mirror of
https://github.com/FEX-Emu/linux.git
synced 2025-01-01 14:52:32 +00:00
6457474624
The VM currently assumes that an inactive, mapped and referenced file page is in use and promotes it to the active list. However, every mapped file page starts out like this and thus a problem arises when workloads create a stream of such pages that are used only for a short time. By flooding the active list with those pages, the VM quickly gets into trouble finding eligible reclaim canditates. The result is long allocation latencies and eviction of the wrong pages. This patch reuses the PG_referenced page flag (used for unmapped file pages) to implement a usage detection that scales with the speed of LRU list cycling (i.e. memory pressure). If the scanner encounters those pages, the flag is set and the page cycled again on the inactive list. Only if it returns with another page table reference it is activated. Otherwise it is reclaimed as 'not recently used cache'. This effectively changes the minimum lifetime of a used-once mapped file page from a full memory cycle to an inactive list cycle, which allows it to occur in linear streams without affecting the stable working set of the system. Signed-off-by: Johannes Weiner <hannes@cmpxchg.org> Reviewed-by: Rik van Riel <riel@redhat.com> Cc: Minchan Kim <minchan.kim@gmail.com> Cc: OSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com> Cc: Lee Schermerhorn <lee.schermerhorn@hp.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
1405 lines
40 KiB
C
1405 lines
40 KiB
C
/*
|
|
* mm/rmap.c - physical to virtual reverse mappings
|
|
*
|
|
* Copyright 2001, Rik van Riel <riel@conectiva.com.br>
|
|
* Released under the General Public License (GPL).
|
|
*
|
|
* Simple, low overhead reverse mapping scheme.
|
|
* Please try to keep this thing as modular as possible.
|
|
*
|
|
* Provides methods for unmapping each kind of mapped page:
|
|
* the anon methods track anonymous pages, and
|
|
* the file methods track pages belonging to an inode.
|
|
*
|
|
* Original design by Rik van Riel <riel@conectiva.com.br> 2001
|
|
* File methods by Dave McCracken <dmccr@us.ibm.com> 2003, 2004
|
|
* Anonymous methods by Andrea Arcangeli <andrea@suse.de> 2004
|
|
* Contributions by Hugh Dickins 2003, 2004
|
|
*/
|
|
|
|
/*
|
|
* Lock ordering in mm:
|
|
*
|
|
* inode->i_mutex (while writing or truncating, not reading or faulting)
|
|
* inode->i_alloc_sem (vmtruncate_range)
|
|
* mm->mmap_sem
|
|
* page->flags PG_locked (lock_page)
|
|
* mapping->i_mmap_lock
|
|
* anon_vma->lock
|
|
* mm->page_table_lock or pte_lock
|
|
* zone->lru_lock (in mark_page_accessed, isolate_lru_page)
|
|
* swap_lock (in swap_duplicate, swap_info_get)
|
|
* mmlist_lock (in mmput, drain_mmlist and others)
|
|
* mapping->private_lock (in __set_page_dirty_buffers)
|
|
* inode_lock (in set_page_dirty's __mark_inode_dirty)
|
|
* sb_lock (within inode_lock in fs/fs-writeback.c)
|
|
* mapping->tree_lock (widely used, in set_page_dirty,
|
|
* in arch-dependent flush_dcache_mmap_lock,
|
|
* within inode_lock in __sync_single_inode)
|
|
*
|
|
* (code doesn't rely on that order so it could be switched around)
|
|
* ->tasklist_lock
|
|
* anon_vma->lock (memory_failure, collect_procs_anon)
|
|
* pte map lock
|
|
*/
|
|
|
|
#include <linux/mm.h>
|
|
#include <linux/pagemap.h>
|
|
#include <linux/swap.h>
|
|
#include <linux/swapops.h>
|
|
#include <linux/slab.h>
|
|
#include <linux/init.h>
|
|
#include <linux/ksm.h>
|
|
#include <linux/rmap.h>
|
|
#include <linux/rcupdate.h>
|
|
#include <linux/module.h>
|
|
#include <linux/memcontrol.h>
|
|
#include <linux/mmu_notifier.h>
|
|
#include <linux/migrate.h>
|
|
|
|
#include <asm/tlbflush.h>
|
|
|
|
#include "internal.h"
|
|
|
|
static struct kmem_cache *anon_vma_cachep;
|
|
static struct kmem_cache *anon_vma_chain_cachep;
|
|
|
|
static inline struct anon_vma *anon_vma_alloc(void)
|
|
{
|
|
return kmem_cache_alloc(anon_vma_cachep, GFP_KERNEL);
|
|
}
|
|
|
|
void anon_vma_free(struct anon_vma *anon_vma)
|
|
{
|
|
kmem_cache_free(anon_vma_cachep, anon_vma);
|
|
}
|
|
|
|
static inline struct anon_vma_chain *anon_vma_chain_alloc(void)
|
|
{
|
|
return kmem_cache_alloc(anon_vma_chain_cachep, GFP_KERNEL);
|
|
}
|
|
|
|
void anon_vma_chain_free(struct anon_vma_chain *anon_vma_chain)
|
|
{
|
|
kmem_cache_free(anon_vma_chain_cachep, anon_vma_chain);
|
|
}
|
|
|
|
/**
|
|
* anon_vma_prepare - attach an anon_vma to a memory region
|
|
* @vma: the memory region in question
|
|
*
|
|
* This makes sure the memory mapping described by 'vma' has
|
|
* an 'anon_vma' attached to it, so that we can associate the
|
|
* anonymous pages mapped into it with that anon_vma.
|
|
*
|
|
* The common case will be that we already have one, but if
|
|
* if not we either need to find an adjacent mapping that we
|
|
* can re-use the anon_vma from (very common when the only
|
|
* reason for splitting a vma has been mprotect()), or we
|
|
* allocate a new one.
|
|
*
|
|
* Anon-vma allocations are very subtle, because we may have
|
|
* optimistically looked up an anon_vma in page_lock_anon_vma()
|
|
* and that may actually touch the spinlock even in the newly
|
|
* allocated vma (it depends on RCU to make sure that the
|
|
* anon_vma isn't actually destroyed).
|
|
*
|
|
* As a result, we need to do proper anon_vma locking even
|
|
* for the new allocation. At the same time, we do not want
|
|
* to do any locking for the common case of already having
|
|
* an anon_vma.
|
|
*
|
|
* This must be called with the mmap_sem held for reading.
|
|
*/
|
|
int anon_vma_prepare(struct vm_area_struct *vma)
|
|
{
|
|
struct anon_vma *anon_vma = vma->anon_vma;
|
|
struct anon_vma_chain *avc;
|
|
|
|
might_sleep();
|
|
if (unlikely(!anon_vma)) {
|
|
struct mm_struct *mm = vma->vm_mm;
|
|
struct anon_vma *allocated;
|
|
|
|
avc = anon_vma_chain_alloc();
|
|
if (!avc)
|
|
goto out_enomem;
|
|
|
|
anon_vma = find_mergeable_anon_vma(vma);
|
|
allocated = NULL;
|
|
if (!anon_vma) {
|
|
anon_vma = anon_vma_alloc();
|
|
if (unlikely(!anon_vma))
|
|
goto out_enomem_free_avc;
|
|
allocated = anon_vma;
|
|
}
|
|
spin_lock(&anon_vma->lock);
|
|
|
|
/* page_table_lock to protect against threads */
|
|
spin_lock(&mm->page_table_lock);
|
|
if (likely(!vma->anon_vma)) {
|
|
vma->anon_vma = anon_vma;
|
|
avc->anon_vma = anon_vma;
|
|
avc->vma = vma;
|
|
list_add(&avc->same_vma, &vma->anon_vma_chain);
|
|
list_add(&avc->same_anon_vma, &anon_vma->head);
|
|
allocated = NULL;
|
|
}
|
|
spin_unlock(&mm->page_table_lock);
|
|
|
|
spin_unlock(&anon_vma->lock);
|
|
if (unlikely(allocated)) {
|
|
anon_vma_free(allocated);
|
|
anon_vma_chain_free(avc);
|
|
}
|
|
}
|
|
return 0;
|
|
|
|
out_enomem_free_avc:
|
|
anon_vma_chain_free(avc);
|
|
out_enomem:
|
|
return -ENOMEM;
|
|
}
|
|
|
|
static void anon_vma_chain_link(struct vm_area_struct *vma,
|
|
struct anon_vma_chain *avc,
|
|
struct anon_vma *anon_vma)
|
|
{
|
|
avc->vma = vma;
|
|
avc->anon_vma = anon_vma;
|
|
list_add(&avc->same_vma, &vma->anon_vma_chain);
|
|
|
|
spin_lock(&anon_vma->lock);
|
|
list_add_tail(&avc->same_anon_vma, &anon_vma->head);
|
|
spin_unlock(&anon_vma->lock);
|
|
}
|
|
|
|
/*
|
|
* Attach the anon_vmas from src to dst.
|
|
* Returns 0 on success, -ENOMEM on failure.
|
|
*/
|
|
int anon_vma_clone(struct vm_area_struct *dst, struct vm_area_struct *src)
|
|
{
|
|
struct anon_vma_chain *avc, *pavc;
|
|
|
|
list_for_each_entry(pavc, &src->anon_vma_chain, same_vma) {
|
|
avc = anon_vma_chain_alloc();
|
|
if (!avc)
|
|
goto enomem_failure;
|
|
anon_vma_chain_link(dst, avc, pavc->anon_vma);
|
|
}
|
|
return 0;
|
|
|
|
enomem_failure:
|
|
unlink_anon_vmas(dst);
|
|
return -ENOMEM;
|
|
}
|
|
|
|
/*
|
|
* Attach vma to its own anon_vma, as well as to the anon_vmas that
|
|
* the corresponding VMA in the parent process is attached to.
|
|
* Returns 0 on success, non-zero on failure.
|
|
*/
|
|
int anon_vma_fork(struct vm_area_struct *vma, struct vm_area_struct *pvma)
|
|
{
|
|
struct anon_vma_chain *avc;
|
|
struct anon_vma *anon_vma;
|
|
|
|
/* Don't bother if the parent process has no anon_vma here. */
|
|
if (!pvma->anon_vma)
|
|
return 0;
|
|
|
|
/*
|
|
* First, attach the new VMA to the parent VMA's anon_vmas,
|
|
* so rmap can find non-COWed pages in child processes.
|
|
*/
|
|
if (anon_vma_clone(vma, pvma))
|
|
return -ENOMEM;
|
|
|
|
/* Then add our own anon_vma. */
|
|
anon_vma = anon_vma_alloc();
|
|
if (!anon_vma)
|
|
goto out_error;
|
|
avc = anon_vma_chain_alloc();
|
|
if (!avc)
|
|
goto out_error_free_anon_vma;
|
|
anon_vma_chain_link(vma, avc, anon_vma);
|
|
/* Mark this anon_vma as the one where our new (COWed) pages go. */
|
|
vma->anon_vma = anon_vma;
|
|
|
|
return 0;
|
|
|
|
out_error_free_anon_vma:
|
|
anon_vma_free(anon_vma);
|
|
out_error:
|
|
return -ENOMEM;
|
|
}
|
|
|
|
static void anon_vma_unlink(struct anon_vma_chain *anon_vma_chain)
|
|
{
|
|
struct anon_vma *anon_vma = anon_vma_chain->anon_vma;
|
|
int empty;
|
|
|
|
/* If anon_vma_fork fails, we can get an empty anon_vma_chain. */
|
|
if (!anon_vma)
|
|
return;
|
|
|
|
spin_lock(&anon_vma->lock);
|
|
list_del(&anon_vma_chain->same_anon_vma);
|
|
|
|
/* We must garbage collect the anon_vma if it's empty */
|
|
empty = list_empty(&anon_vma->head) && !ksm_refcount(anon_vma);
|
|
spin_unlock(&anon_vma->lock);
|
|
|
|
if (empty)
|
|
anon_vma_free(anon_vma);
|
|
}
|
|
|
|
void unlink_anon_vmas(struct vm_area_struct *vma)
|
|
{
|
|
struct anon_vma_chain *avc, *next;
|
|
|
|
/* Unlink each anon_vma chained to the VMA. */
|
|
list_for_each_entry_safe(avc, next, &vma->anon_vma_chain, same_vma) {
|
|
anon_vma_unlink(avc);
|
|
list_del(&avc->same_vma);
|
|
anon_vma_chain_free(avc);
|
|
}
|
|
}
|
|
|
|
static void anon_vma_ctor(void *data)
|
|
{
|
|
struct anon_vma *anon_vma = data;
|
|
|
|
spin_lock_init(&anon_vma->lock);
|
|
ksm_refcount_init(anon_vma);
|
|
INIT_LIST_HEAD(&anon_vma->head);
|
|
}
|
|
|
|
void __init anon_vma_init(void)
|
|
{
|
|
anon_vma_cachep = kmem_cache_create("anon_vma", sizeof(struct anon_vma),
|
|
0, SLAB_DESTROY_BY_RCU|SLAB_PANIC, anon_vma_ctor);
|
|
anon_vma_chain_cachep = KMEM_CACHE(anon_vma_chain, SLAB_PANIC);
|
|
}
|
|
|
|
/*
|
|
* Getting a lock on a stable anon_vma from a page off the LRU is
|
|
* tricky: page_lock_anon_vma rely on RCU to guard against the races.
|
|
*/
|
|
struct anon_vma *page_lock_anon_vma(struct page *page)
|
|
{
|
|
struct anon_vma *anon_vma;
|
|
unsigned long anon_mapping;
|
|
|
|
rcu_read_lock();
|
|
anon_mapping = (unsigned long) ACCESS_ONCE(page->mapping);
|
|
if ((anon_mapping & PAGE_MAPPING_FLAGS) != PAGE_MAPPING_ANON)
|
|
goto out;
|
|
if (!page_mapped(page))
|
|
goto out;
|
|
|
|
anon_vma = (struct anon_vma *) (anon_mapping - PAGE_MAPPING_ANON);
|
|
spin_lock(&anon_vma->lock);
|
|
return anon_vma;
|
|
out:
|
|
rcu_read_unlock();
|
|
return NULL;
|
|
}
|
|
|
|
void page_unlock_anon_vma(struct anon_vma *anon_vma)
|
|
{
|
|
spin_unlock(&anon_vma->lock);
|
|
rcu_read_unlock();
|
|
}
|
|
|
|
/*
|
|
* At what user virtual address is page expected in @vma?
|
|
* Returns virtual address or -EFAULT if page's index/offset is not
|
|
* within the range mapped the @vma.
|
|
*/
|
|
static inline unsigned long
|
|
vma_address(struct page *page, struct vm_area_struct *vma)
|
|
{
|
|
pgoff_t pgoff = page->index << (PAGE_CACHE_SHIFT - PAGE_SHIFT);
|
|
unsigned long address;
|
|
|
|
address = vma->vm_start + ((pgoff - vma->vm_pgoff) << PAGE_SHIFT);
|
|
if (unlikely(address < vma->vm_start || address >= vma->vm_end)) {
|
|
/* page should be within @vma mapping range */
|
|
return -EFAULT;
|
|
}
|
|
return address;
|
|
}
|
|
|
|
/*
|
|
* At what user virtual address is page expected in vma?
|
|
* checking that the page matches the vma.
|
|
*/
|
|
unsigned long page_address_in_vma(struct page *page, struct vm_area_struct *vma)
|
|
{
|
|
if (PageAnon(page)) {
|
|
if (vma->anon_vma != page_anon_vma(page))
|
|
return -EFAULT;
|
|
} else if (page->mapping && !(vma->vm_flags & VM_NONLINEAR)) {
|
|
if (!vma->vm_file ||
|
|
vma->vm_file->f_mapping != page->mapping)
|
|
return -EFAULT;
|
|
} else
|
|
return -EFAULT;
|
|
return vma_address(page, vma);
|
|
}
|
|
|
|
/*
|
|
* Check that @page is mapped at @address into @mm.
|
|
*
|
|
* If @sync is false, page_check_address may perform a racy check to avoid
|
|
* the page table lock when the pte is not present (helpful when reclaiming
|
|
* highly shared pages).
|
|
*
|
|
* On success returns with pte mapped and locked.
|
|
*/
|
|
pte_t *page_check_address(struct page *page, struct mm_struct *mm,
|
|
unsigned long address, spinlock_t **ptlp, int sync)
|
|
{
|
|
pgd_t *pgd;
|
|
pud_t *pud;
|
|
pmd_t *pmd;
|
|
pte_t *pte;
|
|
spinlock_t *ptl;
|
|
|
|
pgd = pgd_offset(mm, address);
|
|
if (!pgd_present(*pgd))
|
|
return NULL;
|
|
|
|
pud = pud_offset(pgd, address);
|
|
if (!pud_present(*pud))
|
|
return NULL;
|
|
|
|
pmd = pmd_offset(pud, address);
|
|
if (!pmd_present(*pmd))
|
|
return NULL;
|
|
|
|
pte = pte_offset_map(pmd, address);
|
|
/* Make a quick check before getting the lock */
|
|
if (!sync && !pte_present(*pte)) {
|
|
pte_unmap(pte);
|
|
return NULL;
|
|
}
|
|
|
|
ptl = pte_lockptr(mm, pmd);
|
|
spin_lock(ptl);
|
|
if (pte_present(*pte) && page_to_pfn(page) == pte_pfn(*pte)) {
|
|
*ptlp = ptl;
|
|
return pte;
|
|
}
|
|
pte_unmap_unlock(pte, ptl);
|
|
return NULL;
|
|
}
|
|
|
|
/**
|
|
* page_mapped_in_vma - check whether a page is really mapped in a VMA
|
|
* @page: the page to test
|
|
* @vma: the VMA to test
|
|
*
|
|
* Returns 1 if the page is mapped into the page tables of the VMA, 0
|
|
* if the page is not mapped into the page tables of this VMA. Only
|
|
* valid for normal file or anonymous VMAs.
|
|
*/
|
|
int page_mapped_in_vma(struct page *page, struct vm_area_struct *vma)
|
|
{
|
|
unsigned long address;
|
|
pte_t *pte;
|
|
spinlock_t *ptl;
|
|
|
|
address = vma_address(page, vma);
|
|
if (address == -EFAULT) /* out of vma range */
|
|
return 0;
|
|
pte = page_check_address(page, vma->vm_mm, address, &ptl, 1);
|
|
if (!pte) /* the page is not in this mm */
|
|
return 0;
|
|
pte_unmap_unlock(pte, ptl);
|
|
|
|
return 1;
|
|
}
|
|
|
|
/*
|
|
* Subfunctions of page_referenced: page_referenced_one called
|
|
* repeatedly from either page_referenced_anon or page_referenced_file.
|
|
*/
|
|
int page_referenced_one(struct page *page, struct vm_area_struct *vma,
|
|
unsigned long address, unsigned int *mapcount,
|
|
unsigned long *vm_flags)
|
|
{
|
|
struct mm_struct *mm = vma->vm_mm;
|
|
pte_t *pte;
|
|
spinlock_t *ptl;
|
|
int referenced = 0;
|
|
|
|
pte = page_check_address(page, mm, address, &ptl, 0);
|
|
if (!pte)
|
|
goto out;
|
|
|
|
/*
|
|
* Don't want to elevate referenced for mlocked page that gets this far,
|
|
* in order that it progresses to try_to_unmap and is moved to the
|
|
* unevictable list.
|
|
*/
|
|
if (vma->vm_flags & VM_LOCKED) {
|
|
*mapcount = 1; /* break early from loop */
|
|
*vm_flags |= VM_LOCKED;
|
|
goto out_unmap;
|
|
}
|
|
|
|
if (ptep_clear_flush_young_notify(vma, address, pte)) {
|
|
/*
|
|
* Don't treat a reference through a sequentially read
|
|
* mapping as such. If the page has been used in
|
|
* another mapping, we will catch it; if this other
|
|
* mapping is already gone, the unmap path will have
|
|
* set PG_referenced or activated the page.
|
|
*/
|
|
if (likely(!VM_SequentialReadHint(vma)))
|
|
referenced++;
|
|
}
|
|
|
|
/* Pretend the page is referenced if the task has the
|
|
swap token and is in the middle of a page fault. */
|
|
if (mm != current->mm && has_swap_token(mm) &&
|
|
rwsem_is_locked(&mm->mmap_sem))
|
|
referenced++;
|
|
|
|
out_unmap:
|
|
(*mapcount)--;
|
|
pte_unmap_unlock(pte, ptl);
|
|
|
|
if (referenced)
|
|
*vm_flags |= vma->vm_flags;
|
|
out:
|
|
return referenced;
|
|
}
|
|
|
|
static int page_referenced_anon(struct page *page,
|
|
struct mem_cgroup *mem_cont,
|
|
unsigned long *vm_flags)
|
|
{
|
|
unsigned int mapcount;
|
|
struct anon_vma *anon_vma;
|
|
struct anon_vma_chain *avc;
|
|
int referenced = 0;
|
|
|
|
anon_vma = page_lock_anon_vma(page);
|
|
if (!anon_vma)
|
|
return referenced;
|
|
|
|
mapcount = page_mapcount(page);
|
|
list_for_each_entry(avc, &anon_vma->head, same_anon_vma) {
|
|
struct vm_area_struct *vma = avc->vma;
|
|
unsigned long address = vma_address(page, vma);
|
|
if (address == -EFAULT)
|
|
continue;
|
|
/*
|
|
* If we are reclaiming on behalf of a cgroup, skip
|
|
* counting on behalf of references from different
|
|
* cgroups
|
|
*/
|
|
if (mem_cont && !mm_match_cgroup(vma->vm_mm, mem_cont))
|
|
continue;
|
|
referenced += page_referenced_one(page, vma, address,
|
|
&mapcount, vm_flags);
|
|
if (!mapcount)
|
|
break;
|
|
}
|
|
|
|
page_unlock_anon_vma(anon_vma);
|
|
return referenced;
|
|
}
|
|
|
|
/**
|
|
* page_referenced_file - referenced check for object-based rmap
|
|
* @page: the page we're checking references on.
|
|
* @mem_cont: target memory controller
|
|
* @vm_flags: collect encountered vma->vm_flags who actually referenced the page
|
|
*
|
|
* For an object-based mapped page, find all the places it is mapped and
|
|
* check/clear the referenced flag. This is done by following the page->mapping
|
|
* pointer, then walking the chain of vmas it holds. It returns the number
|
|
* of references it found.
|
|
*
|
|
* This function is only called from page_referenced for object-based pages.
|
|
*/
|
|
static int page_referenced_file(struct page *page,
|
|
struct mem_cgroup *mem_cont,
|
|
unsigned long *vm_flags)
|
|
{
|
|
unsigned int mapcount;
|
|
struct address_space *mapping = page->mapping;
|
|
pgoff_t pgoff = page->index << (PAGE_CACHE_SHIFT - PAGE_SHIFT);
|
|
struct vm_area_struct *vma;
|
|
struct prio_tree_iter iter;
|
|
int referenced = 0;
|
|
|
|
/*
|
|
* The caller's checks on page->mapping and !PageAnon have made
|
|
* sure that this is a file page: the check for page->mapping
|
|
* excludes the case just before it gets set on an anon page.
|
|
*/
|
|
BUG_ON(PageAnon(page));
|
|
|
|
/*
|
|
* The page lock not only makes sure that page->mapping cannot
|
|
* suddenly be NULLified by truncation, it makes sure that the
|
|
* structure at mapping cannot be freed and reused yet,
|
|
* so we can safely take mapping->i_mmap_lock.
|
|
*/
|
|
BUG_ON(!PageLocked(page));
|
|
|
|
spin_lock(&mapping->i_mmap_lock);
|
|
|
|
/*
|
|
* i_mmap_lock does not stabilize mapcount at all, but mapcount
|
|
* is more likely to be accurate if we note it after spinning.
|
|
*/
|
|
mapcount = page_mapcount(page);
|
|
|
|
vma_prio_tree_foreach(vma, &iter, &mapping->i_mmap, pgoff, pgoff) {
|
|
unsigned long address = vma_address(page, vma);
|
|
if (address == -EFAULT)
|
|
continue;
|
|
/*
|
|
* If we are reclaiming on behalf of a cgroup, skip
|
|
* counting on behalf of references from different
|
|
* cgroups
|
|
*/
|
|
if (mem_cont && !mm_match_cgroup(vma->vm_mm, mem_cont))
|
|
continue;
|
|
referenced += page_referenced_one(page, vma, address,
|
|
&mapcount, vm_flags);
|
|
if (!mapcount)
|
|
break;
|
|
}
|
|
|
|
spin_unlock(&mapping->i_mmap_lock);
|
|
return referenced;
|
|
}
|
|
|
|
/**
|
|
* page_referenced - test if the page was referenced
|
|
* @page: the page to test
|
|
* @is_locked: caller holds lock on the page
|
|
* @mem_cont: target memory controller
|
|
* @vm_flags: collect encountered vma->vm_flags who actually referenced the page
|
|
*
|
|
* Quick test_and_clear_referenced for all mappings to a page,
|
|
* returns the number of ptes which referenced the page.
|
|
*/
|
|
int page_referenced(struct page *page,
|
|
int is_locked,
|
|
struct mem_cgroup *mem_cont,
|
|
unsigned long *vm_flags)
|
|
{
|
|
int referenced = 0;
|
|
int we_locked = 0;
|
|
|
|
*vm_flags = 0;
|
|
if (page_mapped(page) && page_rmapping(page)) {
|
|
if (!is_locked && (!PageAnon(page) || PageKsm(page))) {
|
|
we_locked = trylock_page(page);
|
|
if (!we_locked) {
|
|
referenced++;
|
|
goto out;
|
|
}
|
|
}
|
|
if (unlikely(PageKsm(page)))
|
|
referenced += page_referenced_ksm(page, mem_cont,
|
|
vm_flags);
|
|
else if (PageAnon(page))
|
|
referenced += page_referenced_anon(page, mem_cont,
|
|
vm_flags);
|
|
else if (page->mapping)
|
|
referenced += page_referenced_file(page, mem_cont,
|
|
vm_flags);
|
|
if (we_locked)
|
|
unlock_page(page);
|
|
}
|
|
out:
|
|
if (page_test_and_clear_young(page))
|
|
referenced++;
|
|
|
|
return referenced;
|
|
}
|
|
|
|
static int page_mkclean_one(struct page *page, struct vm_area_struct *vma,
|
|
unsigned long address)
|
|
{
|
|
struct mm_struct *mm = vma->vm_mm;
|
|
pte_t *pte;
|
|
spinlock_t *ptl;
|
|
int ret = 0;
|
|
|
|
pte = page_check_address(page, mm, address, &ptl, 1);
|
|
if (!pte)
|
|
goto out;
|
|
|
|
if (pte_dirty(*pte) || pte_write(*pte)) {
|
|
pte_t entry;
|
|
|
|
flush_cache_page(vma, address, pte_pfn(*pte));
|
|
entry = ptep_clear_flush_notify(vma, address, pte);
|
|
entry = pte_wrprotect(entry);
|
|
entry = pte_mkclean(entry);
|
|
set_pte_at(mm, address, pte, entry);
|
|
ret = 1;
|
|
}
|
|
|
|
pte_unmap_unlock(pte, ptl);
|
|
out:
|
|
return ret;
|
|
}
|
|
|
|
static int page_mkclean_file(struct address_space *mapping, struct page *page)
|
|
{
|
|
pgoff_t pgoff = page->index << (PAGE_CACHE_SHIFT - PAGE_SHIFT);
|
|
struct vm_area_struct *vma;
|
|
struct prio_tree_iter iter;
|
|
int ret = 0;
|
|
|
|
BUG_ON(PageAnon(page));
|
|
|
|
spin_lock(&mapping->i_mmap_lock);
|
|
vma_prio_tree_foreach(vma, &iter, &mapping->i_mmap, pgoff, pgoff) {
|
|
if (vma->vm_flags & VM_SHARED) {
|
|
unsigned long address = vma_address(page, vma);
|
|
if (address == -EFAULT)
|
|
continue;
|
|
ret += page_mkclean_one(page, vma, address);
|
|
}
|
|
}
|
|
spin_unlock(&mapping->i_mmap_lock);
|
|
return ret;
|
|
}
|
|
|
|
int page_mkclean(struct page *page)
|
|
{
|
|
int ret = 0;
|
|
|
|
BUG_ON(!PageLocked(page));
|
|
|
|
if (page_mapped(page)) {
|
|
struct address_space *mapping = page_mapping(page);
|
|
if (mapping) {
|
|
ret = page_mkclean_file(mapping, page);
|
|
if (page_test_dirty(page)) {
|
|
page_clear_dirty(page);
|
|
ret = 1;
|
|
}
|
|
}
|
|
}
|
|
|
|
return ret;
|
|
}
|
|
EXPORT_SYMBOL_GPL(page_mkclean);
|
|
|
|
/**
|
|
* page_move_anon_rmap - move a page to our anon_vma
|
|
* @page: the page to move to our anon_vma
|
|
* @vma: the vma the page belongs to
|
|
* @address: the user virtual address mapped
|
|
*
|
|
* When a page belongs exclusively to one process after a COW event,
|
|
* that page can be moved into the anon_vma that belongs to just that
|
|
* process, so the rmap code will not search the parent or sibling
|
|
* processes.
|
|
*/
|
|
void page_move_anon_rmap(struct page *page,
|
|
struct vm_area_struct *vma, unsigned long address)
|
|
{
|
|
struct anon_vma *anon_vma = vma->anon_vma;
|
|
|
|
VM_BUG_ON(!PageLocked(page));
|
|
VM_BUG_ON(!anon_vma);
|
|
VM_BUG_ON(page->index != linear_page_index(vma, address));
|
|
|
|
anon_vma = (void *) anon_vma + PAGE_MAPPING_ANON;
|
|
page->mapping = (struct address_space *) anon_vma;
|
|
}
|
|
|
|
/**
|
|
* __page_set_anon_rmap - setup new anonymous rmap
|
|
* @page: the page to add the mapping to
|
|
* @vma: the vm area in which the mapping is added
|
|
* @address: the user virtual address mapped
|
|
*/
|
|
static void __page_set_anon_rmap(struct page *page,
|
|
struct vm_area_struct *vma, unsigned long address)
|
|
{
|
|
struct anon_vma *anon_vma = vma->anon_vma;
|
|
|
|
BUG_ON(!anon_vma);
|
|
anon_vma = (void *) anon_vma + PAGE_MAPPING_ANON;
|
|
page->mapping = (struct address_space *) anon_vma;
|
|
page->index = linear_page_index(vma, address);
|
|
}
|
|
|
|
/**
|
|
* __page_check_anon_rmap - sanity check anonymous rmap addition
|
|
* @page: the page to add the mapping to
|
|
* @vma: the vm area in which the mapping is added
|
|
* @address: the user virtual address mapped
|
|
*/
|
|
static void __page_check_anon_rmap(struct page *page,
|
|
struct vm_area_struct *vma, unsigned long address)
|
|
{
|
|
#ifdef CONFIG_DEBUG_VM
|
|
/*
|
|
* The page's anon-rmap details (mapping and index) are guaranteed to
|
|
* be set up correctly at this point.
|
|
*
|
|
* We have exclusion against page_add_anon_rmap because the caller
|
|
* always holds the page locked, except if called from page_dup_rmap,
|
|
* in which case the page is already known to be setup.
|
|
*
|
|
* We have exclusion against page_add_new_anon_rmap because those pages
|
|
* are initially only visible via the pagetables, and the pte is locked
|
|
* over the call to page_add_new_anon_rmap.
|
|
*/
|
|
BUG_ON(page->index != linear_page_index(vma, address));
|
|
#endif
|
|
}
|
|
|
|
/**
|
|
* page_add_anon_rmap - add pte mapping to an anonymous page
|
|
* @page: the page to add the mapping to
|
|
* @vma: the vm area in which the mapping is added
|
|
* @address: the user virtual address mapped
|
|
*
|
|
* The caller needs to hold the pte lock, and the page must be locked in
|
|
* the anon_vma case: to serialize mapping,index checking after setting,
|
|
* and to ensure that PageAnon is not being upgraded racily to PageKsm
|
|
* (but PageKsm is never downgraded to PageAnon).
|
|
*/
|
|
void page_add_anon_rmap(struct page *page,
|
|
struct vm_area_struct *vma, unsigned long address)
|
|
{
|
|
int first = atomic_inc_and_test(&page->_mapcount);
|
|
if (first)
|
|
__inc_zone_page_state(page, NR_ANON_PAGES);
|
|
if (unlikely(PageKsm(page)))
|
|
return;
|
|
|
|
VM_BUG_ON(!PageLocked(page));
|
|
VM_BUG_ON(address < vma->vm_start || address >= vma->vm_end);
|
|
if (first)
|
|
__page_set_anon_rmap(page, vma, address);
|
|
else
|
|
__page_check_anon_rmap(page, vma, address);
|
|
}
|
|
|
|
/**
|
|
* page_add_new_anon_rmap - add pte mapping to a new anonymous page
|
|
* @page: the page to add the mapping to
|
|
* @vma: the vm area in which the mapping is added
|
|
* @address: the user virtual address mapped
|
|
*
|
|
* Same as page_add_anon_rmap but must only be called on *new* pages.
|
|
* This means the inc-and-test can be bypassed.
|
|
* Page does not have to be locked.
|
|
*/
|
|
void page_add_new_anon_rmap(struct page *page,
|
|
struct vm_area_struct *vma, unsigned long address)
|
|
{
|
|
VM_BUG_ON(address < vma->vm_start || address >= vma->vm_end);
|
|
SetPageSwapBacked(page);
|
|
atomic_set(&page->_mapcount, 0); /* increment count (starts at -1) */
|
|
__inc_zone_page_state(page, NR_ANON_PAGES);
|
|
__page_set_anon_rmap(page, vma, address);
|
|
if (page_evictable(page, vma))
|
|
lru_cache_add_lru(page, LRU_ACTIVE_ANON);
|
|
else
|
|
add_page_to_unevictable_list(page);
|
|
}
|
|
|
|
/**
|
|
* page_add_file_rmap - add pte mapping to a file page
|
|
* @page: the page to add the mapping to
|
|
*
|
|
* The caller needs to hold the pte lock.
|
|
*/
|
|
void page_add_file_rmap(struct page *page)
|
|
{
|
|
if (atomic_inc_and_test(&page->_mapcount)) {
|
|
__inc_zone_page_state(page, NR_FILE_MAPPED);
|
|
mem_cgroup_update_file_mapped(page, 1);
|
|
}
|
|
}
|
|
|
|
/**
|
|
* page_remove_rmap - take down pte mapping from a page
|
|
* @page: page to remove mapping from
|
|
*
|
|
* The caller needs to hold the pte lock.
|
|
*/
|
|
void page_remove_rmap(struct page *page)
|
|
{
|
|
/* page still mapped by someone else? */
|
|
if (!atomic_add_negative(-1, &page->_mapcount))
|
|
return;
|
|
|
|
/*
|
|
* Now that the last pte has gone, s390 must transfer dirty
|
|
* flag from storage key to struct page. We can usually skip
|
|
* this if the page is anon, so about to be freed; but perhaps
|
|
* not if it's in swapcache - there might be another pte slot
|
|
* containing the swap entry, but page not yet written to swap.
|
|
*/
|
|
if ((!PageAnon(page) || PageSwapCache(page)) && page_test_dirty(page)) {
|
|
page_clear_dirty(page);
|
|
set_page_dirty(page);
|
|
}
|
|
if (PageAnon(page)) {
|
|
mem_cgroup_uncharge_page(page);
|
|
__dec_zone_page_state(page, NR_ANON_PAGES);
|
|
} else {
|
|
__dec_zone_page_state(page, NR_FILE_MAPPED);
|
|
mem_cgroup_update_file_mapped(page, -1);
|
|
}
|
|
/*
|
|
* It would be tidy to reset the PageAnon mapping here,
|
|
* but that might overwrite a racing page_add_anon_rmap
|
|
* which increments mapcount after us but sets mapping
|
|
* before us: so leave the reset to free_hot_cold_page,
|
|
* and remember that it's only reliable while mapped.
|
|
* Leaving it set also helps swapoff to reinstate ptes
|
|
* faster for those pages still in swapcache.
|
|
*/
|
|
}
|
|
|
|
/*
|
|
* Subfunctions of try_to_unmap: try_to_unmap_one called
|
|
* repeatedly from either try_to_unmap_anon or try_to_unmap_file.
|
|
*/
|
|
int try_to_unmap_one(struct page *page, struct vm_area_struct *vma,
|
|
unsigned long address, enum ttu_flags flags)
|
|
{
|
|
struct mm_struct *mm = vma->vm_mm;
|
|
pte_t *pte;
|
|
pte_t pteval;
|
|
spinlock_t *ptl;
|
|
int ret = SWAP_AGAIN;
|
|
|
|
pte = page_check_address(page, mm, address, &ptl, 0);
|
|
if (!pte)
|
|
goto out;
|
|
|
|
/*
|
|
* If the page is mlock()d, we cannot swap it out.
|
|
* If it's recently referenced (perhaps page_referenced
|
|
* skipped over this mm) then we should reactivate it.
|
|
*/
|
|
if (!(flags & TTU_IGNORE_MLOCK)) {
|
|
if (vma->vm_flags & VM_LOCKED)
|
|
goto out_mlock;
|
|
|
|
if (TTU_ACTION(flags) == TTU_MUNLOCK)
|
|
goto out_unmap;
|
|
}
|
|
if (!(flags & TTU_IGNORE_ACCESS)) {
|
|
if (ptep_clear_flush_young_notify(vma, address, pte)) {
|
|
ret = SWAP_FAIL;
|
|
goto out_unmap;
|
|
}
|
|
}
|
|
|
|
/* Nuke the page table entry. */
|
|
flush_cache_page(vma, address, page_to_pfn(page));
|
|
pteval = ptep_clear_flush_notify(vma, address, pte);
|
|
|
|
/* Move the dirty bit to the physical page now the pte is gone. */
|
|
if (pte_dirty(pteval))
|
|
set_page_dirty(page);
|
|
|
|
/* Update high watermark before we lower rss */
|
|
update_hiwater_rss(mm);
|
|
|
|
if (PageHWPoison(page) && !(flags & TTU_IGNORE_HWPOISON)) {
|
|
if (PageAnon(page))
|
|
dec_mm_counter(mm, MM_ANONPAGES);
|
|
else
|
|
dec_mm_counter(mm, MM_FILEPAGES);
|
|
set_pte_at(mm, address, pte,
|
|
swp_entry_to_pte(make_hwpoison_entry(page)));
|
|
} else if (PageAnon(page)) {
|
|
swp_entry_t entry = { .val = page_private(page) };
|
|
|
|
if (PageSwapCache(page)) {
|
|
/*
|
|
* Store the swap location in the pte.
|
|
* See handle_pte_fault() ...
|
|
*/
|
|
if (swap_duplicate(entry) < 0) {
|
|
set_pte_at(mm, address, pte, pteval);
|
|
ret = SWAP_FAIL;
|
|
goto out_unmap;
|
|
}
|
|
if (list_empty(&mm->mmlist)) {
|
|
spin_lock(&mmlist_lock);
|
|
if (list_empty(&mm->mmlist))
|
|
list_add(&mm->mmlist, &init_mm.mmlist);
|
|
spin_unlock(&mmlist_lock);
|
|
}
|
|
dec_mm_counter(mm, MM_ANONPAGES);
|
|
inc_mm_counter(mm, MM_SWAPENTS);
|
|
} else if (PAGE_MIGRATION) {
|
|
/*
|
|
* Store the pfn of the page in a special migration
|
|
* pte. do_swap_page() will wait until the migration
|
|
* pte is removed and then restart fault handling.
|
|
*/
|
|
BUG_ON(TTU_ACTION(flags) != TTU_MIGRATION);
|
|
entry = make_migration_entry(page, pte_write(pteval));
|
|
}
|
|
set_pte_at(mm, address, pte, swp_entry_to_pte(entry));
|
|
BUG_ON(pte_file(*pte));
|
|
} else if (PAGE_MIGRATION && (TTU_ACTION(flags) == TTU_MIGRATION)) {
|
|
/* Establish migration entry for a file page */
|
|
swp_entry_t entry;
|
|
entry = make_migration_entry(page, pte_write(pteval));
|
|
set_pte_at(mm, address, pte, swp_entry_to_pte(entry));
|
|
} else
|
|
dec_mm_counter(mm, MM_FILEPAGES);
|
|
|
|
page_remove_rmap(page);
|
|
page_cache_release(page);
|
|
|
|
out_unmap:
|
|
pte_unmap_unlock(pte, ptl);
|
|
out:
|
|
return ret;
|
|
|
|
out_mlock:
|
|
pte_unmap_unlock(pte, ptl);
|
|
|
|
|
|
/*
|
|
* We need mmap_sem locking, Otherwise VM_LOCKED check makes
|
|
* unstable result and race. Plus, We can't wait here because
|
|
* we now hold anon_vma->lock or mapping->i_mmap_lock.
|
|
* if trylock failed, the page remain in evictable lru and later
|
|
* vmscan could retry to move the page to unevictable lru if the
|
|
* page is actually mlocked.
|
|
*/
|
|
if (down_read_trylock(&vma->vm_mm->mmap_sem)) {
|
|
if (vma->vm_flags & VM_LOCKED) {
|
|
mlock_vma_page(page);
|
|
ret = SWAP_MLOCK;
|
|
}
|
|
up_read(&vma->vm_mm->mmap_sem);
|
|
}
|
|
return ret;
|
|
}
|
|
|
|
/*
|
|
* objrmap doesn't work for nonlinear VMAs because the assumption that
|
|
* offset-into-file correlates with offset-into-virtual-addresses does not hold.
|
|
* Consequently, given a particular page and its ->index, we cannot locate the
|
|
* ptes which are mapping that page without an exhaustive linear search.
|
|
*
|
|
* So what this code does is a mini "virtual scan" of each nonlinear VMA which
|
|
* maps the file to which the target page belongs. The ->vm_private_data field
|
|
* holds the current cursor into that scan. Successive searches will circulate
|
|
* around the vma's virtual address space.
|
|
*
|
|
* So as more replacement pressure is applied to the pages in a nonlinear VMA,
|
|
* more scanning pressure is placed against them as well. Eventually pages
|
|
* will become fully unmapped and are eligible for eviction.
|
|
*
|
|
* For very sparsely populated VMAs this is a little inefficient - chances are
|
|
* there there won't be many ptes located within the scan cluster. In this case
|
|
* maybe we could scan further - to the end of the pte page, perhaps.
|
|
*
|
|
* Mlocked pages: check VM_LOCKED under mmap_sem held for read, if we can
|
|
* acquire it without blocking. If vma locked, mlock the pages in the cluster,
|
|
* rather than unmapping them. If we encounter the "check_page" that vmscan is
|
|
* trying to unmap, return SWAP_MLOCK, else default SWAP_AGAIN.
|
|
*/
|
|
#define CLUSTER_SIZE min(32*PAGE_SIZE, PMD_SIZE)
|
|
#define CLUSTER_MASK (~(CLUSTER_SIZE - 1))
|
|
|
|
static int try_to_unmap_cluster(unsigned long cursor, unsigned int *mapcount,
|
|
struct vm_area_struct *vma, struct page *check_page)
|
|
{
|
|
struct mm_struct *mm = vma->vm_mm;
|
|
pgd_t *pgd;
|
|
pud_t *pud;
|
|
pmd_t *pmd;
|
|
pte_t *pte;
|
|
pte_t pteval;
|
|
spinlock_t *ptl;
|
|
struct page *page;
|
|
unsigned long address;
|
|
unsigned long end;
|
|
int ret = SWAP_AGAIN;
|
|
int locked_vma = 0;
|
|
|
|
address = (vma->vm_start + cursor) & CLUSTER_MASK;
|
|
end = address + CLUSTER_SIZE;
|
|
if (address < vma->vm_start)
|
|
address = vma->vm_start;
|
|
if (end > vma->vm_end)
|
|
end = vma->vm_end;
|
|
|
|
pgd = pgd_offset(mm, address);
|
|
if (!pgd_present(*pgd))
|
|
return ret;
|
|
|
|
pud = pud_offset(pgd, address);
|
|
if (!pud_present(*pud))
|
|
return ret;
|
|
|
|
pmd = pmd_offset(pud, address);
|
|
if (!pmd_present(*pmd))
|
|
return ret;
|
|
|
|
/*
|
|
* If we can acquire the mmap_sem for read, and vma is VM_LOCKED,
|
|
* keep the sem while scanning the cluster for mlocking pages.
|
|
*/
|
|
if (down_read_trylock(&vma->vm_mm->mmap_sem)) {
|
|
locked_vma = (vma->vm_flags & VM_LOCKED);
|
|
if (!locked_vma)
|
|
up_read(&vma->vm_mm->mmap_sem); /* don't need it */
|
|
}
|
|
|
|
pte = pte_offset_map_lock(mm, pmd, address, &ptl);
|
|
|
|
/* Update high watermark before we lower rss */
|
|
update_hiwater_rss(mm);
|
|
|
|
for (; address < end; pte++, address += PAGE_SIZE) {
|
|
if (!pte_present(*pte))
|
|
continue;
|
|
page = vm_normal_page(vma, address, *pte);
|
|
BUG_ON(!page || PageAnon(page));
|
|
|
|
if (locked_vma) {
|
|
mlock_vma_page(page); /* no-op if already mlocked */
|
|
if (page == check_page)
|
|
ret = SWAP_MLOCK;
|
|
continue; /* don't unmap */
|
|
}
|
|
|
|
if (ptep_clear_flush_young_notify(vma, address, pte))
|
|
continue;
|
|
|
|
/* Nuke the page table entry. */
|
|
flush_cache_page(vma, address, pte_pfn(*pte));
|
|
pteval = ptep_clear_flush_notify(vma, address, pte);
|
|
|
|
/* If nonlinear, store the file page offset in the pte. */
|
|
if (page->index != linear_page_index(vma, address))
|
|
set_pte_at(mm, address, pte, pgoff_to_pte(page->index));
|
|
|
|
/* Move the dirty bit to the physical page now the pte is gone. */
|
|
if (pte_dirty(pteval))
|
|
set_page_dirty(page);
|
|
|
|
page_remove_rmap(page);
|
|
page_cache_release(page);
|
|
dec_mm_counter(mm, MM_FILEPAGES);
|
|
(*mapcount)--;
|
|
}
|
|
pte_unmap_unlock(pte - 1, ptl);
|
|
if (locked_vma)
|
|
up_read(&vma->vm_mm->mmap_sem);
|
|
return ret;
|
|
}
|
|
|
|
/**
|
|
* try_to_unmap_anon - unmap or unlock anonymous page using the object-based
|
|
* rmap method
|
|
* @page: the page to unmap/unlock
|
|
* @flags: action and flags
|
|
*
|
|
* Find all the mappings of a page using the mapping pointer and the vma chains
|
|
* contained in the anon_vma struct it points to.
|
|
*
|
|
* This function is only called from try_to_unmap/try_to_munlock for
|
|
* anonymous pages.
|
|
* When called from try_to_munlock(), the mmap_sem of the mm containing the vma
|
|
* where the page was found will be held for write. So, we won't recheck
|
|
* vm_flags for that VMA. That should be OK, because that vma shouldn't be
|
|
* 'LOCKED.
|
|
*/
|
|
static int try_to_unmap_anon(struct page *page, enum ttu_flags flags)
|
|
{
|
|
struct anon_vma *anon_vma;
|
|
struct anon_vma_chain *avc;
|
|
int ret = SWAP_AGAIN;
|
|
|
|
anon_vma = page_lock_anon_vma(page);
|
|
if (!anon_vma)
|
|
return ret;
|
|
|
|
list_for_each_entry(avc, &anon_vma->head, same_anon_vma) {
|
|
struct vm_area_struct *vma = avc->vma;
|
|
unsigned long address = vma_address(page, vma);
|
|
if (address == -EFAULT)
|
|
continue;
|
|
ret = try_to_unmap_one(page, vma, address, flags);
|
|
if (ret != SWAP_AGAIN || !page_mapped(page))
|
|
break;
|
|
}
|
|
|
|
page_unlock_anon_vma(anon_vma);
|
|
return ret;
|
|
}
|
|
|
|
/**
|
|
* try_to_unmap_file - unmap/unlock file page using the object-based rmap method
|
|
* @page: the page to unmap/unlock
|
|
* @flags: action and flags
|
|
*
|
|
* Find all the mappings of a page using the mapping pointer and the vma chains
|
|
* contained in the address_space struct it points to.
|
|
*
|
|
* This function is only called from try_to_unmap/try_to_munlock for
|
|
* object-based pages.
|
|
* When called from try_to_munlock(), the mmap_sem of the mm containing the vma
|
|
* where the page was found will be held for write. So, we won't recheck
|
|
* vm_flags for that VMA. That should be OK, because that vma shouldn't be
|
|
* 'LOCKED.
|
|
*/
|
|
static int try_to_unmap_file(struct page *page, enum ttu_flags flags)
|
|
{
|
|
struct address_space *mapping = page->mapping;
|
|
pgoff_t pgoff = page->index << (PAGE_CACHE_SHIFT - PAGE_SHIFT);
|
|
struct vm_area_struct *vma;
|
|
struct prio_tree_iter iter;
|
|
int ret = SWAP_AGAIN;
|
|
unsigned long cursor;
|
|
unsigned long max_nl_cursor = 0;
|
|
unsigned long max_nl_size = 0;
|
|
unsigned int mapcount;
|
|
|
|
spin_lock(&mapping->i_mmap_lock);
|
|
vma_prio_tree_foreach(vma, &iter, &mapping->i_mmap, pgoff, pgoff) {
|
|
unsigned long address = vma_address(page, vma);
|
|
if (address == -EFAULT)
|
|
continue;
|
|
ret = try_to_unmap_one(page, vma, address, flags);
|
|
if (ret != SWAP_AGAIN || !page_mapped(page))
|
|
goto out;
|
|
}
|
|
|
|
if (list_empty(&mapping->i_mmap_nonlinear))
|
|
goto out;
|
|
|
|
/*
|
|
* We don't bother to try to find the munlocked page in nonlinears.
|
|
* It's costly. Instead, later, page reclaim logic may call
|
|
* try_to_unmap(TTU_MUNLOCK) and recover PG_mlocked lazily.
|
|
*/
|
|
if (TTU_ACTION(flags) == TTU_MUNLOCK)
|
|
goto out;
|
|
|
|
list_for_each_entry(vma, &mapping->i_mmap_nonlinear,
|
|
shared.vm_set.list) {
|
|
cursor = (unsigned long) vma->vm_private_data;
|
|
if (cursor > max_nl_cursor)
|
|
max_nl_cursor = cursor;
|
|
cursor = vma->vm_end - vma->vm_start;
|
|
if (cursor > max_nl_size)
|
|
max_nl_size = cursor;
|
|
}
|
|
|
|
if (max_nl_size == 0) { /* all nonlinears locked or reserved ? */
|
|
ret = SWAP_FAIL;
|
|
goto out;
|
|
}
|
|
|
|
/*
|
|
* We don't try to search for this page in the nonlinear vmas,
|
|
* and page_referenced wouldn't have found it anyway. Instead
|
|
* just walk the nonlinear vmas trying to age and unmap some.
|
|
* The mapcount of the page we came in with is irrelevant,
|
|
* but even so use it as a guide to how hard we should try?
|
|
*/
|
|
mapcount = page_mapcount(page);
|
|
if (!mapcount)
|
|
goto out;
|
|
cond_resched_lock(&mapping->i_mmap_lock);
|
|
|
|
max_nl_size = (max_nl_size + CLUSTER_SIZE - 1) & CLUSTER_MASK;
|
|
if (max_nl_cursor == 0)
|
|
max_nl_cursor = CLUSTER_SIZE;
|
|
|
|
do {
|
|
list_for_each_entry(vma, &mapping->i_mmap_nonlinear,
|
|
shared.vm_set.list) {
|
|
cursor = (unsigned long) vma->vm_private_data;
|
|
while ( cursor < max_nl_cursor &&
|
|
cursor < vma->vm_end - vma->vm_start) {
|
|
if (try_to_unmap_cluster(cursor, &mapcount,
|
|
vma, page) == SWAP_MLOCK)
|
|
ret = SWAP_MLOCK;
|
|
cursor += CLUSTER_SIZE;
|
|
vma->vm_private_data = (void *) cursor;
|
|
if ((int)mapcount <= 0)
|
|
goto out;
|
|
}
|
|
vma->vm_private_data = (void *) max_nl_cursor;
|
|
}
|
|
cond_resched_lock(&mapping->i_mmap_lock);
|
|
max_nl_cursor += CLUSTER_SIZE;
|
|
} while (max_nl_cursor <= max_nl_size);
|
|
|
|
/*
|
|
* Don't loop forever (perhaps all the remaining pages are
|
|
* in locked vmas). Reset cursor on all unreserved nonlinear
|
|
* vmas, now forgetting on which ones it had fallen behind.
|
|
*/
|
|
list_for_each_entry(vma, &mapping->i_mmap_nonlinear, shared.vm_set.list)
|
|
vma->vm_private_data = NULL;
|
|
out:
|
|
spin_unlock(&mapping->i_mmap_lock);
|
|
return ret;
|
|
}
|
|
|
|
/**
|
|
* try_to_unmap - try to remove all page table mappings to a page
|
|
* @page: the page to get unmapped
|
|
* @flags: action and flags
|
|
*
|
|
* Tries to remove all the page table entries which are mapping this
|
|
* page, used in the pageout path. Caller must hold the page lock.
|
|
* Return values are:
|
|
*
|
|
* SWAP_SUCCESS - we succeeded in removing all mappings
|
|
* SWAP_AGAIN - we missed a mapping, try again later
|
|
* SWAP_FAIL - the page is unswappable
|
|
* SWAP_MLOCK - page is mlocked.
|
|
*/
|
|
int try_to_unmap(struct page *page, enum ttu_flags flags)
|
|
{
|
|
int ret;
|
|
|
|
BUG_ON(!PageLocked(page));
|
|
|
|
if (unlikely(PageKsm(page)))
|
|
ret = try_to_unmap_ksm(page, flags);
|
|
else if (PageAnon(page))
|
|
ret = try_to_unmap_anon(page, flags);
|
|
else
|
|
ret = try_to_unmap_file(page, flags);
|
|
if (ret != SWAP_MLOCK && !page_mapped(page))
|
|
ret = SWAP_SUCCESS;
|
|
return ret;
|
|
}
|
|
|
|
/**
|
|
* try_to_munlock - try to munlock a page
|
|
* @page: the page to be munlocked
|
|
*
|
|
* Called from munlock code. Checks all of the VMAs mapping the page
|
|
* to make sure nobody else has this page mlocked. The page will be
|
|
* returned with PG_mlocked cleared if no other vmas have it mlocked.
|
|
*
|
|
* Return values are:
|
|
*
|
|
* SWAP_AGAIN - no vma is holding page mlocked, or,
|
|
* SWAP_AGAIN - page mapped in mlocked vma -- couldn't acquire mmap sem
|
|
* SWAP_FAIL - page cannot be located at present
|
|
* SWAP_MLOCK - page is now mlocked.
|
|
*/
|
|
int try_to_munlock(struct page *page)
|
|
{
|
|
VM_BUG_ON(!PageLocked(page) || PageLRU(page));
|
|
|
|
if (unlikely(PageKsm(page)))
|
|
return try_to_unmap_ksm(page, TTU_MUNLOCK);
|
|
else if (PageAnon(page))
|
|
return try_to_unmap_anon(page, TTU_MUNLOCK);
|
|
else
|
|
return try_to_unmap_file(page, TTU_MUNLOCK);
|
|
}
|
|
|
|
#ifdef CONFIG_MIGRATION
|
|
/*
|
|
* rmap_walk() and its helpers rmap_walk_anon() and rmap_walk_file():
|
|
* Called by migrate.c to remove migration ptes, but might be used more later.
|
|
*/
|
|
static int rmap_walk_anon(struct page *page, int (*rmap_one)(struct page *,
|
|
struct vm_area_struct *, unsigned long, void *), void *arg)
|
|
{
|
|
struct anon_vma *anon_vma;
|
|
struct anon_vma_chain *avc;
|
|
int ret = SWAP_AGAIN;
|
|
|
|
/*
|
|
* Note: remove_migration_ptes() cannot use page_lock_anon_vma()
|
|
* because that depends on page_mapped(); but not all its usages
|
|
* are holding mmap_sem, which also gave the necessary guarantee
|
|
* (that this anon_vma's slab has not already been destroyed).
|
|
* This needs to be reviewed later: avoiding page_lock_anon_vma()
|
|
* is risky, and currently limits the usefulness of rmap_walk().
|
|
*/
|
|
anon_vma = page_anon_vma(page);
|
|
if (!anon_vma)
|
|
return ret;
|
|
spin_lock(&anon_vma->lock);
|
|
list_for_each_entry(avc, &anon_vma->head, same_anon_vma) {
|
|
struct vm_area_struct *vma = avc->vma;
|
|
unsigned long address = vma_address(page, vma);
|
|
if (address == -EFAULT)
|
|
continue;
|
|
ret = rmap_one(page, vma, address, arg);
|
|
if (ret != SWAP_AGAIN)
|
|
break;
|
|
}
|
|
spin_unlock(&anon_vma->lock);
|
|
return ret;
|
|
}
|
|
|
|
static int rmap_walk_file(struct page *page, int (*rmap_one)(struct page *,
|
|
struct vm_area_struct *, unsigned long, void *), void *arg)
|
|
{
|
|
struct address_space *mapping = page->mapping;
|
|
pgoff_t pgoff = page->index << (PAGE_CACHE_SHIFT - PAGE_SHIFT);
|
|
struct vm_area_struct *vma;
|
|
struct prio_tree_iter iter;
|
|
int ret = SWAP_AGAIN;
|
|
|
|
if (!mapping)
|
|
return ret;
|
|
spin_lock(&mapping->i_mmap_lock);
|
|
vma_prio_tree_foreach(vma, &iter, &mapping->i_mmap, pgoff, pgoff) {
|
|
unsigned long address = vma_address(page, vma);
|
|
if (address == -EFAULT)
|
|
continue;
|
|
ret = rmap_one(page, vma, address, arg);
|
|
if (ret != SWAP_AGAIN)
|
|
break;
|
|
}
|
|
/*
|
|
* No nonlinear handling: being always shared, nonlinear vmas
|
|
* never contain migration ptes. Decide what to do about this
|
|
* limitation to linear when we need rmap_walk() on nonlinear.
|
|
*/
|
|
spin_unlock(&mapping->i_mmap_lock);
|
|
return ret;
|
|
}
|
|
|
|
int rmap_walk(struct page *page, int (*rmap_one)(struct page *,
|
|
struct vm_area_struct *, unsigned long, void *), void *arg)
|
|
{
|
|
VM_BUG_ON(!PageLocked(page));
|
|
|
|
if (unlikely(PageKsm(page)))
|
|
return rmap_walk_ksm(page, rmap_one, arg);
|
|
else if (PageAnon(page))
|
|
return rmap_walk_anon(page, rmap_one, arg);
|
|
else
|
|
return rmap_walk_file(page, rmap_one, arg);
|
|
}
|
|
#endif /* CONFIG_MIGRATION */
|