNECT, 0x9E00, /* SK-9Exx */
|
|
PCI_ANY_ID, PCI_ANY_ID },
|
|
{ PCI_VENDOR_ID_DLINK, PCI_DEVICE_ID_DLINK_DGE510T,
|
|
PCI_ANY_ID, PCI_ANY_ID },
|
|
{ PCI_VENDOR_ID_MARVELL, 0x4320, /* Gigabit Ethernet Controller */
|
|
PCI_ANY_ID, PCI_ANY_ID },
|
|
{ PCI_VENDOR_ID_MARVELL, 0x5005, /* Marvell (11ab), Belkin */
|
|
PCI_ANY_ID, PCI_ANY_ID },
|
|
{ PCI_VENDOR_ID_CNET, PCI_DEVICE_ID_CNET_GIGACARD,
|
|
PCI_ANY_ID, PCI_ANY_ID },
|
|
{ PCI_VENDOR_ID_LINKSYS, PCI_DEVICE_ID_LINKSYS_EG1032,
|
|
PCI_ANY_ID, PCI_ANY_ID },
|
|
{ PCI_VENDOR_ID_LINKSYS, PCI_DEVICE_ID_LINKSYS_EG1064,
|
|
PCI_ANY_ID, PCI_ANY_ID },
|
|
{ 0 }
|
|
};
|
|
MODULE_DEVICE_TABLE(pci, skge_id_table);
|
|
|
|
static int skge_up(struct net_device *dev);
|
|
static int skge_down(struct net_device *dev);
|
|
static void skge_tx_clean(struct skge_port *skge);
|
|
static void skge_xm_phy_write(struct skge_hw *hw, int port, u16 reg, u16 val);
|
|
static void skge_gm_phy_write(struct skge_hw *hw, int port, u16 reg, u16 val);
|
|
static void genesis_get_stats(struct skge_port *skge, u64 *data);
|
|
static void yukon_get_stats(struct skge_port *skge, u64 *data);
|
|
static void yukon_init(struct skge_hw *hw, int port);
|
|
static void yukon_reset(struct skge_hw *hw, int port);
|
|
static void genesis_mac_init(struct skge_hw *hw, int port);
|
|
static void genesis_reset(struct skge_hw *hw, int port);
|
|
|
|
static const int txqaddr[] = { Q_XA1, Q_XA2 };
|
|
static const int rxqaddr[] = { Q_R1, Q_R2 };
|
|
static const u32 rxirqmask[] = { IS_R1_F, IS_R2_F };
|
|
static const u32 txirqmask[] = { IS_XA1_F, IS_XA2_F };
|
|
|
|
/* Don't need to look at whole 16K.
|
|
* last interesting register is descriptor poll timer.
|
|
*/
|
|
#define SKGE_REGS_LEN (29*128)
|
|
|
|
static int skge_get_regs_len(struct net_device *dev)
|
|
{
|
|
return SKGE_REGS_LEN;
|
|
}
|
|
|
|
/*
|
|
* Returns copy of control register region
|
|
* I/O region is divided into banks and certain regions are unreadable
|
|
*/
|
|
static void skge_get_regs(struct net_device *dev, struct ethtool_regs *regs,
|
|
void *p)
|
|
{
|
|
const struct skge_port *skge = netdev_priv(dev);
|
|
unsigned long offs;
|
|
const void __iomem *io = skge->hw->regs;
|
|
static const unsigned long bankmap
|
|
= (1<<0) | (1<<2) | (1<<8) | (1<<9)
|
|
| (1<<12) | (1<<13) | (1<<14) | (1<<15) | (1<<16)
|
|
| (1<<17) | (1<<20) | (1<<21) | (1<<22) | (1<<23)
|
|
| (1<<24) | (1<<25) | (1<<26) | (1<<27) | (1<<28);
|
|
|
|
regs->version = 1;
|
|
for (offs = 0; offs < regs->len; offs += 128) {
|
|
u32 len = min_t(u32, 128, regs->len - offs);
|
|
|
|
if (bankmap & (1<<(offs/128)))
|
|
memcpy_fromio(p + offs, io + offs, len);
|
|
else
|
|
memset(p + offs, 0, len);
|
|
}
|
|
}
|
|
|
|
/* Wake on Lan only supported on Yukon chps with rev 1 or above */
|
|
static int wol_supported(const struct skge_hw *hw)
|
|
{
|
|
return !((hw->chip_id == CHIP_ID_GENESIS ||
|
|
(hw->chip_id == CHIP_ID_YUKON && chip_rev(hw) == 0)));
|
|
}
|
|
|
|
static void skge_get_wol(struct net_device *dev, struct ethtool_wolinfo *wol)
|
|
{
|
|
struct skge_port *skge = netdev_priv(dev);
|
|
|
|
wol->supported = wol_supported(skge->hw) ? WAKE_MAGIC : 0;
|
|
wol->wolopts = skge->wol ? WAKE_MAGIC : 0;
|
|
}
|
|
|
|
static int skge_set_wol(struct net_device *dev, struct ethtool_wolinfo *wol)
|
|
{
|
|
struct skge_port *skge = netdev_priv(dev);
|
|
struct skge_hw *hw = skge->hw;
|
|
|
|
if(wol->wolopts != WAKE_MAGIC && wol->wolopts != 0)
|
|
return -EOPNOTSUPP;
|
|
|
|
if (wol->wolopts == WAKE_MAGIC && !wol_supported(hw))
|
|
return -EOPNOTSUPP;
|
|
|
|
skge->wol = wol->wolopts == WAKE_MAGIC;
|
|
|
|
if (skge->wol) {
|
|
memcpy_toio(hw->regs + WOL_MAC_ADDR, dev->dev_addr, ETH_ALEN);
|
|
|
|
skge_write16(hw, WOL_CTRL_STAT,
|
|
WOL_CTL_ENA_PME_ON_MAGIC_PKT |
|
|
WOL_CTL_ENA_MAGIC_PKT_UNIT);
|
|
} else
|
|
skge_write16(hw, WOL_CTRL_STAT, WOL_CTL_DEFAULT);
|
|
|
|
return 0;
|
|
}
|
|
|
|
|
|
static int skge_get_settings(struct net_device *dev,
|
|
struct ethtool_cmd *ecmd)
|
|
{
|
|
struct skge_port *skge = netdev_priv(dev);
|
|
struct skge_hw *hw = skge->hw;
|
|
|
|
ecmd->transceiver = XCVR_INTERNAL;
|
|
|
|
if (iscopper(hw)) {
|
|
if (hw->chip_id == CHIP_ID_GENESIS)
|
|
ecmd->supported = SUPPORTED_1000baseT_Full
|
|
| SUPPORTED_1000baseT_Half
|
|
| SUPPORTED_Autoneg | SUPPORTED_TP;
|
|
else {
|
|
ecmd->supported = SUPPORTED_10baseT_Half
|
|
| SUPPORTED_10baseT_Full
|
|
| SUPPORTED_100baseT_Half
|
|
| SUPPORTED_100baseT_Full
|
|
| SUPPORTED_1000baseT_Half
|
|
| SUPPORTED_1000baseT_Full
|
|
| SUPPORTED_Autoneg| SUPPORTED_TP;
|
|
|
|
if (hw->chip_id == CHIP_ID_YUKON)
|
|
ecmd->supported &= ~SUPPORTED_1000baseT_Half;
|
|
|
|
else if (hw->chip_id == CHIP_ID_YUKON_FE)
|
|
ecmd->supported &= ~(SUPPORTED_1000baseT_Half
|
|
| SUPPORTED_1000baseT_Full);
|
|
}
|
|
|
|
ecmd->port = PORT_TP;
|
|
ecmd->phy_address = hw->phy_addr;
|
|
} else {
|
|
ecmd->supported = SUPPORTED_1000baseT_Full
|
|
| SUPPORTED_FIBRE
|
|
| SUPPORTED_Autoneg;
|
|
|
|
ecmd->port = PORT_FIBRE;
|
|
}
|
|
|
|
ecmd->advertising = skge->advertising;
|
|
ecmd->autoneg = skge->autoneg;
|
|
ecmd->speed = skge->speed;
|
|
ecmd->duplex = skge->duplex;
|
|
return 0;
|
|
}
|
|
|
|
static u32 skge_modes(const struct skge_hw *hw)
|
|
{
|
|
u32 modes = ADVERTISED_Autoneg
|
|
| ADVERTISED_1000baseT_Full | ADVERTISED_1000baseT_Half
|
|
| ADVERTISED_100baseT_Full | ADVERTISED_100baseT_Half
|
|
| ADVERTISED_10baseT_Full | ADVERTISED_10baseT_Half;
|
|
|
|
if (iscopper(hw)) {
|
|
modes |= ADVERTISED_TP;
|
|
switch(hw->chip_id) {
|
|
case CHIP_ID_GENESIS:
|
|
modes &= ~(ADVERTISED_100baseT_Full
|
|
| ADVERTISED_100baseT_Half
|
|
| ADVERTISED_10baseT_Full
|
|
| ADVERTISED_10baseT_Half);
|
|
break;
|
|
|
|
case CHIP_ID_YUKON:
|
|
modes &= ~ADVERTISED_1000baseT_Half;
|
|
break;
|
|
|
|
case CHIP_ID_YUKON_FE:
|
|
modes &= ~(ADVERTISED_1000baseT_Half|ADVERTISED_1000baseT_Full);
|
|
break;
|
|
}
|
|
} else {
|
|
modes |= ADVERTISED_FIBRE;
|
|
modes &= ~ADVERTISED_1000baseT_Half;
|
|
}
|
|
return modes;
|
|
}
|
|
|
|
static int skge_set_settings(struct net_device *dev, struct ethtool_cmd *ecmd)
|
|
{
|
|
struct skge_port *skge = netdev_priv(dev);
|
|
const struct skge_hw *hw = skge->hw;
|
|
|
|
if (ecmd->autoneg == AUTONEG_ENABLE) {
|
|
if (ecmd->advertising & skge_modes(hw))
|
|
return -EINVAL;
|
|
} else {
|
|
switch(ecmd->speed) {
|
|
case SPEED_1000:
|
|
if (hw->chip_id == CHIP_ID_YUKON_FE)
|
|
return -EINVAL;
|
|
break;
|
|
case SPEED_100:
|
|
case SPEED_10:
|
|
if (iscopper(hw) || hw->chip_id == CHIP_ID_GENESIS)
|
|
return -EINVAL;
|
|
break;
|
|
default:
|
|
return -EINVAL;
|
|
}
|
|
}
|
|
|
|
skge->autoneg = ecmd->autoneg;
|
|
skge->speed = ecmd->speed;
|
|
skge->duplex = ecmd->duplex;
|
|
skge->advertising = ecmd->advertising;
|
|
|
|
if (netif_running(dev)) {
|
|
skge_down(dev);
|
|
skge_up(dev);
|
|
}
|
|
return (0);
|
|
}
|
|
|
|
static void skge_get_drvinfo(struct net_device *dev,
|
|
struct ethtool_drvinfo *info)
|
|
{
|
|
struct skge_port *skge = netdev_priv(dev);
|
|
|
|
strcpy(info->driver, DRV_NAME);
|
|
strcpy(info->version, DRV_VERSION);
|
|
strcpy(info->fw_version, "N/A");
|
|
strcpy(info->bus_info, pci_name(skge->hw->pdev));
|
|
}
|
|
|
|
static const struct skge_stat {
|
|
char name[ETH_GSTRING_LEN];
|
|
u16 xmac_offset;
|
|
u16 gma_offset;
|
|
} skge_stats[] = {
|
|
{ "tx_bytes", XM_TXO_OK_HI, GM_TXO_OK_HI },
|
|
{ "rx_bytes", XM_RXO_OK_HI, GM_RXO_OK_HI },
|
|
|
|
{ "tx_broadcast", XM_TXF_BC_OK, GM_TXF_BC_OK },
|
|
{ "rx_broadcast", XM_RXF_BC_OK, GM_RXF_BC_OK },
|
|
{ "tx_multicast", XM_TXF_MC_OK, GM_TXF_MC_OK },
|
|
{ "rx_multicast", XM_RXF_MC_OK, GM_RXF_MC_OK },
|
|
{ "tx_unicast", XM_TXF_UC_OK, GM_TXF_UC_OK },
|
|
{ "rx_unicast", XM_RXF_UC_OK, GM_RXF_UC_OK },
|
|
{ "tx_mac_pause", XM_TXF_MPAUSE, GM_TXF_MPAUSE },
|
|
{ "rx_mac_pause", XM_RXF_MPAUSE, GM_RXF_MPAUSE },
|
|
|
|
{ "collisions", XM_TXF_SNG_COL, GM_TXF_SNG_COL },
|
|
{ "multi_collisions", XM_TXF_MUL_COL, GM_TXF_MUL_COL },
|
|
{ "aborted", XM_TXF_ABO_COL, GM_TXF_ABO_COL },
|
|
{ "late_collision", XM_TXF_LAT_COL, GM_TXF_LAT_COL },
|
|
{ "fifo_underrun", XM_TXE_FIFO_UR, GM_TXE_FIFO_UR },
|
|
{ "fifo_overflow", XM_RXE_FIFO_OV, GM_RXE_FIFO_OV },
|
|
|
|
{ "rx_toolong", XM_RXF_LNG_ERR, GM_RXF_LNG_ERR },
|
|
{ "rx_jabber", XM_RXF_JAB_PKT, GM_RXF_JAB_PKT },
|
|
{ "rx_runt", XM_RXE_RUNT, GM_RXE_FRAG },
|
|
{ "rx_too_long", XM_RXF_LNG_ERR, GM_RXF_LNG_ERR },
|
|
{ "rx_fcs_error", XM_RXF_FCS_ERR, GM_RXF_FCS_ERR },
|
|
};
|
|
|
|
static int skge_get_stats_count(struct net_device *dev)
|
|
{
|
|
return ARRAY_SIZE(skge_stats);
|
|
}
|
|
|
|
static void skge_get_ethtool_stats(struct net_device *dev,
|
|
struct ethtool_stats *stats, u64 *data)
|
|
{
|
|
struct skge_port *skge = netdev_priv(dev);
|
|
|
|
if (skge->hw->chip_id == CHIP_ID_GENESIS)
|
|
genesis_get_stats(skge, data);
|
|
else
|
|
yukon_get_stats(skge, data);
|
|
}
|
|
|
|
/* Use hardware MIB variables for critical path statistics and
|
|
* transmit feedback not reported at interrupt.
|
|
* Other errors are accounted for in interrupt handler.
|
|
*/
|
|
static struct net_device_stats *skge_get_stats(struct net_device *dev)
|
|
{
|
|
struct skge_port *skge = netdev_priv(dev);
|
|
u64 data[ARRAY_SIZE(skge_stats)];
|
|
|
|
if (skge->hw->chip_id == CHIP_ID_GENESIS)
|
|
genesis_get_stats(skge, data);
|
|
else
|
|
yukon_get_stats(skge, data);
|
|
|
|
skge->net_stats.tx_bytes = data[0];
|
|
skge->net_stats.rx_bytes = data[1];
|
|
skge->net_stats.tx_packets = data[2] + data[4] + data[6];
|
|
skge->net_stats.rx_packets = data[3] + data[5] + data[7];
|
|
skge->net_stats.multicast = data[5] + data[7];
|
|
skge->net_stats.collisions = data[10];
|
|
skge->net_stats.tx_aborted_errors = data[12];
|
|
|
|
return &skge->net_stats;
|
|
}
|
|
|
|
static void skge_get_strings(struct net_device *dev, u32 stringset, u8 *data)
|
|
{
|
|
int i;
|
|
|
|
switch(stringset) {
|
|
case ETH_SS_STATS:
|
|
for (i = 0; i < ARRAY_SIZE(skge_stats); i++)
|
|
memcpy(data + i * ETH_GSTRING_LEN,
|
|
skge_stats[i].name, ETH_GSTRING_LEN);
|
|
break;
|
|
}
|
|
}
|
|
|
|
static void skge_get_ring_param(struct net_device *dev,
|
|
struct ethtool_ringparam *p)
|
|
{
|
|
struct skge_port *skge = netdev_priv(dev);
|
|
|
|
p->rx_max_pending = MAX_RX_RING_SIZE;
|
|
p->tx_max_pending = MAX_TX_RING_SIZE;
|
|
p->rx_mini_max_pending = 0;
|
|
p->rx_jumbo_max_pending = 0;
|
|
|
|
p->rx_pending = skge->rx_ring.count;
|
|
p->tx_pending = skge->tx_ring.count;
|
|
p->rx_mini_pending = 0;
|
|
p->rx_jumbo_pending = 0;
|
|
}
|
|
|
|
static int skge_set_ring_param(struct net_device *dev,
|
|
struct ethtool_ringparam *p)
|
|
{
|
|
struct skge_port *skge = netdev_priv(dev);
|
|
|
|
if (p->rx_pending == 0 || p->rx_pending > MAX_RX_RING_SIZE ||
|
|
p->tx_pending == 0 || p->tx_pending > MAX_TX_RING_SIZE)
|
|
return -EINVAL;
|
|
|
|
skge->rx_ring.count = p->rx_pending;
|
|
skge->tx_ring.count = p->tx_pending;
|
|
|
|
if (netif_running(dev)) {
|
|
skge_down(dev);
|
|
skge_up(dev);
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static u32 skge_get_msglevel(struct net_device *netdev)
|
|
{
|
|
struct skge_port *skge = netdev_priv(netdev);
|
|
return skge->msg_enable;
|
|
}
|
|
|
|
static void skge_set_msglevel(struct net_device *netdev, u32 value)
|
|
{
|
|
struct skge_port *skge = netdev_priv(netdev);
|
|
skge->msg_enable = value;
|
|
}
|
|
|
|
static int skge_nway_reset(struct net_device *dev)
|
|
{
|
|
struct skge_port *skge = netdev_priv(dev);
|
|
struct skge_hw *hw = skge->hw;
|
|
int port = skge->port;
|
|
|
|
if (skge->autoneg != AUTONEG_ENABLE || !netif_running(dev))
|
|
return -EINVAL;
|
|
|
|
spin_lock_bh(&hw->phy_lock);
|
|
if (hw->chip_id == CHIP_ID_GENESIS) {
|
|
genesis_reset(hw, port);
|
|
genesis_mac_init(hw, port);
|
|
} else {
|
|
yukon_reset(hw, port);
|
|
yukon_init(hw, port);
|
|
}
|
|
spin_unlock_bh(&hw->phy_lock);
|
|
return 0;
|
|
}
|
|
|
|
static int skge_set_sg(struct net_device *dev, u32 data)
|
|
{
|
|
struct skge_port *skge = netdev_priv(dev);
|
|
struct skge_hw *hw = skge->hw;
|
|
|
|
if (hw->chip_id == CHIP_ID_GENESIS && data)
|
|
return -EOPNOTSUPP;
|
|
return ethtool_op_set_sg(dev, data);
|
|
}
|
|
|
|
static int skge_set_tx_csum(struct net_device *dev, u32 data)
|
|
{
|
|
struct skge_port *skge = netdev_priv(dev);
|
|
struct skge_hw *hw = skge->hw;
|
|
|
|
if (hw->chip_id == CHIP_ID_GENESIS && data)
|
|
return -EOPNOTSUPP;
|
|
|
|
return ethtool_op_set_tx_csum(dev, data);
|
|
}
|
|
|
|
static u32 skge_get_rx_csum(struct net_device *dev)
|
|
{
|
|
struct skge_port *skge = netdev_priv(dev);
|
|
|
|
return skge->rx_csum;
|
|
}
|
|
|
|
/* Only Yukon supports checksum offload. */
|
|
static int skge_set_rx_csum(struct net_device *dev, u32 data)
|
|
{
|
|
struct skge_port *skge = netdev_priv(dev);
|
|
|
|
if (skge->hw->chip_id == CHIP_ID_GENESIS && data)
|
|
return -EOPNOTSUPP;
|
|
|
|
skge->rx_csum = data;
|
|
return 0;
|
|
}
|
|
|
|
/* Only Yukon II supports TSO (not implemented yet) */
|
|
static int skge_set_tso(struct net_device *dev, u32 data)
|
|
{
|
|
if (data)
|
|
return -EOPNOTSUPP;
|
|
return 0;
|
|
}
|
|
|
|
static void skge_get_pauseparam(struct net_device *dev,
|
|
struct ethtool_pauseparam *ecmd)
|
|
{
|
|
struct skge_port *skge = netdev_priv(dev);
|
|
|
|
ecmd->tx_pause = (skge->flow_control == FLOW_MODE_LOC_SEND)
|
|
|| (skge->flow_control == FLOW_MODE_SYMMETRIC);
|
|
ecmd->rx_pause = (skge->flow_control == FLOW_MODE_REM_SEND)
|
|
|| (skge->flow_control == FLOW_MODE_SYMMETRIC);
|
|
|
|
ecmd->autoneg = skge->autoneg;
|
|
}
|
|
|
|
static int skge_set_pauseparam(struct net_device *dev,
|
|
struct ethtool_pauseparam *ecmd)
|
|
{
|
|
struct skge_port *skge = netdev_priv(dev);
|
|
|
|
skge->autoneg = ecmd->autoneg;
|
|
if (ecmd->rx_pause && ecmd->tx_pause)
|
|
skge->flow_control = FLOW_MODE_SYMMETRIC;
|
|
else if(ecmd->rx_pause && !ecmd->tx_pause)
|
|
skge->flow_control = FLOW_MODE_REM_SEND;
|
|
else if(!ecmd->rx_pause && ecmd->tx_pause)
|
|
skge->flow_control = FLOW_MODE_LOC_SEND;
|
|
else
|
|
skge->flow_control = FLOW_MODE_NONE;
|
|
|
|
if (netif_running(dev)) {
|
|
skge_down(dev);
|
|
skge_up(dev);
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
/* Chip internal frequency for clock calculations */
|
|
static inline u32 hwkhz(const struct skge_hw *hw)
|
|
{
|
|
if (hw->chip_id == CHIP_ID_GENESIS)
|
|
return 53215; /* or: 53.125 MHz */
|
|
else if (hw->chip_id == CHIP_ID_YUKON_EC)
|
|
return 125000; /* or: 125.000 MHz */
|
|
else
|
|
return 78215; /* or: 78.125 MHz */
|
|
}
|
|
|
|
/* Chip hz to microseconds */
|
|
static inline u32 skge_clk2usec(const struct skge_hw *hw, u32 ticks)
|
|
{
|
|
return (ticks * 1000) / hwkhz(hw);
|
|
}
|
|
|
|
/* Microseconds to chip hz */
|
|
static inline u32 skge_usecs2clk(const struct skge_hw *hw, u32 usec)
|
|
{
|
|
return hwkhz(hw) * usec / 1000;
|
|
}
|
|
|
|
static int skge_get_coalesce(struct net_device *dev,
|
|
struct ethtool_coalesce *ecmd)
|
|
{
|
|
struct skge_port *skge = netdev_priv(dev);
|
|
struct skge_hw *hw = skge->hw;
|
|
int port = skge->port;
|
|
|
|
ecmd->rx_coalesce_usecs = 0;
|
|
ecmd->tx_coalesce_usecs = 0;
|
|
|
|
if (skge_read32(hw, B2_IRQM_CTRL) & TIM_START) {
|
|
u32 delay = skge_clk2usec(hw, skge_read32(hw, B2_IRQM_INI));
|
|
u32 msk = skge_read32(hw, B2_IRQM_MSK);
|
|
|
|
if (msk & rxirqmask[port])
|
|
ecmd->rx_coalesce_usecs = delay;
|
|
if (msk & txirqmask[port])
|
|
ecmd->tx_coalesce_usecs = delay;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
/* Note: interrupt timer is per board, but can turn on/off per port */
|
|
static int skge_set_coalesce(struct net_device *dev,
|
|
struct ethtool_coalesce *ecmd)
|
|
{
|
|
struct skge_port *skge = netdev_priv(dev);
|
|
struct skge_hw *hw = skge->hw;
|
|
int port = skge->port;
|
|
u32 msk = skge_read32(hw, B2_IRQM_MSK);
|
|
u32 delay = 25;
|
|
|
|
if (ecmd->rx_coalesce_usecs == 0)
|
|
msk &= ~rxirqmask[port];
|
|
else if (ecmd->rx_coalesce_usecs < 25 ||
|
|
ecmd->rx_coalesce_usecs > 33333)
|
|
return -EINVAL;
|
|
else {
|
|
msk |= rxirqmask[port];
|
|
delay = ecmd->rx_coalesce_usecs;
|
|
}
|
|
|
|
if (ecmd->tx_coalesce_usecs == 0)
|
|
msk &= ~txirqmask[port];
|
|
else if (ecmd->tx_coalesce_usecs < 25 ||
|
|
ecmd->tx_coalesce_usecs > 33333)
|
|
return -EINVAL;
|
|
else {
|
|
msk |= txirqmask[port];
|
|
delay = min(delay, ecmd->rx_coalesce_usecs);
|
|
}
|
|
|
|
skge_write32(hw, B2_IRQM_MSK, msk);
|
|
if (msk == 0)
|
|
skge_write32(hw, B2_IRQM_CTRL, TIM_STOP);
|
|
else {
|
|
skge_write32(hw, B2_IRQM_INI, skge_usecs2clk(hw, delay));
|
|
skge_write32(hw, B2_IRQM_CTRL, TIM_START);
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
static void skge_led_on(struct skge_hw *hw, int port)
|
|
{
|
|
if (hw->chip_id == CHIP_ID_GENESIS) {
|
|
skge_write8(hw, SKGEMAC_REG(port, LNK_LED_REG), LINKLED_ON);
|
|
skge_write8(hw, B0_LED, LED_STAT_ON);
|
|
|
|
skge_write8(hw, SKGEMAC_REG(port, RX_LED_TST), LED_T_ON);
|
|
skge_write32(hw, SKGEMAC_REG(port, RX_LED_VAL), 100);
|
|
skge_write8(hw, SKGEMAC_REG(port, RX_LED_CTRL), LED_START);
|
|
|
|
switch (hw->phy_type) {
|
|
case SK_PHY_BCOM:
|
|
skge_xm_phy_write(hw, port, PHY_BCOM_P_EXT_CTRL,
|
|
PHY_B_PEC_LED_ON);
|
|
break;
|
|
case SK_PHY_LONE:
|
|
skge_xm_phy_write(hw, port, PHY_LONE_LED_CFG,
|
|
0x0800);
|
|
break;
|
|
default:
|
|
skge_write8(hw, SKGEMAC_REG(port, TX_LED_TST), LED_T_ON);
|
|
skge_write32(hw, SKGEMAC_REG(port, TX_LED_VAL), 100);
|
|
skge_write8(hw, SKGEMAC_REG(port, TX_LED_CTRL), LED_START);
|
|
}
|
|
} else {
|
|
skge_gm_phy_write(hw, port, PHY_MARV_LED_CTRL, 0);
|
|
skge_gm_phy_write(hw, port, PHY_MARV_LED_OVER,
|
|
PHY_M_LED_MO_DUP(MO_LED_ON) |
|
|
PHY_M_LED_MO_10(MO_LED_ON) |
|
|
PHY_M_LED_MO_100(MO_LED_ON) |
|
|
PHY_M_LED_MO_1000(MO_LED_ON) |
|
|
PHY_M_LED_MO_RX(MO_LED_ON));
|
|
}
|
|
}
|
|
|
|
static void skge_led_off(struct skge_hw *hw, int port)
|
|
{
|
|
if (hw->chip_id == CHIP_ID_GENESIS) {
|
|
skge_write8(hw, SKGEMAC_REG(port, LNK_LED_REG), LINKLED_OFF);
|
|
skge_write8(hw, B0_LED, LED_STAT_OFF);
|
|
|
|
skge_write32(hw, SKGEMAC_REG(port, RX_LED_VAL), 0);
|
|
skge_write8(hw, SKGEMAC_REG(port, RX_LED_CTRL), LED_T_OFF);
|
|
|
|
switch (hw->phy_type) {
|
|
case SK_PHY_BCOM:
|
|
skge_xm_phy_write(hw, port, PHY_BCOM_P_EXT_CTRL,
|
|
PHY_B_PEC_LED_OFF);
|
|
break;
|
|
case SK_PHY_LONE:
|
|
skge_xm_phy_write(hw, port, PHY_LONE_LED_CFG,
|
|
PHY_L_LC_LEDT);
|
|
break;
|
|
default:
|
|
skge_write32(hw, SKGEMAC_REG(port, TX_LED_VAL), 0);
|
|
skge_write8(hw, SKGEMAC_REG(port, TX_LED_CTRL), LED_T_OFF);
|
|
}
|
|
} else {
|
|
skge_gm_phy_write(hw, port, PHY_MARV_LED_CTRL, 0);
|
|
skge_gm_phy_write(hw, port, PHY_MARV_LED_OVER,
|
|
PHY_M_LED_MO_DUP(MO_LED_OFF) |
|
|
PHY_M_LED_MO_10(MO_LED_OFF) |
|
|
PHY_M_LED_MO_100(MO_LED_OFF) |
|
|
PHY_M_LED_MO_1000(MO_LED_OFF) |
|
|
PHY_M_LED_MO_RX(MO_LED_OFF));
|
|
}
|
|
}
|
|
|
|
static void skge_blink_timer(unsigned long data)
|
|
{
|
|
struct skge_port *skge = (struct skge_port *) data;
|
|
struct skge_hw *hw = skge->hw;
|
|
unsigned long flags;
|
|
|
|
spin_lock_irqsave(&hw->phy_lock, flags);
|
|
if (skge->blink_on)
|
|
skge_led_on(hw, skge->port);
|
|
else
|
|
skge_led_off(hw, skge->port);
|
|
spin_unlock_irqrestore(&hw->phy_lock, flags);
|
|
|
|
skge->blink_on = !skge->blink_on;
|
|
mod_timer(&skge->led_blink, jiffies + BLINK_HZ);
|
|
}
|
|
|
|
/* blink LED's for finding board */
|
|
static int skge_phys_id(struct net_device *dev, u32 data)
|
|
{
|
|
struct skge_port *skge = netdev_priv(dev);
|
|
|
|
if(!data || data > (u32)(MAX_SCHEDULE_TIMEOUT / HZ))
|
|
data = (u32)(MAX_SCHEDULE_TIMEOUT / HZ);
|
|
|
|
/* start blinking */
|
|
skge->blink_on = 1;
|
|
mod_timer(&skge->led_blink, jiffies+1);
|
|
|
|
msleep_interruptible(data * 1000);
|
|
del_timer_sync(&skge->led_blink);
|
|
|
|
skge_led_off(skge->hw, skge->port);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static struct ethtool_ops skge_ethtool_ops = {
|
|
.get_settings = skge_get_settings,
|
|
.set_settings = skge_set_settings,
|
|
.get_drvinfo = skge_get_drvinfo,
|
|
.get_regs_len = skge_get_regs_len,
|
|
.get_regs = skge_get_regs,
|
|
.get_wol = skge_get_wol,
|
|
.set_wol = skge_set_wol,
|
|
.get_msglevel = skge_get_msglevel,
|
|
.set_msglevel = skge_set_msglevel,
|
|
.nway_reset = skge_nway_reset,
|
|
.get_link = ethtool_op_get_link,
|
|
.get_ringparam = skge_get_ring_param,
|
|
.set_ringparam = skge_set_ring_param,
|
|
.get_pauseparam = skge_get_pauseparam,
|
|
.set_pauseparam = skge_set_pauseparam,
|
|
.get_coalesce = skge_get_coalesce,
|
|
.set_coalesce = skge_set_coalesce,
|
|
.get_tso = ethtool_op_get_tso,
|
|
.set_tso = skge_set_tso,
|
|
.get_sg = ethtool_op_get_sg,
|
|
.set_sg = skge_set_sg,
|
|
.get_tx_csum = ethtool_op_get_tx_csum,
|
|
.set_tx_csum = skge_set_tx_csum,
|
|
.get_rx_csum = skge_get_rx_csum,
|
|
.set_rx_csum = skge_set_rx_csum,
|
|
.get_strings = skge_get_strings,
|
|
.phys_id = skge_phys_id,
|
|
.get_stats_count = skge_get_stats_count,
|
|
.get_ethtool_stats = skge_get_ethtool_stats,
|
|
};
|
|
|
|
/*
|
|
* Allocate ring elements and chain them together
|
|
* One-to-one association of board descriptors with ring elements
|
|
*/
|
|
static int skge_ring_alloc(struct skge_ring *ring, void *vaddr, u64 base)
|
|
{
|
|
struct skge_tx_desc *d;
|
|
struct skge_element *e;
|
|
int i;
|
|
|
|
ring->start = kmalloc(sizeof(*e)*ring->count, GFP_KERNEL);
|
|
if (!ring->start)
|
|
return -ENOMEM;
|
|
|
|
for (i = 0, e = ring->start, d = vaddr; i < ring->count; i++, e++, d++) {
|
|
e->desc = d;
|
|
if (i == ring->count - 1) {
|
|
e->next = ring->start;
|
|
d->next_offset = base;
|
|
} else {
|
|
e->next = e + 1;
|
|
d->next_offset = base + (i+1) * sizeof(*d);
|
|
}
|
|
}
|
|
ring->to_use = ring->to_clean = ring->start;
|
|
|
|
return 0;
|
|
}
|
|
|
|
/* Setup buffer for receiving */
|
|
static inline int skge_rx_alloc(struct skge_port *skge,
|
|
struct skge_element *e)
|
|
{
|
|
unsigned long bufsize = skge->netdev->mtu + ETH_HLEN; /* VLAN? */
|
|
struct skge_rx_desc *rd = e->desc;
|
|
struct sk_buff *skb;
|
|
u64 map;
|
|
|
|
skb = dev_alloc_skb(bufsize + NET_IP_ALIGN);
|
|
if (unlikely(!skb)) {
|
|
printk(KERN_DEBUG PFX "%s: out of memory for receive\n",
|
|
skge->netdev->name);
|
|
return -ENOMEM;
|
|
}
|
|
|
|
skb->dev = skge->netdev;
|
|
skb_reserve(skb, NET_IP_ALIGN);
|
|
|
|
map = pci_map_single(skge->hw->pdev, skb->data, bufsize,
|
|
PCI_DMA_FROMDEVICE);
|
|
|
|
rd->dma_lo = map;
|
|
rd->dma_hi = map >> 32;
|
|
e->skb = skb;
|
|
rd->csum1_start = ETH_HLEN;
|
|
rd->csum2_start = ETH_HLEN;
|
|
rd->csum1 = 0;
|
|
rd->csum2 = 0;
|
|
|
|
wmb();
|
|
|
|
rd->control = BMU_OWN | BMU_STF | BMU_IRQ_EOF | BMU_TCP_CHECK | bufsize;
|
|
pci_unmap_addr_set(e, mapaddr, map);
|
|
pci_unmap_len_set(e, maplen, bufsize);
|
|
return 0;
|
|
}
|
|
|
|
/* Free all unused buffers in receive ring, assumes receiver stopped */
|
|
static void skge_rx_clean(struct skge_port *skge)
|
|
{
|
|
struct skge_hw *hw = skge->hw;
|
|
struct skge_ring *ring = &skge->rx_ring;
|
|
struct skge_element *e;
|
|
|
|
for (e = ring->to_clean; e != ring->to_use; e = e->next) {
|
|
struct skge_rx_desc *rd = e->desc;
|
|
rd->control = 0;
|
|
|
|
pci_unmap_single(hw->pdev,
|
|
pci_unmap_addr(e, mapaddr),
|
|
pci_unmap_len(e, maplen),
|
|
PCI_DMA_FROMDEVICE);
|
|
dev_kfree_skb(e->skb);
|
|
e->skb = NULL;
|
|
}
|
|
ring->to_clean = e;
|
|
}
|
|
|
|
/* Allocate buffers for receive ring
|
|
* For receive: to_use is refill location
|
|
* to_clean is next received frame.
|
|
*
|
|
* if (to_use == to_clean)
|
|
* then ring all frames in ring need buffers
|
|
* if (to_use->next == to_clean)
|
|
* then ring all frames in ring have buffers
|
|
*/
|
|
static int skge_rx_fill(struct skge_port *skge)
|
|
{
|
|
struct skge_ring *ring = &skge->rx_ring;
|
|
struct skge_element *e;
|
|
int ret = 0;
|
|
|
|
for (e = ring->to_use; e->next != ring->to_clean; e = e->next) {
|
|
if (skge_rx_alloc(skge, e)) {
|
|
ret = 1;
|
|
break;
|
|
}
|
|
|
|
}
|
|
ring->to_use = e;
|
|
|
|
return ret;
|
|
}
|
|
|
|
static void skge_link_up(struct skge_port *skge)
|
|
{
|
|
netif_carrier_on(skge->netdev);
|
|
if (skge->tx_avail > MAX_SKB_FRAGS + 1)
|
|
netif_wake_queue(skge->netdev);
|
|
|
|
if (netif_msg_link(skge))
|
|
printk(KERN_INFO PFX
|
|
"%s: Link is up at %d Mbps, %s duplex, flow control %s\n",
|
|
skge->netdev->name, skge->speed,
|
|
skge->duplex == DUPLEX_FULL ? "full" : "half",
|
|
(skge->flow_control == FLOW_MODE_NONE) ? "none" :
|
|
(skge->flow_control == FLOW_MODE_LOC_SEND) ? "tx only" :
|
|
(skge->flow_control == FLOW_MODE_REM_SEND) ? "rx only" :
|
|
(skge->flow_control == FLOW_MODE_SYMMETRIC) ? "tx and rx" :
|
|
"unknown");
|
|
}
|
|
|
|
static void skge_link_down(struct skge_port *skge)
|
|
{
|
|
netif_carrier_off(skge->netdev);
|
|
netif_stop_queue(skge->netdev);
|
|
|
|
if (netif_msg_link(skge))
|
|
printk(KERN_INFO PFX "%s: Link is down.\n", skge->netdev->name);
|
|
}
|
|
|
|
static u16 skge_xm_phy_read(struct skge_hw *hw, int port, u16 reg)
|
|
{
|
|
int i;
|
|
u16 v;
|
|
|
|
skge_xm_write16(hw, port, XM_PHY_ADDR, reg | hw->phy_addr);
|
|
v = skge_xm_read16(hw, port, XM_PHY_DATA);
|
|
if (hw->phy_type != SK_PHY_XMAC) {
|
|
for (i = 0; i < PHY_RETRIES; i++) {
|
|
udelay(1);
|
|
if (skge_xm_read16(hw, port, XM_MMU_CMD)
|
|
& XM_MMU_PHY_RDY)
|
|
goto ready;
|
|
}
|
|
|
|
printk(KERN_WARNING PFX "%s: phy read timed out\n",
|
|
hw->dev[port]->name);
|
|
return 0;
|
|
ready:
|
|
v = skge_xm_read16(hw, port, XM_PHY_DATA);
|
|
}
|
|
|
|
return v;
|
|
}
|
|
|
|
static void skge_xm_phy_write(struct skge_hw *hw, int port, u16 reg, u16 val)
|
|
{
|
|
int i;
|
|
|
|
skge_xm_write16(hw, port, XM_PHY_ADDR, reg | hw->phy_addr);
|
|
for (i = 0; i < PHY_RETRIES; i++) {
|
|
if (!(skge_xm_read16(hw, port, XM_MMU_CMD) & XM_MMU_PHY_BUSY))
|
|
goto ready;
|
|
cpu_relax();
|
|
}
|
|
printk(KERN_WARNING PFX "%s: phy write failed to come ready\n",
|
|
hw->dev[port]->name);
|
|
|
|
|
|
ready:
|
|
skge_xm_write16(hw, port, XM_PHY_DATA, val);
|
|
for (i = 0; i < PHY_RETRIES; i++) {
|
|
udelay(1);
|
|
if (!(skge_xm_read16(hw, port, XM_MMU_CMD) & XM_MMU_PHY_BUSY))
|
|
return;
|
|
}
|
|
printk(KERN_WARNING PFX "%s: phy write timed out\n",
|
|
hw->dev[port]->name);
|
|
}
|
|
|
|
static void genesis_init(struct skge_hw *hw)
|
|
{
|
|
/* set blink source counter */
|
|
skge_write32(hw, B2_BSC_INI, (SK_BLK_DUR * SK_FACT_53) / 100);
|
|
skge_write8(hw, B2_BSC_CTRL, BSC_START);
|
|
|
|
/* configure mac arbiter */
|
|
skge_write16(hw, B3_MA_TO_CTRL, MA_RST_CLR);
|
|
|
|
/* configure mac arbiter timeout values */
|
|
skge_write8(hw, B3_MA_TOINI_RX1, SK_MAC_TO_53);
|
|
skge_write8(hw, B3_MA_TOINI_RX2, SK_MAC_TO_53);
|
|
skge_write8(hw, B3_MA_TOINI_TX1, SK_MAC_TO_53);
|
|
skge_write8(hw, B3_MA_TOINI_TX2, SK_MAC_TO_53);
|
|
|
|
skge_write8(hw, B3_MA_RCINI_RX1, 0);
|
|
skge_write8(hw, B3_MA_RCINI_RX2, 0);
|
|
skge_write8(hw, B3_MA_RCINI_TX1, 0);
|
|
skge_write8(hw, B3_MA_RCINI_TX2, 0);
|
|
|
|
/* configure packet arbiter timeout */
|
|
skge_write16(hw, B3_PA_CTRL, PA_RST_CLR);
|
|
skge_write16(hw, B3_PA_TOINI_RX1, SK_PKT_TO_MAX);
|
|
skge_write16(hw, B3_PA_TOINI_TX1, SK_PKT_TO_MAX);
|
|
skge_write16(hw, B3_PA_TOINI_RX2, SK_PKT_TO_MAX);
|
|
skge_write16(hw, B3_PA_TOINI_TX2, SK_PKT_TO_MAX);
|
|
}
|
|
|
|
static void genesis_reset(struct skge_hw *hw, int port)
|
|
{
|
|
int i;
|
|
u64 zero = 0;
|
|
|
|
/* reset the statistics module */
|
|
skge_xm_write32(hw, port, XM_GP_PORT, XM_GP_RES_STAT);
|
|
skge_xm_write16(hw, port, XM_IMSK, 0xffff); /* disable XMAC IRQs */
|
|
skge_xm_write32(hw, port, XM_MODE, 0); /* clear Mode Reg */
|
|
skge_xm_write16(hw, port, XM_TX_CMD, 0); /* reset TX CMD Reg */
|
|
skge_xm_write16(hw, port, XM_RX_CMD, 0); /* reset RX CMD Reg */
|
|
|
|
/* disable all PHY IRQs */
|
|
if (hw->phy_type == SK_PHY_BCOM)
|
|
skge_xm_write16(hw, port, PHY_BCOM_INT_MASK, 0xffff);
|
|
|
|
skge_xm_outhash(hw, port, XM_HSM, (u8 *) &zero);
|
|
for (i = 0; i < 15; i++)
|
|
skge_xm_outaddr(hw, port, XM_EXM(i), (u8 *) &zero);
|
|
skge_xm_outhash(hw, port, XM_SRC_CHK, (u8 *) &zero);
|
|
}
|
|
|
|
|
|
static void genesis_mac_init(struct skge_hw *hw, int port)
|
|
{
|
|
struct skge_port *skge = netdev_priv(hw->dev[port]);
|
|
int i;
|
|
u32 r;
|
|
u16 id1;
|
|
u16 ctrl1, ctrl2, ctrl3, ctrl4, ctrl5;
|
|
|
|
/* magic workaround patterns for Broadcom */
|
|
static const struct {
|
|
u16 reg;
|
|
u16 val;
|
|
} A1hack[] = {
|
|
{ 0x18, 0x0c20 }, { 0x17, 0x0012 }, { 0x15, 0x1104 },
|
|
{ 0x17, 0x0013 }, { 0x15, 0x0404 }, { 0x17, 0x8006 },
|
|
{ 0x15, 0x0132 }, { 0x17, 0x8006 }, { 0x15, 0x0232 },
|
|
{ 0x17, 0x800D }, { 0x15, 0x000F }, { 0x18, 0x0420 },
|
|
}, C0hack[] = {
|
|
{ 0x18, 0x0c20 }, { 0x17, 0x0012 }, { 0x15, 0x1204 },
|
|
{ 0x17, 0x0013 }, { 0x15, 0x0A04 }, { 0x18, 0x0420 },
|
|
};
|
|
|
|
|
|
/* initialize Rx, Tx and Link LED */
|
|
skge_write8(hw, SKGEMAC_REG(port, LNK_LED_REG), LINKLED_ON);
|
|
skge_write8(hw, SKGEMAC_REG(port, LNK_LED_REG), LINKLED_LINKSYNC_ON);
|
|
|
|
skge_write8(hw, SKGEMAC_REG(port, RX_LED_CTRL), LED_START);
|
|
skge_write8(hw, SKGEMAC_REG(port, TX_LED_CTRL), LED_START);
|
|
|
|
/* Unreset the XMAC. */
|
|
skge_write16(hw, SKGEMAC_REG(port, TX_MFF_CTRL1), MFF_CLR_MAC_RST);
|
|
|
|
/*
|
|
* Perform additional initialization for external PHYs,
|
|
* namely for the 1000baseTX cards that use the XMAC's
|
|
* GMII mode.
|
|
*/
|
|
spin_lock_bh(&hw->phy_lock);
|
|
if (hw->phy_type != SK_PHY_XMAC) {
|
|
/* Take PHY out of reset. */
|
|
r = skge_read32(hw, B2_GP_IO);
|
|
if (port == 0)
|
|
r |= GP_DIR_0|GP_IO_0;
|
|
else
|
|
r |= GP_DIR_2|GP_IO_2;
|
|
|
|
skge_write32(hw, B2_GP_IO, r);
|
|
skge_read32(hw, B2_GP_IO);
|
|
|
|
/* Enable GMII mode on the XMAC. */
|
|
skge_xm_write16(hw, port, XM_HW_CFG, XM_HW_GMII_MD);
|
|
|
|
id1 = skge_xm_phy_read(hw, port, PHY_XMAC_ID1);
|
|
|
|
/* Optimize MDIO transfer by suppressing preamble. */
|
|
skge_xm_write16(hw, port, XM_MMU_CMD,
|
|
skge_xm_read16(hw, port, XM_MMU_CMD)
|
|
| XM_MMU_NO_PRE);
|
|
|
|
if (id1 == PHY_BCOM_ID1_C0) {
|
|
/*
|
|
* Workaround BCOM Errata for the C0 type.
|
|
* Write magic patterns to reserved registers.
|
|
*/
|
|
for (i = 0; i < ARRAY_SIZE(C0hack); i++)
|
|
skge_xm_phy_write(hw, port,
|
|
C0hack[i].reg, C0hack[i].val);
|
|
|
|
} else if (id1 == PHY_BCOM_ID1_A1) {
|
|
/*
|
|
* Workaround BCOM Errata for the A1 type.
|
|
* Write magic patterns to reserved registers.
|
|
*/
|
|
for (i = 0; i < ARRAY_SIZE(A1hack); i++)
|
|
skge_xm_phy_write(hw, port,
|
|
A1hack[i].reg, A1hack[i].val);
|
|
}
|
|
|
|
/*
|
|
* Workaround BCOM Errata (#10523) for all BCom PHYs.
|
|
* Disable Power Management after reset.
|
|
*/
|
|
r = skge_xm_phy_read(hw, port, PHY_BCOM_AUX_CTRL);
|
|
skge_xm_phy_write(hw, port, PHY_BCOM_AUX_CTRL, r | PHY_B_AC_DIS_PM);
|
|
}
|
|
|
|
/* Dummy read */
|
|
skge_xm_read16(hw, port, XM_ISRC);
|
|
|
|
r = skge_xm_read32(hw, port, XM_MODE);
|
|
skge_xm_write32(hw, port, XM_MODE, r|XM_MD_CSA);
|
|
|
|
/* We don't need the FCS appended to the packet. */
|
|
r = skge_xm_read16(hw, port, XM_RX_CMD);
|
|
skge_xm_write16(hw, port, XM_RX_CMD, r | XM_RX_STRIP_FCS);
|
|
|
|
/* We want short frames padded to 60 bytes. */
|
|
r = skge_xm_read16(hw, port, XM_TX_CMD);
|
|
skge_xm_write16(hw, port, XM_TX_CMD, r | XM_TX_AUTO_PAD);
|
|
|
|
/*
|
|
* Enable the reception of all error frames. This is is
|
|
* a necessary evil due to the design of the XMAC. The
|
|
* XMAC's receive FIFO is only 8K in size, however jumbo
|
|
* frames can be up to 9000 bytes in length. When bad
|
|
* frame filtering is enabled, the XMAC's RX FIFO operates
|
|
* in 'store and forward' mode. For this to work, the
|
|
* entire frame has to fit into the FIFO, but that means
|
|
* that jumbo frames larger than 8192 bytes will be
|
|
* truncated. Disabling all bad frame filtering causes
|
|
* the RX FIFO to operate in streaming mode, in which
|
|
* case the XMAC will start transfering frames out of the
|
|
* RX FIFO as soon as the FIFO threshold is reached.
|
|
*/
|
|
r = skge_xm_read32(hw, port, XM_MODE);
|
|
skge_xm_write32(hw, port, XM_MODE,
|
|
XM_MD_RX_CRCE|XM_MD_RX_LONG|XM_MD_RX_RUNT|
|
|
XM_MD_RX_ERR|XM_MD_RX_IRLE);
|
|
|
|
skge_xm_outaddr(hw, port, XM_SA, hw->dev[port]->dev_addr);
|
|
skge_xm_outaddr(hw, port, XM_EXM(0), hw->dev[port]->dev_addr);
|
|
|
|
/*
|
|
* Bump up the transmit threshold. This helps hold off transmit
|
|
* underruns when we're blasting traffic from both ports at once.
|
|
*/
|
|
skge_xm_write16(hw, port, XM_TX_THR, 512);
|
|
|
|
/* Configure MAC arbiter */
|
|
skge_write16(hw, B3_MA_TO_CTRL, MA_RST_CLR);
|
|
|
|
/* configure timeout values */
|
|
skge_write8(hw, B3_MA_TOINI_RX1, 72);
|
|
skge_write8(hw, B3_MA_TOINI_RX2, 72);
|
|
skge_write8(hw, B3_MA_TOINI_TX1, 72);
|
|
skge_write8(hw, B3_MA_TOINI_TX2, 72);
|
|
|
|
skge_write8(hw, B3_MA_RCINI_RX1, 0);
|
|
skge_write8(hw, B3_MA_RCINI_RX2, 0);
|
|
skge_write8(hw, B3_MA_RCINI_TX1, 0);
|
|
skge_write8(hw, B3_MA_RCINI_TX2, 0);
|
|
|
|
/* Configure Rx MAC FIFO */
|
|
skge_write8(hw, SKGEMAC_REG(port, RX_MFF_CTRL2), MFF_RST_CLR);
|
|
skge_write16(hw, SKGEMAC_REG(port, RX_MFF_CTRL1), MFF_ENA_TIM_PAT);
|
|
skge_write8(hw, SKGEMAC_REG(port, RX_MFF_CTRL2), MFF_ENA_OP_MD);
|
|
|
|
/* Configure Tx MAC FIFO */
|
|
skge_write8(hw, SKGEMAC_REG(port, TX_MFF_CTRL2), MFF_RST_CLR);
|
|
skge_write16(hw, SKGEMAC_REG(port, TX_MFF_CTRL1), MFF_TX_CTRL_DEF);
|
|
skge_write8(hw, SKGEMAC_REG(port, TX_MFF_CTRL2), MFF_ENA_OP_MD);
|
|
|
|
if (hw->dev[port]->mtu > ETH_DATA_LEN) {
|
|
/* Enable frame flushing if jumbo frames used */
|
|
skge_write16(hw, SKGEMAC_REG(port,RX_MFF_CTRL1), MFF_ENA_FLUSH);
|
|
} else {
|
|
/* enable timeout timers if normal frames */
|
|
skge_write16(hw, B3_PA_CTRL,
|
|
port == 0 ? PA_ENA_TO_TX1 : PA_ENA_TO_TX2);
|
|
}
|
|
|
|
|
|
r = skge_xm_read16(hw, port, XM_RX_CMD);
|
|
if (hw->dev[port]->mtu > ETH_DATA_LEN)
|
|
skge_xm_write16(hw, port, XM_RX_CMD, r | XM_RX_BIG_PK_OK);
|
|
else
|
|
skge_xm_write16(hw, port, XM_RX_CMD, r & ~(XM_RX_BIG_PK_OK));
|
|
|
|
switch (hw->phy_type) {
|
|
case SK_PHY_XMAC:
|
|
if (skge->autoneg == AUTONEG_ENABLE) {
|
|
ctrl1 = PHY_X_AN_FD | PHY_X_AN_HD;
|
|
|
|
switch (skge->flow_control) {
|
|
case FLOW_MODE_NONE:
|
|
ctrl1 |= PHY_X_P_NO_PAUSE;
|
|
break;
|
|
case FLOW_MODE_LOC_SEND:
|
|
ctrl1 |= PHY_X_P_ASYM_MD;
|
|
break;
|
|
case FLOW_MODE_SYMMETRIC:
|
|
ctrl1 |= PHY_X_P_SYM_MD;
|
|
break;
|
|
case FLOW_MODE_REM_SEND:
|
|
ctrl1 |= PHY_X_P_BOTH_MD;
|
|
break;
|
|
}
|
|
|
|
skge_xm_phy_write(hw, port, PHY_XMAC_AUNE_ADV, ctrl1);
|
|
ctrl2 = PHY_CT_ANE | PHY_CT_RE_CFG;
|
|
} else {
|
|
ctrl2 = 0;
|
|
if (skge->duplex == DUPLEX_FULL)
|
|
ctrl2 |= PHY_CT_DUP_MD;
|
|
}
|
|
|
|
skge_xm_phy_write(hw, port, PHY_XMAC_CTRL, ctrl2);
|
|
break;
|
|
|
|
case SK_PHY_BCOM:
|
|
ctrl1 = PHY_CT_SP1000;
|
|
ctrl2 = 0;
|
|
ctrl3 = PHY_SEL_TYPE;
|
|
ctrl4 = PHY_B_PEC_EN_LTR;
|
|
ctrl5 = PHY_B_AC_TX_TST;
|
|
|
|
if (skge->autoneg == AUTONEG_ENABLE) {
|
|
/*
|
|
* Workaround BCOM Errata #1 for the C5 type.
|
|
* 1000Base-T Link Acquisition Failure in Slave Mode
|
|
* Set Repeater/DTE bit 10 of the 1000Base-T Control Register
|
|
*/
|
|
ctrl2 |= PHY_B_1000C_RD;
|
|
if (skge->advertising & ADVERTISED_1000baseT_Half)
|
|
ctrl2 |= PHY_B_1000C_AHD;
|
|
if (skge->advertising & ADVERTISED_1000baseT_Full)
|
|
ctrl2 |= PHY_B_1000C_AFD;
|
|
|
|
/* Set Flow-control capabilities */
|
|
switch (skge->flow_control) {
|
|
case FLOW_MODE_NONE:
|
|
ctrl3 |= PHY_B_P_NO_PAUSE;
|
|
break;
|
|
case FLOW_MODE_LOC_SEND:
|
|
ctrl3 |= PHY_B_P_ASYM_MD;
|
|
break;
|
|
case FLOW_MODE_SYMMETRIC:
|
|
ctrl3 |= PHY_B_P_SYM_MD;
|
|
break;
|
|
case FLOW_MODE_REM_SEND:
|
|
ctrl3 |= PHY_B_P_BOTH_MD;
|
|
break;
|
|
}
|
|
|
|
/* Restart Auto-negotiation */
|
|
ctrl1 |= PHY_CT_ANE | PHY_CT_RE_CFG;
|
|
} else {
|
|
if (skge->duplex == DUPLEX_FULL)
|
|
ctrl1 |= PHY_CT_DUP_MD;
|
|
|
|
ctrl2 |= PHY_B_1000C_MSE; /* set it to Slave */
|
|
}
|
|
|
|
skge_xm_phy_write(hw, port, PHY_BCOM_1000T_CTRL, ctrl2);
|
|
skge_xm_phy_write(hw, port, PHY_BCOM_AUNE_ADV, ctrl3);
|
|
|
|
if (skge->netdev->mtu > ETH_DATA_LEN) {
|
|
ctrl4 |= PHY_B_PEC_HIGH_LA;
|
|
ctrl5 |= PHY_B_AC_LONG_PACK;
|
|
|
|
skge_xm_phy_write(hw, port,PHY_BCOM_AUX_CTRL, ctrl5);
|
|
}
|
|
|
|
skge_xm_phy_write(hw, port, PHY_BCOM_P_EXT_CTRL, ctrl4);
|
|
skge_xm_phy_write(hw, port, PHY_BCOM_CTRL, ctrl1);
|
|
break;
|
|
}
|
|
spin_unlock_bh(&hw->phy_lock);
|
|
|
|
/* Clear MIB counters */
|
|
skge_xm_write16(hw, port, XM_STAT_CMD,
|
|
XM_SC_CLR_RXC | XM_SC_CLR_TXC);
|
|
/* Clear two times according to Errata #3 */
|
|
skge_xm_write16(hw, port, XM_STAT_CMD,
|
|
XM_SC_CLR_RXC | XM_SC_CLR_TXC);
|
|
|
|
/* Start polling for link status */
|
|
mod_timer(&skge->link_check, jiffies + LINK_POLL_HZ);
|
|
}
|
|
|
|
static void genesis_stop(struct skge_port *skge)
|
|
{
|
|
struct skge_hw *hw = skge->hw;
|
|
int port = skge->port;
|
|
|
|
/* Clear Tx packet arbiter timeout IRQ */
|
|
skge_write16(hw, B3_PA_CTRL,
|
|
port == 0 ? PA_CLR_TO_TX1 : PA_CLR_TO_TX2);
|
|
|
|
/*
|
|
* If the transfer stucks at the MAC the STOP command will not
|
|
* terminate if we don't flush the XMAC's transmit FIFO !
|
|
*/
|
|
skge_xm_write32(hw, port, XM_MODE,
|
|
skge_xm_read32(hw, port, XM_MODE)|XM_MD_FTF);
|
|
|
|
|
|
/* Reset the MAC */
|
|
skge_write16(hw, SKGEMAC_REG(port, TX_MFF_CTRL1), MFF_SET_MAC_RST);
|
|
|
|
/* For external PHYs there must be special handling */
|
|
if (hw->phy_type != SK_PHY_XMAC) {
|
|
u32 reg = skge_read32(hw, B2_GP_IO);
|
|
|
|
if (port == 0) {
|
|
reg |= GP_DIR_0;
|
|
reg &= ~GP_IO_0;
|
|
} else {
|
|
reg |= GP_DIR_2;
|
|
reg &= ~GP_IO_2;
|
|
}
|
|
skge_write32(hw, B2_GP_IO, reg);
|
|
skge_read32(hw, B2_GP_IO);
|
|
}
|
|
|
|
skge_xm_write16(hw, port, XM_MMU_CMD,
|
|
skge_xm_read16(hw, port, XM_MMU_CMD)
|
|
& ~(XM_MMU_ENA_RX | XM_MMU_ENA_TX));
|
|
|
|
skge_xm_read16(hw, port, XM_MMU_CMD);
|
|
}
|
|
|
|
|
|
static void genesis_get_stats(struct skge_port *skge, u64 *data)
|
|
{
|
|
struct skge_hw *hw = skge->hw;
|
|
int port = skge->port;
|
|
int i;
|
|
unsigned long timeout = jiffies + HZ;
|
|
|
|
skge_xm_write16(hw, port,
|
|
XM_STAT_CMD, XM_SC_SNP_TXC | XM_SC_SNP_RXC);
|
|
|
|
/* wait for update to complete */
|
|
while (skge_xm_read16(hw, port, XM_STAT_CMD)
|
|
& (XM_SC_SNP_TXC | XM_SC_SNP_RXC)) {
|
|
if (time_after(jiffies, timeout))
|
|
break;
|
|
udelay(10);
|
|
}
|
|
|
|
/* special case for 64 bit octet counter */
|
|
data[0] = (u64) skge_xm_read32(hw, port, XM_TXO_OK_HI) << 32
|
|
| skge_xm_read32(hw, port, XM_TXO_OK_LO);
|
|
data[1] = (u64) skge_xm_read32(hw, port, XM_RXO_OK_HI) << 32
|
|
| skge_xm_read32(hw, port, XM_RXO_OK_LO);
|
|
|
|
for (i = 2; i < ARRAY_SIZE(skge_stats); i++)
|
|
data[i] = skge_xm_read32(hw, port, skge_stats[i].xmac_offset);
|
|
}
|
|
|
|
static void genesis_mac_intr(struct skge_hw *hw, int port)
|
|
{
|
|
struct skge_port *skge = netdev_priv(hw->dev[port]);
|
|
u16 status = skge_xm_read16(hw, port, XM_ISRC);
|
|
|
|
pr_debug("genesis_intr status %x\n", status);
|
|
if (hw->phy_type == SK_PHY_XMAC) {
|
|
/* LInk down, start polling for state change */
|
|
if (status & XM_IS_INP_ASS) {
|
|
skge_xm_write16(hw, port, XM_IMSK,
|
|
skge_xm_read16(hw, port, XM_IMSK) | XM_IS_INP_ASS);
|
|
mod_timer(&skge->link_check, jiffies + LINK_POLL_HZ);
|
|
}
|
|
else if (status & XM_IS_AND)
|
|
mod_timer(&skge->link_check, jiffies + LINK_POLL_HZ);
|
|
}
|
|
|
|
if (status & XM_IS_TXF_UR) {
|
|
skge_xm_write32(hw, port, XM_MODE, XM_MD_FTF);
|
|
++skge->net_stats.tx_fifo_errors;
|
|
}
|
|
if (status & XM_IS_RXF_OV) {
|
|
skge_xm_write32(hw, port, XM_MODE, XM_MD_FRF);
|
|
++skge->net_stats.rx_fifo_errors;
|
|
}
|
|
}
|
|
|
|
static void skge_gm_phy_write(struct skge_hw *hw, int port, u16 reg, u16 val)
|
|
{
|
|
int i;
|
|
|
|
skge_gma_write16(hw, port, GM_SMI_DATA, val);
|
|
skge_gma_write16(hw, port, GM_SMI_CTRL,
|
|
GM_SMI_CT_PHY_AD(hw->phy_addr) | GM_SMI_CT_REG_AD(reg));
|
|
for (i = 0; i < PHY_RETRIES; i++) {
|
|
udelay(1);
|
|
|
|
if (!(skge_gma_read16(hw, port, GM_SMI_CTRL) & GM_SMI_CT_BUSY))
|
|
break;
|
|
}
|
|
}
|
|
|
|
static u16 skge_gm_phy_read(struct skge_hw *hw, int port, u16 reg)
|
|
{
|
|
int i;
|
|
|
|
skge_gma_write16(hw, port, GM_SMI_CTRL,
|
|
GM_SMI_CT_PHY_AD(hw->phy_addr)
|
|
| GM_SMI_CT_REG_AD(reg) | GM_SMI_CT_OP_RD);
|
|
|
|
for (i = 0; i < PHY_RETRIES; i++) {
|
|
udelay(1);
|
|
if (skge_gma_read16(hw, port, GM_SMI_CTRL) & GM_SMI_CT_RD_VAL)
|
|
goto ready;
|
|
}
|
|
|
|
printk(KERN_WARNING PFX "%s: phy read timeout\n",
|
|
hw->dev[port]->name);
|
|
return 0;
|
|
ready:
|
|
return skge_gma_read16(hw, port, GM_SMI_DATA);
|
|
}
|
|
|
|
static void genesis_link_down(struct skge_port *skge)
|
|
{
|
|
struct skge_hw *hw = skge->hw;
|
|
int port = skge->port;
|
|
|
|
pr_debug("genesis_link_down\n");
|
|
|
|
skge_xm_write16(hw, port, XM_MMU_CMD,
|
|
skge_xm_read16(hw, port, XM_MMU_CMD)
|
|
& ~(XM_MMU_ENA_RX | XM_MMU_ENA_TX));
|
|
|
|
/* dummy read to ensure writing */
|
|
(void) skge_xm_read16(hw, port, XM_MMU_CMD);
|
|
|
|
skge_link_down(skge);
|
|
}
|
|
|
|
static void genesis_link_up(struct skge_port *skge)
|
|
{
|
|
struct skge_hw *hw = skge->hw;
|
|
int port = skge->port;
|
|
u16 cmd;
|
|
u32 mode, msk;
|
|
|
|
pr_debug("genesis_link_up\n");
|
|
cmd = skge_xm_read16(hw, port, XM_MMU_CMD);
|
|
|
|
/*
|
|
* enabling pause frame reception is required for 1000BT
|
|
* because the XMAC is not reset if the link is going down
|
|
*/
|
|
if (skge->flow_control == FLOW_MODE_NONE ||
|
|
skge->flow_control == FLOW_MODE_LOC_SEND)
|
|
cmd |= XM_MMU_IGN_PF;
|
|
else
|
|
/* Enable Pause Frame Reception */
|
|
cmd &= ~XM_MMU_IGN_PF;
|
|
|
|
skge_xm_write16(hw, port, XM_MMU_CMD, cmd);
|
|
|
|
mode = skge_xm_read32(hw, port, XM_MODE);
|
|
if (skge->flow_control == FLOW_MODE_SYMMETRIC ||
|
|
skge->flow_control == FLOW_MODE_LOC_SEND) {
|
|
/*
|
|
* Configure Pause Frame Generation
|
|
* Use internal and external Pause Frame Generation.
|
|
* Sending pause frames is edge triggered.
|
|
* Send a Pause frame with the maximum pause time if
|
|
* internal oder external FIFO full condition occurs.
|
|
* Send a zero pause time frame to re-start transmission.
|
|
*/
|
|
/* XM_PAUSE_DA = '010000C28001' (default) */
|
|
/* XM_MAC_PTIME = 0xffff (maximum) */
|
|
/* remember this value is defined in big endian (!) */
|
|
skge_xm_write16(hw, port, XM_MAC_PTIME, 0xffff);
|
|
|
|
mode |= XM_PAUSE_MODE;
|
|
skge_write16(hw, SKGEMAC_REG(port, RX_MFF_CTRL1), MFF_ENA_PAUSE);
|
|
} else {
|
|
/*
|
|
* disable pause frame generation is required for 1000BT
|
|
* because the XMAC is not reset if the link is going down
|
|
*/
|
|
/* Disable Pause Mode in Mode Register */
|
|
mode &= ~XM_PAUSE_MODE;
|
|
|
|
skge_write16(hw, SKGEMAC_REG(port, RX_MFF_CTRL1), MFF_DIS_PAUSE);
|
|
}
|
|
|
|
skge_xm_write32(hw, port, XM_MODE, mode);
|
|
|
|
msk = XM_DEF_MSK;
|
|
if (hw->phy_type != SK_PHY_XMAC)
|
|
msk |= XM_IS_INP_ASS; /* disable GP0 interrupt bit */
|
|
|
|
skge_xm_write16(hw, port, XM_IMSK, msk);
|
|
skge_xm_read16(hw, port, XM_ISRC);
|
|
|
|
/* get MMU Command Reg. */
|
|
cmd = skge_xm_read16(hw, port, XM_MMU_CMD);
|
|
if (hw->phy_type != SK_PHY_XMAC && skge->duplex == DUPLEX_FULL)
|
|
cmd |= XM_MMU_GMII_FD;
|
|
|
|
if (hw->phy_type == SK_PHY_BCOM) {
|
|
/*
|
|
* Workaround BCOM Errata (#10523) for all BCom Phys
|
|
* Enable Power Management after link up
|
|
*/
|
|
skge_xm_phy_write(hw, port, PHY_BCOM_AUX_CTRL,
|
|
skge_xm_phy_read(hw, port, PHY_BCOM_AUX_CTRL)
|
|
& ~PHY_B_AC_DIS_PM);
|
|
skge_xm_phy_write(hw, port, PHY_BCOM_INT_MASK,
|
|
PHY_B_DEF_MSK);
|
|
}
|
|
|
|
/* enable Rx/Tx */
|
|
skge_xm_write16(hw, port, XM_MMU_CMD,
|
|
cmd | XM_MMU_ENA_RX | XM_MMU_ENA_TX);
|
|
skge_link_up(skge);
|
|
}
|
|
|
|
|
|
static void genesis_bcom_intr(struct skge_port *skge)
|
|
{
|
|
struct skge_hw *hw = skge->hw;
|
|
int port = skge->port;
|
|
u16 stat = skge_xm_phy_read(hw, port, PHY_BCOM_INT_STAT);
|
|
|
|
pr_debug("genesis_bcom intr stat=%x\n", stat);
|
|
|
|
/* Workaround BCom Errata:
|
|
* enable and disable loopback mode if "NO HCD" occurs.
|
|
*/
|
|
if (stat & PHY_B_IS_NO_HDCL) {
|
|
u16 ctrl = skge_xm_phy_read(hw, port, PHY_BCOM_CTRL);
|
|
skge_xm_phy_write(hw, port, PHY_BCOM_CTRL,
|
|
ctrl | PHY_CT_LOOP);
|
|
skge_xm_phy_write(hw, port, PHY_BCOM_CTRL,
|
|
ctrl & ~PHY_CT_LOOP);
|
|
}
|
|
|
|
stat = skge_xm_phy_read(hw, port, PHY_BCOM_STAT);
|
|
if (stat & (PHY_B_IS_AN_PR | PHY_B_IS_LST_CHANGE)) {
|
|
u16 aux = skge_xm_phy_read(hw, port, PHY_BCOM_AUX_STAT);
|
|
if ( !(aux & PHY_B_AS_LS) && netif_carrier_ok(skge->netdev))
|
|
genesis_link_down(skge);
|
|
|
|
else if (stat & PHY_B_IS_LST_CHANGE) {
|
|
if (aux & PHY_B_AS_AN_C) {
|
|
switch (aux & PHY_B_AS_AN_RES_MSK) {
|
|
case PHY_B_RES_1000FD:
|
|
skge->duplex = DUPLEX_FULL;
|
|
break;
|
|
case PHY_B_RES_1000HD:
|
|
skge->duplex = DUPLEX_HALF;
|
|
break;
|
|
}
|
|
|
|
switch (aux & PHY_B_AS_PAUSE_MSK) {
|
|
case PHY_B_AS_PAUSE_MSK:
|
|
skge->flow_control = FLOW_MODE_SYMMETRIC;
|
|
break;
|
|
case PHY_B_AS_PRR:
|
|
skge->flow_control = FLOW_MODE_REM_SEND;
|
|
break;
|
|
case PHY_B_AS_PRT:
|
|
skge->flow_control = FLOW_MODE_LOC_SEND;
|
|
break;
|
|
default:
|
|
skge->flow_control = FLOW_MODE_NONE;
|
|
}
|
|
skge->speed = SPEED_1000;
|
|
}
|
|
genesis_link_up(skge);
|
|
}
|
|
else
|
|
mod_timer(&skge->link_check, jiffies + LINK_POLL_HZ);
|
|
}
|
|
}
|
|
|
|
/* Perodic poll of phy status to check for link transistion */
|
|
static void skge_link_timer(unsigned long __arg)
|
|
{
|
|
struct skge_port *skge = (struct skge_port *) __arg;
|
|
struct skge_hw *hw = skge->hw;
|
|
int port = skge->port;
|
|
|
|
if (hw->chip_id != CHIP_ID_GENESIS || !netif_running(skge->netdev))
|
|
return;
|
|
|
|
spin_lock_bh(&hw->phy_lock);
|
|
if (hw->phy_type == SK_PHY_BCOM)
|
|
genesis_bcom_intr(skge);
|
|
else {
|
|
int i;
|
|
for (i = 0; i < 3; i++)
|
|
if (skge_xm_read16(hw, port, XM_ISRC) & XM_IS_INP_ASS)
|
|
break;
|
|
|
|
if (i == 3)
|
|
mod_timer(&skge->link_check, jiffies + LINK_POLL_HZ);
|
|
else
|
|
genesis_link_up(skge);
|
|
}
|
|
spin_unlock_bh(&hw->phy_lock);
|
|
}
|
|
|
|
/* Marvell Phy Initailization */
|
|
static void yukon_init(struct skge_hw *hw, int port)
|
|
{
|
|
struct skge_port *skge = netdev_priv(hw->dev[port]);
|
|
u16 ctrl, ct1000, adv;
|
|
u16 ledctrl, ledover;
|
|
|
|
pr_debug("yukon_init\n");
|
|
if (skge->autoneg == AUTONEG_ENABLE) {
|
|
u16 ectrl = skge_gm_phy_read(hw, port, PHY_MARV_EXT_CTRL);
|
|
|
|
ectrl &= ~(PHY_M_EC_M_DSC_MSK | PHY_M_EC_S_DSC_MSK |
|
|
PHY_M_EC_MAC_S_MSK);
|
|
ectrl |= PHY_M_EC_MAC_S(MAC_TX_CLK_25_MHZ);
|
|
|
|
/* on PHY 88E1111 there is a change for downshift control */
|
|
if (hw->chip_id == CHIP_ID_YUKON_EC)
|
|
ectrl |= PHY_M_EC_M_DSC_2(0) | PHY_M_EC_DOWN_S_ENA;
|
|
else
|
|
ectrl |= PHY_M_EC_M_DSC(0) | PHY_M_EC_S_DSC(1);
|
|
|
|
skge_gm_phy_write(hw, port, PHY_MARV_EXT_CTRL, ectrl);
|
|
}
|
|
|
|
ctrl = skge_gm_phy_read(hw, port, PHY_MARV_CTRL);
|
|
if (skge->autoneg == AUTONEG_DISABLE)
|
|
ctrl &= ~PHY_CT_ANE;
|
|
|
|
ctrl |= PHY_CT_RESET;
|
|
skge_gm_phy_write(hw, port, PHY_MARV_CTRL, ctrl);
|
|
|
|
ctrl = 0;
|
|
ct1000 = 0;
|
|
adv = PHY_SEL_TYPE;
|
|
|
|
if (skge->autoneg == AUTONEG_ENABLE) {
|
|
if (iscopper(hw)) {
|
|
if (skge->advertising & ADVERTISED_1000baseT_Full)
|
|
ct1000 |= PHY_M_1000C_AFD;
|
|
if (skge->advertising & ADVERTISED_1000baseT_Half)
|
|
ct1000 |= PHY_M_1000C_AHD;
|
|
if (skge->advertising & ADVERTISED_100baseT_Full)
|
|
adv |= PHY_M_AN_100_FD;
|
|
if (skge->advertising & ADVERTISED_100baseT_Half)
|
|
adv |= PHY_M_AN_100_HD;
|
|
if (skge->advertising & ADVERTISED_10baseT_Full)
|
|
adv |= PHY_M_AN_10_FD;
|
|
if (skge->advertising & ADVERTISED_10baseT_Half)
|
|
adv |= PHY_M_AN_10_HD;
|
|
|
|
/* Set Flow-control capabilities */
|
|
switch (skge->flow_control) {
|
|
case FLOW_MODE_NONE:
|
|
adv |= PHY_B_P_NO_PAUSE;
|
|
break;
|
|
case FLOW_MODE_LOC_SEND:
|
|
adv |= PHY_B_P_ASYM_MD;
|
|
break;
|
|
case FLOW_MODE_SYMMETRIC:
|
|
adv |= PHY_B_P_SYM_MD;
|
|
break;
|
|
case FLOW_MODE_REM_SEND:
|
|
adv |= PHY_B_P_BOTH_MD;
|
|
break;
|
|
}
|
|
} else { /* special defines for FIBER (88E1011S only) */
|
|
adv |= PHY_M_AN_1000X_AHD | PHY_M_AN_1000X_AFD;
|
|
|
|
/* Set Flow-control capabilities */
|
|
switch (skge->flow_control) {
|
|
case FLOW_MODE_NONE:
|
|
adv |= PHY_M_P_NO_PAUSE_X;
|
|
break;
|
|
case FLOW_MODE_LOC_SEND:
|
|
adv |= PHY_M_P_ASYM_MD_X;
|
|
break;
|
|
case FLOW_MODE_SYMMETRIC:
|
|
adv |= PHY_M_P_SYM_MD_X;
|
|
break;
|
|
case FLOW_MODE_REM_SEND:
|
|
adv |= PHY_M_P_BOTH_MD_X;
|
|
break;
|
|
}
|
|
}
|
|
/* Restart Auto-negotiation */
|
|
ctrl |= PHY_CT_ANE | PHY_CT_RE_CFG;
|
|
} else {
|
|
/* forced speed/duplex settings */
|
|
ct1000 = PHY_M_1000C_MSE;
|
|
|
|
if (skge->duplex == DUPLEX_FULL)
|
|
ctrl |= PHY_CT_DUP_MD;
|
|
|
|
switch (skge->speed) {
|
|
case SPEED_1000:
|
|
ctrl |= PHY_CT_SP1000;
|
|
break;
|
|
case SPEED_100:
|
|
ctrl |= PHY_CT_SP100;
|
|
break;
|
|
}
|
|
|
|
ctrl |= PHY_CT_RESET;
|
|
}
|
|
|
|
if (hw->chip_id != CHIP_ID_YUKON_FE)
|
|
skge_gm_phy_write(hw, port, PHY_MARV_1000T_CTRL, ct1000);
|
|
|
|
skge_gm_phy_write(hw, port, PHY_MARV_AUNE_ADV, adv);
|
|
skge_gm_phy_write(hw, port, PHY_MARV_CTRL, ctrl);
|
|
|
|
/* Setup Phy LED's */
|
|
ledctrl = PHY_M_LED_PULS_DUR(PULS_170MS);
|
|
ledover = 0;
|
|
|
|
if (hw->chip_id == CHIP_ID_YUKON_FE) {
|
|
/* on 88E3082 these bits are at 11..9 (shifted left) */
|
|
ledctrl |= PHY_M_LED_BLINK_RT(BLINK_84MS) << 1;
|
|
|
|
skge_gm_phy_write(hw, port, PHY_MARV_FE_LED_PAR,
|
|
((skge_gm_phy_read(hw, port, PHY_MARV_FE_LED_PAR)
|
|
|
|
& ~PHY_M_FELP_LED1_MSK)
|
|
| PHY_M_FELP_LED1_CTRL(LED_PAR_CTRL_ACT_BL)));
|
|
} else {
|
|
/* set Tx LED (LED_TX) to blink mode on Rx OR Tx activity */
|
|
ledctrl |= PHY_M_LED_BLINK_RT(BLINK_84MS) | PHY_M_LEDC_TX_CTRL;
|
|
|
|
/* turn off the Rx LED (LED_RX) */
|
|
ledover |= PHY_M_LED_MO_RX(MO_LED_OFF);
|
|
}
|
|
|
|
/* disable blink mode (LED_DUPLEX) on collisions */
|
|
ctrl |= PHY_M_LEDC_DP_CTRL;
|
|
skge_gm_phy_write(hw, port, PHY_MARV_LED_CTRL, ledctrl);
|
|
|
|
if (skge->autoneg == AUTONEG_DISABLE || skge->speed == SPEED_100) {
|
|
/* turn on 100 Mbps LED (LED_LINK100) */
|
|
ledover |= PHY_M_LED_MO_100(MO_LED_ON);
|
|
}
|
|
|
|
if (ledover)
|
|
skge_gm_phy_write(hw, port, PHY_MARV_LED_OVER, ledover);
|
|
|
|
/* Enable phy interrupt on autonegotiation complete (or link up) */
|
|
if (skge->autoneg == AUTONEG_ENABLE)
|
|
skge_gm_phy_write(hw, port, PHY_MARV_INT_MASK, PHY_M_IS_AN_COMPL);
|
|
else
|
|
skge_gm_phy_write(hw, port, PHY_MARV_INT_MASK, PHY_M_DEF_MSK);
|
|
}
|
|
|
|
static void yukon_reset(struct skge_hw *hw, int port)
|
|
{
|
|
skge_gm_phy_write(hw, port, PHY_MARV_INT_MASK, 0);/* disable PHY IRQs */
|
|
skge_gma_write16(hw, port, GM_MC_ADDR_H1, 0); /* clear MC hash */
|
|
skge_gma_write16(hw, port, GM_MC_ADDR_H2, 0);
|
|
skge_gma_write16(hw, port, GM_MC_ADDR_H3, 0);
|
|
skge_gma_write16(hw, port, GM_MC_ADDR_H4, 0);
|
|
|
|
skge_gma_write16(hw, port, GM_RX_CTRL,
|
|
skge_gma_read16(hw, port, GM_RX_CTRL)
|
|
| GM_RXCR_UCF_ENA | GM_RXCR_MCF_ENA);
|
|
}
|
|
|
|
static void yukon_mac_init(struct skge_hw *hw, int port)
|
|
{
|
|
struct skge_port *skge = netdev_priv(hw->dev[port]);
|
|
int i;
|
|
u32 reg;
|
|
const u8 *addr = hw->dev[port]->dev_addr;
|
|
|
|
/* WA code for COMA mode -- set PHY reset */
|
|
if (hw->chip_id == CHIP_ID_YUKON_LITE &&
|
|
chip_rev(hw) == CHIP_REV_YU_LITE_A3)
|
|
skge_write32(hw, B2_GP_IO,
|
|
(skge_read32(hw, B2_GP_IO) | GP_DIR_9 | GP_IO_9));
|
|
|
|
/* hard reset */
|
|
skge_write32(hw, SKGEMAC_REG(port, GPHY_CTRL), GPC_RST_SET);
|
|
skge_write32(hw, SKGEMAC_REG(port, GMAC_CTRL), GMC_RST_SET);
|
|
|
|
/* WA code for COMA mode -- clear PHY reset */
|
|
if (hw->chip_id == CHIP_ID_YUKON_LITE &&
|
|
chip_rev(hw) == CHIP_REV_YU_LITE_A3)
|
|
skge_write32(hw, B2_GP_IO,
|
|
(skge_read32(hw, B2_GP_IO) | GP_DIR_9)
|
|
& ~GP_IO_9);
|
|
|
|
/* Set hardware config mode */
|
|
reg = GPC_INT_POL_HI | GPC_DIS_FC | GPC_DIS_SLEEP |
|
|
GPC_ENA_XC | GPC_ANEG_ADV_ALL_M | GPC_ENA_PAUSE;
|
|
reg |= iscopper(hw) ? GPC_HWCFG_GMII_COP : GPC_HWCFG_GMII_FIB;
|
|
|
|
/* Clear GMC reset */
|
|
skge_write32(hw, SKGEMAC_REG(port, GPHY_CTRL), reg | GPC_RST_SET);
|
|
skge_write32(hw, SKGEMAC_REG(port, GPHY_CTRL), reg | GPC_RST_CLR);
|
|
skge_write32(hw, SKGEMAC_REG(port, GMAC_CTRL), GMC_PAUSE_ON | GMC_RST_CLR);
|
|
if (skge->autoneg == AUTONEG_DISABLE) {
|
|
reg = GM_GPCR_AU_ALL_DIS;
|
|
skge_gma_write16(hw, port, GM_GP_CTRL,
|
|
skge_gma_read16(hw, port, GM_GP_CTRL) | reg);
|
|
|
|
switch (skge->speed) {
|
|
case SPEED_1000:
|
|
reg |= GM_GPCR_SPEED_1000;
|
|
/* fallthru */
|
|
case SPEED_100:
|
|
reg |= GM_GPCR_SPEED_100;
|
|
}
|
|
|
|
if (skge->duplex == DUPLEX_FULL)
|
|
reg |= GM_GPCR_DUP_FULL;
|
|
} else
|
|
reg = GM_GPCR_SPEED_1000 | GM_GPCR_SPEED_100 | GM_GPCR_DUP_FULL;
|
|
switch (skge->flow_control) {
|
|
case FLOW_MODE_NONE:
|
|
skge_write32(hw, SKGEMAC_REG(port, GMAC_CTRL), GMC_PAUSE_OFF);
|
|
reg |= GM_GPCR_FC_TX_DIS | GM_GPCR_FC_RX_DIS | GM_GPCR_AU_FCT_DIS;
|
|
break;
|
|
case FLOW_MODE_LOC_SEND:
|
|
/* disable Rx flow-control */
|
|
reg |= GM_GPCR_FC_RX_DIS | GM_GPCR_AU_FCT_DIS;
|
|
}
|
|
|
|
skge_gma_write16(hw, port, GM_GP_CTRL, reg);
|
|
skge_read16(hw, GMAC_IRQ_SRC);
|
|
|
|
spin_lock_bh(&hw->phy_lock);
|
|
yukon_init(hw, port);
|
|
spin_unlock_bh(&hw->phy_lock);
|
|
|
|
/* MIB clear */
|
|
reg = skge_gma_read16(hw, port, GM_PHY_ADDR);
|
|
skge_gma_write16(hw, port, GM_PHY_ADDR, reg | GM_PAR_MIB_CLR);
|
|
|
|
for (i = 0; i < GM_MIB_CNT_SIZE; i++)
|
|
skge_gma_read16(hw, port, GM_MIB_CNT_BASE + 8*i);
|
|
skge_gma_write16(hw, port, GM_PHY_ADDR, reg);
|
|
|
|
/* transmit control */
|
|
skge_gma_write16(hw, port, GM_TX_CTRL, TX_COL_THR(TX_COL_DEF));
|
|
|
|
/* receive control reg: unicast + multicast + no FCS */
|
|
skge_gma_write16(hw, port, GM_RX_CTRL,
|
|
GM_RXCR_UCF_ENA | GM_RXCR_CRC_DIS | GM_RXCR_MCF_ENA);
|
|
|
|
/* transmit flow control */
|
|
skge_gma_write16(hw, port, GM_TX_FLOW_CTRL, 0xffff);
|
|
|
|
/* transmit parameter */
|
|
skge_gma_write16(hw, port, GM_TX_PARAM,
|
|
TX_JAM_LEN_VAL(TX_JAM_LEN_DEF) |
|
|
TX_JAM_IPG_VAL(TX_JAM_IPG_DEF) |
|
|
TX_IPG_JAM_DATA(TX_IPG_JAM_DEF));
|
|
|
|
/* serial mode register */
|
|
reg = GM_SMOD_VLAN_ENA | IPG_DATA_VAL(IPG_DATA_DEF);
|
|
if (hw->dev[port]->mtu > 1500)
|
|
reg |= GM_SMOD_JUMBO_ENA;
|
|
|
|
skge_gma_write16(hw, port, GM_SERIAL_MODE, reg);
|
|
|
|
/* physical address: used for pause frames */
|
|
skge_gm_set_addr(hw, port, GM_SRC_ADDR_1L, addr);
|
|
/* virtual address for data */
|
|
skge_gm_set_addr(hw, port, GM_SRC_ADDR_2L, addr);
|
|
|
|
/* enable interrupt mask for counter overflows */
|
|
skge_gma_write16(hw, port, GM_TX_IRQ_MSK, 0);
|
|
skge_gma_write16(hw, port, GM_RX_IRQ_MSK, 0);
|
|
skge_gma_write16(hw, port, GM_TR_IRQ_MSK, 0);
|
|
|
|
/* Initialize Mac Fifo */
|
|
|
|
/* Configure Rx MAC FIFO */
|
|
skge_write16(hw, SKGEMAC_REG(port, RX_GMF_FL_MSK), RX_FF_FL_DEF_MSK);
|
|
reg = GMF_OPER_ON | GMF_RX_F_FL_ON;
|
|
if (hw->chip_id == CHIP_ID_YUKON_LITE &&
|
|
chip_rev(hw) == CHIP_REV_YU_LITE_A3)
|
|
reg &= ~GMF_RX_F_FL_ON;
|
|
skge_write8(hw, SKGEMAC_REG(port, RX_GMF_CTRL_T), GMF_RST_CLR);
|
|
skge_write16(hw, SKGEMAC_REG(port, RX_GMF_CTRL_T), reg);
|
|
skge_write16(hw, SKGEMAC_REG(port, RX_GMF_FL_THR), RX_GMF_FL_THR_DEF);
|
|
|
|
/* Configure Tx MAC FIFO */
|
|
skge_write8(hw, SKGEMAC_REG(port, TX_GMF_CTRL_T), GMF_RST_CLR);
|
|
skge_write16(hw, SKGEMAC_REG(port, TX_GMF_CTRL_T), GMF_OPER_ON);
|
|
}
|
|
|
|
static void yukon_stop(struct skge_port *skge)
|
|
{
|
|
struct skge_hw *hw = skge->hw;
|
|
int port = skge->port;
|
|
|
|
if (hw->chip_id == CHIP_ID_YUKON_LITE &&
|
|
chip_rev(hw) == CHIP_REV_YU_LITE_A3) {
|
|
skge_write32(hw, B2_GP_IO,
|
|
skge_read32(hw, B2_GP_IO) | GP_DIR_9 | GP_IO_9);
|
|
}
|
|
|
|
skge_gma_write16(hw, port, GM_GP_CTRL,
|
|
skge_gma_read16(hw, port, GM_GP_CTRL)
|
|
& ~(GM_GPCR_RX_ENA|GM_GPCR_RX_ENA));
|
|
skge_gma_read16(hw, port, GM_GP_CTRL);
|
|
|
|
/* set GPHY Control reset */
|
|
skge_gma_write32(hw, port, GPHY_CTRL, GPC_RST_SET);
|
|
skge_gma_write32(hw, port, GMAC_CTRL, GMC_RST_SET);
|
|
}
|
|
|
|
static void yukon_get_stats(struct skge_port *skge, u64 *data)
|
|
{
|
|
struct skge_hw *hw = skge->hw;
|
|
int port = skge->port;
|
|
int i;
|
|
|
|
data[0] = (u64) skge_gma_read32(hw, port, GM_TXO_OK_HI) << 32
|
|
| skge_gma_read32(hw, port, GM_TXO_OK_LO);
|
|
data[1] = (u64) skge_gma_read32(hw, port, GM_RXO_OK_HI) << 32
|
|
| skge_gma_read32(hw, port, GM_RXO_OK_LO);
|
|
|
|
for (i = 2; i < ARRAY_SIZE(skge_stats); i++)
|
|
data[i] = skge_gma_read32(hw, port,
|
|
skge_stats[i].gma_offset);
|
|
}
|
|
|
|
static void yukon_mac_intr(struct skge_hw *hw, int port)
|
|
{
|
|
struct skge_port *skge = netdev_priv(hw->dev[port]);
|
|
u8 status = skge_read8(hw, SKGEMAC_REG(port, GMAC_IRQ_SRC));
|
|
|
|
pr_debug("yukon_intr status %x\n", status);
|
|
if (status & GM_IS_RX_FF_OR) {
|
|
++skge->net_stats.rx_fifo_errors;
|
|
skge_gma_write8(hw, port, RX_GMF_CTRL_T, GMF_CLI_RX_FO);
|
|
}
|
|
if (status & GM_IS_TX_FF_UR) {
|
|
++skge->net_stats.tx_fifo_errors;
|
|
skge_gma_write8(hw, port, TX_GMF_CTRL_T, GMF_CLI_TX_FU);
|
|
}
|
|
|
|
}
|
|
|
|
static u16 yukon_speed(const struct skge_hw *hw, u16 aux)
|
|
{
|
|
if (hw->chip_id == CHIP_ID_YUKON_FE)
|
|
return (aux & PHY_M_PS_SPEED_100) ? SPEED_100 : SPEED_10;
|
|
|
|
switch(aux & PHY_M_PS_SPEED_MSK) {
|
|
case PHY_M_PS_SPEED_1000:
|
|
return SPEED_1000;
|
|
case PHY_M_PS_SPEED_100:
|
|
return SPEED_100;
|
|
default:
|
|
return SPEED_10;
|
|
}
|
|
}
|
|
|
|
static void yukon_link_up(struct skge_port *skge)
|
|
{
|
|
struct skge_hw *hw = skge->hw;
|
|
int port = skge->port;
|
|
u16 reg;
|
|
|
|
pr_debug("yukon_link_up\n");
|
|
|
|
/* Enable Transmit FIFO Underrun */
|
|
skge_write8(hw, GMAC_IRQ_MSK, GMAC_DEF_MSK);
|
|
|
|
reg = skge_gma_read16(hw, port, GM_GP_CTRL);
|
|
if (skge->duplex == DUPLEX_FULL || skge->autoneg == AUTONEG_ENABLE)
|
|
reg |= GM_GPCR_DUP_FULL;
|
|
|
|
/* enable Rx/Tx */
|
|
reg |= GM_GPCR_RX_ENA | GM_GPCR_TX_ENA;
|
|
skge_gma_write16(hw, port, GM_GP_CTRL, reg);
|
|
|
|
skge_gm_phy_write(hw, port, PHY_MARV_INT_MASK, PHY_M_DEF_MSK);
|
|
skge_link_up(skge);
|
|
}
|
|
|
|
static void yukon_link_down(struct skge_port *skge)
|
|
{
|
|
struct skge_hw *hw = skge->hw;
|
|
int port = skge->port;
|
|
|
|
pr_debug("yukon_link_down\n");
|
|
skge_gm_phy_write(hw, port, PHY_MARV_INT_MASK, 0);
|
|
skge_gm_phy_write(hw, port, GM_GP_CTRL,
|
|
skge_gm_phy_read(hw, port, GM_GP_CTRL)
|
|
& ~(GM_GPCR_RX_ENA | GM_GPCR_TX_ENA));
|
|
|
|
if (hw->chip_id != CHIP_ID_YUKON_FE &&
|
|
skge->flow_control == FLOW_MODE_REM_SEND) {
|
|
/* restore Asymmetric Pause bit */
|
|
skge_gm_phy_write(hw, port, PHY_MARV_AUNE_ADV,
|
|
skge_gm_phy_read(hw, port,
|
|
PHY_MARV_AUNE_ADV)
|
|
| PHY_M_AN_ASP);
|
|
|
|
}
|
|
|
|
yukon_reset(hw, port);
|
|
skge_link_down(skge);
|
|
|
|
yukon_init(hw, port);
|
|
}
|
|
|
|
static void yukon_phy_intr(struct skge_port *skge)
|
|
{
|
|
struct skge_hw *hw = skge->hw;
|
|
int port = skge->port;
|
|
const char *reason = NULL;
|
|
u16 istatus, phystat;
|
|
|
|
istatus = skge_gm_phy_read(hw, port, PHY_MARV_INT_STAT);
|
|
phystat = skge_gm_phy_read(hw, port, PHY_MARV_PHY_STAT);
|
|
pr_debug("yukon phy intr istat=%x phy_stat=%x\n", istatus, phystat);
|
|
|
|
if (istatus & PHY_M_IS_AN_COMPL) {
|
|
if (skge_gm_phy_read(hw, port, PHY_MARV_AUNE_LP)
|
|
& PHY_M_AN_RF) {
|
|
reason = "remote fault";
|
|
goto failed;
|
|
}
|
|
|
|
if (!(hw->chip_id == CHIP_ID_YUKON_FE || hw->chip_id == CHIP_ID_YUKON_EC)
|
|
&& (skge_gm_phy_read(hw, port, PHY_MARV_1000T_STAT)
|
|
& PHY_B_1000S_MSF)) {
|
|
reason = "master/slave fault";
|
|
goto failed;
|
|
}
|
|
|
|
if (!(phystat & PHY_M_PS_SPDUP_RES)) {
|
|
reason = "speed/duplex";
|
|
goto failed;
|
|
}
|
|
|
|
skge->duplex = (phystat & PHY_M_PS_FULL_DUP)
|
|
? DUPLEX_FULL : DUPLEX_HALF;
|
|
skge->speed = yukon_speed(hw, phystat);
|
|
|
|
/* Tx & Rx Pause Enabled bits are at 9..8 */
|
|
if (hw->chip_id == CHIP_ID_YUKON_XL)
|
|
phystat >>= 6;
|
|
|
|
/* We are using IEEE 802.3z/D5.0 Table 37-4 */
|
|
switch (phystat & PHY_M_PS_PAUSE_MSK) {
|
|
case PHY_M_PS_PAUSE_MSK:
|
|
skge->flow_control = FLOW_MODE_SYMMETRIC;
|
|
break;
|
|
case PHY_M_PS_RX_P_EN:
|
|
skge->flow_control = FLOW_MODE_REM_SEND;
|
|
break;
|
|
case PHY_M_PS_TX_P_EN:
|
|
skge->flow_control = FLOW_MODE_LOC_SEND;
|
|
break;
|
|
default:
|
|
skge->flow_control = FLOW_MODE_NONE;
|
|
}
|
|
|
|
if (skge->flow_control == FLOW_MODE_NONE ||
|
|
(skge->speed < SPEED_1000 && skge->duplex == DUPLEX_HALF))
|
|
skge_write8(hw, SKGEMAC_REG(port, GMAC_CTRL), GMC_PAUSE_OFF);
|
|
else
|
|
skge_write8(hw, SKGEMAC_REG(port, GMAC_CTRL), GMC_PAUSE_ON);
|
|
yukon_link_up(skge);
|
|
return;
|
|
}
|
|
|
|
if (istatus & PHY_M_IS_LSP_CHANGE)
|
|
skge->speed = yukon_speed(hw, phystat);
|
|
|
|
if (istatus & PHY_M_IS_DUP_CHANGE)
|
|
skge->duplex = (phystat & PHY_M_PS_FULL_DUP) ? DUPLEX_FULL : DUPLEX_HALF;
|
|
if (istatus & PHY_M_IS_LST_CHANGE) {
|
|
if (phystat & PHY_M_PS_LINK_UP)
|
|
yukon_link_up(skge);
|
|
else
|
|
yukon_link_down(skge);
|
|
}
|
|
return;
|
|
failed:
|
|
printk(KERN_ERR PFX "%s: autonegotiation failed (%s)\n",
|
|
skge->netdev->name, reason);
|
|
|
|
/* XXX restart autonegotiation? */
|
|
}
|
|
|
|
static void skge_ramset(struct skge_hw *hw, u16 q, u32 start, size_t len)
|
|
{
|
|
u32 end;
|
|
|
|
start /= 8;
|
|
len /= 8;
|
|
end = start + len - 1;
|
|
|
|
skge_write8(hw, RB_ADDR(q, RB_CTRL), RB_RST_CLR);
|
|
skge_write32(hw, RB_ADDR(q, RB_START), start);
|
|
skge_write32(hw, RB_ADDR(q, RB_WP), start);
|
|
skge_write32(hw, RB_ADDR(q, RB_RP), start);
|
|
skge_write32(hw, RB_ADDR(q, RB_END), end);
|
|
|
|
if (q == Q_R1 || q == Q_R2) {
|
|
/* Set thresholds on receive queue's */
|
|
skge_write32(hw, RB_ADDR(q, RB_RX_UTPP),
|
|
start + (2*len)/3);
|
|
skge_write32(hw, RB_ADDR(q, RB_RX_LTPP),
|
|
start + (len/3));
|
|
} else {
|
|
/* Enable store & forward on Tx queue's because
|
|
* Tx FIFO is only 4K on Genesis and 1K on Yukon
|
|
*/
|
|
skge_write8(hw, RB_ADDR(q, RB_CTRL), RB_ENA_STFWD);
|
|
}
|
|
|
|
skge_write8(hw, RB_ADDR(q, RB_CTRL), RB_ENA_OP_MD);
|
|
}
|
|
|
|
/* Setup Bus Memory Interface */
|
|
static void skge_qset(struct skge_port *skge, u16 q,
|
|
const struct skge_element *e)
|
|
{
|
|
struct skge_hw *hw = skge->hw;
|
|
u32 watermark = 0x600;
|
|
u64 base = skge->dma + (e->desc - skge->mem);
|
|
|
|
/* optimization to reduce window on 32bit/33mhz */
|
|
if ((skge_read16(hw, B0_CTST) & (CS_BUS_CLOCK | CS_BUS_SLOT_SZ)) == 0)
|
|
watermark /= 2;
|
|
|
|
skge_write32(hw, Q_ADDR(q, Q_CSR), CSR_CLR_RESET);
|
|
skge_write32(hw, Q_ADDR(q, Q_F), watermark);
|
|
skge_write32(hw, Q_ADDR(q, Q_DA_H), (u32)(base >> 32));
|
|
skge_write32(hw, Q_ADDR(q, Q_DA_L), (u32)base);
|
|
}
|
|
|
|
static int skge_up(struct net_device *dev)
|
|
{
|
|
struct skge_port *skge = netdev_priv(dev);
|
|
struct skge_hw *hw = skge->hw;
|
|
int port = skge->port;
|
|
u32 chunk, ram_addr;
|
|
size_t rx_size, tx_size;
|
|
int err;
|
|
|
|
if (netif_msg_ifup(skge))
|
|
printk(KERN_INFO PFX "%s: enabling interface\n", dev->name);
|
|
|
|
rx_size = skge->rx_ring.count * sizeof(struct skge_rx_desc);
|
|
tx_size = skge->tx_ring.count * sizeof(struct skge_tx_desc);
|
|
skge->mem_size = tx_size + rx_size;
|
|
skge->mem = pci_alloc_consistent(hw->pdev, skge->mem_size, &skge->dma);
|
|
if (!skge->mem)
|
|
return -ENOMEM;
|
|
|
|
memset(skge->mem, 0, skge->mem_size);
|
|
|
|
if ((err = skge_ring_alloc(&skge->rx_ring, skge->mem, skge->dma)))
|
|
goto free_pci_mem;
|
|
|
|
if (skge_rx_fill(skge))
|
|
goto free_rx_ring;
|
|
|
|
if ((err = skge_ring_alloc(&skge->tx_ring, skge->mem + rx_size,
|
|
skge->dma + rx_size)))
|
|
goto free_rx_ring;
|
|
|
|
skge->tx_avail = skge->tx_ring.count - 1;
|
|
|
|
/* Initialze MAC */
|
|
if (hw->chip_id == CHIP_ID_GENESIS)
|
|
genesis_mac_init(hw, port);
|
|
else
|
|
yukon_mac_init(hw, port);
|
|
|
|
/* Configure RAMbuffers */
|
|
chunk = hw->ram_size / (isdualport(hw) ? 4 : 2);
|
|
ram_addr = hw->ram_offset + 2 * chunk * port;
|
|
|
|
skge_ramset(hw, rxqaddr[port], ram_addr, chunk);
|
|
skge_qset(skge, rxqaddr[port], skge->rx_ring.to_clean);
|
|
|
|
BUG_ON(skge->tx_ring.to_use != skge->tx_ring.to_clean);
|
|
skge_ramset(hw, txqaddr[port], ram_addr+chunk, chunk);
|
|
skge_qset(skge, txqaddr[port], skge->tx_ring.to_use);
|
|
|
|
/* Start receiver BMU */
|
|
wmb();
|
|
skge_write8(hw, Q_ADDR(rxqaddr[port], Q_CSR), CSR_START | CSR_IRQ_CL_F);
|
|
|
|
pr_debug("skge_up completed\n");
|
|
return 0;
|
|
|
|
free_rx_ring:
|
|
skge_rx_clean(skge);
|
|
kfree(skge->rx_ring.start);
|
|
free_pci_mem:
|
|
pci_free_consistent(hw->pdev, skge->mem_size, skge->mem, skge->dma);
|
|
|
|
return err;
|
|
}
|
|
|
|
static int skge_down(struct net_device *dev)
|
|
{
|
|
struct skge_port *skge = netdev_priv(dev);
|
|
struct skge_hw *hw = skge->hw;
|
|
int port = skge->port;
|
|
|
|
if (netif_msg_ifdown(skge))
|
|
printk(KERN_INFO PFX "%s: disabling interface\n", dev->name);
|
|
|
|
netif_stop_queue(dev);
|
|
|
|
del_timer_sync(&skge->led_blink);
|
|
del_timer_sync(&skge->link_check);
|
|
|
|
/* Stop transmitter */
|
|
skge_write8(hw, Q_ADDR(txqaddr[port], Q_CSR), CSR_STOP);
|
|
skge_write32(hw, RB_ADDR(txqaddr[port], RB_CTRL),
|
|
RB_RST_SET|RB_DIS_OP_MD);
|
|
|
|
if (hw->chip_id == CHIP_ID_GENESIS)
|
|
genesis_stop(skge);
|
|
else
|
|
yukon_stop(skge);
|
|
|
|
/* Disable Force Sync bit and Enable Alloc bit */
|
|
skge_write8(hw, SKGEMAC_REG(port, TXA_CTRL),
|
|
TXA_DIS_FSYNC | TXA_DIS_ALLOC | TXA_STOP_RC);
|
|
|
|
/* Stop Interval Timer and Limit Counter of Tx Arbiter */
|
|
skge_write32(hw, SKGEMAC_REG(port, TXA_ITI_INI), 0L);
|
|
skge_write32(hw, SKGEMAC_REG(port, TXA_LIM_INI), 0L);
|
|
|
|
/* Reset PCI FIFO */
|
|
skge_write32(hw, Q_ADDR(txqaddr[port], Q_CSR), CSR_SET_RESET);
|
|
skge_write32(hw, RB_ADDR(txqaddr[port], RB_CTRL), RB_RST_SET);
|
|
|
|
/* Reset the RAM Buffer async Tx queue */
|
|
skge_write8(hw, RB_ADDR(port == 0 ? Q_XA1 : Q_XA2, RB_CTRL), RB_RST_SET);
|
|
/* stop receiver */
|
|
skge_write8(hw, Q_ADDR(rxqaddr[port], Q_CSR), CSR_STOP);
|
|
skge_write32(hw, RB_ADDR(port ? Q_R2 : Q_R1, RB_CTRL),
|
|
RB_RST_SET|RB_DIS_OP_MD);
|
|
skge_write32(hw, Q_ADDR(rxqaddr[port], Q_CSR), CSR_SET_RESET);
|
|
|
|
if (hw->chip_id == CHIP_ID_GENESIS) {
|
|
skge_write8(hw, SKGEMAC_REG(port, TX_MFF_CTRL2), MFF_RST_SET);
|
|
skge_write8(hw, SKGEMAC_REG(port, RX_MFF_CTRL2), MFF_RST_SET);
|
|
skge_write8(hw, SKGEMAC_REG(port, TX_LED_CTRL), LED_STOP);
|
|
skge_write8(hw, SKGEMAC_REG(port, RX_LED_CTRL), LED_STOP);
|
|
} else {
|
|
skge_write8(hw, SKGEMAC_REG(port, RX_GMF_CTRL_T), GMF_RST_SET);
|
|
skge_write8(hw, SKGEMAC_REG(port, TX_GMF_CTRL_T), GMF_RST_SET);
|
|
}
|
|
|
|
/* turn off led's */
|
|
skge_write16(hw, B0_LED, LED_STAT_OFF);
|
|
|
|
skge_tx_clean(skge);
|
|
skge_rx_clean(skge);
|
|
|
|
kfree(skge->rx_ring.start);
|
|
kfree(skge->tx_ring.start);
|
|
pci_free_consistent(hw->pdev, skge->mem_size, skge->mem, skge->dma);
|
|
return 0;
|
|
}
|
|
|
|
static int skge_xmit_frame(struct sk_buff *skb, struct net_device *dev)
|
|
{
|
|
struct skge_port *skge = netdev_priv(dev);
|
|
struct skge_hw *hw = skge->hw;
|
|
struct skge_ring *ring = &skge->tx_ring;
|
|
struct skge_element *e;
|
|
struct skge_tx_desc *td;
|
|
int i;
|
|
u32 control, len;
|
|
u64 map;
|
|
unsigned long flags;
|
|
|
|
skb = skb_padto(skb, ETH_ZLEN);
|
|
if (!skb)
|
|
return NETDEV_TX_OK;
|
|
|
|
local_irq_save(flags);
|
|
if (!spin_trylock(&skge->tx_lock)) {
|
|
/* Collision - tell upper layer to requeue */
|
|
local_irq_restore(flags);
|
|
return NETDEV_TX_LOCKED;
|
|
}
|
|
|
|
if (unlikely(skge->tx_avail < skb_shinfo(skb)->nr_frags +1)) {
|
|
netif_stop_queue(dev);
|
|
spin_unlock_irqrestore(&skge->tx_lock, flags);
|
|
|
|
printk(KERN_WARNING PFX "%s: ring full when queue awake!\n",
|
|
dev->name);
|
|
return NETDEV_TX_BUSY;
|
|
}
|
|
|
|
e = ring->to_use;
|
|
td = e->desc;
|
|
e->skb = skb;
|
|
len = skb_headlen(skb);
|
|
map = pci_map_single(hw->pdev, skb->data, len, PCI_DMA_TODEVICE);
|
|
pci_unmap_addr_set(e, mapaddr, map);
|
|
pci_unmap_len_set(e, maplen, len);
|
|
|
|
td->dma_lo = map;
|
|
td->dma_hi = map >> 32;
|
|
|
|
if (skb->ip_summed == CHECKSUM_HW) {
|
|
const struct iphdr *ip
|
|
= (const struct iphdr *) (skb->data + ETH_HLEN);
|
|
int offset = skb->h.raw - skb->data;
|
|
|
|
/* This seems backwards, but it is what the sk98lin
|
|
* does. Looks like hardware is wrong?
|
|
*/
|
|
if (ip->protocol == IPPROTO_UDP
|
|
&& chip_rev(hw) == 0 && hw->chip_id == CHIP_ID_YUKON)
|
|
control = BMU_TCP_CHECK;
|
|
else
|
|
control = BMU_UDP_CHECK;
|
|
|
|
td->csum_offs = 0;
|
|
td->csum_start = offset;
|
|
td->csum_write = offset + skb->csum;
|
|
} else
|
|
control = BMU_CHECK;
|
|
|
|
if (!skb_shinfo(skb)->nr_frags) /* single buffer i.e. no fragments */
|
|
control |= BMU_EOF| BMU_IRQ_EOF;
|
|
else {
|
|
struct skge_tx_desc *tf = td;
|
|
|
|
control |= BMU_STFWD;
|
|
for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
|
|
skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
|
|
|
|
map = pci_map_page(hw->pdev, frag->page, frag->page_offset,
|
|
frag->size, PCI_DMA_TODEVICE);
|
|
|
|
e = e->next;
|
|
e->skb = NULL;
|
|
tf = e->desc;
|
|
tf->dma_lo = map;
|
|
tf->dma_hi = (u64) map >> 32;
|
|
pci_unmap_addr_set(e, mapaddr, map);
|
|
pci_unmap_len_set(e, maplen, frag->size);
|
|
|
|
tf->control = BMU_OWN | BMU_SW | control | frag->size;
|
|
}
|
|
tf->control |= BMU_EOF | BMU_IRQ_EOF;
|
|
}
|
|
/* Make sure all the descriptors written */
|
|
wmb();
|
|
td->control = BMU_OWN | BMU_SW | BMU_STF | control | len;
|
|
wmb();
|
|
|
|
skge_write8(hw, Q_ADDR(txqaddr[skge->port], Q_CSR), CSR_START);
|
|
|
|
if (netif_msg_tx_queued(skge))
|
|
printk(KERN_DEBUG "%s: tx queued, slot %d, len %d\n",
|
|
dev->name, e - ring->start, skb->len);
|
|
|
|
ring->to_use = e->next;
|
|
skge->tx_avail -= skb_shinfo(skb)->nr_frags + 1;
|
|
if (skge->tx_avail <= MAX_SKB_FRAGS + 1) {
|
|
pr_debug("%s: transmit queue full\n", dev->name);
|
|
netif_stop_queue(dev);
|
|
}
|
|
|
|
dev->trans_start = jiffies;
|
|
spin_unlock_irqrestore(&skge->tx_lock, flags);
|
|
|
|
return NETDEV_TX_OK;
|
|
}
|
|
|
|
static inline void skge_tx_free(struct skge_hw *hw, struct skge_element *e)
|
|
{
|
|
if (e->skb) {
|
|
pci_unmap_single(hw->pdev,
|
|
pci_unmap_addr(e, mapaddr),
|
|
pci_unmap_len(e, maplen),
|
|
PCI_DMA_TODEVICE);
|
|
dev_kfree_skb_any(e->skb);
|
|
e->skb = NULL;
|
|
} else {
|
|
pci_unmap_page(hw->pdev,
|
|
pci_unmap_addr(e, mapaddr),
|
|
pci_unmap_len(e, maplen),
|
|
PCI_DMA_TODEVICE);
|
|
}
|
|
}
|
|
|
|
static void skge_tx_clean(struct skge_port *skge)
|
|
{
|
|
struct skge_ring *ring = &skge->tx_ring;
|
|
struct skge_element *e;
|
|
unsigned long flags;
|
|
|
|
spin_lock_irqsave(&skge->tx_lock, flags);
|
|
for (e = ring->to_clean; e != ring->to_use; e = e->next) {
|
|
++skge->tx_avail;
|
|
skge_tx_free(skge->hw, e);
|
|
}
|
|
ring->to_clean = e;
|
|
spin_unlock_irqrestore(&skge->tx_lock, flags);
|
|
}
|
|
|
|
static void skge_tx_timeout(struct net_device *dev)
|
|
{
|
|
struct skge_port *skge = netdev_priv(dev);
|
|
|
|
if (netif_msg_timer(skge))
|
|
printk(KERN_DEBUG PFX "%s: tx timeout\n", dev->name);
|
|
|
|
skge_write8(skge->hw, Q_ADDR(txqaddr[skge->port], Q_CSR), CSR_STOP);
|
|
skge_tx_clean(skge);
|
|
}
|
|
|
|
static int skge_change_mtu(struct net_device *dev, int new_mtu)
|
|
{
|
|
int err = 0;
|
|
|
|
if(new_mtu < ETH_ZLEN || new_mtu > ETH_JUMBO_MTU)
|
|
return -EINVAL;
|
|
|
|
dev->mtu = new_mtu;
|
|
|
|
if (netif_running(dev)) {
|
|
skge_down(dev);
|
|
skge_up(dev);
|
|
}
|
|
|
|
return err;
|
|
}
|
|
|
|
static void genesis_set_multicast(struct net_device *dev)
|
|
{
|
|
struct skge_port *skge = netdev_priv(dev);
|
|
struct skge_hw *hw = skge->hw;
|
|
int port = skge->port;
|
|
int i, count = dev->mc_count;
|
|
struct dev_mc_list *list = dev->mc_list;
|
|
u32 mode;
|
|
u8 filter[8];
|
|
|
|
mode = skge_xm_read32(hw, port, XM_MODE);
|
|
mode |= XM_MD_ENA_HASH;
|
|
if (dev->flags & IFF_PROMISC)
|
|
mode |= XM_MD_ENA_PROM;
|
|
else
|
|
mode &= ~XM_MD_ENA_PROM;
|
|
|
|
if (dev->flags & IFF_ALLMULTI)
|
|
memset(filter, 0xff, sizeof(filter));
|
|
else {
|
|
memset(filter, 0, sizeof(filter));
|
|
for(i = 0; list && i < count; i++, list = list->next) {
|
|
u32 crc = crc32_le(~0, list->dmi_addr, ETH_ALEN);
|
|
u8 bit = 63 - (crc & 63);
|
|
|
|
filter[bit/8] |= 1 << (bit%8);
|
|
}
|
|
}
|
|
|
|
skge_xm_outhash(hw, port, XM_HSM, filter);
|
|
|
|
skge_xm_write32(hw, port, XM_MODE, mode);
|
|
}
|
|
|
|
static void yukon_set_multicast(struct net_device *dev)
|
|
{
|
|
struct skge_port *skge = netdev_priv(dev);
|
|
struct skge_hw *hw = skge->hw;
|
|
int port = skge->port;
|
|
struct dev_mc_list *list = dev->mc_list;
|
|
u16 reg;
|
|
u8 filter[8];
|
|
|
|
memset(filter, 0, sizeof(filter));
|
|
|
|
reg = skge_gma_read16(hw, port, GM_RX_CTRL);
|
|
reg |= GM_RXCR_UCF_ENA;
|
|
|
|
if (dev->flags & IFF_PROMISC) /* promiscious */
|
|
reg &= ~(GM_RXCR_UCF_ENA | GM_RXCR_MCF_ENA);
|
|
else if (dev->flags & IFF_ALLMULTI) /* all multicast */
|
|
memset(filter, 0xff, sizeof(filter));
|
|
else if (dev->mc_count == 0) /* no multicast */
|
|
reg &= ~GM_RXCR_MCF_ENA;
|
|
else {
|
|
int i;
|
|
reg |= GM_RXCR_MCF_ENA;
|
|
|
|
for(i = 0; list && i < dev->mc_count; i++, list = list->next) {
|
|
u32 bit = ether_crc(ETH_ALEN, list->dmi_addr) & 0x3f;
|
|
filter[bit/8] |= 1 << (bit%8);
|
|
}
|
|
}
|
|
|
|
|
|
skge_gma_write16(hw, port, GM_MC_ADDR_H1,
|
|
(u16)filter[0] | ((u16)filter[1] << 8));
|
|
skge_gma_write16(hw, port, GM_MC_ADDR_H2,
|
|
(u16)filter[2] | ((u16)filter[3] << 8));
|
|
skge_gma_write16(hw, port, GM_MC_ADDR_H3,
|
|
(u16)filter[4] | ((u16)filter[5] << 8));
|
|
skge_gma_write16(hw, port, GM_MC_ADDR_H4,
|
|
(u16)filter[6] | ((u16)filter[7] << 8));
|
|
|
|
skge_gma_write16(hw, port, GM_RX_CTRL, reg);
|
|
}
|
|
|
|
static inline int bad_phy_status(const struct skge_hw *hw, u32 status)
|
|
{
|
|
if (hw->chip_id == CHIP_ID_GENESIS)
|
|
return (status & (XMR_FS_ERR | XMR_FS_2L_VLAN)) != 0;
|
|
else
|
|
return (status & GMR_FS_ANY_ERR) ||
|
|
(status & GMR_FS_RX_OK) == 0;
|
|
}
|
|
|
|
static void skge_rx_error(struct skge_port *skge, int slot,
|
|
u32 control, u32 status)
|
|
{
|
|
if (netif_msg_rx_err(skge))
|
|
printk(KERN_DEBUG PFX "%s: rx err, slot %d control 0x%x status 0x%x\n",
|
|
skge->netdev->name, slot, control, status);
|
|
|
|
if ((control & (BMU_EOF|BMU_STF)) != (BMU_STF|BMU_EOF)
|
|
|| (control & BMU_BBC) > skge->netdev->mtu + VLAN_ETH_HLEN)
|
|
skge->net_stats.rx_length_errors++;
|
|
else {
|
|
if (skge->hw->chip_id == CHIP_ID_GENESIS) {
|
|
if (status & (XMR_FS_RUNT|XMR_FS_LNG_ERR))
|
|
skge->net_stats.rx_length_errors++;
|
|
if (status & XMR_FS_FRA_ERR)
|
|
skge->net_stats.rx_frame_errors++;
|
|
if (status & XMR_FS_FCS_ERR)
|
|
skge->net_stats.rx_crc_errors++;
|
|
} else {
|
|
if (status & (GMR_FS_LONG_ERR|GMR_FS_UN_SIZE))
|
|
skge->net_stats.rx_length_errors++;
|
|
if (status & GMR_FS_FRAGMENT)
|
|
skge->net_stats.rx_frame_errors++;
|
|
if (status & GMR_FS_CRC_ERR)
|
|
skge->net_stats.rx_crc_errors++;
|
|
}
|
|
}
|
|
}
|
|
|
|
static int skge_poll(struct net_device *dev, int *budget)
|
|
{
|
|
struct skge_port *skge = netdev_priv(dev);
|
|
struct skge_hw *hw = skge->hw;
|
|
struct skge_ring *ring = &skge->rx_ring;
|
|
struct skge_element *e;
|
|
unsigned int to_do = min(dev->quota, *budget);
|
|
unsigned int work_done = 0;
|
|
int done;
|
|
static const u32 irqmask[] = { IS_PORT_1, IS_PORT_2 };
|
|
|
|
for (e = ring->to_clean; e != ring->to_use && work_done < to_do;
|
|
e = e->next) {
|
|
struct skge_rx_desc *rd = e->desc;
|
|
struct sk_buff *skb = e->skb;
|
|
u32 control, len, status;
|
|
|
|
rmb();
|
|
control = rd->control;
|
|
if (control & BMU_OWN)
|
|
break;
|
|
|
|
len = control & BMU_BBC;
|
|
e->skb = NULL;
|
|
|
|
pci_unmap_single(hw->pdev,
|
|
pci_unmap_addr(e, mapaddr),
|
|
pci_unmap_len(e, maplen),
|
|
PCI_DMA_FROMDEVICE);
|
|
|
|
status = rd->status;
|
|
if ((control & (BMU_EOF|BMU_STF)) != (BMU_STF|BMU_EOF)
|
|
|| len > dev->mtu + VLAN_ETH_HLEN
|
|
|| bad_phy_status(hw, status)) {
|
|
skge_rx_error(skge, e - ring->start, control, status);
|
|
dev_kfree_skb(skb);
|
|
continue;
|
|
}
|
|
|
|
if (netif_msg_rx_status(skge))
|
|
printk(KERN_DEBUG PFX "%s: rx slot %d status 0x%x len %d\n",
|
|
dev->name, e - ring->start, rd->status, len);
|
|
|
|
skb_put(skb, len);
|
|
skb->protocol = eth_type_trans(skb, dev);
|
|
|
|
if (skge->rx_csum) {
|
|
skb->csum = le16_to_cpu(rd->csum2);
|
|
skb->ip_summed = CHECKSUM_HW;
|
|
}
|
|
|
|
dev->last_rx = jiffies;
|
|
netif_receive_skb(skb);
|
|
|
|
++work_done;
|
|
}
|
|
ring->to_clean = e;
|
|
|
|
*budget -= work_done;
|
|
dev->quota -= work_done;
|
|
done = work_done < to_do;
|
|
|
|
if (skge_rx_fill(skge))
|
|
done = 0;
|
|
|
|
/* restart receiver */
|
|
wmb();
|
|
skge_write8(hw, Q_ADDR(rxqaddr[skge->port], Q_CSR),
|
|
CSR_START | CSR_IRQ_CL_F);
|
|
|
|
if (done) {
|
|
local_irq_disable();
|
|
hw->intr_mask |= irqmask[skge->port];
|
|
/* Order is important since data can get interrupted */
|
|
skge_write32(hw, B0_IMSK, hw->intr_mask);
|
|
__netif_rx_complete(dev);
|
|
local_irq_enable();
|
|
}
|
|
|
|
return !done;
|
|
}
|
|
|
|
static inline void skge_tx_intr(struct net_device *dev)
|
|
{
|
|
struct skge_port *skge = netdev_priv(dev);
|
|
struct skge_hw *hw = skge->hw;
|
|
struct skge_ring *ring = &skge->tx_ring;
|
|
struct skge_element *e;
|
|
|
|
spin_lock(&skge->tx_lock);
|
|
for(e = ring->to_clean; e != ring->to_use; e = e->next) {
|
|
struct skge_tx_desc *td = e->desc;
|
|
u32 control;
|
|
|
|
rmb();
|
|
control = td->control;
|
|
if (control & BMU_OWN)
|
|
break;
|
|
|
|
if (unlikely(netif_msg_tx_done(skge)))
|
|
printk(KERN_DEBUG PFX "%s: tx done slot %d status 0x%x\n",
|
|
dev->name, e - ring->start, td->status);
|
|
|
|
skge_tx_free(hw, e);
|
|
e->skb = NULL;
|
|
++skge->tx_avail;
|
|
}
|
|
ring->to_clean = e;
|
|
skge_write8(hw, Q_ADDR(txqaddr[skge->port], Q_CSR), CSR_IRQ_CL_F);
|
|
|
|
if (skge->tx_avail > MAX_SKB_FRAGS + 1)
|
|
netif_wake_queue(dev);
|
|
|
|
spin_unlock(&skge->tx_lock);
|
|
}
|
|
|
|
static void skge_mac_parity(struct skge_hw *hw, int port)
|
|
{
|
|
printk(KERN_ERR PFX "%s: mac data parity error\n",
|
|
hw->dev[port] ? hw->dev[port]->name
|
|
: (port == 0 ? "(port A)": "(port B"));
|
|
|
|
if (hw->chip_id == CHIP_ID_GENESIS)
|
|
skge_write16(hw, SKGEMAC_REG(port, TX_MFF_CTRL1),
|
|
MFF_CLR_PERR);
|
|
else
|
|
/* HW-Bug #8: cleared by GMF_CLI_TX_FC instead of GMF_CLI_TX_PE */
|
|
skge_write8(hw, SKGEMAC_REG(port, TX_GMF_CTRL_T),
|
|
(hw->chip_id == CHIP_ID_YUKON && chip_rev(hw) == 0)
|
|
? GMF_CLI_TX_FC : GMF_CLI_TX_PE);
|
|
}
|
|
|
|
static void skge_pci_clear(struct skge_hw *hw)
|
|
{
|
|
u16 status;
|
|
|
|
status = skge_read16(hw, SKGEPCI_REG(PCI_STATUS));
|
|
skge_write8(hw, B2_TST_CTRL1, TST_CFG_WRITE_ON);
|
|
skge_write16(hw, SKGEPCI_REG(PCI_STATUS),
|
|
status | PCI_STATUS_ERROR_BITS);
|
|
skge_write8(hw, B2_TST_CTRL1, TST_CFG_WRITE_OFF);
|
|
}
|
|
|
|
static void skge_mac_intr(struct skge_hw *hw, int port)
|
|
{
|
|
if (hw->chip_id == CHIP_ID_GENESIS)
|
|
genesis_mac_intr(hw, port);
|
|
else
|
|
yukon_mac_intr(hw, port);
|
|
}
|
|
|
|
/* Handle device specific framing and timeout interrupts */
|
|
static void skge_error_irq(struct skge_hw *hw)
|
|
{
|
|
u32 hwstatus = skge_read32(hw, B0_HWE_ISRC);
|
|
|
|
if (hw->chip_id == CHIP_ID_GENESIS) {
|
|
/* clear xmac errors */
|
|
if (hwstatus & (IS_NO_STAT_M1|IS_NO_TIST_M1))
|
|
skge_write16(hw, SKGEMAC_REG(0, RX_MFF_CTRL1), MFF_CLR_INSTAT);
|
|
if (hwstatus & (IS_NO_STAT_M2|IS_NO_TIST_M2))
|
|
skge_write16(hw, SKGEMAC_REG(0, RX_MFF_CTRL2), MFF_CLR_INSTAT);
|
|
} else {
|
|
/* Timestamp (unused) overflow */
|
|
if (hwstatus & IS_IRQ_TIST_OV)
|
|
skge_write8(hw, GMAC_TI_ST_CTRL, GMT_ST_CLR_IRQ);
|
|
|
|
if (hwstatus & IS_IRQ_SENSOR) {
|
|
/* no sensors on 32-bit Yukon */
|
|
if (!(skge_read16(hw, B0_CTST) & CS_BUS_SLOT_SZ)) {
|
|
printk(KERN_ERR PFX "ignoring bogus sensor interrups\n");
|
|
skge_write32(hw, B0_HWE_IMSK,
|
|
IS_ERR_MSK & ~IS_IRQ_SENSOR);
|
|
} else
|
|
printk(KERN_WARNING PFX "sensor interrupt\n");
|
|
}
|
|
|
|
|
|
}
|
|
|
|
if (hwstatus & IS_RAM_RD_PAR) {
|
|
printk(KERN_ERR PFX "Ram read data parity error\n");
|
|
skge_write16(hw, B3_RI_CTRL, RI_CLR_RD_PERR);
|
|
}
|
|
|
|
if (hwstatus & IS_RAM_WR_PAR) {
|
|
printk(KERN_ERR PFX "Ram write data parity error\n");
|
|
skge_write16(hw, B3_RI_CTRL, RI_CLR_WR_PERR);
|
|
}
|
|
|
|
if (hwstatus & IS_M1_PAR_ERR)
|
|
skge_mac_parity(hw, 0);
|
|
|
|
if (hwstatus & IS_M2_PAR_ERR)
|
|
skge_mac_parity(hw, 1);
|
|
|
|
if (hwstatus & IS_R1_PAR_ERR)
|
|
skge_write32(hw, B0_R1_CSR, CSR_IRQ_CL_P);
|
|
|
|
if (hwstatus & IS_R2_PAR_ERR)
|
|
skge_write32(hw, B0_R2_CSR, CSR_IRQ_CL_P);
|
|
|
|
if (hwstatus & (IS_IRQ_MST_ERR|IS_IRQ_STAT)) {
|
|
printk(KERN_ERR PFX "hardware error detected (status 0x%x)\n",
|
|
hwstatus);
|
|
|
|
skge_pci_clear(hw);
|
|
|
|
hwstatus = skge_read32(hw, B0_HWE_ISRC);
|
|
if (hwstatus & IS_IRQ_STAT) {
|
|
printk(KERN_WARNING PFX "IRQ status %x: still set ignoring hardware errors\n",
|
|
hwstatus);
|
|
hw->intr_mask &= ~IS_HW_ERR;
|
|
}
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Interrrupt from PHY are handled in tasklet (soft irq)
|
|
* because accessing phy registers requires spin wait which might
|
|
* cause excess interrupt latency.
|
|
*/
|
|
static void skge_extirq(unsigned long data)
|
|
{
|
|
struct skge_hw *hw = (struct skge_hw *) data;
|
|
int port;
|
|
|
|
spin_lock(&hw->phy_lock);
|
|
for (port = 0; port < 2; port++) {
|
|
struct net_device *dev = hw->dev[port];
|
|
|
|
if (dev && netif_running(dev)) {
|
|
struct skge_port *skge = netdev_priv(dev);
|
|
|
|
if (hw->chip_id != CHIP_ID_GENESIS)
|
|
yukon_phy_intr(skge);
|
|
else if (hw->phy_type == SK_PHY_BCOM)
|
|
genesis_bcom_intr(skge);
|
|
}
|
|
}
|
|
spin_unlock(&hw->phy_lock);
|
|
|
|
local_irq_disable();
|
|
hw->intr_mask |= IS_EXT_REG;
|
|
skge_write32(hw, B0_IMSK, hw->intr_mask);
|
|
local_irq_enable();
|
|
}
|
|
|
|
static irqreturn_t skge_intr(int irq, void *dev_id, struct pt_regs *regs)
|
|
{
|
|
struct skge_hw *hw = dev_id;
|
|
u32 status = skge_read32(hw, B0_SP_ISRC);
|
|
|
|
if (status == 0 || status == ~0) /* hotplug or shared irq */
|
|
return IRQ_NONE;
|
|
|
|
status &= hw->intr_mask;
|
|
|
|
if ((status & IS_R1_F) && netif_rx_schedule_prep(hw->dev[0])) {
|
|
status &= ~IS_R1_F;
|
|
hw->intr_mask &= ~IS_R1_F;
|
|
skge_write32(hw, B0_IMSK, hw->intr_mask);
|
|
__netif_rx_schedule(hw->dev[0]);
|
|
}
|
|
|
|
if ((status & IS_R2_F) && netif_rx_schedule_prep(hw->dev[1])) {
|
|
status &= ~IS_R2_F;
|
|
hw->intr_mask &= ~IS_R2_F;
|
|
skge_write32(hw, B0_IMSK, hw->intr_mask);
|
|
__netif_rx_schedule(hw->dev[1]);
|
|
}
|
|
|
|
if (status & IS_XA1_F)
|
|
skge_tx_intr(hw->dev[0]);
|
|
|
|
if (status & IS_XA2_F)
|
|
skge_tx_intr(hw->dev[1]);
|
|
|
|
if (status & IS_MAC1)
|
|
skge_mac_intr(hw, 0);
|
|
|
|
if (status & IS_MAC2)
|
|
skge_mac_intr(hw, 1);
|
|
|
|
if (status & IS_HW_ERR)
|
|
skge_error_irq(hw);
|
|
|
|
if (status & IS_EXT_REG) {
|
|
hw->intr_mask &= ~IS_EXT_REG;
|
|
tasklet_schedule(&hw->ext_tasklet);
|
|
}
|
|
|
|
if (status)
|
|
skge_write32(hw, B0_IMSK, hw->intr_mask);
|
|
|
|
return IRQ_HANDLED;
|
|
}
|
|
|
|
#ifdef CONFIG_NET_POLL_CONTROLLER
|
|
static void skge_netpoll(struct net_device *dev)
|
|
{
|
|
struct skge_port *skge = netdev_priv(dev);
|
|
|
|
disable_irq(dev->irq);
|
|
skge_intr(dev->irq, skge->hw, NULL);
|
|
enable_irq(dev->irq);
|
|
}
|
|
#endif
|
|
|
|
static int skge_set_mac_address(struct net_device *dev, void *p)
|
|
{
|
|
struct skge_port *skge = netdev_priv(dev);
|
|
struct sockaddr *addr = p;
|
|
int err = 0;
|
|
|
|
if (!is_valid_ether_addr(addr->sa_data))
|
|
return -EADDRNOTAVAIL;
|
|
|
|
skge_down(dev);
|
|
memcpy(dev->dev_addr, addr->sa_data, ETH_ALEN);
|
|
memcpy_toio(skge->hw->regs + B2_MAC_1 + skge->port*8,
|
|
dev->dev_addr, ETH_ALEN);
|
|
memcpy_toio(skge->hw->regs + B2_MAC_2 + skge->port*8,
|
|
dev->dev_addr, ETH_ALEN);
|
|
if (dev->flags & IFF_UP)
|
|
err = skge_up(dev);
|
|
return err;
|
|
}
|
|
|
|
static const struct {
|
|
u8 id;
|
|
const char *name;
|
|
} skge_chips[] = {
|
|
{ CHIP_ID_GENESIS, "Genesis" },
|
|
{ CHIP_ID_YUKON, "Yukon" },
|
|
{ CHIP_ID_YUKON_LITE, "Yukon-Lite"},
|
|
{ CHIP_ID_YUKON_LP, "Yukon-LP"},
|
|
{ CHIP_ID_YUKON_XL, "Yukon-2 XL"},
|
|
{ CHIP_ID_YUKON_EC, "YUKON-2 EC"},
|
|
{ CHIP_ID_YUKON_FE, "YUKON-2 FE"},
|
|
};
|
|
|
|
static const char *skge_board_name(const struct skge_hw *hw)
|
|
{
|
|
int i;
|
|
static char buf[16];
|
|
|
|
for (i = 0; i < ARRAY_SIZE(skge_chips); i++)
|
|
if (skge_chips[i].id == hw->chip_id)
|
|
return skge_chips[i].name;
|
|
|
|
snprintf(buf, sizeof buf, "chipid 0x%x", hw->chip_id);
|
|
return buf;
|
|
}
|
|
|
|
|
|
/*
|
|
* Setup the board data structure, but don't bring up
|
|
* the port(s)
|
|
*/
|
|
static int skge_reset(struct skge_hw *hw)
|
|
{
|
|
u16 ctst;
|
|
u8 t8;
|
|
int i, ports;
|
|
|
|
ctst = skge_read16(hw, B0_CTST);
|
|
|
|
/* do a SW reset */
|
|
skge_write8(hw, B0_CTST, CS_RST_SET);
|
|
skge_write8(hw, B0_CTST, CS_RST_CLR);
|
|
|
|
/* clear PCI errors, if any */
|
|
skge_pci_clear(hw);
|
|
|
|
skge_write8(hw, B0_CTST, CS_MRST_CLR);
|
|
|
|
/* restore CLK_RUN bits (for Yukon-Lite) */
|
|
skge_write16(hw, B0_CTST,
|
|
ctst & (CS_CLK_RUN_HOT|CS_CLK_RUN_RST|CS_CLK_RUN_ENA));
|
|
|
|
hw->chip_id = skge_read8(hw, B2_CHIP_ID);
|
|
hw->phy_type = skge_read8(hw, B2_E_1) & 0xf;
|
|
hw->pmd_type = skge_read8(hw, B2_PMD_TYP);
|
|
|
|
switch(hw->chip_id) {
|
|
case CHIP_ID_GENESIS:
|
|
switch (hw->phy_type) {
|
|
case SK_PHY_XMAC:
|
|
hw->phy_addr = PHY_ADDR_XMAC;
|
|
break;
|
|
case SK_PHY_BCOM:
|
|
hw->phy_addr = PHY_ADDR_BCOM;
|
|
break;
|
|
default:
|
|
printk(KERN_ERR PFX "%s: unsupported phy type 0x%x\n",
|
|
pci_name(hw->pdev), hw->phy_type);
|
|
return -EOPNOTSUPP;
|
|
}
|
|
break;
|
|
|
|
case CHIP_ID_YUKON:
|
|
case CHIP_ID_YUKON_LITE:
|
|
case CHIP_ID_YUKON_LP:
|
|
if (hw->phy_type < SK_PHY_MARV_COPPER && hw->pmd_type != 'S')
|
|
hw->phy_type = SK_PHY_MARV_COPPER;
|
|
|
|
hw->phy_addr = PHY_ADDR_MARV;
|
|
if (!iscopper(hw))
|
|
hw->phy_type = SK_PHY_MARV_FIBER;
|
|
|
|
break;
|
|
|
|
default:
|
|
printk(KERN_ERR PFX "%s: unsupported chip type 0x%x\n",
|
|
pci_name(hw->pdev), hw->chip_id);
|
|
return -EOPNOTSUPP;
|
|
}
|
|
|
|
hw->mac_cfg = skge_read8(hw, B2_MAC_CFG);
|
|
ports = isdualport(hw) ? 2 : 1;
|
|
|
|
/* read the adapters RAM size */
|
|
t8 = skge_read8(hw, B2_E_0);
|
|
if (hw->chip_id == CHIP_ID_GENESIS) {
|
|
if (t8 == 3) {
|
|
/* special case: 4 x 64k x 36, offset = 0x80000 */
|
|
hw->ram_size = 0x100000;
|
|
hw->ram_offset = 0x80000;
|
|
} else
|
|
hw->ram_size = t8 * 512;
|
|
}
|
|
else if (t8 == 0)
|
|
hw->ram_size = 0x20000;
|
|
else
|
|
hw->ram_size = t8 * 4096;
|
|
|
|
if (hw->chip_id == CHIP_ID_GENESIS)
|
|
genesis_init(hw);
|
|
else {
|
|
/* switch power to VCC (WA for VAUX problem) */
|
|
skge_write8(hw, B0_POWER_CTRL,
|
|
PC_VAUX_ENA | PC_VCC_ENA | PC_VAUX_OFF | PC_VCC_ON);
|
|
for (i = 0; i < ports; i++) {
|
|
skge_write16(hw, SKGEMAC_REG(i, GMAC_LINK_CTRL), GMLC_RST_SET);
|
|
skge_write16(hw, SKGEMAC_REG(i, GMAC_LINK_CTRL), GMLC_RST_CLR);
|
|
}
|
|
}
|
|
|
|
/* turn off hardware timer (unused) */
|
|
skge_write8(hw, B2_TI_CTRL, TIM_STOP);
|
|
skge_write8(hw, B2_TI_CTRL, TIM_CLR_IRQ);
|
|
skge_write8(hw, B0_LED, LED_STAT_ON);
|
|
|
|
/* enable the Tx Arbiters */
|
|
for (i = 0; i < ports; i++)
|
|
skge_write8(hw, SKGEMAC_REG(i, TXA_CTRL), TXA_ENA_ARB);
|
|
|
|
/* Initialize ram interface */
|
|
skge_write16(hw, B3_RI_CTRL, RI_RST_CLR);
|
|
|
|
skge_write8(hw, B3_RI_WTO_R1, SK_RI_TO_53);
|
|
skge_write8(hw, B3_RI_WTO_XA1, SK_RI_TO_53);
|
|
skge_write8(hw, B3_RI_WTO_XS1, SK_RI_TO_53);
|
|
skge_write8(hw, B3_RI_RTO_R1, SK_RI_TO_53);
|
|
skge_write8(hw, B3_RI_RTO_XA1, SK_RI_TO_53);
|
|
skge_write8(hw, B3_RI_RTO_XS1, SK_RI_TO_53);
|
|
skge_write8(hw, B3_RI_WTO_R2, SK_RI_TO_53);
|
|
skge_write8(hw, B3_RI_WTO_XA2, SK_RI_TO_53);
|
|
skge_write8(hw, B3_RI_WTO_XS2, SK_RI_TO_53);
|
|
skge_write8(hw, B3_RI_RTO_R2, SK_RI_TO_53);
|
|
skge_write8(hw, B3_RI_RTO_XA2, SK_RI_TO_53);
|
|
skge_write8(hw, B3_RI_RTO_XS2, SK_RI_TO_53);
|
|
|
|
skge_write32(hw, B0_HWE_IMSK, IS_ERR_MSK);
|
|
|
|
/* Set interrupt moderation for Transmit only
|
|
* Receive interrupts avoided by NAPI
|
|
*/
|
|
skge_write32(hw, B2_IRQM_MSK, IS_XA1_F|IS_XA2_F);
|
|
skge_write32(hw, B2_IRQM_INI, skge_usecs2clk(hw, 100));
|
|
skge_write32(hw, B2_IRQM_CTRL, TIM_START);
|
|
|
|
hw->intr_mask = IS_HW_ERR | IS_EXT_REG | IS_PORT_1;
|
|
if (isdualport(hw))
|
|
hw->intr_mask |= IS_PORT_2;
|
|
skge_write32(hw, B0_IMSK, hw->intr_mask);
|
|
|
|
if (hw->chip_id != CHIP_ID_GENESIS)
|
|
skge_write8(hw, GMAC_IRQ_MSK, 0);
|
|
|
|
spin_lock_bh(&hw->phy_lock);
|
|
for (i = 0; i < ports; i++) {
|
|
if (hw->chip_id == CHIP_ID_GENESIS)
|
|
genesis_reset(hw, i);
|
|
else
|
|
yukon_reset(hw, i);
|
|
}
|
|
spin_unlock_bh(&hw->phy_lock);
|
|
|
|
return 0;
|
|
}
|
|
|
|
/* Initialize network device */
|
|
static struct net_device *skge_devinit(struct skge_hw *hw, int port)
|
|
{
|
|
struct skge_port *skge;
|
|
struct net_device *dev = alloc_etherdev(sizeof(*skge));
|
|
|
|
if (!dev) {
|
|
printk(KERN_ERR "skge etherdev alloc failed");
|
|
return NULL;
|
|
}
|
|
|
|
SET_MODULE_OWNER(dev);
|
|
SET_NETDEV_DEV(dev, &hw->pdev->dev);
|
|
dev->open = skge_up;
|
|
dev->stop = skge_down;
|
|
dev->hard_start_xmit = skge_xmit_frame;
|
|
dev->get_stats = skge_get_stats;
|
|
if (hw->chip_id == CHIP_ID_GENESIS)
|
|
dev->set_multicast_list = genesis_set_multicast;
|
|
else
|
|
dev->set_multicast_list = yukon_set_multicast;
|
|
|
|
dev->set_mac_address = skge_set_mac_address;
|
|
dev->change_mtu = skge_change_mtu;
|
|
SET_ETHTOOL_OPS(dev, &skge_ethtool_ops);
|
|
dev->tx_timeout = skge_tx_timeout;
|
|
dev->watchdog_timeo = TX_WATCHDOG;
|
|
dev->poll = skge_poll;
|
|
dev->weight = NAPI_WEIGHT;
|
|
#ifdef CONFIG_NET_POLL_CONTROLLER
|
|
dev->poll_controller = skge_netpoll;
|
|
#endif
|
|
dev->irq = hw->pdev->irq;
|
|
dev->features = NETIF_F_LLTX;
|
|
|
|
skge = netdev_priv(dev);
|
|
skge->netdev = dev;
|
|
skge->hw = hw;
|
|
skge->msg_enable = netif_msg_init(debug, default_msg);
|
|
skge->tx_ring.count = DEFAULT_TX_RING_SIZE;
|
|
skge->rx_ring.count = DEFAULT_RX_RING_SIZE;
|
|
|
|
/* Auto speed and flow control */
|
|
skge->autoneg = AUTONEG_ENABLE;
|
|
skge->flow_control = FLOW_MODE_SYMMETRIC;
|
|
skge->duplex = -1;
|
|
skge->speed = -1;
|
|
skge->advertising = skge_modes(hw);
|
|
|
|
hw->dev[port] = dev;
|
|
|
|
skge->port = port;
|
|
|
|
spin_lock_init(&skge->tx_lock);
|
|
|
|
init_timer(&skge->link_check);
|
|
skge->link_check.function = skge_link_timer;
|
|
skge->link_check.data = (unsigned long) skge;
|
|
|
|
init_timer(&skge->led_blink);
|
|
skge->led_blink.function = skge_blink_timer;
|
|
skge->led_blink.data = (unsigned long) skge;
|
|
|
|
if (hw->chip_id != CHIP_ID_GENESIS) {
|
|
dev->features |= NETIF_F_IP_CSUM | NETIF_F_SG;
|
|
skge->rx_csum = 1;
|
|
}
|
|
|
|
/* read the mac address */
|
|
memcpy_fromio(dev->dev_addr, hw->regs + B2_MAC_1 + port*8, ETH_ALEN);
|
|
|
|
/* device is off until link detection */
|
|
netif_carrier_off(dev);
|
|
netif_stop_queue(dev);
|
|
|
|
return dev;
|
|
}
|
|
|
|
static void __devinit skge_show_addr(struct net_device *dev)
|
|
{
|
|
const struct skge_port *skge = netdev_priv(dev);
|
|
|
|
if (netif_msg_probe(skge))
|
|
printk(KERN_INFO PFX "%s: addr %02x:%02x:%02x:%02x:%02x:%02x\n",
|
|
dev->name,
|
|
dev->dev_addr[0], dev->dev_addr[1], dev->dev_addr[2],
|
|
dev->dev_addr[3], dev->dev_addr[4], dev->dev_addr[5]);
|
|
}
|
|
|
|
static int __devinit skge_probe(struct pci_dev *pdev,
|
|
const struct pci_device_id *ent)
|
|
{
|
|
struct net_device *dev, *dev1;
|
|
struct skge_hw *hw;
|
|
int err, using_dac = 0;
|
|
|
|
if ((err = pci_enable_device(pdev))) {
|
|
printk(KERN_ERR PFX "%s cannot enable PCI device\n",
|
|
pci_name(pdev));
|
|
goto err_out;
|
|
}
|
|
|
|
if ((err = pci_request_regions(pdev, DRV_NAME))) {
|
|
printk(KERN_ERR PFX "%s cannot obtain PCI resources\n",
|
|
pci_name(pdev));
|
|
goto err_out_disable_pdev;
|
|
}
|
|
|
|
pci_set_master(pdev);
|
|
|
|
if (!(err = pci_set_dma_mask(pdev, DMA_64BIT_MASK)))
|
|
using_dac = 1;
|
|
else if (!(err = pci_set_dma_mask(pdev, DMA_32BIT_MASK))) {
|
|
printk(KERN_ERR PFX "%s no usable DMA configuration\n",
|
|
pci_name(pdev));
|
|
goto err_out_free_regions;
|
|
}
|
|
|
|
#ifdef __BIG_ENDIAN
|
|
/* byte swap decriptors in hardware */
|
|
{
|
|
u32 reg;
|
|
|
|
pci_read_config_dword(pdev, PCI_DEV_REG2, ®);
|
|
reg |= PCI_REV_DESC;
|
|
pci_write_config_dword(pdev, PCI_DEV_REG2, reg);
|
|
}
|
|
#endif
|
|
|
|
err = -ENOMEM;
|
|
hw = kmalloc(sizeof(*hw), GFP_KERNEL);
|
|
if (!hw) {
|
|
printk(KERN_ERR PFX "%s: cannot allocate hardware struct\n",
|
|
pci_name(pdev));
|
|
goto err_out_free_regions;
|
|
}
|
|
|
|
memset(hw, 0, sizeof(*hw));
|
|
hw->pdev = pdev;
|
|
spin_lock_init(&hw->phy_lock);
|
|
tasklet_init(&hw->ext_tasklet, skge_extirq, (unsigned long) hw);
|
|
|
|
hw->regs = ioremap_nocache(pci_resource_start(pdev, 0), 0x4000);
|
|
if (!hw->regs) {
|
|
printk(KERN_ERR PFX "%s: cannot map device registers\n",
|
|
pci_name(pdev));
|
|
goto err_out_free_hw;
|
|
}
|
|
|
|
if ((err = request_irq(pdev->irq, skge_intr, SA_SHIRQ, DRV_NAME, hw))) {
|
|
printk(KERN_ERR PFX "%s: cannot assign irq %d\n",
|
|
pci_name(pdev), pdev->irq);
|
|
goto err_out_iounmap;
|
|
}
|
|
pci_set_drvdata(pdev, hw);
|
|
|
|
err = skge_reset(hw);
|
|
if (err)
|
|
goto err_out_free_irq;
|
|
|
|
printk(KERN_INFO PFX "addr 0x%lx irq %d chip %s rev %d\n",
|
|
pci_resource_start(pdev, 0), pdev->irq,
|
|
skge_board_name(hw), chip_rev(hw));
|
|
|
|
if ((dev = skge_devinit(hw, 0)) == NULL)
|
|
goto err_out_led_off;
|
|
|
|
if (using_dac)
|
|
dev->features |= NETIF_F_HIGHDMA;
|
|
|
|
if ((err = register_netdev(dev))) {
|
|
printk(KERN_ERR PFX "%s: cannot register net device\n",
|
|
pci_name(pdev));
|
|
goto err_out_free_netdev;
|
|
}
|
|
|
|
skge_show_addr(dev);
|
|
|
|
if (isdualport(hw) && (dev1 = skge_devinit(hw, 1))) {
|
|
if (using_dac)
|
|
dev1->features |= NETIF_F_HIGHDMA;
|
|
|
|
if (register_netdev(dev1) == 0)
|
|
skge_show_addr(dev1);
|
|
else {
|
|
/* Failure to register second port need not be fatal */
|
|
printk(KERN_WARNING PFX "register of second port failed\n");
|
|
hw->dev[1] = NULL;
|
|
free_netdev(dev1);
|
|
}
|
|
}
|
|
|
|
return 0;
|
|
|
|
err_out_free_netdev:
|
|
free_netdev(dev);
|
|
err_out_led_off:
|
|
skge_write16(hw, B0_LED, LED_STAT_OFF);
|
|
err_out_free_irq:
|
|
free_irq(pdev->irq, hw);
|
|
err_out_iounmap:
|
|
iounmap(hw->regs);
|
|
err_out_free_hw:
|
|
kfree(hw);
|
|
err_out_free_regions:
|
|
pci_release_regions(pdev);
|
|
err_out_disable_pdev:
|
|
pci_disable_device(pdev);
|
|
pci_set_drvdata(pdev, NULL);
|
|
err_out:
|
|
return err;
|
|
}
|
|
|
|
static void __devexit skge_remove(struct pci_dev *pdev)
|
|
{
|
|
struct skge_hw *hw = pci_get_drvdata(pdev);
|
|
struct net_device *dev0, *dev1;
|
|
|
|
if(!hw)
|
|
return;
|
|
|
|
if ((dev1 = hw->dev[1]))
|
|
unregister_netdev(dev1);
|
|
dev0 = hw->dev[0];
|
|
unregister_netdev(dev0);
|
|
|
|
tasklet_kill(&hw->ext_tasklet);
|
|
|
|
free_irq(pdev->irq, hw);
|
|
pci_release_regions(pdev);
|
|
pci_disable_device(pdev);
|
|
if (dev1)
|
|
free_netdev(dev1);
|
|
free_netdev(dev0);
|
|
skge_write16(hw, B0_LED, LED_STAT_OFF);
|
|
iounmap(hw->regs);
|
|
kfree(hw);
|
|
pci_set_drvdata(pdev, NULL);
|
|
}
|
|
|
|
#ifdef CONFIG_PM
|
|
static int skge_suspend(struct pci_dev *pdev, u32 state)
|
|
{
|
|
struct skge_hw *hw = pci_get_drvdata(pdev);
|
|
int i, wol = 0;
|
|
|
|
for(i = 0; i < 2; i++) {
|
|
struct net_device *dev = hw->dev[i];
|
|
|
|
if (dev) {
|
|
struct skge_port *skge = netdev_priv(dev);
|
|
if (netif_running(dev)) {
|
|
netif_carrier_off(dev);
|
|
skge_down(dev);
|
|
}
|
|
netif_device_detach(dev);
|
|
wol |= skge->wol;
|
|
}
|
|
}
|
|
|
|
pci_save_state(pdev);
|
|
pci_enable_wake(pdev, state, wol);
|
|
pci_disable_device(pdev);
|
|
pci_set_power_state(pdev, pci_choose_state(pdev, state));
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int skge_resume(struct pci_dev *pdev)
|
|
{
|
|
struct skge_hw *hw = pci_get_drvdata(pdev);
|
|
int i;
|
|
|
|
pci_set_power_state(pdev, PCI_D0);
|
|
pci_restore_state(pdev);
|
|
pci_enable_wake(pdev, PCI_D0, 0);
|
|
|
|
skge_reset(hw);
|
|
|
|
for(i = 0; i < 2; i++) {
|
|
struct net_device *dev = hw->dev[i];
|
|
if (dev) {
|
|
netif_device_attach(dev);
|
|
if(netif_running(dev))
|
|
skge_up(dev);
|
|
}
|
|
}
|
|
return 0;
|
|
}
|
|
#endif
|
|
|
|
static struct pci_driver skge_driver = {
|
|
.name = DRV_NAME,
|
|
.id_table = skge_id_table,
|
|
.probe = skge_probe,
|
|
.remove = __devexit_p(skge_remove),
|
|
#ifdef CONFIG_PM
|
|
.suspend = skge_suspend,
|
|
.resume = skge_resume,
|
|
#endif
|
|
};
|
|
|
|
static int __init skge_init_module(void)
|
|
{
|
|
return pci_module_init(&skge_driver);
|
|
}
|
|
|
|
static void __exit skge_cleanup_module(void)
|
|
{
|
|
pci_unregister_driver(&skge_driver);
|
|
}
|
|
|
|
module_init(skge_init_module);
|
|
module_exit(skge_cleanup_module);
|