mirror of
https://github.com/FEX-Emu/linux.git
synced 2024-12-18 06:50:08 +00:00
bf41a158ca
This patch replaces the local_irq_save/restore with preempt_disable/ enable. This allows for interrupts to enter while recording. To write to the ring buffer, you must reserve data, and then commit it. During this time, an interrupt may call a trace function that will also record into the buffer before the commit is made. The interrupt will reserve its entry after the first entry, even though the first entry did not finish yet. The time stamp delta of the interrupt entry will be zero, since in the view of the trace, the interrupt happened during the first field anyway. Locking still takes place when the tail/write moves from one page to the next. The reader always takes the locks. A new page pointer is added, called the commit. The write/tail will always point to the end of all entries. The commit field will point to the last committed entry. Only this commit entry may update the write time stamp. The reader can only go up to the commit. It cannot go past it. If a lot of interrupts come in during a commit that fills up the buffer, and it happens to make it all the way around the buffer back to the commit, then a warning is printed and new events will be dropped. Signed-off-by: Steven Rostedt <srostedt@redhat.com> Signed-off-by: Ingo Molnar <mingo@elte.hu>
2015 lines
48 KiB
C
2015 lines
48 KiB
C
/*
|
|
* Generic ring buffer
|
|
*
|
|
* Copyright (C) 2008 Steven Rostedt <srostedt@redhat.com>
|
|
*/
|
|
#include <linux/ring_buffer.h>
|
|
#include <linux/spinlock.h>
|
|
#include <linux/debugfs.h>
|
|
#include <linux/uaccess.h>
|
|
#include <linux/module.h>
|
|
#include <linux/percpu.h>
|
|
#include <linux/mutex.h>
|
|
#include <linux/sched.h> /* used for sched_clock() (for now) */
|
|
#include <linux/init.h>
|
|
#include <linux/hash.h>
|
|
#include <linux/list.h>
|
|
#include <linux/fs.h>
|
|
|
|
/* Up this if you want to test the TIME_EXTENTS and normalization */
|
|
#define DEBUG_SHIFT 0
|
|
|
|
/* FIXME!!! */
|
|
u64 ring_buffer_time_stamp(int cpu)
|
|
{
|
|
/* shift to debug/test normalization and TIME_EXTENTS */
|
|
return sched_clock() << DEBUG_SHIFT;
|
|
}
|
|
|
|
void ring_buffer_normalize_time_stamp(int cpu, u64 *ts)
|
|
{
|
|
/* Just stupid testing the normalize function and deltas */
|
|
*ts >>= DEBUG_SHIFT;
|
|
}
|
|
|
|
#define RB_EVNT_HDR_SIZE (sizeof(struct ring_buffer_event))
|
|
#define RB_ALIGNMENT_SHIFT 2
|
|
#define RB_ALIGNMENT (1 << RB_ALIGNMENT_SHIFT)
|
|
#define RB_MAX_SMALL_DATA 28
|
|
|
|
enum {
|
|
RB_LEN_TIME_EXTEND = 8,
|
|
RB_LEN_TIME_STAMP = 16,
|
|
};
|
|
|
|
/* inline for ring buffer fast paths */
|
|
static inline unsigned
|
|
rb_event_length(struct ring_buffer_event *event)
|
|
{
|
|
unsigned length;
|
|
|
|
switch (event->type) {
|
|
case RINGBUF_TYPE_PADDING:
|
|
/* undefined */
|
|
return -1;
|
|
|
|
case RINGBUF_TYPE_TIME_EXTEND:
|
|
return RB_LEN_TIME_EXTEND;
|
|
|
|
case RINGBUF_TYPE_TIME_STAMP:
|
|
return RB_LEN_TIME_STAMP;
|
|
|
|
case RINGBUF_TYPE_DATA:
|
|
if (event->len)
|
|
length = event->len << RB_ALIGNMENT_SHIFT;
|
|
else
|
|
length = event->array[0];
|
|
return length + RB_EVNT_HDR_SIZE;
|
|
default:
|
|
BUG();
|
|
}
|
|
/* not hit */
|
|
return 0;
|
|
}
|
|
|
|
/**
|
|
* ring_buffer_event_length - return the length of the event
|
|
* @event: the event to get the length of
|
|
*/
|
|
unsigned ring_buffer_event_length(struct ring_buffer_event *event)
|
|
{
|
|
return rb_event_length(event);
|
|
}
|
|
|
|
/* inline for ring buffer fast paths */
|
|
static inline void *
|
|
rb_event_data(struct ring_buffer_event *event)
|
|
{
|
|
BUG_ON(event->type != RINGBUF_TYPE_DATA);
|
|
/* If length is in len field, then array[0] has the data */
|
|
if (event->len)
|
|
return (void *)&event->array[0];
|
|
/* Otherwise length is in array[0] and array[1] has the data */
|
|
return (void *)&event->array[1];
|
|
}
|
|
|
|
/**
|
|
* ring_buffer_event_data - return the data of the event
|
|
* @event: the event to get the data from
|
|
*/
|
|
void *ring_buffer_event_data(struct ring_buffer_event *event)
|
|
{
|
|
return rb_event_data(event);
|
|
}
|
|
|
|
#define for_each_buffer_cpu(buffer, cpu) \
|
|
for_each_cpu_mask(cpu, buffer->cpumask)
|
|
|
|
#define TS_SHIFT 27
|
|
#define TS_MASK ((1ULL << TS_SHIFT) - 1)
|
|
#define TS_DELTA_TEST (~TS_MASK)
|
|
|
|
/*
|
|
* This hack stolen from mm/slob.c.
|
|
* We can store per page timing information in the page frame of the page.
|
|
* Thanks to Peter Zijlstra for suggesting this idea.
|
|
*/
|
|
struct buffer_page {
|
|
u64 time_stamp; /* page time stamp */
|
|
local_t write; /* index for next write */
|
|
local_t commit; /* write commited index */
|
|
unsigned read; /* index for next read */
|
|
struct list_head list; /* list of free pages */
|
|
void *page; /* Actual data page */
|
|
};
|
|
|
|
/*
|
|
* Also stolen from mm/slob.c. Thanks to Mathieu Desnoyers for pointing
|
|
* this issue out.
|
|
*/
|
|
static inline void free_buffer_page(struct buffer_page *bpage)
|
|
{
|
|
if (bpage->page)
|
|
__free_page(bpage->page);
|
|
kfree(bpage);
|
|
}
|
|
|
|
/*
|
|
* We need to fit the time_stamp delta into 27 bits.
|
|
*/
|
|
static inline int test_time_stamp(u64 delta)
|
|
{
|
|
if (delta & TS_DELTA_TEST)
|
|
return 1;
|
|
return 0;
|
|
}
|
|
|
|
#define BUF_PAGE_SIZE PAGE_SIZE
|
|
|
|
/*
|
|
* head_page == tail_page && head == tail then buffer is empty.
|
|
*/
|
|
struct ring_buffer_per_cpu {
|
|
int cpu;
|
|
struct ring_buffer *buffer;
|
|
spinlock_t lock;
|
|
struct lock_class_key lock_key;
|
|
struct list_head pages;
|
|
struct buffer_page *head_page; /* read from head */
|
|
struct buffer_page *tail_page; /* write to tail */
|
|
struct buffer_page *commit_page; /* commited pages */
|
|
struct buffer_page *reader_page;
|
|
unsigned long overrun;
|
|
unsigned long entries;
|
|
u64 write_stamp;
|
|
u64 read_stamp;
|
|
atomic_t record_disabled;
|
|
};
|
|
|
|
struct ring_buffer {
|
|
unsigned long size;
|
|
unsigned pages;
|
|
unsigned flags;
|
|
int cpus;
|
|
cpumask_t cpumask;
|
|
atomic_t record_disabled;
|
|
|
|
struct mutex mutex;
|
|
|
|
struct ring_buffer_per_cpu **buffers;
|
|
};
|
|
|
|
struct ring_buffer_iter {
|
|
struct ring_buffer_per_cpu *cpu_buffer;
|
|
unsigned long head;
|
|
struct buffer_page *head_page;
|
|
u64 read_stamp;
|
|
};
|
|
|
|
#define RB_WARN_ON(buffer, cond) \
|
|
do { \
|
|
if (unlikely(cond)) { \
|
|
atomic_inc(&buffer->record_disabled); \
|
|
WARN_ON(1); \
|
|
} \
|
|
} while (0)
|
|
|
|
#define RB_WARN_ON_RET(buffer, cond) \
|
|
do { \
|
|
if (unlikely(cond)) { \
|
|
atomic_inc(&buffer->record_disabled); \
|
|
WARN_ON(1); \
|
|
return -1; \
|
|
} \
|
|
} while (0)
|
|
|
|
#define RB_WARN_ON_ONCE(buffer, cond) \
|
|
do { \
|
|
static int once; \
|
|
if (unlikely(cond) && !once) { \
|
|
once++; \
|
|
atomic_inc(&buffer->record_disabled); \
|
|
WARN_ON(1); \
|
|
} \
|
|
} while (0)
|
|
|
|
/**
|
|
* check_pages - integrity check of buffer pages
|
|
* @cpu_buffer: CPU buffer with pages to test
|
|
*
|
|
* As a safty measure we check to make sure the data pages have not
|
|
* been corrupted.
|
|
*/
|
|
static int rb_check_pages(struct ring_buffer_per_cpu *cpu_buffer)
|
|
{
|
|
struct list_head *head = &cpu_buffer->pages;
|
|
struct buffer_page *page, *tmp;
|
|
|
|
RB_WARN_ON_RET(cpu_buffer, head->next->prev != head);
|
|
RB_WARN_ON_RET(cpu_buffer, head->prev->next != head);
|
|
|
|
list_for_each_entry_safe(page, tmp, head, list) {
|
|
RB_WARN_ON_RET(cpu_buffer,
|
|
page->list.next->prev != &page->list);
|
|
RB_WARN_ON_RET(cpu_buffer,
|
|
page->list.prev->next != &page->list);
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int rb_allocate_pages(struct ring_buffer_per_cpu *cpu_buffer,
|
|
unsigned nr_pages)
|
|
{
|
|
struct list_head *head = &cpu_buffer->pages;
|
|
struct buffer_page *page, *tmp;
|
|
unsigned long addr;
|
|
LIST_HEAD(pages);
|
|
unsigned i;
|
|
|
|
for (i = 0; i < nr_pages; i++) {
|
|
page = kzalloc_node(ALIGN(sizeof(*page), cache_line_size()),
|
|
GFP_KERNEL, cpu_to_node(cpu_buffer->cpu));
|
|
if (!page)
|
|
goto free_pages;
|
|
list_add(&page->list, &pages);
|
|
|
|
addr = __get_free_page(GFP_KERNEL);
|
|
if (!addr)
|
|
goto free_pages;
|
|
page->page = (void *)addr;
|
|
}
|
|
|
|
list_splice(&pages, head);
|
|
|
|
rb_check_pages(cpu_buffer);
|
|
|
|
return 0;
|
|
|
|
free_pages:
|
|
list_for_each_entry_safe(page, tmp, &pages, list) {
|
|
list_del_init(&page->list);
|
|
free_buffer_page(page);
|
|
}
|
|
return -ENOMEM;
|
|
}
|
|
|
|
static struct ring_buffer_per_cpu *
|
|
rb_allocate_cpu_buffer(struct ring_buffer *buffer, int cpu)
|
|
{
|
|
struct ring_buffer_per_cpu *cpu_buffer;
|
|
struct buffer_page *page;
|
|
unsigned long addr;
|
|
int ret;
|
|
|
|
cpu_buffer = kzalloc_node(ALIGN(sizeof(*cpu_buffer), cache_line_size()),
|
|
GFP_KERNEL, cpu_to_node(cpu));
|
|
if (!cpu_buffer)
|
|
return NULL;
|
|
|
|
cpu_buffer->cpu = cpu;
|
|
cpu_buffer->buffer = buffer;
|
|
spin_lock_init(&cpu_buffer->lock);
|
|
INIT_LIST_HEAD(&cpu_buffer->pages);
|
|
|
|
page = kzalloc_node(ALIGN(sizeof(*page), cache_line_size()),
|
|
GFP_KERNEL, cpu_to_node(cpu));
|
|
if (!page)
|
|
goto fail_free_buffer;
|
|
|
|
cpu_buffer->reader_page = page;
|
|
addr = __get_free_page(GFP_KERNEL);
|
|
if (!addr)
|
|
goto fail_free_reader;
|
|
page->page = (void *)addr;
|
|
|
|
INIT_LIST_HEAD(&cpu_buffer->reader_page->list);
|
|
|
|
ret = rb_allocate_pages(cpu_buffer, buffer->pages);
|
|
if (ret < 0)
|
|
goto fail_free_reader;
|
|
|
|
cpu_buffer->head_page
|
|
= list_entry(cpu_buffer->pages.next, struct buffer_page, list);
|
|
cpu_buffer->tail_page = cpu_buffer->commit_page = cpu_buffer->head_page;
|
|
|
|
return cpu_buffer;
|
|
|
|
fail_free_reader:
|
|
free_buffer_page(cpu_buffer->reader_page);
|
|
|
|
fail_free_buffer:
|
|
kfree(cpu_buffer);
|
|
return NULL;
|
|
}
|
|
|
|
static void rb_free_cpu_buffer(struct ring_buffer_per_cpu *cpu_buffer)
|
|
{
|
|
struct list_head *head = &cpu_buffer->pages;
|
|
struct buffer_page *page, *tmp;
|
|
|
|
list_del_init(&cpu_buffer->reader_page->list);
|
|
free_buffer_page(cpu_buffer->reader_page);
|
|
|
|
list_for_each_entry_safe(page, tmp, head, list) {
|
|
list_del_init(&page->list);
|
|
free_buffer_page(page);
|
|
}
|
|
kfree(cpu_buffer);
|
|
}
|
|
|
|
/*
|
|
* Causes compile errors if the struct buffer_page gets bigger
|
|
* than the struct page.
|
|
*/
|
|
extern int ring_buffer_page_too_big(void);
|
|
|
|
/**
|
|
* ring_buffer_alloc - allocate a new ring_buffer
|
|
* @size: the size in bytes that is needed.
|
|
* @flags: attributes to set for the ring buffer.
|
|
*
|
|
* Currently the only flag that is available is the RB_FL_OVERWRITE
|
|
* flag. This flag means that the buffer will overwrite old data
|
|
* when the buffer wraps. If this flag is not set, the buffer will
|
|
* drop data when the tail hits the head.
|
|
*/
|
|
struct ring_buffer *ring_buffer_alloc(unsigned long size, unsigned flags)
|
|
{
|
|
struct ring_buffer *buffer;
|
|
int bsize;
|
|
int cpu;
|
|
|
|
/* Paranoid! Optimizes out when all is well */
|
|
if (sizeof(struct buffer_page) > sizeof(struct page))
|
|
ring_buffer_page_too_big();
|
|
|
|
|
|
/* keep it in its own cache line */
|
|
buffer = kzalloc(ALIGN(sizeof(*buffer), cache_line_size()),
|
|
GFP_KERNEL);
|
|
if (!buffer)
|
|
return NULL;
|
|
|
|
buffer->pages = DIV_ROUND_UP(size, BUF_PAGE_SIZE);
|
|
buffer->flags = flags;
|
|
|
|
/* need at least two pages */
|
|
if (buffer->pages == 1)
|
|
buffer->pages++;
|
|
|
|
buffer->cpumask = cpu_possible_map;
|
|
buffer->cpus = nr_cpu_ids;
|
|
|
|
bsize = sizeof(void *) * nr_cpu_ids;
|
|
buffer->buffers = kzalloc(ALIGN(bsize, cache_line_size()),
|
|
GFP_KERNEL);
|
|
if (!buffer->buffers)
|
|
goto fail_free_buffer;
|
|
|
|
for_each_buffer_cpu(buffer, cpu) {
|
|
buffer->buffers[cpu] =
|
|
rb_allocate_cpu_buffer(buffer, cpu);
|
|
if (!buffer->buffers[cpu])
|
|
goto fail_free_buffers;
|
|
}
|
|
|
|
mutex_init(&buffer->mutex);
|
|
|
|
return buffer;
|
|
|
|
fail_free_buffers:
|
|
for_each_buffer_cpu(buffer, cpu) {
|
|
if (buffer->buffers[cpu])
|
|
rb_free_cpu_buffer(buffer->buffers[cpu]);
|
|
}
|
|
kfree(buffer->buffers);
|
|
|
|
fail_free_buffer:
|
|
kfree(buffer);
|
|
return NULL;
|
|
}
|
|
|
|
/**
|
|
* ring_buffer_free - free a ring buffer.
|
|
* @buffer: the buffer to free.
|
|
*/
|
|
void
|
|
ring_buffer_free(struct ring_buffer *buffer)
|
|
{
|
|
int cpu;
|
|
|
|
for_each_buffer_cpu(buffer, cpu)
|
|
rb_free_cpu_buffer(buffer->buffers[cpu]);
|
|
|
|
kfree(buffer);
|
|
}
|
|
|
|
static void rb_reset_cpu(struct ring_buffer_per_cpu *cpu_buffer);
|
|
|
|
static void
|
|
rb_remove_pages(struct ring_buffer_per_cpu *cpu_buffer, unsigned nr_pages)
|
|
{
|
|
struct buffer_page *page;
|
|
struct list_head *p;
|
|
unsigned i;
|
|
|
|
atomic_inc(&cpu_buffer->record_disabled);
|
|
synchronize_sched();
|
|
|
|
for (i = 0; i < nr_pages; i++) {
|
|
BUG_ON(list_empty(&cpu_buffer->pages));
|
|
p = cpu_buffer->pages.next;
|
|
page = list_entry(p, struct buffer_page, list);
|
|
list_del_init(&page->list);
|
|
free_buffer_page(page);
|
|
}
|
|
BUG_ON(list_empty(&cpu_buffer->pages));
|
|
|
|
rb_reset_cpu(cpu_buffer);
|
|
|
|
rb_check_pages(cpu_buffer);
|
|
|
|
atomic_dec(&cpu_buffer->record_disabled);
|
|
|
|
}
|
|
|
|
static void
|
|
rb_insert_pages(struct ring_buffer_per_cpu *cpu_buffer,
|
|
struct list_head *pages, unsigned nr_pages)
|
|
{
|
|
struct buffer_page *page;
|
|
struct list_head *p;
|
|
unsigned i;
|
|
|
|
atomic_inc(&cpu_buffer->record_disabled);
|
|
synchronize_sched();
|
|
|
|
for (i = 0; i < nr_pages; i++) {
|
|
BUG_ON(list_empty(pages));
|
|
p = pages->next;
|
|
page = list_entry(p, struct buffer_page, list);
|
|
list_del_init(&page->list);
|
|
list_add_tail(&page->list, &cpu_buffer->pages);
|
|
}
|
|
rb_reset_cpu(cpu_buffer);
|
|
|
|
rb_check_pages(cpu_buffer);
|
|
|
|
atomic_dec(&cpu_buffer->record_disabled);
|
|
}
|
|
|
|
/**
|
|
* ring_buffer_resize - resize the ring buffer
|
|
* @buffer: the buffer to resize.
|
|
* @size: the new size.
|
|
*
|
|
* The tracer is responsible for making sure that the buffer is
|
|
* not being used while changing the size.
|
|
* Note: We may be able to change the above requirement by using
|
|
* RCU synchronizations.
|
|
*
|
|
* Minimum size is 2 * BUF_PAGE_SIZE.
|
|
*
|
|
* Returns -1 on failure.
|
|
*/
|
|
int ring_buffer_resize(struct ring_buffer *buffer, unsigned long size)
|
|
{
|
|
struct ring_buffer_per_cpu *cpu_buffer;
|
|
unsigned nr_pages, rm_pages, new_pages;
|
|
struct buffer_page *page, *tmp;
|
|
unsigned long buffer_size;
|
|
unsigned long addr;
|
|
LIST_HEAD(pages);
|
|
int i, cpu;
|
|
|
|
size = DIV_ROUND_UP(size, BUF_PAGE_SIZE);
|
|
size *= BUF_PAGE_SIZE;
|
|
buffer_size = buffer->pages * BUF_PAGE_SIZE;
|
|
|
|
/* we need a minimum of two pages */
|
|
if (size < BUF_PAGE_SIZE * 2)
|
|
size = BUF_PAGE_SIZE * 2;
|
|
|
|
if (size == buffer_size)
|
|
return size;
|
|
|
|
mutex_lock(&buffer->mutex);
|
|
|
|
nr_pages = DIV_ROUND_UP(size, BUF_PAGE_SIZE);
|
|
|
|
if (size < buffer_size) {
|
|
|
|
/* easy case, just free pages */
|
|
BUG_ON(nr_pages >= buffer->pages);
|
|
|
|
rm_pages = buffer->pages - nr_pages;
|
|
|
|
for_each_buffer_cpu(buffer, cpu) {
|
|
cpu_buffer = buffer->buffers[cpu];
|
|
rb_remove_pages(cpu_buffer, rm_pages);
|
|
}
|
|
goto out;
|
|
}
|
|
|
|
/*
|
|
* This is a bit more difficult. We only want to add pages
|
|
* when we can allocate enough for all CPUs. We do this
|
|
* by allocating all the pages and storing them on a local
|
|
* link list. If we succeed in our allocation, then we
|
|
* add these pages to the cpu_buffers. Otherwise we just free
|
|
* them all and return -ENOMEM;
|
|
*/
|
|
BUG_ON(nr_pages <= buffer->pages);
|
|
new_pages = nr_pages - buffer->pages;
|
|
|
|
for_each_buffer_cpu(buffer, cpu) {
|
|
for (i = 0; i < new_pages; i++) {
|
|
page = kzalloc_node(ALIGN(sizeof(*page),
|
|
cache_line_size()),
|
|
GFP_KERNEL, cpu_to_node(cpu));
|
|
if (!page)
|
|
goto free_pages;
|
|
list_add(&page->list, &pages);
|
|
addr = __get_free_page(GFP_KERNEL);
|
|
if (!addr)
|
|
goto free_pages;
|
|
page->page = (void *)addr;
|
|
}
|
|
}
|
|
|
|
for_each_buffer_cpu(buffer, cpu) {
|
|
cpu_buffer = buffer->buffers[cpu];
|
|
rb_insert_pages(cpu_buffer, &pages, new_pages);
|
|
}
|
|
|
|
BUG_ON(!list_empty(&pages));
|
|
|
|
out:
|
|
buffer->pages = nr_pages;
|
|
mutex_unlock(&buffer->mutex);
|
|
|
|
return size;
|
|
|
|
free_pages:
|
|
list_for_each_entry_safe(page, tmp, &pages, list) {
|
|
list_del_init(&page->list);
|
|
free_buffer_page(page);
|
|
}
|
|
return -ENOMEM;
|
|
}
|
|
|
|
static inline int rb_null_event(struct ring_buffer_event *event)
|
|
{
|
|
return event->type == RINGBUF_TYPE_PADDING;
|
|
}
|
|
|
|
static inline void *__rb_page_index(struct buffer_page *page, unsigned index)
|
|
{
|
|
return page->page + index;
|
|
}
|
|
|
|
static inline struct ring_buffer_event *
|
|
rb_reader_event(struct ring_buffer_per_cpu *cpu_buffer)
|
|
{
|
|
return __rb_page_index(cpu_buffer->reader_page,
|
|
cpu_buffer->reader_page->read);
|
|
}
|
|
|
|
static inline struct ring_buffer_event *
|
|
rb_head_event(struct ring_buffer_per_cpu *cpu_buffer)
|
|
{
|
|
return __rb_page_index(cpu_buffer->head_page,
|
|
cpu_buffer->head_page->read);
|
|
}
|
|
|
|
static inline struct ring_buffer_event *
|
|
rb_iter_head_event(struct ring_buffer_iter *iter)
|
|
{
|
|
return __rb_page_index(iter->head_page, iter->head);
|
|
}
|
|
|
|
static inline unsigned rb_page_write(struct buffer_page *bpage)
|
|
{
|
|
return local_read(&bpage->write);
|
|
}
|
|
|
|
static inline unsigned rb_page_commit(struct buffer_page *bpage)
|
|
{
|
|
return local_read(&bpage->commit);
|
|
}
|
|
|
|
/* Size is determined by what has been commited */
|
|
static inline unsigned rb_page_size(struct buffer_page *bpage)
|
|
{
|
|
return rb_page_commit(bpage);
|
|
}
|
|
|
|
static inline unsigned
|
|
rb_commit_index(struct ring_buffer_per_cpu *cpu_buffer)
|
|
{
|
|
return rb_page_commit(cpu_buffer->commit_page);
|
|
}
|
|
|
|
static inline unsigned rb_head_size(struct ring_buffer_per_cpu *cpu_buffer)
|
|
{
|
|
return rb_page_commit(cpu_buffer->head_page);
|
|
}
|
|
|
|
/*
|
|
* When the tail hits the head and the buffer is in overwrite mode,
|
|
* the head jumps to the next page and all content on the previous
|
|
* page is discarded. But before doing so, we update the overrun
|
|
* variable of the buffer.
|
|
*/
|
|
static void rb_update_overflow(struct ring_buffer_per_cpu *cpu_buffer)
|
|
{
|
|
struct ring_buffer_event *event;
|
|
unsigned long head;
|
|
|
|
for (head = 0; head < rb_head_size(cpu_buffer);
|
|
head += rb_event_length(event)) {
|
|
|
|
event = __rb_page_index(cpu_buffer->head_page, head);
|
|
BUG_ON(rb_null_event(event));
|
|
/* Only count data entries */
|
|
if (event->type != RINGBUF_TYPE_DATA)
|
|
continue;
|
|
cpu_buffer->overrun++;
|
|
cpu_buffer->entries--;
|
|
}
|
|
}
|
|
|
|
static inline void rb_inc_page(struct ring_buffer_per_cpu *cpu_buffer,
|
|
struct buffer_page **page)
|
|
{
|
|
struct list_head *p = (*page)->list.next;
|
|
|
|
if (p == &cpu_buffer->pages)
|
|
p = p->next;
|
|
|
|
*page = list_entry(p, struct buffer_page, list);
|
|
}
|
|
|
|
static inline unsigned
|
|
rb_event_index(struct ring_buffer_event *event)
|
|
{
|
|
unsigned long addr = (unsigned long)event;
|
|
|
|
return (addr & ~PAGE_MASK) - (PAGE_SIZE - BUF_PAGE_SIZE);
|
|
}
|
|
|
|
static inline int
|
|
rb_is_commit(struct ring_buffer_per_cpu *cpu_buffer,
|
|
struct ring_buffer_event *event)
|
|
{
|
|
unsigned long addr = (unsigned long)event;
|
|
unsigned long index;
|
|
|
|
index = rb_event_index(event);
|
|
addr &= PAGE_MASK;
|
|
|
|
return cpu_buffer->commit_page->page == (void *)addr &&
|
|
rb_commit_index(cpu_buffer) == index;
|
|
}
|
|
|
|
static inline void
|
|
rb_set_commit_event(struct ring_buffer_per_cpu *cpu_buffer,
|
|
struct ring_buffer_event *event)
|
|
{
|
|
unsigned long addr = (unsigned long)event;
|
|
unsigned long index;
|
|
|
|
index = rb_event_index(event);
|
|
addr &= PAGE_MASK;
|
|
|
|
while (cpu_buffer->commit_page->page != (void *)addr) {
|
|
RB_WARN_ON(cpu_buffer,
|
|
cpu_buffer->commit_page == cpu_buffer->tail_page);
|
|
cpu_buffer->commit_page->commit =
|
|
cpu_buffer->commit_page->write;
|
|
rb_inc_page(cpu_buffer, &cpu_buffer->commit_page);
|
|
cpu_buffer->write_stamp = cpu_buffer->commit_page->time_stamp;
|
|
}
|
|
|
|
/* Now set the commit to the event's index */
|
|
local_set(&cpu_buffer->commit_page->commit, index);
|
|
}
|
|
|
|
static inline void
|
|
rb_set_commit_to_write(struct ring_buffer_per_cpu *cpu_buffer)
|
|
{
|
|
/*
|
|
* We only race with interrupts and NMIs on this CPU.
|
|
* If we own the commit event, then we can commit
|
|
* all others that interrupted us, since the interruptions
|
|
* are in stack format (they finish before they come
|
|
* back to us). This allows us to do a simple loop to
|
|
* assign the commit to the tail.
|
|
*/
|
|
while (cpu_buffer->commit_page != cpu_buffer->tail_page) {
|
|
cpu_buffer->commit_page->commit =
|
|
cpu_buffer->commit_page->write;
|
|
rb_inc_page(cpu_buffer, &cpu_buffer->commit_page);
|
|
cpu_buffer->write_stamp = cpu_buffer->commit_page->time_stamp;
|
|
/* add barrier to keep gcc from optimizing too much */
|
|
barrier();
|
|
}
|
|
while (rb_commit_index(cpu_buffer) !=
|
|
rb_page_write(cpu_buffer->commit_page)) {
|
|
cpu_buffer->commit_page->commit =
|
|
cpu_buffer->commit_page->write;
|
|
barrier();
|
|
}
|
|
}
|
|
|
|
static void rb_reset_reader_page(struct ring_buffer_per_cpu *cpu_buffer)
|
|
{
|
|
cpu_buffer->read_stamp = cpu_buffer->reader_page->time_stamp;
|
|
cpu_buffer->reader_page->read = 0;
|
|
}
|
|
|
|
static inline void rb_inc_iter(struct ring_buffer_iter *iter)
|
|
{
|
|
struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
|
|
|
|
/*
|
|
* The iterator could be on the reader page (it starts there).
|
|
* But the head could have moved, since the reader was
|
|
* found. Check for this case and assign the iterator
|
|
* to the head page instead of next.
|
|
*/
|
|
if (iter->head_page == cpu_buffer->reader_page)
|
|
iter->head_page = cpu_buffer->head_page;
|
|
else
|
|
rb_inc_page(cpu_buffer, &iter->head_page);
|
|
|
|
iter->read_stamp = iter->head_page->time_stamp;
|
|
iter->head = 0;
|
|
}
|
|
|
|
/**
|
|
* ring_buffer_update_event - update event type and data
|
|
* @event: the even to update
|
|
* @type: the type of event
|
|
* @length: the size of the event field in the ring buffer
|
|
*
|
|
* Update the type and data fields of the event. The length
|
|
* is the actual size that is written to the ring buffer,
|
|
* and with this, we can determine what to place into the
|
|
* data field.
|
|
*/
|
|
static inline void
|
|
rb_update_event(struct ring_buffer_event *event,
|
|
unsigned type, unsigned length)
|
|
{
|
|
event->type = type;
|
|
|
|
switch (type) {
|
|
|
|
case RINGBUF_TYPE_PADDING:
|
|
break;
|
|
|
|
case RINGBUF_TYPE_TIME_EXTEND:
|
|
event->len =
|
|
(RB_LEN_TIME_EXTEND + (RB_ALIGNMENT-1))
|
|
>> RB_ALIGNMENT_SHIFT;
|
|
break;
|
|
|
|
case RINGBUF_TYPE_TIME_STAMP:
|
|
event->len =
|
|
(RB_LEN_TIME_STAMP + (RB_ALIGNMENT-1))
|
|
>> RB_ALIGNMENT_SHIFT;
|
|
break;
|
|
|
|
case RINGBUF_TYPE_DATA:
|
|
length -= RB_EVNT_HDR_SIZE;
|
|
if (length > RB_MAX_SMALL_DATA) {
|
|
event->len = 0;
|
|
event->array[0] = length;
|
|
} else
|
|
event->len =
|
|
(length + (RB_ALIGNMENT-1))
|
|
>> RB_ALIGNMENT_SHIFT;
|
|
break;
|
|
default:
|
|
BUG();
|
|
}
|
|
}
|
|
|
|
static inline unsigned rb_calculate_event_length(unsigned length)
|
|
{
|
|
struct ring_buffer_event event; /* Used only for sizeof array */
|
|
|
|
/* zero length can cause confusions */
|
|
if (!length)
|
|
length = 1;
|
|
|
|
if (length > RB_MAX_SMALL_DATA)
|
|
length += sizeof(event.array[0]);
|
|
|
|
length += RB_EVNT_HDR_SIZE;
|
|
length = ALIGN(length, RB_ALIGNMENT);
|
|
|
|
return length;
|
|
}
|
|
|
|
static struct ring_buffer_event *
|
|
__rb_reserve_next(struct ring_buffer_per_cpu *cpu_buffer,
|
|
unsigned type, unsigned long length, u64 *ts)
|
|
{
|
|
struct buffer_page *tail_page, *head_page, *reader_page;
|
|
unsigned long tail, write;
|
|
struct ring_buffer *buffer = cpu_buffer->buffer;
|
|
struct ring_buffer_event *event;
|
|
unsigned long flags;
|
|
|
|
tail_page = cpu_buffer->tail_page;
|
|
write = local_add_return(length, &tail_page->write);
|
|
tail = write - length;
|
|
|
|
/* See if we shot pass the end of this buffer page */
|
|
if (write > BUF_PAGE_SIZE) {
|
|
struct buffer_page *next_page = tail_page;
|
|
|
|
spin_lock_irqsave(&cpu_buffer->lock, flags);
|
|
|
|
rb_inc_page(cpu_buffer, &next_page);
|
|
|
|
head_page = cpu_buffer->head_page;
|
|
reader_page = cpu_buffer->reader_page;
|
|
|
|
/* we grabbed the lock before incrementing */
|
|
RB_WARN_ON(cpu_buffer, next_page == reader_page);
|
|
|
|
/*
|
|
* If for some reason, we had an interrupt storm that made
|
|
* it all the way around the buffer, bail, and warn
|
|
* about it.
|
|
*/
|
|
if (unlikely(next_page == cpu_buffer->commit_page)) {
|
|
WARN_ON_ONCE(1);
|
|
goto out_unlock;
|
|
}
|
|
|
|
if (next_page == head_page) {
|
|
if (!(buffer->flags & RB_FL_OVERWRITE)) {
|
|
/* reset write */
|
|
if (tail <= BUF_PAGE_SIZE)
|
|
local_set(&tail_page->write, tail);
|
|
goto out_unlock;
|
|
}
|
|
|
|
/* tail_page has not moved yet? */
|
|
if (tail_page == cpu_buffer->tail_page) {
|
|
/* count overflows */
|
|
rb_update_overflow(cpu_buffer);
|
|
|
|
rb_inc_page(cpu_buffer, &head_page);
|
|
cpu_buffer->head_page = head_page;
|
|
cpu_buffer->head_page->read = 0;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* If the tail page is still the same as what we think
|
|
* it is, then it is up to us to update the tail
|
|
* pointer.
|
|
*/
|
|
if (tail_page == cpu_buffer->tail_page) {
|
|
local_set(&next_page->write, 0);
|
|
local_set(&next_page->commit, 0);
|
|
cpu_buffer->tail_page = next_page;
|
|
|
|
/* reread the time stamp */
|
|
*ts = ring_buffer_time_stamp(cpu_buffer->cpu);
|
|
cpu_buffer->tail_page->time_stamp = *ts;
|
|
}
|
|
|
|
/*
|
|
* The actual tail page has moved forward.
|
|
*/
|
|
if (tail < BUF_PAGE_SIZE) {
|
|
/* Mark the rest of the page with padding */
|
|
event = __rb_page_index(tail_page, tail);
|
|
event->type = RINGBUF_TYPE_PADDING;
|
|
}
|
|
|
|
if (tail <= BUF_PAGE_SIZE)
|
|
/* Set the write back to the previous setting */
|
|
local_set(&tail_page->write, tail);
|
|
|
|
/*
|
|
* If this was a commit entry that failed,
|
|
* increment that too
|
|
*/
|
|
if (tail_page == cpu_buffer->commit_page &&
|
|
tail == rb_commit_index(cpu_buffer)) {
|
|
rb_set_commit_to_write(cpu_buffer);
|
|
}
|
|
|
|
spin_unlock_irqrestore(&cpu_buffer->lock, flags);
|
|
|
|
/* fail and let the caller try again */
|
|
return ERR_PTR(-EAGAIN);
|
|
}
|
|
|
|
/* We reserved something on the buffer */
|
|
|
|
BUG_ON(write > BUF_PAGE_SIZE);
|
|
|
|
event = __rb_page_index(tail_page, tail);
|
|
rb_update_event(event, type, length);
|
|
|
|
/*
|
|
* If this is a commit and the tail is zero, then update
|
|
* this page's time stamp.
|
|
*/
|
|
if (!tail && rb_is_commit(cpu_buffer, event))
|
|
cpu_buffer->commit_page->time_stamp = *ts;
|
|
|
|
return event;
|
|
|
|
out_unlock:
|
|
spin_unlock_irqrestore(&cpu_buffer->lock, flags);
|
|
return NULL;
|
|
}
|
|
|
|
static int
|
|
rb_add_time_stamp(struct ring_buffer_per_cpu *cpu_buffer,
|
|
u64 *ts, u64 *delta)
|
|
{
|
|
struct ring_buffer_event *event;
|
|
static int once;
|
|
int ret;
|
|
|
|
if (unlikely(*delta > (1ULL << 59) && !once++)) {
|
|
printk(KERN_WARNING "Delta way too big! %llu"
|
|
" ts=%llu write stamp = %llu\n",
|
|
*delta, *ts, cpu_buffer->write_stamp);
|
|
WARN_ON(1);
|
|
}
|
|
|
|
/*
|
|
* The delta is too big, we to add a
|
|
* new timestamp.
|
|
*/
|
|
event = __rb_reserve_next(cpu_buffer,
|
|
RINGBUF_TYPE_TIME_EXTEND,
|
|
RB_LEN_TIME_EXTEND,
|
|
ts);
|
|
if (!event)
|
|
return -EBUSY;
|
|
|
|
if (PTR_ERR(event) == -EAGAIN)
|
|
return -EAGAIN;
|
|
|
|
/* Only a commited time event can update the write stamp */
|
|
if (rb_is_commit(cpu_buffer, event)) {
|
|
/*
|
|
* If this is the first on the page, then we need to
|
|
* update the page itself, and just put in a zero.
|
|
*/
|
|
if (rb_event_index(event)) {
|
|
event->time_delta = *delta & TS_MASK;
|
|
event->array[0] = *delta >> TS_SHIFT;
|
|
} else {
|
|
cpu_buffer->commit_page->time_stamp = *ts;
|
|
event->time_delta = 0;
|
|
event->array[0] = 0;
|
|
}
|
|
cpu_buffer->write_stamp = *ts;
|
|
/* let the caller know this was the commit */
|
|
ret = 1;
|
|
} else {
|
|
/* Darn, this is just wasted space */
|
|
event->time_delta = 0;
|
|
event->array[0] = 0;
|
|
ret = 0;
|
|
}
|
|
|
|
*delta = 0;
|
|
|
|
return ret;
|
|
}
|
|
|
|
static struct ring_buffer_event *
|
|
rb_reserve_next_event(struct ring_buffer_per_cpu *cpu_buffer,
|
|
unsigned type, unsigned long length)
|
|
{
|
|
struct ring_buffer_event *event;
|
|
u64 ts, delta;
|
|
int commit = 0;
|
|
|
|
again:
|
|
ts = ring_buffer_time_stamp(cpu_buffer->cpu);
|
|
|
|
/*
|
|
* Only the first commit can update the timestamp.
|
|
* Yes there is a race here. If an interrupt comes in
|
|
* just after the conditional and it traces too, then it
|
|
* will also check the deltas. More than one timestamp may
|
|
* also be made. But only the entry that did the actual
|
|
* commit will be something other than zero.
|
|
*/
|
|
if (cpu_buffer->tail_page == cpu_buffer->commit_page &&
|
|
rb_page_write(cpu_buffer->tail_page) ==
|
|
rb_commit_index(cpu_buffer)) {
|
|
|
|
delta = ts - cpu_buffer->write_stamp;
|
|
|
|
/* make sure this delta is calculated here */
|
|
barrier();
|
|
|
|
/* Did the write stamp get updated already? */
|
|
if (unlikely(ts < cpu_buffer->write_stamp))
|
|
goto again;
|
|
|
|
if (test_time_stamp(delta)) {
|
|
|
|
commit = rb_add_time_stamp(cpu_buffer, &ts, &delta);
|
|
|
|
if (commit == -EBUSY)
|
|
return NULL;
|
|
|
|
if (commit == -EAGAIN)
|
|
goto again;
|
|
|
|
RB_WARN_ON(cpu_buffer, commit < 0);
|
|
}
|
|
} else
|
|
/* Non commits have zero deltas */
|
|
delta = 0;
|
|
|
|
event = __rb_reserve_next(cpu_buffer, type, length, &ts);
|
|
if (PTR_ERR(event) == -EAGAIN)
|
|
goto again;
|
|
|
|
if (!event) {
|
|
if (unlikely(commit))
|
|
/*
|
|
* Ouch! We needed a timestamp and it was commited. But
|
|
* we didn't get our event reserved.
|
|
*/
|
|
rb_set_commit_to_write(cpu_buffer);
|
|
return NULL;
|
|
}
|
|
|
|
/*
|
|
* If the timestamp was commited, make the commit our entry
|
|
* now so that we will update it when needed.
|
|
*/
|
|
if (commit)
|
|
rb_set_commit_event(cpu_buffer, event);
|
|
else if (!rb_is_commit(cpu_buffer, event))
|
|
delta = 0;
|
|
|
|
event->time_delta = delta;
|
|
|
|
return event;
|
|
}
|
|
|
|
static DEFINE_PER_CPU(int, rb_need_resched);
|
|
|
|
/**
|
|
* ring_buffer_lock_reserve - reserve a part of the buffer
|
|
* @buffer: the ring buffer to reserve from
|
|
* @length: the length of the data to reserve (excluding event header)
|
|
* @flags: a pointer to save the interrupt flags
|
|
*
|
|
* Returns a reseverd event on the ring buffer to copy directly to.
|
|
* The user of this interface will need to get the body to write into
|
|
* and can use the ring_buffer_event_data() interface.
|
|
*
|
|
* The length is the length of the data needed, not the event length
|
|
* which also includes the event header.
|
|
*
|
|
* Must be paired with ring_buffer_unlock_commit, unless NULL is returned.
|
|
* If NULL is returned, then nothing has been allocated or locked.
|
|
*/
|
|
struct ring_buffer_event *
|
|
ring_buffer_lock_reserve(struct ring_buffer *buffer,
|
|
unsigned long length,
|
|
unsigned long *flags)
|
|
{
|
|
struct ring_buffer_per_cpu *cpu_buffer;
|
|
struct ring_buffer_event *event;
|
|
int cpu, resched;
|
|
|
|
if (atomic_read(&buffer->record_disabled))
|
|
return NULL;
|
|
|
|
/* If we are tracing schedule, we don't want to recurse */
|
|
resched = need_resched();
|
|
preempt_disable_notrace();
|
|
|
|
cpu = raw_smp_processor_id();
|
|
|
|
if (!cpu_isset(cpu, buffer->cpumask))
|
|
goto out;
|
|
|
|
cpu_buffer = buffer->buffers[cpu];
|
|
|
|
if (atomic_read(&cpu_buffer->record_disabled))
|
|
goto out;
|
|
|
|
length = rb_calculate_event_length(length);
|
|
if (length > BUF_PAGE_SIZE)
|
|
goto out;
|
|
|
|
event = rb_reserve_next_event(cpu_buffer, RINGBUF_TYPE_DATA, length);
|
|
if (!event)
|
|
goto out;
|
|
|
|
/*
|
|
* Need to store resched state on this cpu.
|
|
* Only the first needs to.
|
|
*/
|
|
|
|
if (preempt_count() == 1)
|
|
per_cpu(rb_need_resched, cpu) = resched;
|
|
|
|
return event;
|
|
|
|
out:
|
|
if (resched)
|
|
preempt_enable_notrace();
|
|
else
|
|
preempt_enable_notrace();
|
|
return NULL;
|
|
}
|
|
|
|
static void rb_commit(struct ring_buffer_per_cpu *cpu_buffer,
|
|
struct ring_buffer_event *event)
|
|
{
|
|
cpu_buffer->entries++;
|
|
|
|
/* Only process further if we own the commit */
|
|
if (!rb_is_commit(cpu_buffer, event))
|
|
return;
|
|
|
|
cpu_buffer->write_stamp += event->time_delta;
|
|
|
|
rb_set_commit_to_write(cpu_buffer);
|
|
}
|
|
|
|
/**
|
|
* ring_buffer_unlock_commit - commit a reserved
|
|
* @buffer: The buffer to commit to
|
|
* @event: The event pointer to commit.
|
|
* @flags: the interrupt flags received from ring_buffer_lock_reserve.
|
|
*
|
|
* This commits the data to the ring buffer, and releases any locks held.
|
|
*
|
|
* Must be paired with ring_buffer_lock_reserve.
|
|
*/
|
|
int ring_buffer_unlock_commit(struct ring_buffer *buffer,
|
|
struct ring_buffer_event *event,
|
|
unsigned long flags)
|
|
{
|
|
struct ring_buffer_per_cpu *cpu_buffer;
|
|
int cpu = raw_smp_processor_id();
|
|
|
|
cpu_buffer = buffer->buffers[cpu];
|
|
|
|
rb_commit(cpu_buffer, event);
|
|
|
|
/*
|
|
* Only the last preempt count needs to restore preemption.
|
|
*/
|
|
if (preempt_count() == 1) {
|
|
if (per_cpu(rb_need_resched, cpu))
|
|
preempt_enable_no_resched_notrace();
|
|
else
|
|
preempt_enable_notrace();
|
|
} else
|
|
preempt_enable_no_resched_notrace();
|
|
|
|
return 0;
|
|
}
|
|
|
|
/**
|
|
* ring_buffer_write - write data to the buffer without reserving
|
|
* @buffer: The ring buffer to write to.
|
|
* @length: The length of the data being written (excluding the event header)
|
|
* @data: The data to write to the buffer.
|
|
*
|
|
* This is like ring_buffer_lock_reserve and ring_buffer_unlock_commit as
|
|
* one function. If you already have the data to write to the buffer, it
|
|
* may be easier to simply call this function.
|
|
*
|
|
* Note, like ring_buffer_lock_reserve, the length is the length of the data
|
|
* and not the length of the event which would hold the header.
|
|
*/
|
|
int ring_buffer_write(struct ring_buffer *buffer,
|
|
unsigned long length,
|
|
void *data)
|
|
{
|
|
struct ring_buffer_per_cpu *cpu_buffer;
|
|
struct ring_buffer_event *event;
|
|
unsigned long event_length;
|
|
void *body;
|
|
int ret = -EBUSY;
|
|
int cpu, resched;
|
|
|
|
if (atomic_read(&buffer->record_disabled))
|
|
return -EBUSY;
|
|
|
|
resched = need_resched();
|
|
preempt_disable_notrace();
|
|
|
|
cpu = raw_smp_processor_id();
|
|
|
|
if (!cpu_isset(cpu, buffer->cpumask))
|
|
goto out;
|
|
|
|
cpu_buffer = buffer->buffers[cpu];
|
|
|
|
if (atomic_read(&cpu_buffer->record_disabled))
|
|
goto out;
|
|
|
|
event_length = rb_calculate_event_length(length);
|
|
event = rb_reserve_next_event(cpu_buffer,
|
|
RINGBUF_TYPE_DATA, event_length);
|
|
if (!event)
|
|
goto out;
|
|
|
|
body = rb_event_data(event);
|
|
|
|
memcpy(body, data, length);
|
|
|
|
rb_commit(cpu_buffer, event);
|
|
|
|
ret = 0;
|
|
out:
|
|
if (resched)
|
|
preempt_enable_no_resched_notrace();
|
|
else
|
|
preempt_enable_notrace();
|
|
|
|
return ret;
|
|
}
|
|
|
|
static inline int rb_per_cpu_empty(struct ring_buffer_per_cpu *cpu_buffer)
|
|
{
|
|
struct buffer_page *reader = cpu_buffer->reader_page;
|
|
struct buffer_page *head = cpu_buffer->head_page;
|
|
struct buffer_page *commit = cpu_buffer->commit_page;
|
|
|
|
return reader->read == rb_page_commit(reader) &&
|
|
(commit == reader ||
|
|
(commit == head &&
|
|
head->read == rb_page_commit(commit)));
|
|
}
|
|
|
|
/**
|
|
* ring_buffer_record_disable - stop all writes into the buffer
|
|
* @buffer: The ring buffer to stop writes to.
|
|
*
|
|
* This prevents all writes to the buffer. Any attempt to write
|
|
* to the buffer after this will fail and return NULL.
|
|
*
|
|
* The caller should call synchronize_sched() after this.
|
|
*/
|
|
void ring_buffer_record_disable(struct ring_buffer *buffer)
|
|
{
|
|
atomic_inc(&buffer->record_disabled);
|
|
}
|
|
|
|
/**
|
|
* ring_buffer_record_enable - enable writes to the buffer
|
|
* @buffer: The ring buffer to enable writes
|
|
*
|
|
* Note, multiple disables will need the same number of enables
|
|
* to truely enable the writing (much like preempt_disable).
|
|
*/
|
|
void ring_buffer_record_enable(struct ring_buffer *buffer)
|
|
{
|
|
atomic_dec(&buffer->record_disabled);
|
|
}
|
|
|
|
/**
|
|
* ring_buffer_record_disable_cpu - stop all writes into the cpu_buffer
|
|
* @buffer: The ring buffer to stop writes to.
|
|
* @cpu: The CPU buffer to stop
|
|
*
|
|
* This prevents all writes to the buffer. Any attempt to write
|
|
* to the buffer after this will fail and return NULL.
|
|
*
|
|
* The caller should call synchronize_sched() after this.
|
|
*/
|
|
void ring_buffer_record_disable_cpu(struct ring_buffer *buffer, int cpu)
|
|
{
|
|
struct ring_buffer_per_cpu *cpu_buffer;
|
|
|
|
if (!cpu_isset(cpu, buffer->cpumask))
|
|
return;
|
|
|
|
cpu_buffer = buffer->buffers[cpu];
|
|
atomic_inc(&cpu_buffer->record_disabled);
|
|
}
|
|
|
|
/**
|
|
* ring_buffer_record_enable_cpu - enable writes to the buffer
|
|
* @buffer: The ring buffer to enable writes
|
|
* @cpu: The CPU to enable.
|
|
*
|
|
* Note, multiple disables will need the same number of enables
|
|
* to truely enable the writing (much like preempt_disable).
|
|
*/
|
|
void ring_buffer_record_enable_cpu(struct ring_buffer *buffer, int cpu)
|
|
{
|
|
struct ring_buffer_per_cpu *cpu_buffer;
|
|
|
|
if (!cpu_isset(cpu, buffer->cpumask))
|
|
return;
|
|
|
|
cpu_buffer = buffer->buffers[cpu];
|
|
atomic_dec(&cpu_buffer->record_disabled);
|
|
}
|
|
|
|
/**
|
|
* ring_buffer_entries_cpu - get the number of entries in a cpu buffer
|
|
* @buffer: The ring buffer
|
|
* @cpu: The per CPU buffer to get the entries from.
|
|
*/
|
|
unsigned long ring_buffer_entries_cpu(struct ring_buffer *buffer, int cpu)
|
|
{
|
|
struct ring_buffer_per_cpu *cpu_buffer;
|
|
|
|
if (!cpu_isset(cpu, buffer->cpumask))
|
|
return 0;
|
|
|
|
cpu_buffer = buffer->buffers[cpu];
|
|
return cpu_buffer->entries;
|
|
}
|
|
|
|
/**
|
|
* ring_buffer_overrun_cpu - get the number of overruns in a cpu_buffer
|
|
* @buffer: The ring buffer
|
|
* @cpu: The per CPU buffer to get the number of overruns from
|
|
*/
|
|
unsigned long ring_buffer_overrun_cpu(struct ring_buffer *buffer, int cpu)
|
|
{
|
|
struct ring_buffer_per_cpu *cpu_buffer;
|
|
|
|
if (!cpu_isset(cpu, buffer->cpumask))
|
|
return 0;
|
|
|
|
cpu_buffer = buffer->buffers[cpu];
|
|
return cpu_buffer->overrun;
|
|
}
|
|
|
|
/**
|
|
* ring_buffer_entries - get the number of entries in a buffer
|
|
* @buffer: The ring buffer
|
|
*
|
|
* Returns the total number of entries in the ring buffer
|
|
* (all CPU entries)
|
|
*/
|
|
unsigned long ring_buffer_entries(struct ring_buffer *buffer)
|
|
{
|
|
struct ring_buffer_per_cpu *cpu_buffer;
|
|
unsigned long entries = 0;
|
|
int cpu;
|
|
|
|
/* if you care about this being correct, lock the buffer */
|
|
for_each_buffer_cpu(buffer, cpu) {
|
|
cpu_buffer = buffer->buffers[cpu];
|
|
entries += cpu_buffer->entries;
|
|
}
|
|
|
|
return entries;
|
|
}
|
|
|
|
/**
|
|
* ring_buffer_overrun_cpu - get the number of overruns in buffer
|
|
* @buffer: The ring buffer
|
|
*
|
|
* Returns the total number of overruns in the ring buffer
|
|
* (all CPU entries)
|
|
*/
|
|
unsigned long ring_buffer_overruns(struct ring_buffer *buffer)
|
|
{
|
|
struct ring_buffer_per_cpu *cpu_buffer;
|
|
unsigned long overruns = 0;
|
|
int cpu;
|
|
|
|
/* if you care about this being correct, lock the buffer */
|
|
for_each_buffer_cpu(buffer, cpu) {
|
|
cpu_buffer = buffer->buffers[cpu];
|
|
overruns += cpu_buffer->overrun;
|
|
}
|
|
|
|
return overruns;
|
|
}
|
|
|
|
/**
|
|
* ring_buffer_iter_reset - reset an iterator
|
|
* @iter: The iterator to reset
|
|
*
|
|
* Resets the iterator, so that it will start from the beginning
|
|
* again.
|
|
*/
|
|
void ring_buffer_iter_reset(struct ring_buffer_iter *iter)
|
|
{
|
|
struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
|
|
|
|
/* Iterator usage is expected to have record disabled */
|
|
if (list_empty(&cpu_buffer->reader_page->list)) {
|
|
iter->head_page = cpu_buffer->head_page;
|
|
iter->head = cpu_buffer->head_page->read;
|
|
} else {
|
|
iter->head_page = cpu_buffer->reader_page;
|
|
iter->head = cpu_buffer->reader_page->read;
|
|
}
|
|
if (iter->head)
|
|
iter->read_stamp = cpu_buffer->read_stamp;
|
|
else
|
|
iter->read_stamp = iter->head_page->time_stamp;
|
|
}
|
|
|
|
/**
|
|
* ring_buffer_iter_empty - check if an iterator has no more to read
|
|
* @iter: The iterator to check
|
|
*/
|
|
int ring_buffer_iter_empty(struct ring_buffer_iter *iter)
|
|
{
|
|
struct ring_buffer_per_cpu *cpu_buffer;
|
|
|
|
cpu_buffer = iter->cpu_buffer;
|
|
|
|
return iter->head_page == cpu_buffer->commit_page &&
|
|
iter->head == rb_commit_index(cpu_buffer);
|
|
}
|
|
|
|
static void
|
|
rb_update_read_stamp(struct ring_buffer_per_cpu *cpu_buffer,
|
|
struct ring_buffer_event *event)
|
|
{
|
|
u64 delta;
|
|
|
|
switch (event->type) {
|
|
case RINGBUF_TYPE_PADDING:
|
|
return;
|
|
|
|
case RINGBUF_TYPE_TIME_EXTEND:
|
|
delta = event->array[0];
|
|
delta <<= TS_SHIFT;
|
|
delta += event->time_delta;
|
|
cpu_buffer->read_stamp += delta;
|
|
return;
|
|
|
|
case RINGBUF_TYPE_TIME_STAMP:
|
|
/* FIXME: not implemented */
|
|
return;
|
|
|
|
case RINGBUF_TYPE_DATA:
|
|
cpu_buffer->read_stamp += event->time_delta;
|
|
return;
|
|
|
|
default:
|
|
BUG();
|
|
}
|
|
return;
|
|
}
|
|
|
|
static void
|
|
rb_update_iter_read_stamp(struct ring_buffer_iter *iter,
|
|
struct ring_buffer_event *event)
|
|
{
|
|
u64 delta;
|
|
|
|
switch (event->type) {
|
|
case RINGBUF_TYPE_PADDING:
|
|
return;
|
|
|
|
case RINGBUF_TYPE_TIME_EXTEND:
|
|
delta = event->array[0];
|
|
delta <<= TS_SHIFT;
|
|
delta += event->time_delta;
|
|
iter->read_stamp += delta;
|
|
return;
|
|
|
|
case RINGBUF_TYPE_TIME_STAMP:
|
|
/* FIXME: not implemented */
|
|
return;
|
|
|
|
case RINGBUF_TYPE_DATA:
|
|
iter->read_stamp += event->time_delta;
|
|
return;
|
|
|
|
default:
|
|
BUG();
|
|
}
|
|
return;
|
|
}
|
|
|
|
static struct buffer_page *
|
|
rb_get_reader_page(struct ring_buffer_per_cpu *cpu_buffer)
|
|
{
|
|
struct buffer_page *reader = NULL;
|
|
unsigned long flags;
|
|
|
|
spin_lock_irqsave(&cpu_buffer->lock, flags);
|
|
|
|
again:
|
|
reader = cpu_buffer->reader_page;
|
|
|
|
/* If there's more to read, return this page */
|
|
if (cpu_buffer->reader_page->read < rb_page_size(reader))
|
|
goto out;
|
|
|
|
/* Never should we have an index greater than the size */
|
|
RB_WARN_ON(cpu_buffer,
|
|
cpu_buffer->reader_page->read > rb_page_size(reader));
|
|
|
|
/* check if we caught up to the tail */
|
|
reader = NULL;
|
|
if (cpu_buffer->commit_page == cpu_buffer->reader_page)
|
|
goto out;
|
|
|
|
/*
|
|
* Splice the empty reader page into the list around the head.
|
|
* Reset the reader page to size zero.
|
|
*/
|
|
|
|
reader = cpu_buffer->head_page;
|
|
cpu_buffer->reader_page->list.next = reader->list.next;
|
|
cpu_buffer->reader_page->list.prev = reader->list.prev;
|
|
|
|
local_set(&cpu_buffer->reader_page->write, 0);
|
|
local_set(&cpu_buffer->reader_page->commit, 0);
|
|
|
|
/* Make the reader page now replace the head */
|
|
reader->list.prev->next = &cpu_buffer->reader_page->list;
|
|
reader->list.next->prev = &cpu_buffer->reader_page->list;
|
|
|
|
/*
|
|
* If the tail is on the reader, then we must set the head
|
|
* to the inserted page, otherwise we set it one before.
|
|
*/
|
|
cpu_buffer->head_page = cpu_buffer->reader_page;
|
|
|
|
if (cpu_buffer->commit_page != reader)
|
|
rb_inc_page(cpu_buffer, &cpu_buffer->head_page);
|
|
|
|
/* Finally update the reader page to the new head */
|
|
cpu_buffer->reader_page = reader;
|
|
rb_reset_reader_page(cpu_buffer);
|
|
|
|
goto again;
|
|
|
|
out:
|
|
spin_unlock_irqrestore(&cpu_buffer->lock, flags);
|
|
|
|
return reader;
|
|
}
|
|
|
|
static void rb_advance_reader(struct ring_buffer_per_cpu *cpu_buffer)
|
|
{
|
|
struct ring_buffer_event *event;
|
|
struct buffer_page *reader;
|
|
unsigned length;
|
|
|
|
reader = rb_get_reader_page(cpu_buffer);
|
|
|
|
/* This function should not be called when buffer is empty */
|
|
BUG_ON(!reader);
|
|
|
|
event = rb_reader_event(cpu_buffer);
|
|
|
|
if (event->type == RINGBUF_TYPE_DATA)
|
|
cpu_buffer->entries--;
|
|
|
|
rb_update_read_stamp(cpu_buffer, event);
|
|
|
|
length = rb_event_length(event);
|
|
cpu_buffer->reader_page->read += length;
|
|
}
|
|
|
|
static void rb_advance_iter(struct ring_buffer_iter *iter)
|
|
{
|
|
struct ring_buffer *buffer;
|
|
struct ring_buffer_per_cpu *cpu_buffer;
|
|
struct ring_buffer_event *event;
|
|
unsigned length;
|
|
|
|
cpu_buffer = iter->cpu_buffer;
|
|
buffer = cpu_buffer->buffer;
|
|
|
|
/*
|
|
* Check if we are at the end of the buffer.
|
|
*/
|
|
if (iter->head >= rb_page_size(iter->head_page)) {
|
|
BUG_ON(iter->head_page == cpu_buffer->commit_page);
|
|
rb_inc_iter(iter);
|
|
return;
|
|
}
|
|
|
|
event = rb_iter_head_event(iter);
|
|
|
|
length = rb_event_length(event);
|
|
|
|
/*
|
|
* This should not be called to advance the header if we are
|
|
* at the tail of the buffer.
|
|
*/
|
|
BUG_ON((iter->head_page == cpu_buffer->commit_page) &&
|
|
(iter->head + length > rb_commit_index(cpu_buffer)));
|
|
|
|
rb_update_iter_read_stamp(iter, event);
|
|
|
|
iter->head += length;
|
|
|
|
/* check for end of page padding */
|
|
if ((iter->head >= rb_page_size(iter->head_page)) &&
|
|
(iter->head_page != cpu_buffer->commit_page))
|
|
rb_advance_iter(iter);
|
|
}
|
|
|
|
/**
|
|
* ring_buffer_peek - peek at the next event to be read
|
|
* @buffer: The ring buffer to read
|
|
* @cpu: The cpu to peak at
|
|
* @ts: The timestamp counter of this event.
|
|
*
|
|
* This will return the event that will be read next, but does
|
|
* not consume the data.
|
|
*/
|
|
struct ring_buffer_event *
|
|
ring_buffer_peek(struct ring_buffer *buffer, int cpu, u64 *ts)
|
|
{
|
|
struct ring_buffer_per_cpu *cpu_buffer;
|
|
struct ring_buffer_event *event;
|
|
struct buffer_page *reader;
|
|
|
|
if (!cpu_isset(cpu, buffer->cpumask))
|
|
return NULL;
|
|
|
|
cpu_buffer = buffer->buffers[cpu];
|
|
|
|
again:
|
|
reader = rb_get_reader_page(cpu_buffer);
|
|
if (!reader)
|
|
return NULL;
|
|
|
|
event = rb_reader_event(cpu_buffer);
|
|
|
|
switch (event->type) {
|
|
case RINGBUF_TYPE_PADDING:
|
|
RB_WARN_ON(cpu_buffer, 1);
|
|
rb_advance_reader(cpu_buffer);
|
|
return NULL;
|
|
|
|
case RINGBUF_TYPE_TIME_EXTEND:
|
|
/* Internal data, OK to advance */
|
|
rb_advance_reader(cpu_buffer);
|
|
goto again;
|
|
|
|
case RINGBUF_TYPE_TIME_STAMP:
|
|
/* FIXME: not implemented */
|
|
rb_advance_reader(cpu_buffer);
|
|
goto again;
|
|
|
|
case RINGBUF_TYPE_DATA:
|
|
if (ts) {
|
|
*ts = cpu_buffer->read_stamp + event->time_delta;
|
|
ring_buffer_normalize_time_stamp(cpu_buffer->cpu, ts);
|
|
}
|
|
return event;
|
|
|
|
default:
|
|
BUG();
|
|
}
|
|
|
|
return NULL;
|
|
}
|
|
|
|
/**
|
|
* ring_buffer_iter_peek - peek at the next event to be read
|
|
* @iter: The ring buffer iterator
|
|
* @ts: The timestamp counter of this event.
|
|
*
|
|
* This will return the event that will be read next, but does
|
|
* not increment the iterator.
|
|
*/
|
|
struct ring_buffer_event *
|
|
ring_buffer_iter_peek(struct ring_buffer_iter *iter, u64 *ts)
|
|
{
|
|
struct ring_buffer *buffer;
|
|
struct ring_buffer_per_cpu *cpu_buffer;
|
|
struct ring_buffer_event *event;
|
|
|
|
if (ring_buffer_iter_empty(iter))
|
|
return NULL;
|
|
|
|
cpu_buffer = iter->cpu_buffer;
|
|
buffer = cpu_buffer->buffer;
|
|
|
|
again:
|
|
if (rb_per_cpu_empty(cpu_buffer))
|
|
return NULL;
|
|
|
|
event = rb_iter_head_event(iter);
|
|
|
|
switch (event->type) {
|
|
case RINGBUF_TYPE_PADDING:
|
|
rb_inc_iter(iter);
|
|
goto again;
|
|
|
|
case RINGBUF_TYPE_TIME_EXTEND:
|
|
/* Internal data, OK to advance */
|
|
rb_advance_iter(iter);
|
|
goto again;
|
|
|
|
case RINGBUF_TYPE_TIME_STAMP:
|
|
/* FIXME: not implemented */
|
|
rb_advance_iter(iter);
|
|
goto again;
|
|
|
|
case RINGBUF_TYPE_DATA:
|
|
if (ts) {
|
|
*ts = iter->read_stamp + event->time_delta;
|
|
ring_buffer_normalize_time_stamp(cpu_buffer->cpu, ts);
|
|
}
|
|
return event;
|
|
|
|
default:
|
|
BUG();
|
|
}
|
|
|
|
return NULL;
|
|
}
|
|
|
|
/**
|
|
* ring_buffer_consume - return an event and consume it
|
|
* @buffer: The ring buffer to get the next event from
|
|
*
|
|
* Returns the next event in the ring buffer, and that event is consumed.
|
|
* Meaning, that sequential reads will keep returning a different event,
|
|
* and eventually empty the ring buffer if the producer is slower.
|
|
*/
|
|
struct ring_buffer_event *
|
|
ring_buffer_consume(struct ring_buffer *buffer, int cpu, u64 *ts)
|
|
{
|
|
struct ring_buffer_per_cpu *cpu_buffer;
|
|
struct ring_buffer_event *event;
|
|
|
|
if (!cpu_isset(cpu, buffer->cpumask))
|
|
return NULL;
|
|
|
|
event = ring_buffer_peek(buffer, cpu, ts);
|
|
if (!event)
|
|
return NULL;
|
|
|
|
cpu_buffer = buffer->buffers[cpu];
|
|
rb_advance_reader(cpu_buffer);
|
|
|
|
return event;
|
|
}
|
|
|
|
/**
|
|
* ring_buffer_read_start - start a non consuming read of the buffer
|
|
* @buffer: The ring buffer to read from
|
|
* @cpu: The cpu buffer to iterate over
|
|
*
|
|
* This starts up an iteration through the buffer. It also disables
|
|
* the recording to the buffer until the reading is finished.
|
|
* This prevents the reading from being corrupted. This is not
|
|
* a consuming read, so a producer is not expected.
|
|
*
|
|
* Must be paired with ring_buffer_finish.
|
|
*/
|
|
struct ring_buffer_iter *
|
|
ring_buffer_read_start(struct ring_buffer *buffer, int cpu)
|
|
{
|
|
struct ring_buffer_per_cpu *cpu_buffer;
|
|
struct ring_buffer_iter *iter;
|
|
unsigned long flags;
|
|
|
|
if (!cpu_isset(cpu, buffer->cpumask))
|
|
return NULL;
|
|
|
|
iter = kmalloc(sizeof(*iter), GFP_KERNEL);
|
|
if (!iter)
|
|
return NULL;
|
|
|
|
cpu_buffer = buffer->buffers[cpu];
|
|
|
|
iter->cpu_buffer = cpu_buffer;
|
|
|
|
atomic_inc(&cpu_buffer->record_disabled);
|
|
synchronize_sched();
|
|
|
|
spin_lock_irqsave(&cpu_buffer->lock, flags);
|
|
ring_buffer_iter_reset(iter);
|
|
spin_unlock_irqrestore(&cpu_buffer->lock, flags);
|
|
|
|
return iter;
|
|
}
|
|
|
|
/**
|
|
* ring_buffer_finish - finish reading the iterator of the buffer
|
|
* @iter: The iterator retrieved by ring_buffer_start
|
|
*
|
|
* This re-enables the recording to the buffer, and frees the
|
|
* iterator.
|
|
*/
|
|
void
|
|
ring_buffer_read_finish(struct ring_buffer_iter *iter)
|
|
{
|
|
struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
|
|
|
|
atomic_dec(&cpu_buffer->record_disabled);
|
|
kfree(iter);
|
|
}
|
|
|
|
/**
|
|
* ring_buffer_read - read the next item in the ring buffer by the iterator
|
|
* @iter: The ring buffer iterator
|
|
* @ts: The time stamp of the event read.
|
|
*
|
|
* This reads the next event in the ring buffer and increments the iterator.
|
|
*/
|
|
struct ring_buffer_event *
|
|
ring_buffer_read(struct ring_buffer_iter *iter, u64 *ts)
|
|
{
|
|
struct ring_buffer_event *event;
|
|
|
|
event = ring_buffer_iter_peek(iter, ts);
|
|
if (!event)
|
|
return NULL;
|
|
|
|
rb_advance_iter(iter);
|
|
|
|
return event;
|
|
}
|
|
|
|
/**
|
|
* ring_buffer_size - return the size of the ring buffer (in bytes)
|
|
* @buffer: The ring buffer.
|
|
*/
|
|
unsigned long ring_buffer_size(struct ring_buffer *buffer)
|
|
{
|
|
return BUF_PAGE_SIZE * buffer->pages;
|
|
}
|
|
|
|
static void
|
|
rb_reset_cpu(struct ring_buffer_per_cpu *cpu_buffer)
|
|
{
|
|
cpu_buffer->head_page
|
|
= list_entry(cpu_buffer->pages.next, struct buffer_page, list);
|
|
local_set(&cpu_buffer->head_page->write, 0);
|
|
local_set(&cpu_buffer->head_page->commit, 0);
|
|
|
|
cpu_buffer->head_page->read = 0;
|
|
|
|
cpu_buffer->tail_page = cpu_buffer->head_page;
|
|
cpu_buffer->commit_page = cpu_buffer->head_page;
|
|
|
|
INIT_LIST_HEAD(&cpu_buffer->reader_page->list);
|
|
local_set(&cpu_buffer->reader_page->write, 0);
|
|
local_set(&cpu_buffer->reader_page->commit, 0);
|
|
cpu_buffer->reader_page->read = 0;
|
|
|
|
cpu_buffer->overrun = 0;
|
|
cpu_buffer->entries = 0;
|
|
}
|
|
|
|
/**
|
|
* ring_buffer_reset_cpu - reset a ring buffer per CPU buffer
|
|
* @buffer: The ring buffer to reset a per cpu buffer of
|
|
* @cpu: The CPU buffer to be reset
|
|
*/
|
|
void ring_buffer_reset_cpu(struct ring_buffer *buffer, int cpu)
|
|
{
|
|
struct ring_buffer_per_cpu *cpu_buffer = buffer->buffers[cpu];
|
|
unsigned long flags;
|
|
|
|
if (!cpu_isset(cpu, buffer->cpumask))
|
|
return;
|
|
|
|
spin_lock_irqsave(&cpu_buffer->lock, flags);
|
|
|
|
rb_reset_cpu(cpu_buffer);
|
|
|
|
spin_unlock_irqrestore(&cpu_buffer->lock, flags);
|
|
}
|
|
|
|
/**
|
|
* ring_buffer_reset - reset a ring buffer
|
|
* @buffer: The ring buffer to reset all cpu buffers
|
|
*/
|
|
void ring_buffer_reset(struct ring_buffer *buffer)
|
|
{
|
|
int cpu;
|
|
|
|
for_each_buffer_cpu(buffer, cpu)
|
|
ring_buffer_reset_cpu(buffer, cpu);
|
|
}
|
|
|
|
/**
|
|
* rind_buffer_empty - is the ring buffer empty?
|
|
* @buffer: The ring buffer to test
|
|
*/
|
|
int ring_buffer_empty(struct ring_buffer *buffer)
|
|
{
|
|
struct ring_buffer_per_cpu *cpu_buffer;
|
|
int cpu;
|
|
|
|
/* yes this is racy, but if you don't like the race, lock the buffer */
|
|
for_each_buffer_cpu(buffer, cpu) {
|
|
cpu_buffer = buffer->buffers[cpu];
|
|
if (!rb_per_cpu_empty(cpu_buffer))
|
|
return 0;
|
|
}
|
|
return 1;
|
|
}
|
|
|
|
/**
|
|
* ring_buffer_empty_cpu - is a cpu buffer of a ring buffer empty?
|
|
* @buffer: The ring buffer
|
|
* @cpu: The CPU buffer to test
|
|
*/
|
|
int ring_buffer_empty_cpu(struct ring_buffer *buffer, int cpu)
|
|
{
|
|
struct ring_buffer_per_cpu *cpu_buffer;
|
|
|
|
if (!cpu_isset(cpu, buffer->cpumask))
|
|
return 1;
|
|
|
|
cpu_buffer = buffer->buffers[cpu];
|
|
return rb_per_cpu_empty(cpu_buffer);
|
|
}
|
|
|
|
/**
|
|
* ring_buffer_swap_cpu - swap a CPU buffer between two ring buffers
|
|
* @buffer_a: One buffer to swap with
|
|
* @buffer_b: The other buffer to swap with
|
|
*
|
|
* This function is useful for tracers that want to take a "snapshot"
|
|
* of a CPU buffer and has another back up buffer lying around.
|
|
* it is expected that the tracer handles the cpu buffer not being
|
|
* used at the moment.
|
|
*/
|
|
int ring_buffer_swap_cpu(struct ring_buffer *buffer_a,
|
|
struct ring_buffer *buffer_b, int cpu)
|
|
{
|
|
struct ring_buffer_per_cpu *cpu_buffer_a;
|
|
struct ring_buffer_per_cpu *cpu_buffer_b;
|
|
|
|
if (!cpu_isset(cpu, buffer_a->cpumask) ||
|
|
!cpu_isset(cpu, buffer_b->cpumask))
|
|
return -EINVAL;
|
|
|
|
/* At least make sure the two buffers are somewhat the same */
|
|
if (buffer_a->size != buffer_b->size ||
|
|
buffer_a->pages != buffer_b->pages)
|
|
return -EINVAL;
|
|
|
|
cpu_buffer_a = buffer_a->buffers[cpu];
|
|
cpu_buffer_b = buffer_b->buffers[cpu];
|
|
|
|
/*
|
|
* We can't do a synchronize_sched here because this
|
|
* function can be called in atomic context.
|
|
* Normally this will be called from the same CPU as cpu.
|
|
* If not it's up to the caller to protect this.
|
|
*/
|
|
atomic_inc(&cpu_buffer_a->record_disabled);
|
|
atomic_inc(&cpu_buffer_b->record_disabled);
|
|
|
|
buffer_a->buffers[cpu] = cpu_buffer_b;
|
|
buffer_b->buffers[cpu] = cpu_buffer_a;
|
|
|
|
cpu_buffer_b->buffer = buffer_a;
|
|
cpu_buffer_a->buffer = buffer_b;
|
|
|
|
atomic_dec(&cpu_buffer_a->record_disabled);
|
|
atomic_dec(&cpu_buffer_b->record_disabled);
|
|
|
|
return 0;
|
|
}
|
|
|