mirror of
https://github.com/FEX-Emu/linux.git
synced 2025-01-09 11:00:52 +00:00
bdedbb7b8d
This commit changes some interfaces in extent status tree because we need to use inode to count the cached objects in a extent status tree. Signed-off-by: Zheng Liu <wenqing.lz@taobao.com> Signed-off-by: "Theodore Ts'o" <tytso@mit.edu> Cc: Jan kara <jack@suse.cz>
642 lines
17 KiB
C
642 lines
17 KiB
C
/*
|
|
* fs/ext4/extents_status.c
|
|
*
|
|
* Written by Yongqiang Yang <xiaoqiangnk@gmail.com>
|
|
* Modified by
|
|
* Allison Henderson <achender@linux.vnet.ibm.com>
|
|
* Hugh Dickins <hughd@google.com>
|
|
* Zheng Liu <wenqing.lz@taobao.com>
|
|
*
|
|
* Ext4 extents status tree core functions.
|
|
*/
|
|
#include <linux/rbtree.h>
|
|
#include "ext4.h"
|
|
#include "extents_status.h"
|
|
#include "ext4_extents.h"
|
|
|
|
#include <trace/events/ext4.h>
|
|
|
|
/*
|
|
* According to previous discussion in Ext4 Developer Workshop, we
|
|
* will introduce a new structure called io tree to track all extent
|
|
* status in order to solve some problems that we have met
|
|
* (e.g. Reservation space warning), and provide extent-level locking.
|
|
* Delay extent tree is the first step to achieve this goal. It is
|
|
* original built by Yongqiang Yang. At that time it is called delay
|
|
* extent tree, whose goal is only track delayed extents in memory to
|
|
* simplify the implementation of fiemap and bigalloc, and introduce
|
|
* lseek SEEK_DATA/SEEK_HOLE support. That is why it is still called
|
|
* delay extent tree at the first commit. But for better understand
|
|
* what it does, it has been rename to extent status tree.
|
|
*
|
|
* Step1:
|
|
* Currently the first step has been done. All delayed extents are
|
|
* tracked in the tree. It maintains the delayed extent when a delayed
|
|
* allocation is issued, and the delayed extent is written out or
|
|
* invalidated. Therefore the implementation of fiemap and bigalloc
|
|
* are simplified, and SEEK_DATA/SEEK_HOLE are introduced.
|
|
*
|
|
* The following comment describes the implemenmtation of extent
|
|
* status tree and future works.
|
|
*
|
|
* Step2:
|
|
* In this step all extent status are tracked by extent status tree.
|
|
* Thus, we can first try to lookup a block mapping in this tree before
|
|
* finding it in extent tree. Hence, single extent cache can be removed
|
|
* because extent status tree can do a better job. Extents in status
|
|
* tree are loaded on-demand. Therefore, the extent status tree may not
|
|
* contain all of the extents in a file. Meanwhile we define a shrinker
|
|
* to reclaim memory from extent status tree because fragmented extent
|
|
* tree will make status tree cost too much memory. written/unwritten/-
|
|
* hole extents in the tree will be reclaimed by this shrinker when we
|
|
* are under high memory pressure. Delayed extents will not be
|
|
* reclimed because fiemap, bigalloc, and seek_data/hole need it.
|
|
*/
|
|
|
|
/*
|
|
* Extent status tree implementation for ext4.
|
|
*
|
|
*
|
|
* ==========================================================================
|
|
* Extent status tree tracks all extent status.
|
|
*
|
|
* 1. Why we need to implement extent status tree?
|
|
*
|
|
* Without extent status tree, ext4 identifies a delayed extent by looking
|
|
* up page cache, this has several deficiencies - complicated, buggy,
|
|
* and inefficient code.
|
|
*
|
|
* FIEMAP, SEEK_HOLE/DATA, bigalloc, and writeout all need to know if a
|
|
* block or a range of blocks are belonged to a delayed extent.
|
|
*
|
|
* Let us have a look at how they do without extent status tree.
|
|
* -- FIEMAP
|
|
* FIEMAP looks up page cache to identify delayed allocations from holes.
|
|
*
|
|
* -- SEEK_HOLE/DATA
|
|
* SEEK_HOLE/DATA has the same problem as FIEMAP.
|
|
*
|
|
* -- bigalloc
|
|
* bigalloc looks up page cache to figure out if a block is
|
|
* already under delayed allocation or not to determine whether
|
|
* quota reserving is needed for the cluster.
|
|
*
|
|
* -- writeout
|
|
* Writeout looks up whole page cache to see if a buffer is
|
|
* mapped, If there are not very many delayed buffers, then it is
|
|
* time comsuming.
|
|
*
|
|
* With extent status tree implementation, FIEMAP, SEEK_HOLE/DATA,
|
|
* bigalloc and writeout can figure out if a block or a range of
|
|
* blocks is under delayed allocation(belonged to a delayed extent) or
|
|
* not by searching the extent tree.
|
|
*
|
|
*
|
|
* ==========================================================================
|
|
* 2. Ext4 extent status tree impelmentation
|
|
*
|
|
* -- extent
|
|
* A extent is a range of blocks which are contiguous logically and
|
|
* physically. Unlike extent in extent tree, this extent in ext4 is
|
|
* a in-memory struct, there is no corresponding on-disk data. There
|
|
* is no limit on length of extent, so an extent can contain as many
|
|
* blocks as they are contiguous logically and physically.
|
|
*
|
|
* -- extent status tree
|
|
* Every inode has an extent status tree and all allocation blocks
|
|
* are added to the tree with different status. The extent in the
|
|
* tree are ordered by logical block no.
|
|
*
|
|
* -- operations on a extent status tree
|
|
* There are three important operations on a delayed extent tree: find
|
|
* next extent, adding a extent(a range of blocks) and removing a extent.
|
|
*
|
|
* -- race on a extent status tree
|
|
* Extent status tree is protected by inode->i_es_lock.
|
|
*
|
|
* -- memory consumption
|
|
* Fragmented extent tree will make extent status tree cost too much
|
|
* memory. Hence, we will reclaim written/unwritten/hole extents from
|
|
* the tree under a heavy memory pressure.
|
|
*
|
|
*
|
|
* ==========================================================================
|
|
* 3. Performance analysis
|
|
*
|
|
* -- overhead
|
|
* 1. There is a cache extent for write access, so if writes are
|
|
* not very random, adding space operaions are in O(1) time.
|
|
*
|
|
* -- gain
|
|
* 2. Code is much simpler, more readable, more maintainable and
|
|
* more efficient.
|
|
*
|
|
*
|
|
* ==========================================================================
|
|
* 4. TODO list
|
|
*
|
|
* -- Refactor delayed space reservation
|
|
*
|
|
* -- Extent-level locking
|
|
*/
|
|
|
|
static struct kmem_cache *ext4_es_cachep;
|
|
|
|
static int __es_insert_extent(struct inode *inode, struct extent_status *newes);
|
|
static int __es_remove_extent(struct inode *inode, ext4_lblk_t lblk,
|
|
ext4_lblk_t end);
|
|
|
|
int __init ext4_init_es(void)
|
|
{
|
|
ext4_es_cachep = KMEM_CACHE(extent_status, SLAB_RECLAIM_ACCOUNT);
|
|
if (ext4_es_cachep == NULL)
|
|
return -ENOMEM;
|
|
return 0;
|
|
}
|
|
|
|
void ext4_exit_es(void)
|
|
{
|
|
if (ext4_es_cachep)
|
|
kmem_cache_destroy(ext4_es_cachep);
|
|
}
|
|
|
|
void ext4_es_init_tree(struct ext4_es_tree *tree)
|
|
{
|
|
tree->root = RB_ROOT;
|
|
tree->cache_es = NULL;
|
|
}
|
|
|
|
#ifdef ES_DEBUG__
|
|
static void ext4_es_print_tree(struct inode *inode)
|
|
{
|
|
struct ext4_es_tree *tree;
|
|
struct rb_node *node;
|
|
|
|
printk(KERN_DEBUG "status extents for inode %lu:", inode->i_ino);
|
|
tree = &EXT4_I(inode)->i_es_tree;
|
|
node = rb_first(&tree->root);
|
|
while (node) {
|
|
struct extent_status *es;
|
|
es = rb_entry(node, struct extent_status, rb_node);
|
|
printk(KERN_DEBUG " [%u/%u) %llu %llx",
|
|
es->es_lblk, es->es_len,
|
|
ext4_es_pblock(es), ext4_es_status(es));
|
|
node = rb_next(node);
|
|
}
|
|
printk(KERN_DEBUG "\n");
|
|
}
|
|
#else
|
|
#define ext4_es_print_tree(inode)
|
|
#endif
|
|
|
|
static inline ext4_lblk_t ext4_es_end(struct extent_status *es)
|
|
{
|
|
BUG_ON(es->es_lblk + es->es_len < es->es_lblk);
|
|
return es->es_lblk + es->es_len - 1;
|
|
}
|
|
|
|
/*
|
|
* search through the tree for an delayed extent with a given offset. If
|
|
* it can't be found, try to find next extent.
|
|
*/
|
|
static struct extent_status *__es_tree_search(struct rb_root *root,
|
|
ext4_lblk_t lblk)
|
|
{
|
|
struct rb_node *node = root->rb_node;
|
|
struct extent_status *es = NULL;
|
|
|
|
while (node) {
|
|
es = rb_entry(node, struct extent_status, rb_node);
|
|
if (lblk < es->es_lblk)
|
|
node = node->rb_left;
|
|
else if (lblk > ext4_es_end(es))
|
|
node = node->rb_right;
|
|
else
|
|
return es;
|
|
}
|
|
|
|
if (es && lblk < es->es_lblk)
|
|
return es;
|
|
|
|
if (es && lblk > ext4_es_end(es)) {
|
|
node = rb_next(&es->rb_node);
|
|
return node ? rb_entry(node, struct extent_status, rb_node) :
|
|
NULL;
|
|
}
|
|
|
|
return NULL;
|
|
}
|
|
|
|
/*
|
|
* ext4_es_find_delayed_extent: find the 1st delayed extent covering @es->lblk
|
|
* if it exists, otherwise, the next extent after @es->lblk.
|
|
*
|
|
* @inode: the inode which owns delayed extents
|
|
* @lblk: the offset where we start to search
|
|
* @es: delayed extent that we found
|
|
*/
|
|
void ext4_es_find_delayed_extent(struct inode *inode, ext4_lblk_t lblk,
|
|
struct extent_status *es)
|
|
{
|
|
struct ext4_es_tree *tree = NULL;
|
|
struct extent_status *es1 = NULL;
|
|
struct rb_node *node;
|
|
|
|
BUG_ON(es == NULL);
|
|
trace_ext4_es_find_delayed_extent_enter(inode, lblk);
|
|
|
|
read_lock(&EXT4_I(inode)->i_es_lock);
|
|
tree = &EXT4_I(inode)->i_es_tree;
|
|
|
|
/* find extent in cache firstly */
|
|
es->es_lblk = es->es_len = es->es_pblk = 0;
|
|
if (tree->cache_es) {
|
|
es1 = tree->cache_es;
|
|
if (in_range(lblk, es1->es_lblk, es1->es_len)) {
|
|
es_debug("%u cached by [%u/%u) %llu %llx\n",
|
|
lblk, es1->es_lblk, es1->es_len,
|
|
ext4_es_pblock(es1), ext4_es_status(es1));
|
|
goto out;
|
|
}
|
|
}
|
|
|
|
es1 = __es_tree_search(&tree->root, lblk);
|
|
|
|
out:
|
|
if (es1 && !ext4_es_is_delayed(es1)) {
|
|
while ((node = rb_next(&es1->rb_node)) != NULL) {
|
|
es1 = rb_entry(node, struct extent_status, rb_node);
|
|
if (ext4_es_is_delayed(es1))
|
|
break;
|
|
}
|
|
}
|
|
|
|
if (es1 && ext4_es_is_delayed(es1)) {
|
|
tree->cache_es = es1;
|
|
es->es_lblk = es1->es_lblk;
|
|
es->es_len = es1->es_len;
|
|
es->es_pblk = es1->es_pblk;
|
|
}
|
|
|
|
read_unlock(&EXT4_I(inode)->i_es_lock);
|
|
|
|
trace_ext4_es_find_delayed_extent_exit(inode, es);
|
|
}
|
|
|
|
static struct extent_status *
|
|
ext4_es_alloc_extent(struct inode *inode, ext4_lblk_t lblk, ext4_lblk_t len,
|
|
ext4_fsblk_t pblk)
|
|
{
|
|
struct extent_status *es;
|
|
es = kmem_cache_alloc(ext4_es_cachep, GFP_ATOMIC);
|
|
if (es == NULL)
|
|
return NULL;
|
|
es->es_lblk = lblk;
|
|
es->es_len = len;
|
|
es->es_pblk = pblk;
|
|
return es;
|
|
}
|
|
|
|
static void ext4_es_free_extent(struct inode *inode, struct extent_status *es)
|
|
{
|
|
kmem_cache_free(ext4_es_cachep, es);
|
|
}
|
|
|
|
/*
|
|
* Check whether or not two extents can be merged
|
|
* Condition:
|
|
* - logical block number is contiguous
|
|
* - physical block number is contiguous
|
|
* - status is equal
|
|
*/
|
|
static int ext4_es_can_be_merged(struct extent_status *es1,
|
|
struct extent_status *es2)
|
|
{
|
|
if (es1->es_lblk + es1->es_len != es2->es_lblk)
|
|
return 0;
|
|
|
|
if (ext4_es_status(es1) != ext4_es_status(es2))
|
|
return 0;
|
|
|
|
if ((ext4_es_is_written(es1) || ext4_es_is_unwritten(es1)) &&
|
|
(ext4_es_pblock(es1) + es1->es_len != ext4_es_pblock(es2)))
|
|
return 0;
|
|
|
|
return 1;
|
|
}
|
|
|
|
static struct extent_status *
|
|
ext4_es_try_to_merge_left(struct inode *inode, struct extent_status *es)
|
|
{
|
|
struct ext4_es_tree *tree = &EXT4_I(inode)->i_es_tree;
|
|
struct extent_status *es1;
|
|
struct rb_node *node;
|
|
|
|
node = rb_prev(&es->rb_node);
|
|
if (!node)
|
|
return es;
|
|
|
|
es1 = rb_entry(node, struct extent_status, rb_node);
|
|
if (ext4_es_can_be_merged(es1, es)) {
|
|
es1->es_len += es->es_len;
|
|
rb_erase(&es->rb_node, &tree->root);
|
|
ext4_es_free_extent(inode, es);
|
|
es = es1;
|
|
}
|
|
|
|
return es;
|
|
}
|
|
|
|
static struct extent_status *
|
|
ext4_es_try_to_merge_right(struct inode *inode, struct extent_status *es)
|
|
{
|
|
struct ext4_es_tree *tree = &EXT4_I(inode)->i_es_tree;
|
|
struct extent_status *es1;
|
|
struct rb_node *node;
|
|
|
|
node = rb_next(&es->rb_node);
|
|
if (!node)
|
|
return es;
|
|
|
|
es1 = rb_entry(node, struct extent_status, rb_node);
|
|
if (ext4_es_can_be_merged(es, es1)) {
|
|
es->es_len += es1->es_len;
|
|
rb_erase(node, &tree->root);
|
|
ext4_es_free_extent(inode, es1);
|
|
}
|
|
|
|
return es;
|
|
}
|
|
|
|
static int __es_insert_extent(struct inode *inode, struct extent_status *newes)
|
|
{
|
|
struct ext4_es_tree *tree = &EXT4_I(inode)->i_es_tree;
|
|
struct rb_node **p = &tree->root.rb_node;
|
|
struct rb_node *parent = NULL;
|
|
struct extent_status *es;
|
|
|
|
while (*p) {
|
|
parent = *p;
|
|
es = rb_entry(parent, struct extent_status, rb_node);
|
|
|
|
if (newes->es_lblk < es->es_lblk) {
|
|
if (ext4_es_can_be_merged(newes, es)) {
|
|
/*
|
|
* Here we can modify es_lblk directly
|
|
* because it isn't overlapped.
|
|
*/
|
|
es->es_lblk = newes->es_lblk;
|
|
es->es_len += newes->es_len;
|
|
if (ext4_es_is_written(es) ||
|
|
ext4_es_is_unwritten(es))
|
|
ext4_es_store_pblock(es,
|
|
newes->es_pblk);
|
|
es = ext4_es_try_to_merge_left(inode, es);
|
|
goto out;
|
|
}
|
|
p = &(*p)->rb_left;
|
|
} else if (newes->es_lblk > ext4_es_end(es)) {
|
|
if (ext4_es_can_be_merged(es, newes)) {
|
|
es->es_len += newes->es_len;
|
|
es = ext4_es_try_to_merge_right(inode, es);
|
|
goto out;
|
|
}
|
|
p = &(*p)->rb_right;
|
|
} else {
|
|
BUG_ON(1);
|
|
return -EINVAL;
|
|
}
|
|
}
|
|
|
|
es = ext4_es_alloc_extent(inode, newes->es_lblk, newes->es_len,
|
|
newes->es_pblk);
|
|
if (!es)
|
|
return -ENOMEM;
|
|
rb_link_node(&es->rb_node, parent, p);
|
|
rb_insert_color(&es->rb_node, &tree->root);
|
|
|
|
out:
|
|
tree->cache_es = es;
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* ext4_es_insert_extent() adds a space to a extent status tree.
|
|
*
|
|
* ext4_es_insert_extent is called by ext4_da_write_begin and
|
|
* ext4_es_remove_extent.
|
|
*
|
|
* Return 0 on success, error code on failure.
|
|
*/
|
|
int ext4_es_insert_extent(struct inode *inode, ext4_lblk_t lblk,
|
|
ext4_lblk_t len, ext4_fsblk_t pblk,
|
|
unsigned long long status)
|
|
{
|
|
struct extent_status newes;
|
|
ext4_lblk_t end = lblk + len - 1;
|
|
int err = 0;
|
|
|
|
es_debug("add [%u/%u) %llu %llx to extent status tree of inode %lu\n",
|
|
lblk, len, pblk, status, inode->i_ino);
|
|
|
|
BUG_ON(end < lblk);
|
|
|
|
newes.es_lblk = lblk;
|
|
newes.es_len = len;
|
|
ext4_es_store_pblock(&newes, pblk);
|
|
ext4_es_store_status(&newes, status);
|
|
trace_ext4_es_insert_extent(inode, &newes);
|
|
|
|
write_lock(&EXT4_I(inode)->i_es_lock);
|
|
err = __es_remove_extent(inode, lblk, end);
|
|
if (err != 0)
|
|
goto error;
|
|
err = __es_insert_extent(inode, &newes);
|
|
|
|
error:
|
|
write_unlock(&EXT4_I(inode)->i_es_lock);
|
|
|
|
ext4_es_print_tree(inode);
|
|
|
|
return err;
|
|
}
|
|
|
|
/*
|
|
* ext4_es_lookup_extent() looks up an extent in extent status tree.
|
|
*
|
|
* ext4_es_lookup_extent is called by ext4_map_blocks/ext4_da_map_blocks.
|
|
*
|
|
* Return: 1 on found, 0 on not
|
|
*/
|
|
int ext4_es_lookup_extent(struct inode *inode, ext4_lblk_t lblk,
|
|
struct extent_status *es)
|
|
{
|
|
struct ext4_es_tree *tree;
|
|
struct extent_status *es1 = NULL;
|
|
struct rb_node *node;
|
|
int found = 0;
|
|
|
|
trace_ext4_es_lookup_extent_enter(inode, lblk);
|
|
es_debug("lookup extent in block %u\n", lblk);
|
|
|
|
tree = &EXT4_I(inode)->i_es_tree;
|
|
read_lock(&EXT4_I(inode)->i_es_lock);
|
|
|
|
/* find extent in cache firstly */
|
|
es->es_lblk = es->es_len = es->es_pblk = 0;
|
|
if (tree->cache_es) {
|
|
es1 = tree->cache_es;
|
|
if (in_range(lblk, es1->es_lblk, es1->es_len)) {
|
|
es_debug("%u cached by [%u/%u)\n",
|
|
lblk, es1->es_lblk, es1->es_len);
|
|
found = 1;
|
|
goto out;
|
|
}
|
|
}
|
|
|
|
node = tree->root.rb_node;
|
|
while (node) {
|
|
es1 = rb_entry(node, struct extent_status, rb_node);
|
|
if (lblk < es1->es_lblk)
|
|
node = node->rb_left;
|
|
else if (lblk > ext4_es_end(es1))
|
|
node = node->rb_right;
|
|
else {
|
|
found = 1;
|
|
break;
|
|
}
|
|
}
|
|
|
|
out:
|
|
if (found) {
|
|
BUG_ON(!es1);
|
|
es->es_lblk = es1->es_lblk;
|
|
es->es_len = es1->es_len;
|
|
es->es_pblk = es1->es_pblk;
|
|
}
|
|
|
|
read_unlock(&EXT4_I(inode)->i_es_lock);
|
|
|
|
trace_ext4_es_lookup_extent_exit(inode, es, found);
|
|
return found;
|
|
}
|
|
|
|
static int __es_remove_extent(struct inode *inode, ext4_lblk_t lblk,
|
|
ext4_lblk_t end)
|
|
{
|
|
struct ext4_es_tree *tree = &EXT4_I(inode)->i_es_tree;
|
|
struct rb_node *node;
|
|
struct extent_status *es;
|
|
struct extent_status orig_es;
|
|
ext4_lblk_t len1, len2;
|
|
ext4_fsblk_t block;
|
|
int err = 0;
|
|
|
|
es = __es_tree_search(&tree->root, lblk);
|
|
if (!es)
|
|
goto out;
|
|
if (es->es_lblk > end)
|
|
goto out;
|
|
|
|
/* Simply invalidate cache_es. */
|
|
tree->cache_es = NULL;
|
|
|
|
orig_es.es_lblk = es->es_lblk;
|
|
orig_es.es_len = es->es_len;
|
|
orig_es.es_pblk = es->es_pblk;
|
|
|
|
len1 = lblk > es->es_lblk ? lblk - es->es_lblk : 0;
|
|
len2 = ext4_es_end(es) > end ? ext4_es_end(es) - end : 0;
|
|
if (len1 > 0)
|
|
es->es_len = len1;
|
|
if (len2 > 0) {
|
|
if (len1 > 0) {
|
|
struct extent_status newes;
|
|
|
|
newes.es_lblk = end + 1;
|
|
newes.es_len = len2;
|
|
if (ext4_es_is_written(&orig_es) ||
|
|
ext4_es_is_unwritten(&orig_es)) {
|
|
block = ext4_es_pblock(&orig_es) +
|
|
orig_es.es_len - len2;
|
|
ext4_es_store_pblock(&newes, block);
|
|
}
|
|
ext4_es_store_status(&newes, ext4_es_status(&orig_es));
|
|
err = __es_insert_extent(inode, &newes);
|
|
if (err) {
|
|
es->es_lblk = orig_es.es_lblk;
|
|
es->es_len = orig_es.es_len;
|
|
goto out;
|
|
}
|
|
} else {
|
|
es->es_lblk = end + 1;
|
|
es->es_len = len2;
|
|
if (ext4_es_is_written(es) ||
|
|
ext4_es_is_unwritten(es)) {
|
|
block = orig_es.es_pblk + orig_es.es_len - len2;
|
|
ext4_es_store_pblock(es, block);
|
|
}
|
|
}
|
|
goto out;
|
|
}
|
|
|
|
if (len1 > 0) {
|
|
node = rb_next(&es->rb_node);
|
|
if (node)
|
|
es = rb_entry(node, struct extent_status, rb_node);
|
|
else
|
|
es = NULL;
|
|
}
|
|
|
|
while (es && ext4_es_end(es) <= end) {
|
|
node = rb_next(&es->rb_node);
|
|
rb_erase(&es->rb_node, &tree->root);
|
|
ext4_es_free_extent(inode, es);
|
|
if (!node) {
|
|
es = NULL;
|
|
break;
|
|
}
|
|
es = rb_entry(node, struct extent_status, rb_node);
|
|
}
|
|
|
|
if (es && es->es_lblk < end + 1) {
|
|
ext4_lblk_t orig_len = es->es_len;
|
|
|
|
len1 = ext4_es_end(es) - end;
|
|
es->es_lblk = end + 1;
|
|
es->es_len = len1;
|
|
if (ext4_es_is_written(es) || ext4_es_is_unwritten(es)) {
|
|
block = es->es_pblk + orig_len - len1;
|
|
ext4_es_store_pblock(es, block);
|
|
}
|
|
}
|
|
|
|
out:
|
|
return err;
|
|
}
|
|
|
|
/*
|
|
* ext4_es_remove_extent() removes a space from a extent status tree.
|
|
*
|
|
* Return 0 on success, error code on failure.
|
|
*/
|
|
int ext4_es_remove_extent(struct inode *inode, ext4_lblk_t lblk,
|
|
ext4_lblk_t len)
|
|
{
|
|
ext4_lblk_t end;
|
|
int err = 0;
|
|
|
|
trace_ext4_es_remove_extent(inode, lblk, len);
|
|
es_debug("remove [%u/%u) from extent status tree of inode %lu\n",
|
|
lblk, len, inode->i_ino);
|
|
|
|
end = lblk + len - 1;
|
|
BUG_ON(end < lblk);
|
|
|
|
write_lock(&EXT4_I(inode)->i_es_lock);
|
|
err = __es_remove_extent(inode, lblk, end);
|
|
write_unlock(&EXT4_I(inode)->i_es_lock);
|
|
ext4_es_print_tree(inode);
|
|
return err;
|
|
}
|