Bartlomiej Zolnierkiewicz 8936640974 ARM: EXYNOS: add AFTR mode support for Exynos3250
AFTR mode support brings reduced energy consumption and is
a prerequisite for more advanced W-AFTR/LPA power saving modes.

AFTR mode has been already supported on other Exynos SoCs for
few years and this patch adds its support for Exynos3250 SoC.

The differences in Exynos3250 SoC AFTR mode support when compared
to Exynos4x12 SoCs are:
- different secure firmware calls are used
- different S5P_WAKEUP_MASK wakeup mask is used
- S5P_WAKEUP_MASK2 wakeup mask needs to be set in addition to
  the standard S5P_WAKEUP_MASK one
- C2_STATE BOOT mode flag needs to be set/cleared pre/post AFTR

Cc: Daniel Lezcano <daniel.lezcano@linaro.org>
Signed-off-by: Bartlomiej Zolnierkiewicz <b.zolnierkie@samsung.com>
Acked-by: Kyungmin Park <kyungmin.park@samsung.com>
Tested-by: Chanwoo Choi <cw00.choi@samsung.com>
Signed-off-by: Kukjin Kim <kgene@kernel.org>
2015-03-27 02:35:48 +09:00

315 lines
6.7 KiB
C

/*
* Copyright (c) 2011-2014 Samsung Electronics Co., Ltd.
* http://www.samsung.com
*
* EXYNOS - Power Management support
*
* Based on arch/arm/mach-s3c2410/pm.c
* Copyright (c) 2006 Simtec Electronics
* Ben Dooks <ben@simtec.co.uk>
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License version 2 as
* published by the Free Software Foundation.
*/
#include <linux/init.h>
#include <linux/suspend.h>
#include <linux/cpu_pm.h>
#include <linux/io.h>
#include <linux/err.h>
#include <asm/firmware.h>
#include <asm/smp_scu.h>
#include <asm/suspend.h>
#include <mach/map.h>
#include <plat/pm-common.h>
#include "common.h"
#include "exynos-pmu.h"
#include "regs-pmu.h"
static inline void __iomem *exynos_boot_vector_addr(void)
{
if (samsung_rev() == EXYNOS4210_REV_1_1)
return pmu_base_addr + S5P_INFORM7;
else if (samsung_rev() == EXYNOS4210_REV_1_0)
return sysram_base_addr + 0x24;
return pmu_base_addr + S5P_INFORM0;
}
static inline void __iomem *exynos_boot_vector_flag(void)
{
if (samsung_rev() == EXYNOS4210_REV_1_1)
return pmu_base_addr + S5P_INFORM6;
else if (samsung_rev() == EXYNOS4210_REV_1_0)
return sysram_base_addr + 0x20;
return pmu_base_addr + S5P_INFORM1;
}
#define S5P_CHECK_AFTR 0xFCBA0D10
/* For Cortex-A9 Diagnostic and Power control register */
static unsigned int save_arm_register[2];
void exynos_cpu_save_register(void)
{
unsigned long tmp;
/* Save Power control register */
asm ("mrc p15, 0, %0, c15, c0, 0"
: "=r" (tmp) : : "cc");
save_arm_register[0] = tmp;
/* Save Diagnostic register */
asm ("mrc p15, 0, %0, c15, c0, 1"
: "=r" (tmp) : : "cc");
save_arm_register[1] = tmp;
}
void exynos_cpu_restore_register(void)
{
unsigned long tmp;
/* Restore Power control register */
tmp = save_arm_register[0];
asm volatile ("mcr p15, 0, %0, c15, c0, 0"
: : "r" (tmp)
: "cc");
/* Restore Diagnostic register */
tmp = save_arm_register[1];
asm volatile ("mcr p15, 0, %0, c15, c0, 1"
: : "r" (tmp)
: "cc");
}
void exynos_pm_central_suspend(void)
{
unsigned long tmp;
/* Setting Central Sequence Register for power down mode */
tmp = pmu_raw_readl(S5P_CENTRAL_SEQ_CONFIGURATION);
tmp &= ~S5P_CENTRAL_LOWPWR_CFG;
pmu_raw_writel(tmp, S5P_CENTRAL_SEQ_CONFIGURATION);
}
int exynos_pm_central_resume(void)
{
unsigned long tmp;
/*
* If PMU failed while entering sleep mode, WFI will be
* ignored by PMU and then exiting cpu_do_idle().
* S5P_CENTRAL_LOWPWR_CFG bit will not be set automatically
* in this situation.
*/
tmp = pmu_raw_readl(S5P_CENTRAL_SEQ_CONFIGURATION);
if (!(tmp & S5P_CENTRAL_LOWPWR_CFG)) {
tmp |= S5P_CENTRAL_LOWPWR_CFG;
pmu_raw_writel(tmp, S5P_CENTRAL_SEQ_CONFIGURATION);
/* clear the wakeup state register */
pmu_raw_writel(0x0, S5P_WAKEUP_STAT);
/* No need to perform below restore code */
return -1;
}
return 0;
}
/* Ext-GIC nIRQ/nFIQ is the only wakeup source in AFTR */
static void exynos_set_wakeupmask(long mask)
{
pmu_raw_writel(mask, S5P_WAKEUP_MASK);
if (soc_is_exynos3250())
pmu_raw_writel(0x0, S5P_WAKEUP_MASK2);
}
static void exynos_cpu_set_boot_vector(long flags)
{
__raw_writel(virt_to_phys(exynos_cpu_resume),
exynos_boot_vector_addr());
__raw_writel(flags, exynos_boot_vector_flag());
}
static int exynos_aftr_finisher(unsigned long flags)
{
int ret;
exynos_set_wakeupmask(soc_is_exynos3250() ? 0x40003ffe : 0x0000ff3e);
/* Set value of power down register for aftr mode */
exynos_sys_powerdown_conf(SYS_AFTR);
ret = call_firmware_op(do_idle, FW_DO_IDLE_AFTR);
if (ret == -ENOSYS) {
if (read_cpuid_part() == ARM_CPU_PART_CORTEX_A9)
exynos_cpu_save_register();
exynos_cpu_set_boot_vector(S5P_CHECK_AFTR);
cpu_do_idle();
}
return 1;
}
void exynos_enter_aftr(void)
{
unsigned int cpuid = smp_processor_id();
cpu_pm_enter();
if (soc_is_exynos3250())
exynos_set_boot_flag(cpuid, C2_STATE);
exynos_pm_central_suspend();
if (of_machine_is_compatible("samsung,exynos4212") ||
of_machine_is_compatible("samsung,exynos4412")) {
/* Setting SEQ_OPTION register */
pmu_raw_writel(S5P_USE_STANDBY_WFI0 | S5P_USE_STANDBY_WFE0,
S5P_CENTRAL_SEQ_OPTION);
}
cpu_suspend(0, exynos_aftr_finisher);
if (read_cpuid_part() == ARM_CPU_PART_CORTEX_A9) {
scu_enable(S5P_VA_SCU);
if (call_firmware_op(resume) == -ENOSYS)
exynos_cpu_restore_register();
}
exynos_pm_central_resume();
if (soc_is_exynos3250())
exynos_clear_boot_flag(cpuid, C2_STATE);
cpu_pm_exit();
}
static atomic_t cpu1_wakeup = ATOMIC_INIT(0);
static int exynos_cpu0_enter_aftr(void)
{
int ret = -1;
/*
* If the other cpu is powered on, we have to power it off, because
* the AFTR state won't work otherwise
*/
if (cpu_online(1)) {
/*
* We reach a sync point with the coupled idle state, we know
* the other cpu will power down itself or will abort the
* sequence, let's wait for one of these to happen
*/
while (exynos_cpu_power_state(1)) {
/*
* The other cpu may skip idle and boot back
* up again
*/
if (atomic_read(&cpu1_wakeup))
goto abort;
/*
* The other cpu may bounce through idle and
* boot back up again, getting stuck in the
* boot rom code
*/
if (__raw_readl(cpu_boot_reg_base()) == 0)
goto abort;
cpu_relax();
}
}
exynos_enter_aftr();
ret = 0;
abort:
if (cpu_online(1)) {
/*
* Set the boot vector to something non-zero
*/
__raw_writel(virt_to_phys(exynos_cpu_resume),
cpu_boot_reg_base());
dsb();
/*
* Turn on cpu1 and wait for it to be on
*/
exynos_cpu_power_up(1);
while (exynos_cpu_power_state(1) != S5P_CORE_LOCAL_PWR_EN)
cpu_relax();
while (!atomic_read(&cpu1_wakeup)) {
/*
* Poke cpu1 out of the boot rom
*/
__raw_writel(virt_to_phys(exynos_cpu_resume),
cpu_boot_reg_base());
arch_send_wakeup_ipi_mask(cpumask_of(1));
}
}
return ret;
}
static int exynos_wfi_finisher(unsigned long flags)
{
cpu_do_idle();
return -1;
}
static int exynos_cpu1_powerdown(void)
{
int ret = -1;
/*
* Idle sequence for cpu1
*/
if (cpu_pm_enter())
goto cpu1_aborted;
/*
* Turn off cpu 1
*/
exynos_cpu_power_down(1);
ret = cpu_suspend(0, exynos_wfi_finisher);
cpu_pm_exit();
cpu1_aborted:
dsb();
/*
* Notify cpu 0 that cpu 1 is awake
*/
atomic_set(&cpu1_wakeup, 1);
return ret;
}
static void exynos_pre_enter_aftr(void)
{
__raw_writel(virt_to_phys(exynos_cpu_resume), cpu_boot_reg_base());
}
static void exynos_post_enter_aftr(void)
{
atomic_set(&cpu1_wakeup, 0);
}
struct cpuidle_exynos_data cpuidle_coupled_exynos_data = {
.cpu0_enter_aftr = exynos_cpu0_enter_aftr,
.cpu1_powerdown = exynos_cpu1_powerdown,
.pre_enter_aftr = exynos_pre_enter_aftr,
.post_enter_aftr = exynos_post_enter_aftr,
};