mirror of
https://github.com/FEX-Emu/linux.git
synced 2024-12-28 04:17:47 +00:00
4adcf7fb67
ipath_user_sdma_queue_pkts() gets called with mmap_sem held for writing. Except for get_user_pages() deep down in ipath_user_sdma_pin_pages() we don't seem to need mmap_sem at all. Even more interestingly the function ipath_user_sdma_queue_pkts() (and also ipath_user_sdma_coalesce() called somewhat later) call copy_from_user() which can hit a page fault and we deadlock on trying to get mmap_sem when handling that fault. So just make ipath_user_sdma_pin_pages() use get_user_pages_fast() and leave mmap_sem locking for mm. This deadlock has actually been observed in the wild when the node is under memory pressure. Cc: <stable@vger.kernel.org> Signed-off-by: Jan Kara <jack@suse.cz> Signed-off-by: Mike Marciniszyn <mike.marciniszyn@intel.com> [ Merged in fix for call to get_user_pages_fast from Tetsuo Handa <penguin-kernel@I-love.SAKURA.ne.jp>. - Roland ] Signed-off-by: Roland Dreier <roland@purestorage.com>
876 lines
21 KiB
C
876 lines
21 KiB
C
/*
|
|
* Copyright (c) 2007, 2008 QLogic Corporation. All rights reserved.
|
|
*
|
|
* This software is available to you under a choice of one of two
|
|
* licenses. You may choose to be licensed under the terms of the GNU
|
|
* General Public License (GPL) Version 2, available from the file
|
|
* COPYING in the main directory of this source tree, or the
|
|
* OpenIB.org BSD license below:
|
|
*
|
|
* Redistribution and use in source and binary forms, with or
|
|
* without modification, are permitted provided that the following
|
|
* conditions are met:
|
|
*
|
|
* - Redistributions of source code must retain the above
|
|
* copyright notice, this list of conditions and the following
|
|
* disclaimer.
|
|
*
|
|
* - Redistributions in binary form must reproduce the above
|
|
* copyright notice, this list of conditions and the following
|
|
* disclaimer in the documentation and/or other materials
|
|
* provided with the distribution.
|
|
*
|
|
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
|
|
* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
|
|
* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
|
|
* NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
|
|
* BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
|
|
* ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
|
|
* CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
|
|
* SOFTWARE.
|
|
*/
|
|
#include <linux/mm.h>
|
|
#include <linux/types.h>
|
|
#include <linux/device.h>
|
|
#include <linux/dmapool.h>
|
|
#include <linux/sched.h>
|
|
#include <linux/slab.h>
|
|
#include <linux/list.h>
|
|
#include <linux/highmem.h>
|
|
#include <linux/io.h>
|
|
#include <linux/uio.h>
|
|
#include <linux/rbtree.h>
|
|
#include <linux/spinlock.h>
|
|
#include <linux/delay.h>
|
|
|
|
#include "ipath_kernel.h"
|
|
#include "ipath_user_sdma.h"
|
|
|
|
/* minimum size of header */
|
|
#define IPATH_USER_SDMA_MIN_HEADER_LENGTH 64
|
|
/* expected size of headers (for dma_pool) */
|
|
#define IPATH_USER_SDMA_EXP_HEADER_LENGTH 64
|
|
/* length mask in PBC (lower 11 bits) */
|
|
#define IPATH_PBC_LENGTH_MASK ((1 << 11) - 1)
|
|
|
|
struct ipath_user_sdma_pkt {
|
|
u8 naddr; /* dimension of addr (1..3) ... */
|
|
u32 counter; /* sdma pkts queued counter for this entry */
|
|
u64 added; /* global descq number of entries */
|
|
|
|
struct {
|
|
u32 offset; /* offset for kvaddr, addr */
|
|
u32 length; /* length in page */
|
|
u8 put_page; /* should we put_page? */
|
|
u8 dma_mapped; /* is page dma_mapped? */
|
|
struct page *page; /* may be NULL (coherent mem) */
|
|
void *kvaddr; /* FIXME: only for pio hack */
|
|
dma_addr_t addr;
|
|
} addr[4]; /* max pages, any more and we coalesce */
|
|
struct list_head list; /* list element */
|
|
};
|
|
|
|
struct ipath_user_sdma_queue {
|
|
/*
|
|
* pkts sent to dma engine are queued on this
|
|
* list head. the type of the elements of this
|
|
* list are struct ipath_user_sdma_pkt...
|
|
*/
|
|
struct list_head sent;
|
|
|
|
/* headers with expected length are allocated from here... */
|
|
char header_cache_name[64];
|
|
struct dma_pool *header_cache;
|
|
|
|
/* packets are allocated from the slab cache... */
|
|
char pkt_slab_name[64];
|
|
struct kmem_cache *pkt_slab;
|
|
|
|
/* as packets go on the queued queue, they are counted... */
|
|
u32 counter;
|
|
u32 sent_counter;
|
|
|
|
/* dma page table */
|
|
struct rb_root dma_pages_root;
|
|
|
|
/* protect everything above... */
|
|
struct mutex lock;
|
|
};
|
|
|
|
struct ipath_user_sdma_queue *
|
|
ipath_user_sdma_queue_create(struct device *dev, int unit, int port, int sport)
|
|
{
|
|
struct ipath_user_sdma_queue *pq =
|
|
kmalloc(sizeof(struct ipath_user_sdma_queue), GFP_KERNEL);
|
|
|
|
if (!pq)
|
|
goto done;
|
|
|
|
pq->counter = 0;
|
|
pq->sent_counter = 0;
|
|
INIT_LIST_HEAD(&pq->sent);
|
|
|
|
mutex_init(&pq->lock);
|
|
|
|
snprintf(pq->pkt_slab_name, sizeof(pq->pkt_slab_name),
|
|
"ipath-user-sdma-pkts-%u-%02u.%02u", unit, port, sport);
|
|
pq->pkt_slab = kmem_cache_create(pq->pkt_slab_name,
|
|
sizeof(struct ipath_user_sdma_pkt),
|
|
0, 0, NULL);
|
|
|
|
if (!pq->pkt_slab)
|
|
goto err_kfree;
|
|
|
|
snprintf(pq->header_cache_name, sizeof(pq->header_cache_name),
|
|
"ipath-user-sdma-headers-%u-%02u.%02u", unit, port, sport);
|
|
pq->header_cache = dma_pool_create(pq->header_cache_name,
|
|
dev,
|
|
IPATH_USER_SDMA_EXP_HEADER_LENGTH,
|
|
4, 0);
|
|
if (!pq->header_cache)
|
|
goto err_slab;
|
|
|
|
pq->dma_pages_root = RB_ROOT;
|
|
|
|
goto done;
|
|
|
|
err_slab:
|
|
kmem_cache_destroy(pq->pkt_slab);
|
|
err_kfree:
|
|
kfree(pq);
|
|
pq = NULL;
|
|
|
|
done:
|
|
return pq;
|
|
}
|
|
|
|
static void ipath_user_sdma_init_frag(struct ipath_user_sdma_pkt *pkt,
|
|
int i, size_t offset, size_t len,
|
|
int put_page, int dma_mapped,
|
|
struct page *page,
|
|
void *kvaddr, dma_addr_t dma_addr)
|
|
{
|
|
pkt->addr[i].offset = offset;
|
|
pkt->addr[i].length = len;
|
|
pkt->addr[i].put_page = put_page;
|
|
pkt->addr[i].dma_mapped = dma_mapped;
|
|
pkt->addr[i].page = page;
|
|
pkt->addr[i].kvaddr = kvaddr;
|
|
pkt->addr[i].addr = dma_addr;
|
|
}
|
|
|
|
static void ipath_user_sdma_init_header(struct ipath_user_sdma_pkt *pkt,
|
|
u32 counter, size_t offset,
|
|
size_t len, int dma_mapped,
|
|
struct page *page,
|
|
void *kvaddr, dma_addr_t dma_addr)
|
|
{
|
|
pkt->naddr = 1;
|
|
pkt->counter = counter;
|
|
ipath_user_sdma_init_frag(pkt, 0, offset, len, 0, dma_mapped, page,
|
|
kvaddr, dma_addr);
|
|
}
|
|
|
|
/* we've too many pages in the iovec, coalesce to a single page */
|
|
static int ipath_user_sdma_coalesce(const struct ipath_devdata *dd,
|
|
struct ipath_user_sdma_pkt *pkt,
|
|
const struct iovec *iov,
|
|
unsigned long niov) {
|
|
int ret = 0;
|
|
struct page *page = alloc_page(GFP_KERNEL);
|
|
void *mpage_save;
|
|
char *mpage;
|
|
int i;
|
|
int len = 0;
|
|
dma_addr_t dma_addr;
|
|
|
|
if (!page) {
|
|
ret = -ENOMEM;
|
|
goto done;
|
|
}
|
|
|
|
mpage = kmap(page);
|
|
mpage_save = mpage;
|
|
for (i = 0; i < niov; i++) {
|
|
int cfur;
|
|
|
|
cfur = copy_from_user(mpage,
|
|
iov[i].iov_base, iov[i].iov_len);
|
|
if (cfur) {
|
|
ret = -EFAULT;
|
|
goto free_unmap;
|
|
}
|
|
|
|
mpage += iov[i].iov_len;
|
|
len += iov[i].iov_len;
|
|
}
|
|
|
|
dma_addr = dma_map_page(&dd->pcidev->dev, page, 0, len,
|
|
DMA_TO_DEVICE);
|
|
if (dma_mapping_error(&dd->pcidev->dev, dma_addr)) {
|
|
ret = -ENOMEM;
|
|
goto free_unmap;
|
|
}
|
|
|
|
ipath_user_sdma_init_frag(pkt, 1, 0, len, 0, 1, page, mpage_save,
|
|
dma_addr);
|
|
pkt->naddr = 2;
|
|
|
|
goto done;
|
|
|
|
free_unmap:
|
|
kunmap(page);
|
|
__free_page(page);
|
|
done:
|
|
return ret;
|
|
}
|
|
|
|
/* how many pages in this iovec element? */
|
|
static int ipath_user_sdma_num_pages(const struct iovec *iov)
|
|
{
|
|
const unsigned long addr = (unsigned long) iov->iov_base;
|
|
const unsigned long len = iov->iov_len;
|
|
const unsigned long spage = addr & PAGE_MASK;
|
|
const unsigned long epage = (addr + len - 1) & PAGE_MASK;
|
|
|
|
return 1 + ((epage - spage) >> PAGE_SHIFT);
|
|
}
|
|
|
|
/* truncate length to page boundary */
|
|
static int ipath_user_sdma_page_length(unsigned long addr, unsigned long len)
|
|
{
|
|
const unsigned long offset = addr & ~PAGE_MASK;
|
|
|
|
return ((offset + len) > PAGE_SIZE) ? (PAGE_SIZE - offset) : len;
|
|
}
|
|
|
|
static void ipath_user_sdma_free_pkt_frag(struct device *dev,
|
|
struct ipath_user_sdma_queue *pq,
|
|
struct ipath_user_sdma_pkt *pkt,
|
|
int frag)
|
|
{
|
|
const int i = frag;
|
|
|
|
if (pkt->addr[i].page) {
|
|
if (pkt->addr[i].dma_mapped)
|
|
dma_unmap_page(dev,
|
|
pkt->addr[i].addr,
|
|
pkt->addr[i].length,
|
|
DMA_TO_DEVICE);
|
|
|
|
if (pkt->addr[i].kvaddr)
|
|
kunmap(pkt->addr[i].page);
|
|
|
|
if (pkt->addr[i].put_page)
|
|
put_page(pkt->addr[i].page);
|
|
else
|
|
__free_page(pkt->addr[i].page);
|
|
} else if (pkt->addr[i].kvaddr)
|
|
/* free coherent mem from cache... */
|
|
dma_pool_free(pq->header_cache,
|
|
pkt->addr[i].kvaddr, pkt->addr[i].addr);
|
|
}
|
|
|
|
/* return number of pages pinned... */
|
|
static int ipath_user_sdma_pin_pages(const struct ipath_devdata *dd,
|
|
struct ipath_user_sdma_pkt *pkt,
|
|
unsigned long addr, int tlen, int npages)
|
|
{
|
|
struct page *pages[2];
|
|
int j;
|
|
int ret;
|
|
|
|
ret = get_user_pages_fast(addr, npages, 0, pages);
|
|
if (ret != npages) {
|
|
int i;
|
|
|
|
for (i = 0; i < ret; i++)
|
|
put_page(pages[i]);
|
|
|
|
ret = -ENOMEM;
|
|
goto done;
|
|
}
|
|
|
|
for (j = 0; j < npages; j++) {
|
|
/* map the pages... */
|
|
const int flen =
|
|
ipath_user_sdma_page_length(addr, tlen);
|
|
dma_addr_t dma_addr =
|
|
dma_map_page(&dd->pcidev->dev,
|
|
pages[j], 0, flen, DMA_TO_DEVICE);
|
|
unsigned long fofs = addr & ~PAGE_MASK;
|
|
|
|
if (dma_mapping_error(&dd->pcidev->dev, dma_addr)) {
|
|
ret = -ENOMEM;
|
|
goto done;
|
|
}
|
|
|
|
ipath_user_sdma_init_frag(pkt, pkt->naddr, fofs, flen, 1, 1,
|
|
pages[j], kmap(pages[j]),
|
|
dma_addr);
|
|
|
|
pkt->naddr++;
|
|
addr += flen;
|
|
tlen -= flen;
|
|
}
|
|
|
|
done:
|
|
return ret;
|
|
}
|
|
|
|
static int ipath_user_sdma_pin_pkt(const struct ipath_devdata *dd,
|
|
struct ipath_user_sdma_queue *pq,
|
|
struct ipath_user_sdma_pkt *pkt,
|
|
const struct iovec *iov,
|
|
unsigned long niov)
|
|
{
|
|
int ret = 0;
|
|
unsigned long idx;
|
|
|
|
for (idx = 0; idx < niov; idx++) {
|
|
const int npages = ipath_user_sdma_num_pages(iov + idx);
|
|
const unsigned long addr = (unsigned long) iov[idx].iov_base;
|
|
|
|
ret = ipath_user_sdma_pin_pages(dd, pkt,
|
|
addr, iov[idx].iov_len,
|
|
npages);
|
|
if (ret < 0)
|
|
goto free_pkt;
|
|
}
|
|
|
|
goto done;
|
|
|
|
free_pkt:
|
|
for (idx = 0; idx < pkt->naddr; idx++)
|
|
ipath_user_sdma_free_pkt_frag(&dd->pcidev->dev, pq, pkt, idx);
|
|
|
|
done:
|
|
return ret;
|
|
}
|
|
|
|
static int ipath_user_sdma_init_payload(const struct ipath_devdata *dd,
|
|
struct ipath_user_sdma_queue *pq,
|
|
struct ipath_user_sdma_pkt *pkt,
|
|
const struct iovec *iov,
|
|
unsigned long niov, int npages)
|
|
{
|
|
int ret = 0;
|
|
|
|
if (npages >= ARRAY_SIZE(pkt->addr))
|
|
ret = ipath_user_sdma_coalesce(dd, pkt, iov, niov);
|
|
else
|
|
ret = ipath_user_sdma_pin_pkt(dd, pq, pkt, iov, niov);
|
|
|
|
return ret;
|
|
}
|
|
|
|
/* free a packet list -- return counter value of last packet */
|
|
static void ipath_user_sdma_free_pkt_list(struct device *dev,
|
|
struct ipath_user_sdma_queue *pq,
|
|
struct list_head *list)
|
|
{
|
|
struct ipath_user_sdma_pkt *pkt, *pkt_next;
|
|
|
|
list_for_each_entry_safe(pkt, pkt_next, list, list) {
|
|
int i;
|
|
|
|
for (i = 0; i < pkt->naddr; i++)
|
|
ipath_user_sdma_free_pkt_frag(dev, pq, pkt, i);
|
|
|
|
kmem_cache_free(pq->pkt_slab, pkt);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* copy headers, coalesce etc -- pq->lock must be held
|
|
*
|
|
* we queue all the packets to list, returning the
|
|
* number of bytes total. list must be empty initially,
|
|
* as, if there is an error we clean it...
|
|
*/
|
|
static int ipath_user_sdma_queue_pkts(const struct ipath_devdata *dd,
|
|
struct ipath_user_sdma_queue *pq,
|
|
struct list_head *list,
|
|
const struct iovec *iov,
|
|
unsigned long niov,
|
|
int maxpkts)
|
|
{
|
|
unsigned long idx = 0;
|
|
int ret = 0;
|
|
int npkts = 0;
|
|
struct page *page = NULL;
|
|
__le32 *pbc;
|
|
dma_addr_t dma_addr;
|
|
struct ipath_user_sdma_pkt *pkt = NULL;
|
|
size_t len;
|
|
size_t nw;
|
|
u32 counter = pq->counter;
|
|
int dma_mapped = 0;
|
|
|
|
while (idx < niov && npkts < maxpkts) {
|
|
const unsigned long addr = (unsigned long) iov[idx].iov_base;
|
|
const unsigned long idx_save = idx;
|
|
unsigned pktnw;
|
|
unsigned pktnwc;
|
|
int nfrags = 0;
|
|
int npages = 0;
|
|
int cfur;
|
|
|
|
dma_mapped = 0;
|
|
len = iov[idx].iov_len;
|
|
nw = len >> 2;
|
|
page = NULL;
|
|
|
|
pkt = kmem_cache_alloc(pq->pkt_slab, GFP_KERNEL);
|
|
if (!pkt) {
|
|
ret = -ENOMEM;
|
|
goto free_list;
|
|
}
|
|
|
|
if (len < IPATH_USER_SDMA_MIN_HEADER_LENGTH ||
|
|
len > PAGE_SIZE || len & 3 || addr & 3) {
|
|
ret = -EINVAL;
|
|
goto free_pkt;
|
|
}
|
|
|
|
if (len == IPATH_USER_SDMA_EXP_HEADER_LENGTH)
|
|
pbc = dma_pool_alloc(pq->header_cache, GFP_KERNEL,
|
|
&dma_addr);
|
|
else
|
|
pbc = NULL;
|
|
|
|
if (!pbc) {
|
|
page = alloc_page(GFP_KERNEL);
|
|
if (!page) {
|
|
ret = -ENOMEM;
|
|
goto free_pkt;
|
|
}
|
|
pbc = kmap(page);
|
|
}
|
|
|
|
cfur = copy_from_user(pbc, iov[idx].iov_base, len);
|
|
if (cfur) {
|
|
ret = -EFAULT;
|
|
goto free_pbc;
|
|
}
|
|
|
|
/*
|
|
* this assignment is a bit strange. it's because the
|
|
* the pbc counts the number of 32 bit words in the full
|
|
* packet _except_ the first word of the pbc itself...
|
|
*/
|
|
pktnwc = nw - 1;
|
|
|
|
/*
|
|
* pktnw computation yields the number of 32 bit words
|
|
* that the caller has indicated in the PBC. note that
|
|
* this is one less than the total number of words that
|
|
* goes to the send DMA engine as the first 32 bit word
|
|
* of the PBC itself is not counted. Armed with this count,
|
|
* we can verify that the packet is consistent with the
|
|
* iovec lengths.
|
|
*/
|
|
pktnw = le32_to_cpu(*pbc) & IPATH_PBC_LENGTH_MASK;
|
|
if (pktnw < pktnwc || pktnw > pktnwc + (PAGE_SIZE >> 2)) {
|
|
ret = -EINVAL;
|
|
goto free_pbc;
|
|
}
|
|
|
|
|
|
idx++;
|
|
while (pktnwc < pktnw && idx < niov) {
|
|
const size_t slen = iov[idx].iov_len;
|
|
const unsigned long faddr =
|
|
(unsigned long) iov[idx].iov_base;
|
|
|
|
if (slen & 3 || faddr & 3 || !slen ||
|
|
slen > PAGE_SIZE) {
|
|
ret = -EINVAL;
|
|
goto free_pbc;
|
|
}
|
|
|
|
npages++;
|
|
if ((faddr & PAGE_MASK) !=
|
|
((faddr + slen - 1) & PAGE_MASK))
|
|
npages++;
|
|
|
|
pktnwc += slen >> 2;
|
|
idx++;
|
|
nfrags++;
|
|
}
|
|
|
|
if (pktnwc != pktnw) {
|
|
ret = -EINVAL;
|
|
goto free_pbc;
|
|
}
|
|
|
|
if (page) {
|
|
dma_addr = dma_map_page(&dd->pcidev->dev,
|
|
page, 0, len, DMA_TO_DEVICE);
|
|
if (dma_mapping_error(&dd->pcidev->dev, dma_addr)) {
|
|
ret = -ENOMEM;
|
|
goto free_pbc;
|
|
}
|
|
|
|
dma_mapped = 1;
|
|
}
|
|
|
|
ipath_user_sdma_init_header(pkt, counter, 0, len, dma_mapped,
|
|
page, pbc, dma_addr);
|
|
|
|
if (nfrags) {
|
|
ret = ipath_user_sdma_init_payload(dd, pq, pkt,
|
|
iov + idx_save + 1,
|
|
nfrags, npages);
|
|
if (ret < 0)
|
|
goto free_pbc_dma;
|
|
}
|
|
|
|
counter++;
|
|
npkts++;
|
|
|
|
list_add_tail(&pkt->list, list);
|
|
}
|
|
|
|
ret = idx;
|
|
goto done;
|
|
|
|
free_pbc_dma:
|
|
if (dma_mapped)
|
|
dma_unmap_page(&dd->pcidev->dev, dma_addr, len, DMA_TO_DEVICE);
|
|
free_pbc:
|
|
if (page) {
|
|
kunmap(page);
|
|
__free_page(page);
|
|
} else
|
|
dma_pool_free(pq->header_cache, pbc, dma_addr);
|
|
free_pkt:
|
|
kmem_cache_free(pq->pkt_slab, pkt);
|
|
free_list:
|
|
ipath_user_sdma_free_pkt_list(&dd->pcidev->dev, pq, list);
|
|
done:
|
|
return ret;
|
|
}
|
|
|
|
static void ipath_user_sdma_set_complete_counter(struct ipath_user_sdma_queue *pq,
|
|
u32 c)
|
|
{
|
|
pq->sent_counter = c;
|
|
}
|
|
|
|
/* try to clean out queue -- needs pq->lock */
|
|
static int ipath_user_sdma_queue_clean(const struct ipath_devdata *dd,
|
|
struct ipath_user_sdma_queue *pq)
|
|
{
|
|
struct list_head free_list;
|
|
struct ipath_user_sdma_pkt *pkt;
|
|
struct ipath_user_sdma_pkt *pkt_prev;
|
|
int ret = 0;
|
|
|
|
INIT_LIST_HEAD(&free_list);
|
|
|
|
list_for_each_entry_safe(pkt, pkt_prev, &pq->sent, list) {
|
|
s64 descd = dd->ipath_sdma_descq_removed - pkt->added;
|
|
|
|
if (descd < 0)
|
|
break;
|
|
|
|
list_move_tail(&pkt->list, &free_list);
|
|
|
|
/* one more packet cleaned */
|
|
ret++;
|
|
}
|
|
|
|
if (!list_empty(&free_list)) {
|
|
u32 counter;
|
|
|
|
pkt = list_entry(free_list.prev,
|
|
struct ipath_user_sdma_pkt, list);
|
|
counter = pkt->counter;
|
|
|
|
ipath_user_sdma_free_pkt_list(&dd->pcidev->dev, pq, &free_list);
|
|
ipath_user_sdma_set_complete_counter(pq, counter);
|
|
}
|
|
|
|
return ret;
|
|
}
|
|
|
|
void ipath_user_sdma_queue_destroy(struct ipath_user_sdma_queue *pq)
|
|
{
|
|
if (!pq)
|
|
return;
|
|
|
|
kmem_cache_destroy(pq->pkt_slab);
|
|
dma_pool_destroy(pq->header_cache);
|
|
kfree(pq);
|
|
}
|
|
|
|
/* clean descriptor queue, returns > 0 if some elements cleaned */
|
|
static int ipath_user_sdma_hwqueue_clean(struct ipath_devdata *dd)
|
|
{
|
|
int ret;
|
|
unsigned long flags;
|
|
|
|
spin_lock_irqsave(&dd->ipath_sdma_lock, flags);
|
|
ret = ipath_sdma_make_progress(dd);
|
|
spin_unlock_irqrestore(&dd->ipath_sdma_lock, flags);
|
|
|
|
return ret;
|
|
}
|
|
|
|
/* we're in close, drain packets so that we can cleanup successfully... */
|
|
void ipath_user_sdma_queue_drain(struct ipath_devdata *dd,
|
|
struct ipath_user_sdma_queue *pq)
|
|
{
|
|
int i;
|
|
|
|
if (!pq)
|
|
return;
|
|
|
|
for (i = 0; i < 100; i++) {
|
|
mutex_lock(&pq->lock);
|
|
if (list_empty(&pq->sent)) {
|
|
mutex_unlock(&pq->lock);
|
|
break;
|
|
}
|
|
ipath_user_sdma_hwqueue_clean(dd);
|
|
ipath_user_sdma_queue_clean(dd, pq);
|
|
mutex_unlock(&pq->lock);
|
|
msleep(10);
|
|
}
|
|
|
|
if (!list_empty(&pq->sent)) {
|
|
struct list_head free_list;
|
|
|
|
printk(KERN_INFO "drain: lists not empty: forcing!\n");
|
|
INIT_LIST_HEAD(&free_list);
|
|
mutex_lock(&pq->lock);
|
|
list_splice_init(&pq->sent, &free_list);
|
|
ipath_user_sdma_free_pkt_list(&dd->pcidev->dev, pq, &free_list);
|
|
mutex_unlock(&pq->lock);
|
|
}
|
|
}
|
|
|
|
static inline __le64 ipath_sdma_make_desc0(struct ipath_devdata *dd,
|
|
u64 addr, u64 dwlen, u64 dwoffset)
|
|
{
|
|
return cpu_to_le64(/* SDmaPhyAddr[31:0] */
|
|
((addr & 0xfffffffcULL) << 32) |
|
|
/* SDmaGeneration[1:0] */
|
|
((dd->ipath_sdma_generation & 3ULL) << 30) |
|
|
/* SDmaDwordCount[10:0] */
|
|
((dwlen & 0x7ffULL) << 16) |
|
|
/* SDmaBufOffset[12:2] */
|
|
(dwoffset & 0x7ffULL));
|
|
}
|
|
|
|
static inline __le64 ipath_sdma_make_first_desc0(__le64 descq)
|
|
{
|
|
return descq | cpu_to_le64(1ULL << 12);
|
|
}
|
|
|
|
static inline __le64 ipath_sdma_make_last_desc0(__le64 descq)
|
|
{
|
|
/* last */ /* dma head */
|
|
return descq | cpu_to_le64(1ULL << 11 | 1ULL << 13);
|
|
}
|
|
|
|
static inline __le64 ipath_sdma_make_desc1(u64 addr)
|
|
{
|
|
/* SDmaPhyAddr[47:32] */
|
|
return cpu_to_le64(addr >> 32);
|
|
}
|
|
|
|
static void ipath_user_sdma_send_frag(struct ipath_devdata *dd,
|
|
struct ipath_user_sdma_pkt *pkt, int idx,
|
|
unsigned ofs, u16 tail)
|
|
{
|
|
const u64 addr = (u64) pkt->addr[idx].addr +
|
|
(u64) pkt->addr[idx].offset;
|
|
const u64 dwlen = (u64) pkt->addr[idx].length / 4;
|
|
__le64 *descqp;
|
|
__le64 descq0;
|
|
|
|
descqp = &dd->ipath_sdma_descq[tail].qw[0];
|
|
|
|
descq0 = ipath_sdma_make_desc0(dd, addr, dwlen, ofs);
|
|
if (idx == 0)
|
|
descq0 = ipath_sdma_make_first_desc0(descq0);
|
|
if (idx == pkt->naddr - 1)
|
|
descq0 = ipath_sdma_make_last_desc0(descq0);
|
|
|
|
descqp[0] = descq0;
|
|
descqp[1] = ipath_sdma_make_desc1(addr);
|
|
}
|
|
|
|
/* pq->lock must be held, get packets on the wire... */
|
|
static int ipath_user_sdma_push_pkts(struct ipath_devdata *dd,
|
|
struct ipath_user_sdma_queue *pq,
|
|
struct list_head *pktlist)
|
|
{
|
|
int ret = 0;
|
|
unsigned long flags;
|
|
u16 tail;
|
|
|
|
if (list_empty(pktlist))
|
|
return 0;
|
|
|
|
if (unlikely(!(dd->ipath_flags & IPATH_LINKACTIVE)))
|
|
return -ECOMM;
|
|
|
|
spin_lock_irqsave(&dd->ipath_sdma_lock, flags);
|
|
|
|
if (unlikely(dd->ipath_sdma_status & IPATH_SDMA_ABORT_MASK)) {
|
|
ret = -ECOMM;
|
|
goto unlock;
|
|
}
|
|
|
|
tail = dd->ipath_sdma_descq_tail;
|
|
while (!list_empty(pktlist)) {
|
|
struct ipath_user_sdma_pkt *pkt =
|
|
list_entry(pktlist->next, struct ipath_user_sdma_pkt,
|
|
list);
|
|
int i;
|
|
unsigned ofs = 0;
|
|
u16 dtail = tail;
|
|
|
|
if (pkt->naddr > ipath_sdma_descq_freecnt(dd))
|
|
goto unlock_check_tail;
|
|
|
|
for (i = 0; i < pkt->naddr; i++) {
|
|
ipath_user_sdma_send_frag(dd, pkt, i, ofs, tail);
|
|
ofs += pkt->addr[i].length >> 2;
|
|
|
|
if (++tail == dd->ipath_sdma_descq_cnt) {
|
|
tail = 0;
|
|
++dd->ipath_sdma_generation;
|
|
}
|
|
}
|
|
|
|
if ((ofs<<2) > dd->ipath_ibmaxlen) {
|
|
ipath_dbg("packet size %X > ibmax %X, fail\n",
|
|
ofs<<2, dd->ipath_ibmaxlen);
|
|
ret = -EMSGSIZE;
|
|
goto unlock;
|
|
}
|
|
|
|
/*
|
|
* if the packet is >= 2KB mtu equivalent, we have to use
|
|
* the large buffers, and have to mark each descriptor as
|
|
* part of a large buffer packet.
|
|
*/
|
|
if (ofs >= IPATH_SMALLBUF_DWORDS) {
|
|
for (i = 0; i < pkt->naddr; i++) {
|
|
dd->ipath_sdma_descq[dtail].qw[0] |=
|
|
cpu_to_le64(1ULL << 14);
|
|
if (++dtail == dd->ipath_sdma_descq_cnt)
|
|
dtail = 0;
|
|
}
|
|
}
|
|
|
|
dd->ipath_sdma_descq_added += pkt->naddr;
|
|
pkt->added = dd->ipath_sdma_descq_added;
|
|
list_move_tail(&pkt->list, &pq->sent);
|
|
ret++;
|
|
}
|
|
|
|
unlock_check_tail:
|
|
/* advance the tail on the chip if necessary */
|
|
if (dd->ipath_sdma_descq_tail != tail) {
|
|
wmb();
|
|
ipath_write_kreg(dd, dd->ipath_kregs->kr_senddmatail, tail);
|
|
dd->ipath_sdma_descq_tail = tail;
|
|
}
|
|
|
|
unlock:
|
|
spin_unlock_irqrestore(&dd->ipath_sdma_lock, flags);
|
|
|
|
return ret;
|
|
}
|
|
|
|
int ipath_user_sdma_writev(struct ipath_devdata *dd,
|
|
struct ipath_user_sdma_queue *pq,
|
|
const struct iovec *iov,
|
|
unsigned long dim)
|
|
{
|
|
int ret = 0;
|
|
struct list_head list;
|
|
int npkts = 0;
|
|
|
|
INIT_LIST_HEAD(&list);
|
|
|
|
mutex_lock(&pq->lock);
|
|
|
|
if (dd->ipath_sdma_descq_added != dd->ipath_sdma_descq_removed) {
|
|
ipath_user_sdma_hwqueue_clean(dd);
|
|
ipath_user_sdma_queue_clean(dd, pq);
|
|
}
|
|
|
|
while (dim) {
|
|
const int mxp = 8;
|
|
|
|
ret = ipath_user_sdma_queue_pkts(dd, pq, &list, iov, dim, mxp);
|
|
if (ret <= 0)
|
|
goto done_unlock;
|
|
else {
|
|
dim -= ret;
|
|
iov += ret;
|
|
}
|
|
|
|
/* force packets onto the sdma hw queue... */
|
|
if (!list_empty(&list)) {
|
|
/*
|
|
* lazily clean hw queue. the 4 is a guess of about
|
|
* how many sdma descriptors a packet will take (it
|
|
* doesn't have to be perfect).
|
|
*/
|
|
if (ipath_sdma_descq_freecnt(dd) < ret * 4) {
|
|
ipath_user_sdma_hwqueue_clean(dd);
|
|
ipath_user_sdma_queue_clean(dd, pq);
|
|
}
|
|
|
|
ret = ipath_user_sdma_push_pkts(dd, pq, &list);
|
|
if (ret < 0)
|
|
goto done_unlock;
|
|
else {
|
|
npkts += ret;
|
|
pq->counter += ret;
|
|
|
|
if (!list_empty(&list))
|
|
goto done_unlock;
|
|
}
|
|
}
|
|
}
|
|
|
|
done_unlock:
|
|
if (!list_empty(&list))
|
|
ipath_user_sdma_free_pkt_list(&dd->pcidev->dev, pq, &list);
|
|
mutex_unlock(&pq->lock);
|
|
|
|
return (ret < 0) ? ret : npkts;
|
|
}
|
|
|
|
int ipath_user_sdma_make_progress(struct ipath_devdata *dd,
|
|
struct ipath_user_sdma_queue *pq)
|
|
{
|
|
int ret = 0;
|
|
|
|
mutex_lock(&pq->lock);
|
|
ipath_user_sdma_hwqueue_clean(dd);
|
|
ret = ipath_user_sdma_queue_clean(dd, pq);
|
|
mutex_unlock(&pq->lock);
|
|
|
|
return ret;
|
|
}
|
|
|
|
u32 ipath_user_sdma_complete_counter(const struct ipath_user_sdma_queue *pq)
|
|
{
|
|
return pq->sent_counter;
|
|
}
|
|
|
|
u32 ipath_user_sdma_inflight_counter(struct ipath_user_sdma_queue *pq)
|
|
{
|
|
return pq->counter;
|
|
}
|
|
|