mirror of
https://github.com/FEX-Emu/linux.git
synced 2025-01-04 08:15:44 +00:00
2aa3add0cc
Remove unnecessary null check. udev->tt cannot ever be NULL when this section of code runs. Addresses-Coverity-ID: 100828 Signed-off-by: Gustavo A. R. Silva <garsilva@embeddedor.com> Acked-by: Alan Stern <stern@rowland.harvard.edu> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2517 lines
65 KiB
C
2517 lines
65 KiB
C
/*
|
|
* Copyright (c) 2001-2004 by David Brownell
|
|
* Copyright (c) 2003 Michal Sojka, for high-speed iso transfers
|
|
*
|
|
* This program is free software; you can redistribute it and/or modify it
|
|
* under the terms of the GNU General Public License as published by the
|
|
* Free Software Foundation; either version 2 of the License, or (at your
|
|
* option) any later version.
|
|
*
|
|
* This program is distributed in the hope that it will be useful, but
|
|
* WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
|
|
* or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
|
|
* for more details.
|
|
*
|
|
* You should have received a copy of the GNU General Public License
|
|
* along with this program; if not, write to the Free Software Foundation,
|
|
* Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
|
|
*/
|
|
|
|
/* this file is part of ehci-hcd.c */
|
|
|
|
/*-------------------------------------------------------------------------*/
|
|
|
|
/*
|
|
* EHCI scheduled transaction support: interrupt, iso, split iso
|
|
* These are called "periodic" transactions in the EHCI spec.
|
|
*
|
|
* Note that for interrupt transfers, the QH/QTD manipulation is shared
|
|
* with the "asynchronous" transaction support (control/bulk transfers).
|
|
* The only real difference is in how interrupt transfers are scheduled.
|
|
*
|
|
* For ISO, we make an "iso_stream" head to serve the same role as a QH.
|
|
* It keeps track of every ITD (or SITD) that's linked, and holds enough
|
|
* pre-calculated schedule data to make appending to the queue be quick.
|
|
*/
|
|
|
|
static int ehci_get_frame(struct usb_hcd *hcd);
|
|
|
|
/*
|
|
* periodic_next_shadow - return "next" pointer on shadow list
|
|
* @periodic: host pointer to qh/itd/sitd
|
|
* @tag: hardware tag for type of this record
|
|
*/
|
|
static union ehci_shadow *
|
|
periodic_next_shadow(struct ehci_hcd *ehci, union ehci_shadow *periodic,
|
|
__hc32 tag)
|
|
{
|
|
switch (hc32_to_cpu(ehci, tag)) {
|
|
case Q_TYPE_QH:
|
|
return &periodic->qh->qh_next;
|
|
case Q_TYPE_FSTN:
|
|
return &periodic->fstn->fstn_next;
|
|
case Q_TYPE_ITD:
|
|
return &periodic->itd->itd_next;
|
|
/* case Q_TYPE_SITD: */
|
|
default:
|
|
return &periodic->sitd->sitd_next;
|
|
}
|
|
}
|
|
|
|
static __hc32 *
|
|
shadow_next_periodic(struct ehci_hcd *ehci, union ehci_shadow *periodic,
|
|
__hc32 tag)
|
|
{
|
|
switch (hc32_to_cpu(ehci, tag)) {
|
|
/* our ehci_shadow.qh is actually software part */
|
|
case Q_TYPE_QH:
|
|
return &periodic->qh->hw->hw_next;
|
|
/* others are hw parts */
|
|
default:
|
|
return periodic->hw_next;
|
|
}
|
|
}
|
|
|
|
/* caller must hold ehci->lock */
|
|
static void periodic_unlink(struct ehci_hcd *ehci, unsigned frame, void *ptr)
|
|
{
|
|
union ehci_shadow *prev_p = &ehci->pshadow[frame];
|
|
__hc32 *hw_p = &ehci->periodic[frame];
|
|
union ehci_shadow here = *prev_p;
|
|
|
|
/* find predecessor of "ptr"; hw and shadow lists are in sync */
|
|
while (here.ptr && here.ptr != ptr) {
|
|
prev_p = periodic_next_shadow(ehci, prev_p,
|
|
Q_NEXT_TYPE(ehci, *hw_p));
|
|
hw_p = shadow_next_periodic(ehci, &here,
|
|
Q_NEXT_TYPE(ehci, *hw_p));
|
|
here = *prev_p;
|
|
}
|
|
/* an interrupt entry (at list end) could have been shared */
|
|
if (!here.ptr)
|
|
return;
|
|
|
|
/* update shadow and hardware lists ... the old "next" pointers
|
|
* from ptr may still be in use, the caller updates them.
|
|
*/
|
|
*prev_p = *periodic_next_shadow(ehci, &here,
|
|
Q_NEXT_TYPE(ehci, *hw_p));
|
|
|
|
if (!ehci->use_dummy_qh ||
|
|
*shadow_next_periodic(ehci, &here, Q_NEXT_TYPE(ehci, *hw_p))
|
|
!= EHCI_LIST_END(ehci))
|
|
*hw_p = *shadow_next_periodic(ehci, &here,
|
|
Q_NEXT_TYPE(ehci, *hw_p));
|
|
else
|
|
*hw_p = cpu_to_hc32(ehci, ehci->dummy->qh_dma);
|
|
}
|
|
|
|
/*-------------------------------------------------------------------------*/
|
|
|
|
/* Bandwidth and TT management */
|
|
|
|
/* Find the TT data structure for this device; create it if necessary */
|
|
static struct ehci_tt *find_tt(struct usb_device *udev)
|
|
{
|
|
struct usb_tt *utt = udev->tt;
|
|
struct ehci_tt *tt, **tt_index, **ptt;
|
|
unsigned port;
|
|
bool allocated_index = false;
|
|
|
|
if (!utt)
|
|
return NULL; /* Not below a TT */
|
|
|
|
/*
|
|
* Find/create our data structure.
|
|
* For hubs with a single TT, we get it directly.
|
|
* For hubs with multiple TTs, there's an extra level of pointers.
|
|
*/
|
|
tt_index = NULL;
|
|
if (utt->multi) {
|
|
tt_index = utt->hcpriv;
|
|
if (!tt_index) { /* Create the index array */
|
|
tt_index = kzalloc(utt->hub->maxchild *
|
|
sizeof(*tt_index), GFP_ATOMIC);
|
|
if (!tt_index)
|
|
return ERR_PTR(-ENOMEM);
|
|
utt->hcpriv = tt_index;
|
|
allocated_index = true;
|
|
}
|
|
port = udev->ttport - 1;
|
|
ptt = &tt_index[port];
|
|
} else {
|
|
port = 0;
|
|
ptt = (struct ehci_tt **) &utt->hcpriv;
|
|
}
|
|
|
|
tt = *ptt;
|
|
if (!tt) { /* Create the ehci_tt */
|
|
struct ehci_hcd *ehci =
|
|
hcd_to_ehci(bus_to_hcd(udev->bus));
|
|
|
|
tt = kzalloc(sizeof(*tt), GFP_ATOMIC);
|
|
if (!tt) {
|
|
if (allocated_index) {
|
|
utt->hcpriv = NULL;
|
|
kfree(tt_index);
|
|
}
|
|
return ERR_PTR(-ENOMEM);
|
|
}
|
|
list_add_tail(&tt->tt_list, &ehci->tt_list);
|
|
INIT_LIST_HEAD(&tt->ps_list);
|
|
tt->usb_tt = utt;
|
|
tt->tt_port = port;
|
|
*ptt = tt;
|
|
}
|
|
|
|
return tt;
|
|
}
|
|
|
|
/* Release the TT above udev, if it's not in use */
|
|
static void drop_tt(struct usb_device *udev)
|
|
{
|
|
struct usb_tt *utt = udev->tt;
|
|
struct ehci_tt *tt, **tt_index, **ptt;
|
|
int cnt, i;
|
|
|
|
if (!utt || !utt->hcpriv)
|
|
return; /* Not below a TT, or never allocated */
|
|
|
|
cnt = 0;
|
|
if (utt->multi) {
|
|
tt_index = utt->hcpriv;
|
|
ptt = &tt_index[udev->ttport - 1];
|
|
|
|
/* How many entries are left in tt_index? */
|
|
for (i = 0; i < utt->hub->maxchild; ++i)
|
|
cnt += !!tt_index[i];
|
|
} else {
|
|
tt_index = NULL;
|
|
ptt = (struct ehci_tt **) &utt->hcpriv;
|
|
}
|
|
|
|
tt = *ptt;
|
|
if (!tt || !list_empty(&tt->ps_list))
|
|
return; /* never allocated, or still in use */
|
|
|
|
list_del(&tt->tt_list);
|
|
*ptt = NULL;
|
|
kfree(tt);
|
|
if (cnt == 1) {
|
|
utt->hcpriv = NULL;
|
|
kfree(tt_index);
|
|
}
|
|
}
|
|
|
|
static void bandwidth_dbg(struct ehci_hcd *ehci, int sign, char *type,
|
|
struct ehci_per_sched *ps)
|
|
{
|
|
dev_dbg(&ps->udev->dev,
|
|
"ep %02x: %s %s @ %u+%u (%u.%u+%u) [%u/%u us] mask %04x\n",
|
|
ps->ep->desc.bEndpointAddress,
|
|
(sign >= 0 ? "reserve" : "release"), type,
|
|
(ps->bw_phase << 3) + ps->phase_uf, ps->bw_uperiod,
|
|
ps->phase, ps->phase_uf, ps->period,
|
|
ps->usecs, ps->c_usecs, ps->cs_mask);
|
|
}
|
|
|
|
static void reserve_release_intr_bandwidth(struct ehci_hcd *ehci,
|
|
struct ehci_qh *qh, int sign)
|
|
{
|
|
unsigned start_uf;
|
|
unsigned i, j, m;
|
|
int usecs = qh->ps.usecs;
|
|
int c_usecs = qh->ps.c_usecs;
|
|
int tt_usecs = qh->ps.tt_usecs;
|
|
struct ehci_tt *tt;
|
|
|
|
if (qh->ps.phase == NO_FRAME) /* Bandwidth wasn't reserved */
|
|
return;
|
|
start_uf = qh->ps.bw_phase << 3;
|
|
|
|
bandwidth_dbg(ehci, sign, "intr", &qh->ps);
|
|
|
|
if (sign < 0) { /* Release bandwidth */
|
|
usecs = -usecs;
|
|
c_usecs = -c_usecs;
|
|
tt_usecs = -tt_usecs;
|
|
}
|
|
|
|
/* Entire transaction (high speed) or start-split (full/low speed) */
|
|
for (i = start_uf + qh->ps.phase_uf; i < EHCI_BANDWIDTH_SIZE;
|
|
i += qh->ps.bw_uperiod)
|
|
ehci->bandwidth[i] += usecs;
|
|
|
|
/* Complete-split (full/low speed) */
|
|
if (qh->ps.c_usecs) {
|
|
/* NOTE: adjustments needed for FSTN */
|
|
for (i = start_uf; i < EHCI_BANDWIDTH_SIZE;
|
|
i += qh->ps.bw_uperiod) {
|
|
for ((j = 2, m = 1 << (j+8)); j < 8; (++j, m <<= 1)) {
|
|
if (qh->ps.cs_mask & m)
|
|
ehci->bandwidth[i+j] += c_usecs;
|
|
}
|
|
}
|
|
}
|
|
|
|
/* FS/LS bus bandwidth */
|
|
if (tt_usecs) {
|
|
tt = find_tt(qh->ps.udev);
|
|
if (sign > 0)
|
|
list_add_tail(&qh->ps.ps_list, &tt->ps_list);
|
|
else
|
|
list_del(&qh->ps.ps_list);
|
|
|
|
for (i = start_uf >> 3; i < EHCI_BANDWIDTH_FRAMES;
|
|
i += qh->ps.bw_period)
|
|
tt->bandwidth[i] += tt_usecs;
|
|
}
|
|
}
|
|
|
|
/*-------------------------------------------------------------------------*/
|
|
|
|
static void compute_tt_budget(u8 budget_table[EHCI_BANDWIDTH_SIZE],
|
|
struct ehci_tt *tt)
|
|
{
|
|
struct ehci_per_sched *ps;
|
|
unsigned uframe, uf, x;
|
|
u8 *budget_line;
|
|
|
|
if (!tt)
|
|
return;
|
|
memset(budget_table, 0, EHCI_BANDWIDTH_SIZE);
|
|
|
|
/* Add up the contributions from all the endpoints using this TT */
|
|
list_for_each_entry(ps, &tt->ps_list, ps_list) {
|
|
for (uframe = ps->bw_phase << 3; uframe < EHCI_BANDWIDTH_SIZE;
|
|
uframe += ps->bw_uperiod) {
|
|
budget_line = &budget_table[uframe];
|
|
x = ps->tt_usecs;
|
|
|
|
/* propagate the time forward */
|
|
for (uf = ps->phase_uf; uf < 8; ++uf) {
|
|
x += budget_line[uf];
|
|
|
|
/* Each microframe lasts 125 us */
|
|
if (x <= 125) {
|
|
budget_line[uf] = x;
|
|
break;
|
|
}
|
|
budget_line[uf] = 125;
|
|
x -= 125;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
static int __maybe_unused same_tt(struct usb_device *dev1,
|
|
struct usb_device *dev2)
|
|
{
|
|
if (!dev1->tt || !dev2->tt)
|
|
return 0;
|
|
if (dev1->tt != dev2->tt)
|
|
return 0;
|
|
if (dev1->tt->multi)
|
|
return dev1->ttport == dev2->ttport;
|
|
else
|
|
return 1;
|
|
}
|
|
|
|
#ifdef CONFIG_USB_EHCI_TT_NEWSCHED
|
|
|
|
/* Which uframe does the low/fullspeed transfer start in?
|
|
*
|
|
* The parameter is the mask of ssplits in "H-frame" terms
|
|
* and this returns the transfer start uframe in "B-frame" terms,
|
|
* which allows both to match, e.g. a ssplit in "H-frame" uframe 0
|
|
* will cause a transfer in "B-frame" uframe 0. "B-frames" lag
|
|
* "H-frames" by 1 uframe. See the EHCI spec sec 4.5 and figure 4.7.
|
|
*/
|
|
static inline unsigned char tt_start_uframe(struct ehci_hcd *ehci, __hc32 mask)
|
|
{
|
|
unsigned char smask = hc32_to_cpu(ehci, mask) & QH_SMASK;
|
|
|
|
if (!smask) {
|
|
ehci_err(ehci, "invalid empty smask!\n");
|
|
/* uframe 7 can't have bw so this will indicate failure */
|
|
return 7;
|
|
}
|
|
return ffs(smask) - 1;
|
|
}
|
|
|
|
static const unsigned char
|
|
max_tt_usecs[] = { 125, 125, 125, 125, 125, 125, 30, 0 };
|
|
|
|
/* carryover low/fullspeed bandwidth that crosses uframe boundries */
|
|
static inline void carryover_tt_bandwidth(unsigned short tt_usecs[8])
|
|
{
|
|
int i;
|
|
|
|
for (i = 0; i < 7; i++) {
|
|
if (max_tt_usecs[i] < tt_usecs[i]) {
|
|
tt_usecs[i+1] += tt_usecs[i] - max_tt_usecs[i];
|
|
tt_usecs[i] = max_tt_usecs[i];
|
|
}
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Return true if the device's tt's downstream bus is available for a
|
|
* periodic transfer of the specified length (usecs), starting at the
|
|
* specified frame/uframe. Note that (as summarized in section 11.19
|
|
* of the usb 2.0 spec) TTs can buffer multiple transactions for each
|
|
* uframe.
|
|
*
|
|
* The uframe parameter is when the fullspeed/lowspeed transfer
|
|
* should be executed in "B-frame" terms, which is the same as the
|
|
* highspeed ssplit's uframe (which is in "H-frame" terms). For example
|
|
* a ssplit in "H-frame" 0 causes a transfer in "B-frame" 0.
|
|
* See the EHCI spec sec 4.5 and fig 4.7.
|
|
*
|
|
* This checks if the full/lowspeed bus, at the specified starting uframe,
|
|
* has the specified bandwidth available, according to rules listed
|
|
* in USB 2.0 spec section 11.18.1 fig 11-60.
|
|
*
|
|
* This does not check if the transfer would exceed the max ssplit
|
|
* limit of 16, specified in USB 2.0 spec section 11.18.4 requirement #4,
|
|
* since proper scheduling limits ssplits to less than 16 per uframe.
|
|
*/
|
|
static int tt_available(
|
|
struct ehci_hcd *ehci,
|
|
struct ehci_per_sched *ps,
|
|
struct ehci_tt *tt,
|
|
unsigned frame,
|
|
unsigned uframe
|
|
)
|
|
{
|
|
unsigned period = ps->bw_period;
|
|
unsigned usecs = ps->tt_usecs;
|
|
|
|
if ((period == 0) || (uframe >= 7)) /* error */
|
|
return 0;
|
|
|
|
for (frame &= period - 1; frame < EHCI_BANDWIDTH_FRAMES;
|
|
frame += period) {
|
|
unsigned i, uf;
|
|
unsigned short tt_usecs[8];
|
|
|
|
if (tt->bandwidth[frame] + usecs > 900)
|
|
return 0;
|
|
|
|
uf = frame << 3;
|
|
for (i = 0; i < 8; (++i, ++uf))
|
|
tt_usecs[i] = ehci->tt_budget[uf];
|
|
|
|
if (max_tt_usecs[uframe] <= tt_usecs[uframe])
|
|
return 0;
|
|
|
|
/* special case for isoc transfers larger than 125us:
|
|
* the first and each subsequent fully used uframe
|
|
* must be empty, so as to not illegally delay
|
|
* already scheduled transactions
|
|
*/
|
|
if (usecs > 125) {
|
|
int ufs = (usecs / 125);
|
|
|
|
for (i = uframe; i < (uframe + ufs) && i < 8; i++)
|
|
if (tt_usecs[i] > 0)
|
|
return 0;
|
|
}
|
|
|
|
tt_usecs[uframe] += usecs;
|
|
|
|
carryover_tt_bandwidth(tt_usecs);
|
|
|
|
/* fail if the carryover pushed bw past the last uframe's limit */
|
|
if (max_tt_usecs[7] < tt_usecs[7])
|
|
return 0;
|
|
}
|
|
|
|
return 1;
|
|
}
|
|
|
|
#else
|
|
|
|
/* return true iff the device's transaction translator is available
|
|
* for a periodic transfer starting at the specified frame, using
|
|
* all the uframes in the mask.
|
|
*/
|
|
static int tt_no_collision(
|
|
struct ehci_hcd *ehci,
|
|
unsigned period,
|
|
struct usb_device *dev,
|
|
unsigned frame,
|
|
u32 uf_mask
|
|
)
|
|
{
|
|
if (period == 0) /* error */
|
|
return 0;
|
|
|
|
/* note bandwidth wastage: split never follows csplit
|
|
* (different dev or endpoint) until the next uframe.
|
|
* calling convention doesn't make that distinction.
|
|
*/
|
|
for (; frame < ehci->periodic_size; frame += period) {
|
|
union ehci_shadow here;
|
|
__hc32 type;
|
|
struct ehci_qh_hw *hw;
|
|
|
|
here = ehci->pshadow[frame];
|
|
type = Q_NEXT_TYPE(ehci, ehci->periodic[frame]);
|
|
while (here.ptr) {
|
|
switch (hc32_to_cpu(ehci, type)) {
|
|
case Q_TYPE_ITD:
|
|
type = Q_NEXT_TYPE(ehci, here.itd->hw_next);
|
|
here = here.itd->itd_next;
|
|
continue;
|
|
case Q_TYPE_QH:
|
|
hw = here.qh->hw;
|
|
if (same_tt(dev, here.qh->ps.udev)) {
|
|
u32 mask;
|
|
|
|
mask = hc32_to_cpu(ehci,
|
|
hw->hw_info2);
|
|
/* "knows" no gap is needed */
|
|
mask |= mask >> 8;
|
|
if (mask & uf_mask)
|
|
break;
|
|
}
|
|
type = Q_NEXT_TYPE(ehci, hw->hw_next);
|
|
here = here.qh->qh_next;
|
|
continue;
|
|
case Q_TYPE_SITD:
|
|
if (same_tt(dev, here.sitd->urb->dev)) {
|
|
u16 mask;
|
|
|
|
mask = hc32_to_cpu(ehci, here.sitd
|
|
->hw_uframe);
|
|
/* FIXME assumes no gap for IN! */
|
|
mask |= mask >> 8;
|
|
if (mask & uf_mask)
|
|
break;
|
|
}
|
|
type = Q_NEXT_TYPE(ehci, here.sitd->hw_next);
|
|
here = here.sitd->sitd_next;
|
|
continue;
|
|
/* case Q_TYPE_FSTN: */
|
|
default:
|
|
ehci_dbg(ehci,
|
|
"periodic frame %d bogus type %d\n",
|
|
frame, type);
|
|
}
|
|
|
|
/* collision or error */
|
|
return 0;
|
|
}
|
|
}
|
|
|
|
/* no collision */
|
|
return 1;
|
|
}
|
|
|
|
#endif /* CONFIG_USB_EHCI_TT_NEWSCHED */
|
|
|
|
/*-------------------------------------------------------------------------*/
|
|
|
|
static void enable_periodic(struct ehci_hcd *ehci)
|
|
{
|
|
if (ehci->periodic_count++)
|
|
return;
|
|
|
|
/* Stop waiting to turn off the periodic schedule */
|
|
ehci->enabled_hrtimer_events &= ~BIT(EHCI_HRTIMER_DISABLE_PERIODIC);
|
|
|
|
/* Don't start the schedule until PSS is 0 */
|
|
ehci_poll_PSS(ehci);
|
|
turn_on_io_watchdog(ehci);
|
|
}
|
|
|
|
static void disable_periodic(struct ehci_hcd *ehci)
|
|
{
|
|
if (--ehci->periodic_count)
|
|
return;
|
|
|
|
/* Don't turn off the schedule until PSS is 1 */
|
|
ehci_poll_PSS(ehci);
|
|
}
|
|
|
|
/*-------------------------------------------------------------------------*/
|
|
|
|
/* periodic schedule slots have iso tds (normal or split) first, then a
|
|
* sparse tree for active interrupt transfers.
|
|
*
|
|
* this just links in a qh; caller guarantees uframe masks are set right.
|
|
* no FSTN support (yet; ehci 0.96+)
|
|
*/
|
|
static void qh_link_periodic(struct ehci_hcd *ehci, struct ehci_qh *qh)
|
|
{
|
|
unsigned i;
|
|
unsigned period = qh->ps.period;
|
|
|
|
dev_dbg(&qh->ps.udev->dev,
|
|
"link qh%d-%04x/%p start %d [%d/%d us]\n",
|
|
period, hc32_to_cpup(ehci, &qh->hw->hw_info2)
|
|
& (QH_CMASK | QH_SMASK),
|
|
qh, qh->ps.phase, qh->ps.usecs, qh->ps.c_usecs);
|
|
|
|
/* high bandwidth, or otherwise every microframe */
|
|
if (period == 0)
|
|
period = 1;
|
|
|
|
for (i = qh->ps.phase; i < ehci->periodic_size; i += period) {
|
|
union ehci_shadow *prev = &ehci->pshadow[i];
|
|
__hc32 *hw_p = &ehci->periodic[i];
|
|
union ehci_shadow here = *prev;
|
|
__hc32 type = 0;
|
|
|
|
/* skip the iso nodes at list head */
|
|
while (here.ptr) {
|
|
type = Q_NEXT_TYPE(ehci, *hw_p);
|
|
if (type == cpu_to_hc32(ehci, Q_TYPE_QH))
|
|
break;
|
|
prev = periodic_next_shadow(ehci, prev, type);
|
|
hw_p = shadow_next_periodic(ehci, &here, type);
|
|
here = *prev;
|
|
}
|
|
|
|
/* sorting each branch by period (slow-->fast)
|
|
* enables sharing interior tree nodes
|
|
*/
|
|
while (here.ptr && qh != here.qh) {
|
|
if (qh->ps.period > here.qh->ps.period)
|
|
break;
|
|
prev = &here.qh->qh_next;
|
|
hw_p = &here.qh->hw->hw_next;
|
|
here = *prev;
|
|
}
|
|
/* link in this qh, unless some earlier pass did that */
|
|
if (qh != here.qh) {
|
|
qh->qh_next = here;
|
|
if (here.qh)
|
|
qh->hw->hw_next = *hw_p;
|
|
wmb();
|
|
prev->qh = qh;
|
|
*hw_p = QH_NEXT(ehci, qh->qh_dma);
|
|
}
|
|
}
|
|
qh->qh_state = QH_STATE_LINKED;
|
|
qh->xacterrs = 0;
|
|
qh->unlink_reason = 0;
|
|
|
|
/* update per-qh bandwidth for debugfs */
|
|
ehci_to_hcd(ehci)->self.bandwidth_allocated += qh->ps.bw_period
|
|
? ((qh->ps.usecs + qh->ps.c_usecs) / qh->ps.bw_period)
|
|
: (qh->ps.usecs * 8);
|
|
|
|
list_add(&qh->intr_node, &ehci->intr_qh_list);
|
|
|
|
/* maybe enable periodic schedule processing */
|
|
++ehci->intr_count;
|
|
enable_periodic(ehci);
|
|
}
|
|
|
|
static void qh_unlink_periodic(struct ehci_hcd *ehci, struct ehci_qh *qh)
|
|
{
|
|
unsigned i;
|
|
unsigned period;
|
|
|
|
/*
|
|
* If qh is for a low/full-speed device, simply unlinking it
|
|
* could interfere with an ongoing split transaction. To unlink
|
|
* it safely would require setting the QH_INACTIVATE bit and
|
|
* waiting at least one frame, as described in EHCI 4.12.2.5.
|
|
*
|
|
* We won't bother with any of this. Instead, we assume that the
|
|
* only reason for unlinking an interrupt QH while the current URB
|
|
* is still active is to dequeue all the URBs (flush the whole
|
|
* endpoint queue).
|
|
*
|
|
* If rebalancing the periodic schedule is ever implemented, this
|
|
* approach will no longer be valid.
|
|
*/
|
|
|
|
/* high bandwidth, or otherwise part of every microframe */
|
|
period = qh->ps.period ? : 1;
|
|
|
|
for (i = qh->ps.phase; i < ehci->periodic_size; i += period)
|
|
periodic_unlink(ehci, i, qh);
|
|
|
|
/* update per-qh bandwidth for debugfs */
|
|
ehci_to_hcd(ehci)->self.bandwidth_allocated -= qh->ps.bw_period
|
|
? ((qh->ps.usecs + qh->ps.c_usecs) / qh->ps.bw_period)
|
|
: (qh->ps.usecs * 8);
|
|
|
|
dev_dbg(&qh->ps.udev->dev,
|
|
"unlink qh%d-%04x/%p start %d [%d/%d us]\n",
|
|
qh->ps.period,
|
|
hc32_to_cpup(ehci, &qh->hw->hw_info2) & (QH_CMASK | QH_SMASK),
|
|
qh, qh->ps.phase, qh->ps.usecs, qh->ps.c_usecs);
|
|
|
|
/* qh->qh_next still "live" to HC */
|
|
qh->qh_state = QH_STATE_UNLINK;
|
|
qh->qh_next.ptr = NULL;
|
|
|
|
if (ehci->qh_scan_next == qh)
|
|
ehci->qh_scan_next = list_entry(qh->intr_node.next,
|
|
struct ehci_qh, intr_node);
|
|
list_del(&qh->intr_node);
|
|
}
|
|
|
|
static void cancel_unlink_wait_intr(struct ehci_hcd *ehci, struct ehci_qh *qh)
|
|
{
|
|
if (qh->qh_state != QH_STATE_LINKED ||
|
|
list_empty(&qh->unlink_node))
|
|
return;
|
|
|
|
list_del_init(&qh->unlink_node);
|
|
|
|
/*
|
|
* TODO: disable the event of EHCI_HRTIMER_START_UNLINK_INTR for
|
|
* avoiding unnecessary CPU wakeup
|
|
*/
|
|
}
|
|
|
|
static void start_unlink_intr(struct ehci_hcd *ehci, struct ehci_qh *qh)
|
|
{
|
|
/* If the QH isn't linked then there's nothing we can do. */
|
|
if (qh->qh_state != QH_STATE_LINKED)
|
|
return;
|
|
|
|
/* if the qh is waiting for unlink, cancel it now */
|
|
cancel_unlink_wait_intr(ehci, qh);
|
|
|
|
qh_unlink_periodic(ehci, qh);
|
|
|
|
/* Make sure the unlinks are visible before starting the timer */
|
|
wmb();
|
|
|
|
/*
|
|
* The EHCI spec doesn't say how long it takes the controller to
|
|
* stop accessing an unlinked interrupt QH. The timer delay is
|
|
* 9 uframes; presumably that will be long enough.
|
|
*/
|
|
qh->unlink_cycle = ehci->intr_unlink_cycle;
|
|
|
|
/* New entries go at the end of the intr_unlink list */
|
|
list_add_tail(&qh->unlink_node, &ehci->intr_unlink);
|
|
|
|
if (ehci->intr_unlinking)
|
|
; /* Avoid recursive calls */
|
|
else if (ehci->rh_state < EHCI_RH_RUNNING)
|
|
ehci_handle_intr_unlinks(ehci);
|
|
else if (ehci->intr_unlink.next == &qh->unlink_node) {
|
|
ehci_enable_event(ehci, EHCI_HRTIMER_UNLINK_INTR, true);
|
|
++ehci->intr_unlink_cycle;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* It is common only one intr URB is scheduled on one qh, and
|
|
* given complete() is run in tasklet context, introduce a bit
|
|
* delay to avoid unlink qh too early.
|
|
*/
|
|
static void start_unlink_intr_wait(struct ehci_hcd *ehci,
|
|
struct ehci_qh *qh)
|
|
{
|
|
qh->unlink_cycle = ehci->intr_unlink_wait_cycle;
|
|
|
|
/* New entries go at the end of the intr_unlink_wait list */
|
|
list_add_tail(&qh->unlink_node, &ehci->intr_unlink_wait);
|
|
|
|
if (ehci->rh_state < EHCI_RH_RUNNING)
|
|
ehci_handle_start_intr_unlinks(ehci);
|
|
else if (ehci->intr_unlink_wait.next == &qh->unlink_node) {
|
|
ehci_enable_event(ehci, EHCI_HRTIMER_START_UNLINK_INTR, true);
|
|
++ehci->intr_unlink_wait_cycle;
|
|
}
|
|
}
|
|
|
|
static void end_unlink_intr(struct ehci_hcd *ehci, struct ehci_qh *qh)
|
|
{
|
|
struct ehci_qh_hw *hw = qh->hw;
|
|
int rc;
|
|
|
|
qh->qh_state = QH_STATE_IDLE;
|
|
hw->hw_next = EHCI_LIST_END(ehci);
|
|
|
|
if (!list_empty(&qh->qtd_list))
|
|
qh_completions(ehci, qh);
|
|
|
|
/* reschedule QH iff another request is queued */
|
|
if (!list_empty(&qh->qtd_list) && ehci->rh_state == EHCI_RH_RUNNING) {
|
|
rc = qh_schedule(ehci, qh);
|
|
if (rc == 0) {
|
|
qh_refresh(ehci, qh);
|
|
qh_link_periodic(ehci, qh);
|
|
}
|
|
|
|
/* An error here likely indicates handshake failure
|
|
* or no space left in the schedule. Neither fault
|
|
* should happen often ...
|
|
*
|
|
* FIXME kill the now-dysfunctional queued urbs
|
|
*/
|
|
else {
|
|
ehci_err(ehci, "can't reschedule qh %p, err %d\n",
|
|
qh, rc);
|
|
}
|
|
}
|
|
|
|
/* maybe turn off periodic schedule */
|
|
--ehci->intr_count;
|
|
disable_periodic(ehci);
|
|
}
|
|
|
|
/*-------------------------------------------------------------------------*/
|
|
|
|
static int check_period(
|
|
struct ehci_hcd *ehci,
|
|
unsigned frame,
|
|
unsigned uframe,
|
|
unsigned uperiod,
|
|
unsigned usecs
|
|
) {
|
|
/* complete split running into next frame?
|
|
* given FSTN support, we could sometimes check...
|
|
*/
|
|
if (uframe >= 8)
|
|
return 0;
|
|
|
|
/* convert "usecs we need" to "max already claimed" */
|
|
usecs = ehci->uframe_periodic_max - usecs;
|
|
|
|
for (uframe += frame << 3; uframe < EHCI_BANDWIDTH_SIZE;
|
|
uframe += uperiod) {
|
|
if (ehci->bandwidth[uframe] > usecs)
|
|
return 0;
|
|
}
|
|
|
|
/* success! */
|
|
return 1;
|
|
}
|
|
|
|
static int check_intr_schedule(
|
|
struct ehci_hcd *ehci,
|
|
unsigned frame,
|
|
unsigned uframe,
|
|
struct ehci_qh *qh,
|
|
unsigned *c_maskp,
|
|
struct ehci_tt *tt
|
|
)
|
|
{
|
|
int retval = -ENOSPC;
|
|
u8 mask = 0;
|
|
|
|
if (qh->ps.c_usecs && uframe >= 6) /* FSTN territory? */
|
|
goto done;
|
|
|
|
if (!check_period(ehci, frame, uframe, qh->ps.bw_uperiod, qh->ps.usecs))
|
|
goto done;
|
|
if (!qh->ps.c_usecs) {
|
|
retval = 0;
|
|
*c_maskp = 0;
|
|
goto done;
|
|
}
|
|
|
|
#ifdef CONFIG_USB_EHCI_TT_NEWSCHED
|
|
if (tt_available(ehci, &qh->ps, tt, frame, uframe)) {
|
|
unsigned i;
|
|
|
|
/* TODO : this may need FSTN for SSPLIT in uframe 5. */
|
|
for (i = uframe+2; i < 8 && i <= uframe+4; i++)
|
|
if (!check_period(ehci, frame, i,
|
|
qh->ps.bw_uperiod, qh->ps.c_usecs))
|
|
goto done;
|
|
else
|
|
mask |= 1 << i;
|
|
|
|
retval = 0;
|
|
|
|
*c_maskp = mask;
|
|
}
|
|
#else
|
|
/* Make sure this tt's buffer is also available for CSPLITs.
|
|
* We pessimize a bit; probably the typical full speed case
|
|
* doesn't need the second CSPLIT.
|
|
*
|
|
* NOTE: both SPLIT and CSPLIT could be checked in just
|
|
* one smart pass...
|
|
*/
|
|
mask = 0x03 << (uframe + qh->gap_uf);
|
|
*c_maskp = mask;
|
|
|
|
mask |= 1 << uframe;
|
|
if (tt_no_collision(ehci, qh->ps.bw_period, qh->ps.udev, frame, mask)) {
|
|
if (!check_period(ehci, frame, uframe + qh->gap_uf + 1,
|
|
qh->ps.bw_uperiod, qh->ps.c_usecs))
|
|
goto done;
|
|
if (!check_period(ehci, frame, uframe + qh->gap_uf,
|
|
qh->ps.bw_uperiod, qh->ps.c_usecs))
|
|
goto done;
|
|
retval = 0;
|
|
}
|
|
#endif
|
|
done:
|
|
return retval;
|
|
}
|
|
|
|
/* "first fit" scheduling policy used the first time through,
|
|
* or when the previous schedule slot can't be re-used.
|
|
*/
|
|
static int qh_schedule(struct ehci_hcd *ehci, struct ehci_qh *qh)
|
|
{
|
|
int status = 0;
|
|
unsigned uframe;
|
|
unsigned c_mask;
|
|
struct ehci_qh_hw *hw = qh->hw;
|
|
struct ehci_tt *tt;
|
|
|
|
hw->hw_next = EHCI_LIST_END(ehci);
|
|
|
|
/* reuse the previous schedule slots, if we can */
|
|
if (qh->ps.phase != NO_FRAME) {
|
|
ehci_dbg(ehci, "reused qh %p schedule\n", qh);
|
|
return 0;
|
|
}
|
|
|
|
uframe = 0;
|
|
c_mask = 0;
|
|
tt = find_tt(qh->ps.udev);
|
|
if (IS_ERR(tt)) {
|
|
status = PTR_ERR(tt);
|
|
goto done;
|
|
}
|
|
compute_tt_budget(ehci->tt_budget, tt);
|
|
|
|
/* else scan the schedule to find a group of slots such that all
|
|
* uframes have enough periodic bandwidth available.
|
|
*/
|
|
/* "normal" case, uframing flexible except with splits */
|
|
if (qh->ps.bw_period) {
|
|
int i;
|
|
unsigned frame;
|
|
|
|
for (i = qh->ps.bw_period; i > 0; --i) {
|
|
frame = ++ehci->random_frame & (qh->ps.bw_period - 1);
|
|
for (uframe = 0; uframe < 8; uframe++) {
|
|
status = check_intr_schedule(ehci,
|
|
frame, uframe, qh, &c_mask, tt);
|
|
if (status == 0)
|
|
goto got_it;
|
|
}
|
|
}
|
|
|
|
/* qh->ps.bw_period == 0 means every uframe */
|
|
} else {
|
|
status = check_intr_schedule(ehci, 0, 0, qh, &c_mask, tt);
|
|
}
|
|
if (status)
|
|
goto done;
|
|
|
|
got_it:
|
|
qh->ps.phase = (qh->ps.period ? ehci->random_frame &
|
|
(qh->ps.period - 1) : 0);
|
|
qh->ps.bw_phase = qh->ps.phase & (qh->ps.bw_period - 1);
|
|
qh->ps.phase_uf = uframe;
|
|
qh->ps.cs_mask = qh->ps.period ?
|
|
(c_mask << 8) | (1 << uframe) :
|
|
QH_SMASK;
|
|
|
|
/* reset S-frame and (maybe) C-frame masks */
|
|
hw->hw_info2 &= cpu_to_hc32(ehci, ~(QH_CMASK | QH_SMASK));
|
|
hw->hw_info2 |= cpu_to_hc32(ehci, qh->ps.cs_mask);
|
|
reserve_release_intr_bandwidth(ehci, qh, 1);
|
|
|
|
done:
|
|
return status;
|
|
}
|
|
|
|
static int intr_submit(
|
|
struct ehci_hcd *ehci,
|
|
struct urb *urb,
|
|
struct list_head *qtd_list,
|
|
gfp_t mem_flags
|
|
) {
|
|
unsigned epnum;
|
|
unsigned long flags;
|
|
struct ehci_qh *qh;
|
|
int status;
|
|
struct list_head empty;
|
|
|
|
/* get endpoint and transfer/schedule data */
|
|
epnum = urb->ep->desc.bEndpointAddress;
|
|
|
|
spin_lock_irqsave(&ehci->lock, flags);
|
|
|
|
if (unlikely(!HCD_HW_ACCESSIBLE(ehci_to_hcd(ehci)))) {
|
|
status = -ESHUTDOWN;
|
|
goto done_not_linked;
|
|
}
|
|
status = usb_hcd_link_urb_to_ep(ehci_to_hcd(ehci), urb);
|
|
if (unlikely(status))
|
|
goto done_not_linked;
|
|
|
|
/* get qh and force any scheduling errors */
|
|
INIT_LIST_HEAD(&empty);
|
|
qh = qh_append_tds(ehci, urb, &empty, epnum, &urb->ep->hcpriv);
|
|
if (qh == NULL) {
|
|
status = -ENOMEM;
|
|
goto done;
|
|
}
|
|
if (qh->qh_state == QH_STATE_IDLE) {
|
|
status = qh_schedule(ehci, qh);
|
|
if (status)
|
|
goto done;
|
|
}
|
|
|
|
/* then queue the urb's tds to the qh */
|
|
qh = qh_append_tds(ehci, urb, qtd_list, epnum, &urb->ep->hcpriv);
|
|
BUG_ON(qh == NULL);
|
|
|
|
/* stuff into the periodic schedule */
|
|
if (qh->qh_state == QH_STATE_IDLE) {
|
|
qh_refresh(ehci, qh);
|
|
qh_link_periodic(ehci, qh);
|
|
} else {
|
|
/* cancel unlink wait for the qh */
|
|
cancel_unlink_wait_intr(ehci, qh);
|
|
}
|
|
|
|
/* ... update usbfs periodic stats */
|
|
ehci_to_hcd(ehci)->self.bandwidth_int_reqs++;
|
|
|
|
done:
|
|
if (unlikely(status))
|
|
usb_hcd_unlink_urb_from_ep(ehci_to_hcd(ehci), urb);
|
|
done_not_linked:
|
|
spin_unlock_irqrestore(&ehci->lock, flags);
|
|
if (status)
|
|
qtd_list_free(ehci, urb, qtd_list);
|
|
|
|
return status;
|
|
}
|
|
|
|
static void scan_intr(struct ehci_hcd *ehci)
|
|
{
|
|
struct ehci_qh *qh;
|
|
|
|
list_for_each_entry_safe(qh, ehci->qh_scan_next, &ehci->intr_qh_list,
|
|
intr_node) {
|
|
|
|
/* clean any finished work for this qh */
|
|
if (!list_empty(&qh->qtd_list)) {
|
|
int temp;
|
|
|
|
/*
|
|
* Unlinks could happen here; completion reporting
|
|
* drops the lock. That's why ehci->qh_scan_next
|
|
* always holds the next qh to scan; if the next qh
|
|
* gets unlinked then ehci->qh_scan_next is adjusted
|
|
* in qh_unlink_periodic().
|
|
*/
|
|
temp = qh_completions(ehci, qh);
|
|
if (unlikely(temp))
|
|
start_unlink_intr(ehci, qh);
|
|
else if (unlikely(list_empty(&qh->qtd_list) &&
|
|
qh->qh_state == QH_STATE_LINKED))
|
|
start_unlink_intr_wait(ehci, qh);
|
|
}
|
|
}
|
|
}
|
|
|
|
/*-------------------------------------------------------------------------*/
|
|
|
|
/* ehci_iso_stream ops work with both ITD and SITD */
|
|
|
|
static struct ehci_iso_stream *
|
|
iso_stream_alloc(gfp_t mem_flags)
|
|
{
|
|
struct ehci_iso_stream *stream;
|
|
|
|
stream = kzalloc(sizeof(*stream), mem_flags);
|
|
if (likely(stream != NULL)) {
|
|
INIT_LIST_HEAD(&stream->td_list);
|
|
INIT_LIST_HEAD(&stream->free_list);
|
|
stream->next_uframe = NO_FRAME;
|
|
stream->ps.phase = NO_FRAME;
|
|
}
|
|
return stream;
|
|
}
|
|
|
|
static void
|
|
iso_stream_init(
|
|
struct ehci_hcd *ehci,
|
|
struct ehci_iso_stream *stream,
|
|
struct urb *urb
|
|
)
|
|
{
|
|
static const u8 smask_out[] = { 0x01, 0x03, 0x07, 0x0f, 0x1f, 0x3f };
|
|
|
|
struct usb_device *dev = urb->dev;
|
|
u32 buf1;
|
|
unsigned epnum, maxp;
|
|
int is_input;
|
|
unsigned tmp;
|
|
|
|
/*
|
|
* this might be a "high bandwidth" highspeed endpoint,
|
|
* as encoded in the ep descriptor's wMaxPacket field
|
|
*/
|
|
epnum = usb_pipeendpoint(urb->pipe);
|
|
is_input = usb_pipein(urb->pipe) ? USB_DIR_IN : 0;
|
|
maxp = usb_endpoint_maxp(&urb->ep->desc);
|
|
buf1 = is_input ? 1 << 11 : 0;
|
|
|
|
/* knows about ITD vs SITD */
|
|
if (dev->speed == USB_SPEED_HIGH) {
|
|
unsigned multi = usb_endpoint_maxp_mult(&urb->ep->desc);
|
|
|
|
stream->highspeed = 1;
|
|
|
|
buf1 |= maxp;
|
|
maxp *= multi;
|
|
|
|
stream->buf0 = cpu_to_hc32(ehci, (epnum << 8) | dev->devnum);
|
|
stream->buf1 = cpu_to_hc32(ehci, buf1);
|
|
stream->buf2 = cpu_to_hc32(ehci, multi);
|
|
|
|
/* usbfs wants to report the average usecs per frame tied up
|
|
* when transfers on this endpoint are scheduled ...
|
|
*/
|
|
stream->ps.usecs = HS_USECS_ISO(maxp);
|
|
|
|
/* period for bandwidth allocation */
|
|
tmp = min_t(unsigned, EHCI_BANDWIDTH_SIZE,
|
|
1 << (urb->ep->desc.bInterval - 1));
|
|
|
|
/* Allow urb->interval to override */
|
|
stream->ps.bw_uperiod = min_t(unsigned, tmp, urb->interval);
|
|
|
|
stream->uperiod = urb->interval;
|
|
stream->ps.period = urb->interval >> 3;
|
|
stream->bandwidth = stream->ps.usecs * 8 /
|
|
stream->ps.bw_uperiod;
|
|
|
|
} else {
|
|
u32 addr;
|
|
int think_time;
|
|
int hs_transfers;
|
|
|
|
addr = dev->ttport << 24;
|
|
if (!ehci_is_TDI(ehci)
|
|
|| (dev->tt->hub !=
|
|
ehci_to_hcd(ehci)->self.root_hub))
|
|
addr |= dev->tt->hub->devnum << 16;
|
|
addr |= epnum << 8;
|
|
addr |= dev->devnum;
|
|
stream->ps.usecs = HS_USECS_ISO(maxp);
|
|
think_time = dev->tt->think_time;
|
|
stream->ps.tt_usecs = NS_TO_US(think_time + usb_calc_bus_time(
|
|
dev->speed, is_input, 1, maxp));
|
|
hs_transfers = max(1u, (maxp + 187) / 188);
|
|
if (is_input) {
|
|
u32 tmp;
|
|
|
|
addr |= 1 << 31;
|
|
stream->ps.c_usecs = stream->ps.usecs;
|
|
stream->ps.usecs = HS_USECS_ISO(1);
|
|
stream->ps.cs_mask = 1;
|
|
|
|
/* c-mask as specified in USB 2.0 11.18.4 3.c */
|
|
tmp = (1 << (hs_transfers + 2)) - 1;
|
|
stream->ps.cs_mask |= tmp << (8 + 2);
|
|
} else
|
|
stream->ps.cs_mask = smask_out[hs_transfers - 1];
|
|
|
|
/* period for bandwidth allocation */
|
|
tmp = min_t(unsigned, EHCI_BANDWIDTH_FRAMES,
|
|
1 << (urb->ep->desc.bInterval - 1));
|
|
|
|
/* Allow urb->interval to override */
|
|
stream->ps.bw_period = min_t(unsigned, tmp, urb->interval);
|
|
stream->ps.bw_uperiod = stream->ps.bw_period << 3;
|
|
|
|
stream->ps.period = urb->interval;
|
|
stream->uperiod = urb->interval << 3;
|
|
stream->bandwidth = (stream->ps.usecs + stream->ps.c_usecs) /
|
|
stream->ps.bw_period;
|
|
|
|
/* stream->splits gets created from cs_mask later */
|
|
stream->address = cpu_to_hc32(ehci, addr);
|
|
}
|
|
|
|
stream->ps.udev = dev;
|
|
stream->ps.ep = urb->ep;
|
|
|
|
stream->bEndpointAddress = is_input | epnum;
|
|
stream->maxp = maxp;
|
|
}
|
|
|
|
static struct ehci_iso_stream *
|
|
iso_stream_find(struct ehci_hcd *ehci, struct urb *urb)
|
|
{
|
|
unsigned epnum;
|
|
struct ehci_iso_stream *stream;
|
|
struct usb_host_endpoint *ep;
|
|
unsigned long flags;
|
|
|
|
epnum = usb_pipeendpoint (urb->pipe);
|
|
if (usb_pipein(urb->pipe))
|
|
ep = urb->dev->ep_in[epnum];
|
|
else
|
|
ep = urb->dev->ep_out[epnum];
|
|
|
|
spin_lock_irqsave(&ehci->lock, flags);
|
|
stream = ep->hcpriv;
|
|
|
|
if (unlikely(stream == NULL)) {
|
|
stream = iso_stream_alloc(GFP_ATOMIC);
|
|
if (likely(stream != NULL)) {
|
|
ep->hcpriv = stream;
|
|
iso_stream_init(ehci, stream, urb);
|
|
}
|
|
|
|
/* if dev->ep [epnum] is a QH, hw is set */
|
|
} else if (unlikely(stream->hw != NULL)) {
|
|
ehci_dbg(ehci, "dev %s ep%d%s, not iso??\n",
|
|
urb->dev->devpath, epnum,
|
|
usb_pipein(urb->pipe) ? "in" : "out");
|
|
stream = NULL;
|
|
}
|
|
|
|
spin_unlock_irqrestore(&ehci->lock, flags);
|
|
return stream;
|
|
}
|
|
|
|
/*-------------------------------------------------------------------------*/
|
|
|
|
/* ehci_iso_sched ops can be ITD-only or SITD-only */
|
|
|
|
static struct ehci_iso_sched *
|
|
iso_sched_alloc(unsigned packets, gfp_t mem_flags)
|
|
{
|
|
struct ehci_iso_sched *iso_sched;
|
|
int size = sizeof(*iso_sched);
|
|
|
|
size += packets * sizeof(struct ehci_iso_packet);
|
|
iso_sched = kzalloc(size, mem_flags);
|
|
if (likely(iso_sched != NULL))
|
|
INIT_LIST_HEAD(&iso_sched->td_list);
|
|
|
|
return iso_sched;
|
|
}
|
|
|
|
static inline void
|
|
itd_sched_init(
|
|
struct ehci_hcd *ehci,
|
|
struct ehci_iso_sched *iso_sched,
|
|
struct ehci_iso_stream *stream,
|
|
struct urb *urb
|
|
)
|
|
{
|
|
unsigned i;
|
|
dma_addr_t dma = urb->transfer_dma;
|
|
|
|
/* how many uframes are needed for these transfers */
|
|
iso_sched->span = urb->number_of_packets * stream->uperiod;
|
|
|
|
/* figure out per-uframe itd fields that we'll need later
|
|
* when we fit new itds into the schedule.
|
|
*/
|
|
for (i = 0; i < urb->number_of_packets; i++) {
|
|
struct ehci_iso_packet *uframe = &iso_sched->packet[i];
|
|
unsigned length;
|
|
dma_addr_t buf;
|
|
u32 trans;
|
|
|
|
length = urb->iso_frame_desc[i].length;
|
|
buf = dma + urb->iso_frame_desc[i].offset;
|
|
|
|
trans = EHCI_ISOC_ACTIVE;
|
|
trans |= buf & 0x0fff;
|
|
if (unlikely(((i + 1) == urb->number_of_packets))
|
|
&& !(urb->transfer_flags & URB_NO_INTERRUPT))
|
|
trans |= EHCI_ITD_IOC;
|
|
trans |= length << 16;
|
|
uframe->transaction = cpu_to_hc32(ehci, trans);
|
|
|
|
/* might need to cross a buffer page within a uframe */
|
|
uframe->bufp = (buf & ~(u64)0x0fff);
|
|
buf += length;
|
|
if (unlikely((uframe->bufp != (buf & ~(u64)0x0fff))))
|
|
uframe->cross = 1;
|
|
}
|
|
}
|
|
|
|
static void
|
|
iso_sched_free(
|
|
struct ehci_iso_stream *stream,
|
|
struct ehci_iso_sched *iso_sched
|
|
)
|
|
{
|
|
if (!iso_sched)
|
|
return;
|
|
/* caller must hold ehci->lock! */
|
|
list_splice(&iso_sched->td_list, &stream->free_list);
|
|
kfree(iso_sched);
|
|
}
|
|
|
|
static int
|
|
itd_urb_transaction(
|
|
struct ehci_iso_stream *stream,
|
|
struct ehci_hcd *ehci,
|
|
struct urb *urb,
|
|
gfp_t mem_flags
|
|
)
|
|
{
|
|
struct ehci_itd *itd;
|
|
dma_addr_t itd_dma;
|
|
int i;
|
|
unsigned num_itds;
|
|
struct ehci_iso_sched *sched;
|
|
unsigned long flags;
|
|
|
|
sched = iso_sched_alloc(urb->number_of_packets, mem_flags);
|
|
if (unlikely(sched == NULL))
|
|
return -ENOMEM;
|
|
|
|
itd_sched_init(ehci, sched, stream, urb);
|
|
|
|
if (urb->interval < 8)
|
|
num_itds = 1 + (sched->span + 7) / 8;
|
|
else
|
|
num_itds = urb->number_of_packets;
|
|
|
|
/* allocate/init ITDs */
|
|
spin_lock_irqsave(&ehci->lock, flags);
|
|
for (i = 0; i < num_itds; i++) {
|
|
|
|
/*
|
|
* Use iTDs from the free list, but not iTDs that may
|
|
* still be in use by the hardware.
|
|
*/
|
|
if (likely(!list_empty(&stream->free_list))) {
|
|
itd = list_first_entry(&stream->free_list,
|
|
struct ehci_itd, itd_list);
|
|
if (itd->frame == ehci->now_frame)
|
|
goto alloc_itd;
|
|
list_del(&itd->itd_list);
|
|
itd_dma = itd->itd_dma;
|
|
} else {
|
|
alloc_itd:
|
|
spin_unlock_irqrestore(&ehci->lock, flags);
|
|
itd = dma_pool_alloc(ehci->itd_pool, mem_flags,
|
|
&itd_dma);
|
|
spin_lock_irqsave(&ehci->lock, flags);
|
|
if (!itd) {
|
|
iso_sched_free(stream, sched);
|
|
spin_unlock_irqrestore(&ehci->lock, flags);
|
|
return -ENOMEM;
|
|
}
|
|
}
|
|
|
|
memset(itd, 0, sizeof(*itd));
|
|
itd->itd_dma = itd_dma;
|
|
itd->frame = NO_FRAME;
|
|
list_add(&itd->itd_list, &sched->td_list);
|
|
}
|
|
spin_unlock_irqrestore(&ehci->lock, flags);
|
|
|
|
/* temporarily store schedule info in hcpriv */
|
|
urb->hcpriv = sched;
|
|
urb->error_count = 0;
|
|
return 0;
|
|
}
|
|
|
|
/*-------------------------------------------------------------------------*/
|
|
|
|
static void reserve_release_iso_bandwidth(struct ehci_hcd *ehci,
|
|
struct ehci_iso_stream *stream, int sign)
|
|
{
|
|
unsigned uframe;
|
|
unsigned i, j;
|
|
unsigned s_mask, c_mask, m;
|
|
int usecs = stream->ps.usecs;
|
|
int c_usecs = stream->ps.c_usecs;
|
|
int tt_usecs = stream->ps.tt_usecs;
|
|
struct ehci_tt *tt;
|
|
|
|
if (stream->ps.phase == NO_FRAME) /* Bandwidth wasn't reserved */
|
|
return;
|
|
uframe = stream->ps.bw_phase << 3;
|
|
|
|
bandwidth_dbg(ehci, sign, "iso", &stream->ps);
|
|
|
|
if (sign < 0) { /* Release bandwidth */
|
|
usecs = -usecs;
|
|
c_usecs = -c_usecs;
|
|
tt_usecs = -tt_usecs;
|
|
}
|
|
|
|
if (!stream->splits) { /* High speed */
|
|
for (i = uframe + stream->ps.phase_uf; i < EHCI_BANDWIDTH_SIZE;
|
|
i += stream->ps.bw_uperiod)
|
|
ehci->bandwidth[i] += usecs;
|
|
|
|
} else { /* Full speed */
|
|
s_mask = stream->ps.cs_mask;
|
|
c_mask = s_mask >> 8;
|
|
|
|
/* NOTE: adjustment needed for frame overflow */
|
|
for (i = uframe; i < EHCI_BANDWIDTH_SIZE;
|
|
i += stream->ps.bw_uperiod) {
|
|
for ((j = stream->ps.phase_uf, m = 1 << j); j < 8;
|
|
(++j, m <<= 1)) {
|
|
if (s_mask & m)
|
|
ehci->bandwidth[i+j] += usecs;
|
|
else if (c_mask & m)
|
|
ehci->bandwidth[i+j] += c_usecs;
|
|
}
|
|
}
|
|
|
|
tt = find_tt(stream->ps.udev);
|
|
if (sign > 0)
|
|
list_add_tail(&stream->ps.ps_list, &tt->ps_list);
|
|
else
|
|
list_del(&stream->ps.ps_list);
|
|
|
|
for (i = uframe >> 3; i < EHCI_BANDWIDTH_FRAMES;
|
|
i += stream->ps.bw_period)
|
|
tt->bandwidth[i] += tt_usecs;
|
|
}
|
|
}
|
|
|
|
static inline int
|
|
itd_slot_ok(
|
|
struct ehci_hcd *ehci,
|
|
struct ehci_iso_stream *stream,
|
|
unsigned uframe
|
|
)
|
|
{
|
|
unsigned usecs;
|
|
|
|
/* convert "usecs we need" to "max already claimed" */
|
|
usecs = ehci->uframe_periodic_max - stream->ps.usecs;
|
|
|
|
for (uframe &= stream->ps.bw_uperiod - 1; uframe < EHCI_BANDWIDTH_SIZE;
|
|
uframe += stream->ps.bw_uperiod) {
|
|
if (ehci->bandwidth[uframe] > usecs)
|
|
return 0;
|
|
}
|
|
return 1;
|
|
}
|
|
|
|
static inline int
|
|
sitd_slot_ok(
|
|
struct ehci_hcd *ehci,
|
|
struct ehci_iso_stream *stream,
|
|
unsigned uframe,
|
|
struct ehci_iso_sched *sched,
|
|
struct ehci_tt *tt
|
|
)
|
|
{
|
|
unsigned mask, tmp;
|
|
unsigned frame, uf;
|
|
|
|
mask = stream->ps.cs_mask << (uframe & 7);
|
|
|
|
/* for OUT, don't wrap SSPLIT into H-microframe 7 */
|
|
if (((stream->ps.cs_mask & 0xff) << (uframe & 7)) >= (1 << 7))
|
|
return 0;
|
|
|
|
/* for IN, don't wrap CSPLIT into the next frame */
|
|
if (mask & ~0xffff)
|
|
return 0;
|
|
|
|
/* check bandwidth */
|
|
uframe &= stream->ps.bw_uperiod - 1;
|
|
frame = uframe >> 3;
|
|
|
|
#ifdef CONFIG_USB_EHCI_TT_NEWSCHED
|
|
/* The tt's fullspeed bus bandwidth must be available.
|
|
* tt_available scheduling guarantees 10+% for control/bulk.
|
|
*/
|
|
uf = uframe & 7;
|
|
if (!tt_available(ehci, &stream->ps, tt, frame, uf))
|
|
return 0;
|
|
#else
|
|
/* tt must be idle for start(s), any gap, and csplit.
|
|
* assume scheduling slop leaves 10+% for control/bulk.
|
|
*/
|
|
if (!tt_no_collision(ehci, stream->ps.bw_period,
|
|
stream->ps.udev, frame, mask))
|
|
return 0;
|
|
#endif
|
|
|
|
do {
|
|
unsigned max_used;
|
|
unsigned i;
|
|
|
|
/* check starts (OUT uses more than one) */
|
|
uf = uframe;
|
|
max_used = ehci->uframe_periodic_max - stream->ps.usecs;
|
|
for (tmp = stream->ps.cs_mask & 0xff; tmp; tmp >>= 1, uf++) {
|
|
if (ehci->bandwidth[uf] > max_used)
|
|
return 0;
|
|
}
|
|
|
|
/* for IN, check CSPLIT */
|
|
if (stream->ps.c_usecs) {
|
|
max_used = ehci->uframe_periodic_max -
|
|
stream->ps.c_usecs;
|
|
uf = uframe & ~7;
|
|
tmp = 1 << (2+8);
|
|
for (i = (uframe & 7) + 2; i < 8; (++i, tmp <<= 1)) {
|
|
if ((stream->ps.cs_mask & tmp) == 0)
|
|
continue;
|
|
if (ehci->bandwidth[uf+i] > max_used)
|
|
return 0;
|
|
}
|
|
}
|
|
|
|
uframe += stream->ps.bw_uperiod;
|
|
} while (uframe < EHCI_BANDWIDTH_SIZE);
|
|
|
|
stream->ps.cs_mask <<= uframe & 7;
|
|
stream->splits = cpu_to_hc32(ehci, stream->ps.cs_mask);
|
|
return 1;
|
|
}
|
|
|
|
/*
|
|
* This scheduler plans almost as far into the future as it has actual
|
|
* periodic schedule slots. (Affected by TUNE_FLS, which defaults to
|
|
* "as small as possible" to be cache-friendlier.) That limits the size
|
|
* transfers you can stream reliably; avoid more than 64 msec per urb.
|
|
* Also avoid queue depths of less than ehci's worst irq latency (affected
|
|
* by the per-urb URB_NO_INTERRUPT hint, the log2_irq_thresh module parameter,
|
|
* and other factors); or more than about 230 msec total (for portability,
|
|
* given EHCI_TUNE_FLS and the slop). Or, write a smarter scheduler!
|
|
*/
|
|
|
|
static int
|
|
iso_stream_schedule(
|
|
struct ehci_hcd *ehci,
|
|
struct urb *urb,
|
|
struct ehci_iso_stream *stream
|
|
)
|
|
{
|
|
u32 now, base, next, start, period, span, now2;
|
|
u32 wrap = 0, skip = 0;
|
|
int status = 0;
|
|
unsigned mod = ehci->periodic_size << 3;
|
|
struct ehci_iso_sched *sched = urb->hcpriv;
|
|
bool empty = list_empty(&stream->td_list);
|
|
bool new_stream = false;
|
|
|
|
period = stream->uperiod;
|
|
span = sched->span;
|
|
if (!stream->highspeed)
|
|
span <<= 3;
|
|
|
|
/* Start a new isochronous stream? */
|
|
if (unlikely(empty && !hcd_periodic_completion_in_progress(
|
|
ehci_to_hcd(ehci), urb->ep))) {
|
|
|
|
/* Schedule the endpoint */
|
|
if (stream->ps.phase == NO_FRAME) {
|
|
int done = 0;
|
|
struct ehci_tt *tt = find_tt(stream->ps.udev);
|
|
|
|
if (IS_ERR(tt)) {
|
|
status = PTR_ERR(tt);
|
|
goto fail;
|
|
}
|
|
compute_tt_budget(ehci->tt_budget, tt);
|
|
|
|
start = ((-(++ehci->random_frame)) << 3) & (period - 1);
|
|
|
|
/* find a uframe slot with enough bandwidth.
|
|
* Early uframes are more precious because full-speed
|
|
* iso IN transfers can't use late uframes,
|
|
* and therefore they should be allocated last.
|
|
*/
|
|
next = start;
|
|
start += period;
|
|
do {
|
|
start--;
|
|
/* check schedule: enough space? */
|
|
if (stream->highspeed) {
|
|
if (itd_slot_ok(ehci, stream, start))
|
|
done = 1;
|
|
} else {
|
|
if ((start % 8) >= 6)
|
|
continue;
|
|
if (sitd_slot_ok(ehci, stream, start,
|
|
sched, tt))
|
|
done = 1;
|
|
}
|
|
} while (start > next && !done);
|
|
|
|
/* no room in the schedule */
|
|
if (!done) {
|
|
ehci_dbg(ehci, "iso sched full %p", urb);
|
|
status = -ENOSPC;
|
|
goto fail;
|
|
}
|
|
stream->ps.phase = (start >> 3) &
|
|
(stream->ps.period - 1);
|
|
stream->ps.bw_phase = stream->ps.phase &
|
|
(stream->ps.bw_period - 1);
|
|
stream->ps.phase_uf = start & 7;
|
|
reserve_release_iso_bandwidth(ehci, stream, 1);
|
|
}
|
|
|
|
/* New stream is already scheduled; use the upcoming slot */
|
|
else {
|
|
start = (stream->ps.phase << 3) + stream->ps.phase_uf;
|
|
}
|
|
|
|
stream->next_uframe = start;
|
|
new_stream = true;
|
|
}
|
|
|
|
now = ehci_read_frame_index(ehci) & (mod - 1);
|
|
|
|
/* Take the isochronous scheduling threshold into account */
|
|
if (ehci->i_thresh)
|
|
next = now + ehci->i_thresh; /* uframe cache */
|
|
else
|
|
next = (now + 2 + 7) & ~0x07; /* full frame cache */
|
|
|
|
/* If needed, initialize last_iso_frame so that this URB will be seen */
|
|
if (ehci->isoc_count == 0)
|
|
ehci->last_iso_frame = now >> 3;
|
|
|
|
/*
|
|
* Use ehci->last_iso_frame as the base. There can't be any
|
|
* TDs scheduled for earlier than that.
|
|
*/
|
|
base = ehci->last_iso_frame << 3;
|
|
next = (next - base) & (mod - 1);
|
|
start = (stream->next_uframe - base) & (mod - 1);
|
|
|
|
if (unlikely(new_stream))
|
|
goto do_ASAP;
|
|
|
|
/*
|
|
* Typical case: reuse current schedule, stream may still be active.
|
|
* Hopefully there are no gaps from the host falling behind
|
|
* (irq delays etc). If there are, the behavior depends on
|
|
* whether URB_ISO_ASAP is set.
|
|
*/
|
|
now2 = (now - base) & (mod - 1);
|
|
|
|
/* Is the schedule about to wrap around? */
|
|
if (unlikely(!empty && start < period)) {
|
|
ehci_dbg(ehci, "request %p would overflow (%u-%u < %u mod %u)\n",
|
|
urb, stream->next_uframe, base, period, mod);
|
|
status = -EFBIG;
|
|
goto fail;
|
|
}
|
|
|
|
/* Is the next packet scheduled after the base time? */
|
|
if (likely(!empty || start <= now2 + period)) {
|
|
|
|
/* URB_ISO_ASAP: make sure that start >= next */
|
|
if (unlikely(start < next &&
|
|
(urb->transfer_flags & URB_ISO_ASAP)))
|
|
goto do_ASAP;
|
|
|
|
/* Otherwise use start, if it's not in the past */
|
|
if (likely(start >= now2))
|
|
goto use_start;
|
|
|
|
/* Otherwise we got an underrun while the queue was empty */
|
|
} else {
|
|
if (urb->transfer_flags & URB_ISO_ASAP)
|
|
goto do_ASAP;
|
|
wrap = mod;
|
|
now2 += mod;
|
|
}
|
|
|
|
/* How many uframes and packets do we need to skip? */
|
|
skip = (now2 - start + period - 1) & -period;
|
|
if (skip >= span) { /* Entirely in the past? */
|
|
ehci_dbg(ehci, "iso underrun %p (%u+%u < %u) [%u]\n",
|
|
urb, start + base, span - period, now2 + base,
|
|
base);
|
|
|
|
/* Try to keep the last TD intact for scanning later */
|
|
skip = span - period;
|
|
|
|
/* Will it come before the current scan position? */
|
|
if (empty) {
|
|
skip = span; /* Skip the entire URB */
|
|
status = 1; /* and give it back immediately */
|
|
iso_sched_free(stream, sched);
|
|
sched = NULL;
|
|
}
|
|
}
|
|
urb->error_count = skip / period;
|
|
if (sched)
|
|
sched->first_packet = urb->error_count;
|
|
goto use_start;
|
|
|
|
do_ASAP:
|
|
/* Use the first slot after "next" */
|
|
start = next + ((start - next) & (period - 1));
|
|
|
|
use_start:
|
|
/* Tried to schedule too far into the future? */
|
|
if (unlikely(start + span - period >= mod + wrap)) {
|
|
ehci_dbg(ehci, "request %p would overflow (%u+%u >= %u)\n",
|
|
urb, start, span - period, mod + wrap);
|
|
status = -EFBIG;
|
|
goto fail;
|
|
}
|
|
|
|
start += base;
|
|
stream->next_uframe = (start + skip) & (mod - 1);
|
|
|
|
/* report high speed start in uframes; full speed, in frames */
|
|
urb->start_frame = start & (mod - 1);
|
|
if (!stream->highspeed)
|
|
urb->start_frame >>= 3;
|
|
return status;
|
|
|
|
fail:
|
|
iso_sched_free(stream, sched);
|
|
urb->hcpriv = NULL;
|
|
return status;
|
|
}
|
|
|
|
/*-------------------------------------------------------------------------*/
|
|
|
|
static inline void
|
|
itd_init(struct ehci_hcd *ehci, struct ehci_iso_stream *stream,
|
|
struct ehci_itd *itd)
|
|
{
|
|
int i;
|
|
|
|
/* it's been recently zeroed */
|
|
itd->hw_next = EHCI_LIST_END(ehci);
|
|
itd->hw_bufp[0] = stream->buf0;
|
|
itd->hw_bufp[1] = stream->buf1;
|
|
itd->hw_bufp[2] = stream->buf2;
|
|
|
|
for (i = 0; i < 8; i++)
|
|
itd->index[i] = -1;
|
|
|
|
/* All other fields are filled when scheduling */
|
|
}
|
|
|
|
static inline void
|
|
itd_patch(
|
|
struct ehci_hcd *ehci,
|
|
struct ehci_itd *itd,
|
|
struct ehci_iso_sched *iso_sched,
|
|
unsigned index,
|
|
u16 uframe
|
|
)
|
|
{
|
|
struct ehci_iso_packet *uf = &iso_sched->packet[index];
|
|
unsigned pg = itd->pg;
|
|
|
|
/* BUG_ON(pg == 6 && uf->cross); */
|
|
|
|
uframe &= 0x07;
|
|
itd->index[uframe] = index;
|
|
|
|
itd->hw_transaction[uframe] = uf->transaction;
|
|
itd->hw_transaction[uframe] |= cpu_to_hc32(ehci, pg << 12);
|
|
itd->hw_bufp[pg] |= cpu_to_hc32(ehci, uf->bufp & ~(u32)0);
|
|
itd->hw_bufp_hi[pg] |= cpu_to_hc32(ehci, (u32)(uf->bufp >> 32));
|
|
|
|
/* iso_frame_desc[].offset must be strictly increasing */
|
|
if (unlikely(uf->cross)) {
|
|
u64 bufp = uf->bufp + 4096;
|
|
|
|
itd->pg = ++pg;
|
|
itd->hw_bufp[pg] |= cpu_to_hc32(ehci, bufp & ~(u32)0);
|
|
itd->hw_bufp_hi[pg] |= cpu_to_hc32(ehci, (u32)(bufp >> 32));
|
|
}
|
|
}
|
|
|
|
static inline void
|
|
itd_link(struct ehci_hcd *ehci, unsigned frame, struct ehci_itd *itd)
|
|
{
|
|
union ehci_shadow *prev = &ehci->pshadow[frame];
|
|
__hc32 *hw_p = &ehci->periodic[frame];
|
|
union ehci_shadow here = *prev;
|
|
__hc32 type = 0;
|
|
|
|
/* skip any iso nodes which might belong to previous microframes */
|
|
while (here.ptr) {
|
|
type = Q_NEXT_TYPE(ehci, *hw_p);
|
|
if (type == cpu_to_hc32(ehci, Q_TYPE_QH))
|
|
break;
|
|
prev = periodic_next_shadow(ehci, prev, type);
|
|
hw_p = shadow_next_periodic(ehci, &here, type);
|
|
here = *prev;
|
|
}
|
|
|
|
itd->itd_next = here;
|
|
itd->hw_next = *hw_p;
|
|
prev->itd = itd;
|
|
itd->frame = frame;
|
|
wmb();
|
|
*hw_p = cpu_to_hc32(ehci, itd->itd_dma | Q_TYPE_ITD);
|
|
}
|
|
|
|
/* fit urb's itds into the selected schedule slot; activate as needed */
|
|
static void itd_link_urb(
|
|
struct ehci_hcd *ehci,
|
|
struct urb *urb,
|
|
unsigned mod,
|
|
struct ehci_iso_stream *stream
|
|
)
|
|
{
|
|
int packet;
|
|
unsigned next_uframe, uframe, frame;
|
|
struct ehci_iso_sched *iso_sched = urb->hcpriv;
|
|
struct ehci_itd *itd;
|
|
|
|
next_uframe = stream->next_uframe & (mod - 1);
|
|
|
|
if (unlikely(list_empty(&stream->td_list)))
|
|
ehci_to_hcd(ehci)->self.bandwidth_allocated
|
|
+= stream->bandwidth;
|
|
|
|
if (ehci_to_hcd(ehci)->self.bandwidth_isoc_reqs == 0) {
|
|
if (ehci->amd_pll_fix == 1)
|
|
usb_amd_quirk_pll_disable();
|
|
}
|
|
|
|
ehci_to_hcd(ehci)->self.bandwidth_isoc_reqs++;
|
|
|
|
/* fill iTDs uframe by uframe */
|
|
for (packet = iso_sched->first_packet, itd = NULL;
|
|
packet < urb->number_of_packets;) {
|
|
if (itd == NULL) {
|
|
/* ASSERT: we have all necessary itds */
|
|
/* BUG_ON(list_empty(&iso_sched->td_list)); */
|
|
|
|
/* ASSERT: no itds for this endpoint in this uframe */
|
|
|
|
itd = list_entry(iso_sched->td_list.next,
|
|
struct ehci_itd, itd_list);
|
|
list_move_tail(&itd->itd_list, &stream->td_list);
|
|
itd->stream = stream;
|
|
itd->urb = urb;
|
|
itd_init(ehci, stream, itd);
|
|
}
|
|
|
|
uframe = next_uframe & 0x07;
|
|
frame = next_uframe >> 3;
|
|
|
|
itd_patch(ehci, itd, iso_sched, packet, uframe);
|
|
|
|
next_uframe += stream->uperiod;
|
|
next_uframe &= mod - 1;
|
|
packet++;
|
|
|
|
/* link completed itds into the schedule */
|
|
if (((next_uframe >> 3) != frame)
|
|
|| packet == urb->number_of_packets) {
|
|
itd_link(ehci, frame & (ehci->periodic_size - 1), itd);
|
|
itd = NULL;
|
|
}
|
|
}
|
|
stream->next_uframe = next_uframe;
|
|
|
|
/* don't need that schedule data any more */
|
|
iso_sched_free(stream, iso_sched);
|
|
urb->hcpriv = stream;
|
|
|
|
++ehci->isoc_count;
|
|
enable_periodic(ehci);
|
|
}
|
|
|
|
#define ISO_ERRS (EHCI_ISOC_BUF_ERR | EHCI_ISOC_BABBLE | EHCI_ISOC_XACTERR)
|
|
|
|
/* Process and recycle a completed ITD. Return true iff its urb completed,
|
|
* and hence its completion callback probably added things to the hardware
|
|
* schedule.
|
|
*
|
|
* Note that we carefully avoid recycling this descriptor until after any
|
|
* completion callback runs, so that it won't be reused quickly. That is,
|
|
* assuming (a) no more than two urbs per frame on this endpoint, and also
|
|
* (b) only this endpoint's completions submit URBs. It seems some silicon
|
|
* corrupts things if you reuse completed descriptors very quickly...
|
|
*/
|
|
static bool itd_complete(struct ehci_hcd *ehci, struct ehci_itd *itd)
|
|
{
|
|
struct urb *urb = itd->urb;
|
|
struct usb_iso_packet_descriptor *desc;
|
|
u32 t;
|
|
unsigned uframe;
|
|
int urb_index = -1;
|
|
struct ehci_iso_stream *stream = itd->stream;
|
|
struct usb_device *dev;
|
|
bool retval = false;
|
|
|
|
/* for each uframe with a packet */
|
|
for (uframe = 0; uframe < 8; uframe++) {
|
|
if (likely(itd->index[uframe] == -1))
|
|
continue;
|
|
urb_index = itd->index[uframe];
|
|
desc = &urb->iso_frame_desc[urb_index];
|
|
|
|
t = hc32_to_cpup(ehci, &itd->hw_transaction[uframe]);
|
|
itd->hw_transaction[uframe] = 0;
|
|
|
|
/* report transfer status */
|
|
if (unlikely(t & ISO_ERRS)) {
|
|
urb->error_count++;
|
|
if (t & EHCI_ISOC_BUF_ERR)
|
|
desc->status = usb_pipein(urb->pipe)
|
|
? -ENOSR /* hc couldn't read */
|
|
: -ECOMM; /* hc couldn't write */
|
|
else if (t & EHCI_ISOC_BABBLE)
|
|
desc->status = -EOVERFLOW;
|
|
else /* (t & EHCI_ISOC_XACTERR) */
|
|
desc->status = -EPROTO;
|
|
|
|
/* HC need not update length with this error */
|
|
if (!(t & EHCI_ISOC_BABBLE)) {
|
|
desc->actual_length = EHCI_ITD_LENGTH(t);
|
|
urb->actual_length += desc->actual_length;
|
|
}
|
|
} else if (likely((t & EHCI_ISOC_ACTIVE) == 0)) {
|
|
desc->status = 0;
|
|
desc->actual_length = EHCI_ITD_LENGTH(t);
|
|
urb->actual_length += desc->actual_length;
|
|
} else {
|
|
/* URB was too late */
|
|
urb->error_count++;
|
|
}
|
|
}
|
|
|
|
/* handle completion now? */
|
|
if (likely((urb_index + 1) != urb->number_of_packets))
|
|
goto done;
|
|
|
|
/*
|
|
* ASSERT: it's really the last itd for this urb
|
|
* list_for_each_entry (itd, &stream->td_list, itd_list)
|
|
* BUG_ON(itd->urb == urb);
|
|
*/
|
|
|
|
/* give urb back to the driver; completion often (re)submits */
|
|
dev = urb->dev;
|
|
ehci_urb_done(ehci, urb, 0);
|
|
retval = true;
|
|
urb = NULL;
|
|
|
|
--ehci->isoc_count;
|
|
disable_periodic(ehci);
|
|
|
|
ehci_to_hcd(ehci)->self.bandwidth_isoc_reqs--;
|
|
if (ehci_to_hcd(ehci)->self.bandwidth_isoc_reqs == 0) {
|
|
if (ehci->amd_pll_fix == 1)
|
|
usb_amd_quirk_pll_enable();
|
|
}
|
|
|
|
if (unlikely(list_is_singular(&stream->td_list)))
|
|
ehci_to_hcd(ehci)->self.bandwidth_allocated
|
|
-= stream->bandwidth;
|
|
|
|
done:
|
|
itd->urb = NULL;
|
|
|
|
/* Add to the end of the free list for later reuse */
|
|
list_move_tail(&itd->itd_list, &stream->free_list);
|
|
|
|
/* Recycle the iTDs when the pipeline is empty (ep no longer in use) */
|
|
if (list_empty(&stream->td_list)) {
|
|
list_splice_tail_init(&stream->free_list,
|
|
&ehci->cached_itd_list);
|
|
start_free_itds(ehci);
|
|
}
|
|
|
|
return retval;
|
|
}
|
|
|
|
/*-------------------------------------------------------------------------*/
|
|
|
|
static int itd_submit(struct ehci_hcd *ehci, struct urb *urb,
|
|
gfp_t mem_flags)
|
|
{
|
|
int status = -EINVAL;
|
|
unsigned long flags;
|
|
struct ehci_iso_stream *stream;
|
|
|
|
/* Get iso_stream head */
|
|
stream = iso_stream_find(ehci, urb);
|
|
if (unlikely(stream == NULL)) {
|
|
ehci_dbg(ehci, "can't get iso stream\n");
|
|
return -ENOMEM;
|
|
}
|
|
if (unlikely(urb->interval != stream->uperiod)) {
|
|
ehci_dbg(ehci, "can't change iso interval %d --> %d\n",
|
|
stream->uperiod, urb->interval);
|
|
goto done;
|
|
}
|
|
|
|
#ifdef EHCI_URB_TRACE
|
|
ehci_dbg(ehci,
|
|
"%s %s urb %p ep%d%s len %d, %d pkts %d uframes [%p]\n",
|
|
__func__, urb->dev->devpath, urb,
|
|
usb_pipeendpoint(urb->pipe),
|
|
usb_pipein(urb->pipe) ? "in" : "out",
|
|
urb->transfer_buffer_length,
|
|
urb->number_of_packets, urb->interval,
|
|
stream);
|
|
#endif
|
|
|
|
/* allocate ITDs w/o locking anything */
|
|
status = itd_urb_transaction(stream, ehci, urb, mem_flags);
|
|
if (unlikely(status < 0)) {
|
|
ehci_dbg(ehci, "can't init itds\n");
|
|
goto done;
|
|
}
|
|
|
|
/* schedule ... need to lock */
|
|
spin_lock_irqsave(&ehci->lock, flags);
|
|
if (unlikely(!HCD_HW_ACCESSIBLE(ehci_to_hcd(ehci)))) {
|
|
status = -ESHUTDOWN;
|
|
goto done_not_linked;
|
|
}
|
|
status = usb_hcd_link_urb_to_ep(ehci_to_hcd(ehci), urb);
|
|
if (unlikely(status))
|
|
goto done_not_linked;
|
|
status = iso_stream_schedule(ehci, urb, stream);
|
|
if (likely(status == 0)) {
|
|
itd_link_urb(ehci, urb, ehci->periodic_size << 3, stream);
|
|
} else if (status > 0) {
|
|
status = 0;
|
|
ehci_urb_done(ehci, urb, 0);
|
|
} else {
|
|
usb_hcd_unlink_urb_from_ep(ehci_to_hcd(ehci), urb);
|
|
}
|
|
done_not_linked:
|
|
spin_unlock_irqrestore(&ehci->lock, flags);
|
|
done:
|
|
return status;
|
|
}
|
|
|
|
/*-------------------------------------------------------------------------*/
|
|
|
|
/*
|
|
* "Split ISO TDs" ... used for USB 1.1 devices going through the
|
|
* TTs in USB 2.0 hubs. These need microframe scheduling.
|
|
*/
|
|
|
|
static inline void
|
|
sitd_sched_init(
|
|
struct ehci_hcd *ehci,
|
|
struct ehci_iso_sched *iso_sched,
|
|
struct ehci_iso_stream *stream,
|
|
struct urb *urb
|
|
)
|
|
{
|
|
unsigned i;
|
|
dma_addr_t dma = urb->transfer_dma;
|
|
|
|
/* how many frames are needed for these transfers */
|
|
iso_sched->span = urb->number_of_packets * stream->ps.period;
|
|
|
|
/* figure out per-frame sitd fields that we'll need later
|
|
* when we fit new sitds into the schedule.
|
|
*/
|
|
for (i = 0; i < urb->number_of_packets; i++) {
|
|
struct ehci_iso_packet *packet = &iso_sched->packet[i];
|
|
unsigned length;
|
|
dma_addr_t buf;
|
|
u32 trans;
|
|
|
|
length = urb->iso_frame_desc[i].length & 0x03ff;
|
|
buf = dma + urb->iso_frame_desc[i].offset;
|
|
|
|
trans = SITD_STS_ACTIVE;
|
|
if (((i + 1) == urb->number_of_packets)
|
|
&& !(urb->transfer_flags & URB_NO_INTERRUPT))
|
|
trans |= SITD_IOC;
|
|
trans |= length << 16;
|
|
packet->transaction = cpu_to_hc32(ehci, trans);
|
|
|
|
/* might need to cross a buffer page within a td */
|
|
packet->bufp = buf;
|
|
packet->buf1 = (buf + length) & ~0x0fff;
|
|
if (packet->buf1 != (buf & ~(u64)0x0fff))
|
|
packet->cross = 1;
|
|
|
|
/* OUT uses multiple start-splits */
|
|
if (stream->bEndpointAddress & USB_DIR_IN)
|
|
continue;
|
|
length = (length + 187) / 188;
|
|
if (length > 1) /* BEGIN vs ALL */
|
|
length |= 1 << 3;
|
|
packet->buf1 |= length;
|
|
}
|
|
}
|
|
|
|
static int
|
|
sitd_urb_transaction(
|
|
struct ehci_iso_stream *stream,
|
|
struct ehci_hcd *ehci,
|
|
struct urb *urb,
|
|
gfp_t mem_flags
|
|
)
|
|
{
|
|
struct ehci_sitd *sitd;
|
|
dma_addr_t sitd_dma;
|
|
int i;
|
|
struct ehci_iso_sched *iso_sched;
|
|
unsigned long flags;
|
|
|
|
iso_sched = iso_sched_alloc(urb->number_of_packets, mem_flags);
|
|
if (iso_sched == NULL)
|
|
return -ENOMEM;
|
|
|
|
sitd_sched_init(ehci, iso_sched, stream, urb);
|
|
|
|
/* allocate/init sITDs */
|
|
spin_lock_irqsave(&ehci->lock, flags);
|
|
for (i = 0; i < urb->number_of_packets; i++) {
|
|
|
|
/* NOTE: for now, we don't try to handle wraparound cases
|
|
* for IN (using sitd->hw_backpointer, like a FSTN), which
|
|
* means we never need two sitds for full speed packets.
|
|
*/
|
|
|
|
/*
|
|
* Use siTDs from the free list, but not siTDs that may
|
|
* still be in use by the hardware.
|
|
*/
|
|
if (likely(!list_empty(&stream->free_list))) {
|
|
sitd = list_first_entry(&stream->free_list,
|
|
struct ehci_sitd, sitd_list);
|
|
if (sitd->frame == ehci->now_frame)
|
|
goto alloc_sitd;
|
|
list_del(&sitd->sitd_list);
|
|
sitd_dma = sitd->sitd_dma;
|
|
} else {
|
|
alloc_sitd:
|
|
spin_unlock_irqrestore(&ehci->lock, flags);
|
|
sitd = dma_pool_alloc(ehci->sitd_pool, mem_flags,
|
|
&sitd_dma);
|
|
spin_lock_irqsave(&ehci->lock, flags);
|
|
if (!sitd) {
|
|
iso_sched_free(stream, iso_sched);
|
|
spin_unlock_irqrestore(&ehci->lock, flags);
|
|
return -ENOMEM;
|
|
}
|
|
}
|
|
|
|
memset(sitd, 0, sizeof(*sitd));
|
|
sitd->sitd_dma = sitd_dma;
|
|
sitd->frame = NO_FRAME;
|
|
list_add(&sitd->sitd_list, &iso_sched->td_list);
|
|
}
|
|
|
|
/* temporarily store schedule info in hcpriv */
|
|
urb->hcpriv = iso_sched;
|
|
urb->error_count = 0;
|
|
|
|
spin_unlock_irqrestore(&ehci->lock, flags);
|
|
return 0;
|
|
}
|
|
|
|
/*-------------------------------------------------------------------------*/
|
|
|
|
static inline void
|
|
sitd_patch(
|
|
struct ehci_hcd *ehci,
|
|
struct ehci_iso_stream *stream,
|
|
struct ehci_sitd *sitd,
|
|
struct ehci_iso_sched *iso_sched,
|
|
unsigned index
|
|
)
|
|
{
|
|
struct ehci_iso_packet *uf = &iso_sched->packet[index];
|
|
u64 bufp;
|
|
|
|
sitd->hw_next = EHCI_LIST_END(ehci);
|
|
sitd->hw_fullspeed_ep = stream->address;
|
|
sitd->hw_uframe = stream->splits;
|
|
sitd->hw_results = uf->transaction;
|
|
sitd->hw_backpointer = EHCI_LIST_END(ehci);
|
|
|
|
bufp = uf->bufp;
|
|
sitd->hw_buf[0] = cpu_to_hc32(ehci, bufp);
|
|
sitd->hw_buf_hi[0] = cpu_to_hc32(ehci, bufp >> 32);
|
|
|
|
sitd->hw_buf[1] = cpu_to_hc32(ehci, uf->buf1);
|
|
if (uf->cross)
|
|
bufp += 4096;
|
|
sitd->hw_buf_hi[1] = cpu_to_hc32(ehci, bufp >> 32);
|
|
sitd->index = index;
|
|
}
|
|
|
|
static inline void
|
|
sitd_link(struct ehci_hcd *ehci, unsigned frame, struct ehci_sitd *sitd)
|
|
{
|
|
/* note: sitd ordering could matter (CSPLIT then SSPLIT) */
|
|
sitd->sitd_next = ehci->pshadow[frame];
|
|
sitd->hw_next = ehci->periodic[frame];
|
|
ehci->pshadow[frame].sitd = sitd;
|
|
sitd->frame = frame;
|
|
wmb();
|
|
ehci->periodic[frame] = cpu_to_hc32(ehci, sitd->sitd_dma | Q_TYPE_SITD);
|
|
}
|
|
|
|
/* fit urb's sitds into the selected schedule slot; activate as needed */
|
|
static void sitd_link_urb(
|
|
struct ehci_hcd *ehci,
|
|
struct urb *urb,
|
|
unsigned mod,
|
|
struct ehci_iso_stream *stream
|
|
)
|
|
{
|
|
int packet;
|
|
unsigned next_uframe;
|
|
struct ehci_iso_sched *sched = urb->hcpriv;
|
|
struct ehci_sitd *sitd;
|
|
|
|
next_uframe = stream->next_uframe;
|
|
|
|
if (list_empty(&stream->td_list))
|
|
/* usbfs ignores TT bandwidth */
|
|
ehci_to_hcd(ehci)->self.bandwidth_allocated
|
|
+= stream->bandwidth;
|
|
|
|
if (ehci_to_hcd(ehci)->self.bandwidth_isoc_reqs == 0) {
|
|
if (ehci->amd_pll_fix == 1)
|
|
usb_amd_quirk_pll_disable();
|
|
}
|
|
|
|
ehci_to_hcd(ehci)->self.bandwidth_isoc_reqs++;
|
|
|
|
/* fill sITDs frame by frame */
|
|
for (packet = sched->first_packet, sitd = NULL;
|
|
packet < urb->number_of_packets;
|
|
packet++) {
|
|
|
|
/* ASSERT: we have all necessary sitds */
|
|
BUG_ON(list_empty(&sched->td_list));
|
|
|
|
/* ASSERT: no itds for this endpoint in this frame */
|
|
|
|
sitd = list_entry(sched->td_list.next,
|
|
struct ehci_sitd, sitd_list);
|
|
list_move_tail(&sitd->sitd_list, &stream->td_list);
|
|
sitd->stream = stream;
|
|
sitd->urb = urb;
|
|
|
|
sitd_patch(ehci, stream, sitd, sched, packet);
|
|
sitd_link(ehci, (next_uframe >> 3) & (ehci->periodic_size - 1),
|
|
sitd);
|
|
|
|
next_uframe += stream->uperiod;
|
|
}
|
|
stream->next_uframe = next_uframe & (mod - 1);
|
|
|
|
/* don't need that schedule data any more */
|
|
iso_sched_free(stream, sched);
|
|
urb->hcpriv = stream;
|
|
|
|
++ehci->isoc_count;
|
|
enable_periodic(ehci);
|
|
}
|
|
|
|
/*-------------------------------------------------------------------------*/
|
|
|
|
#define SITD_ERRS (SITD_STS_ERR | SITD_STS_DBE | SITD_STS_BABBLE \
|
|
| SITD_STS_XACT | SITD_STS_MMF)
|
|
|
|
/* Process and recycle a completed SITD. Return true iff its urb completed,
|
|
* and hence its completion callback probably added things to the hardware
|
|
* schedule.
|
|
*
|
|
* Note that we carefully avoid recycling this descriptor until after any
|
|
* completion callback runs, so that it won't be reused quickly. That is,
|
|
* assuming (a) no more than two urbs per frame on this endpoint, and also
|
|
* (b) only this endpoint's completions submit URBs. It seems some silicon
|
|
* corrupts things if you reuse completed descriptors very quickly...
|
|
*/
|
|
static bool sitd_complete(struct ehci_hcd *ehci, struct ehci_sitd *sitd)
|
|
{
|
|
struct urb *urb = sitd->urb;
|
|
struct usb_iso_packet_descriptor *desc;
|
|
u32 t;
|
|
int urb_index;
|
|
struct ehci_iso_stream *stream = sitd->stream;
|
|
struct usb_device *dev;
|
|
bool retval = false;
|
|
|
|
urb_index = sitd->index;
|
|
desc = &urb->iso_frame_desc[urb_index];
|
|
t = hc32_to_cpup(ehci, &sitd->hw_results);
|
|
|
|
/* report transfer status */
|
|
if (unlikely(t & SITD_ERRS)) {
|
|
urb->error_count++;
|
|
if (t & SITD_STS_DBE)
|
|
desc->status = usb_pipein(urb->pipe)
|
|
? -ENOSR /* hc couldn't read */
|
|
: -ECOMM; /* hc couldn't write */
|
|
else if (t & SITD_STS_BABBLE)
|
|
desc->status = -EOVERFLOW;
|
|
else /* XACT, MMF, etc */
|
|
desc->status = -EPROTO;
|
|
} else if (unlikely(t & SITD_STS_ACTIVE)) {
|
|
/* URB was too late */
|
|
urb->error_count++;
|
|
} else {
|
|
desc->status = 0;
|
|
desc->actual_length = desc->length - SITD_LENGTH(t);
|
|
urb->actual_length += desc->actual_length;
|
|
}
|
|
|
|
/* handle completion now? */
|
|
if ((urb_index + 1) != urb->number_of_packets)
|
|
goto done;
|
|
|
|
/*
|
|
* ASSERT: it's really the last sitd for this urb
|
|
* list_for_each_entry (sitd, &stream->td_list, sitd_list)
|
|
* BUG_ON(sitd->urb == urb);
|
|
*/
|
|
|
|
/* give urb back to the driver; completion often (re)submits */
|
|
dev = urb->dev;
|
|
ehci_urb_done(ehci, urb, 0);
|
|
retval = true;
|
|
urb = NULL;
|
|
|
|
--ehci->isoc_count;
|
|
disable_periodic(ehci);
|
|
|
|
ehci_to_hcd(ehci)->self.bandwidth_isoc_reqs--;
|
|
if (ehci_to_hcd(ehci)->self.bandwidth_isoc_reqs == 0) {
|
|
if (ehci->amd_pll_fix == 1)
|
|
usb_amd_quirk_pll_enable();
|
|
}
|
|
|
|
if (list_is_singular(&stream->td_list))
|
|
ehci_to_hcd(ehci)->self.bandwidth_allocated
|
|
-= stream->bandwidth;
|
|
|
|
done:
|
|
sitd->urb = NULL;
|
|
|
|
/* Add to the end of the free list for later reuse */
|
|
list_move_tail(&sitd->sitd_list, &stream->free_list);
|
|
|
|
/* Recycle the siTDs when the pipeline is empty (ep no longer in use) */
|
|
if (list_empty(&stream->td_list)) {
|
|
list_splice_tail_init(&stream->free_list,
|
|
&ehci->cached_sitd_list);
|
|
start_free_itds(ehci);
|
|
}
|
|
|
|
return retval;
|
|
}
|
|
|
|
|
|
static int sitd_submit(struct ehci_hcd *ehci, struct urb *urb,
|
|
gfp_t mem_flags)
|
|
{
|
|
int status = -EINVAL;
|
|
unsigned long flags;
|
|
struct ehci_iso_stream *stream;
|
|
|
|
/* Get iso_stream head */
|
|
stream = iso_stream_find(ehci, urb);
|
|
if (stream == NULL) {
|
|
ehci_dbg(ehci, "can't get iso stream\n");
|
|
return -ENOMEM;
|
|
}
|
|
if (urb->interval != stream->ps.period) {
|
|
ehci_dbg(ehci, "can't change iso interval %d --> %d\n",
|
|
stream->ps.period, urb->interval);
|
|
goto done;
|
|
}
|
|
|
|
#ifdef EHCI_URB_TRACE
|
|
ehci_dbg(ehci,
|
|
"submit %p dev%s ep%d%s-iso len %d\n",
|
|
urb, urb->dev->devpath,
|
|
usb_pipeendpoint(urb->pipe),
|
|
usb_pipein(urb->pipe) ? "in" : "out",
|
|
urb->transfer_buffer_length);
|
|
#endif
|
|
|
|
/* allocate SITDs */
|
|
status = sitd_urb_transaction(stream, ehci, urb, mem_flags);
|
|
if (status < 0) {
|
|
ehci_dbg(ehci, "can't init sitds\n");
|
|
goto done;
|
|
}
|
|
|
|
/* schedule ... need to lock */
|
|
spin_lock_irqsave(&ehci->lock, flags);
|
|
if (unlikely(!HCD_HW_ACCESSIBLE(ehci_to_hcd(ehci)))) {
|
|
status = -ESHUTDOWN;
|
|
goto done_not_linked;
|
|
}
|
|
status = usb_hcd_link_urb_to_ep(ehci_to_hcd(ehci), urb);
|
|
if (unlikely(status))
|
|
goto done_not_linked;
|
|
status = iso_stream_schedule(ehci, urb, stream);
|
|
if (likely(status == 0)) {
|
|
sitd_link_urb(ehci, urb, ehci->periodic_size << 3, stream);
|
|
} else if (status > 0) {
|
|
status = 0;
|
|
ehci_urb_done(ehci, urb, 0);
|
|
} else {
|
|
usb_hcd_unlink_urb_from_ep(ehci_to_hcd(ehci), urb);
|
|
}
|
|
done_not_linked:
|
|
spin_unlock_irqrestore(&ehci->lock, flags);
|
|
done:
|
|
return status;
|
|
}
|
|
|
|
/*-------------------------------------------------------------------------*/
|
|
|
|
static void scan_isoc(struct ehci_hcd *ehci)
|
|
{
|
|
unsigned uf, now_frame, frame;
|
|
unsigned fmask = ehci->periodic_size - 1;
|
|
bool modified, live;
|
|
union ehci_shadow q, *q_p;
|
|
__hc32 type, *hw_p;
|
|
|
|
/*
|
|
* When running, scan from last scan point up to "now"
|
|
* else clean up by scanning everything that's left.
|
|
* Touches as few pages as possible: cache-friendly.
|
|
*/
|
|
if (ehci->rh_state >= EHCI_RH_RUNNING) {
|
|
uf = ehci_read_frame_index(ehci);
|
|
now_frame = (uf >> 3) & fmask;
|
|
live = true;
|
|
} else {
|
|
now_frame = (ehci->last_iso_frame - 1) & fmask;
|
|
live = false;
|
|
}
|
|
ehci->now_frame = now_frame;
|
|
|
|
frame = ehci->last_iso_frame;
|
|
|
|
restart:
|
|
/* Scan each element in frame's queue for completions */
|
|
q_p = &ehci->pshadow[frame];
|
|
hw_p = &ehci->periodic[frame];
|
|
q.ptr = q_p->ptr;
|
|
type = Q_NEXT_TYPE(ehci, *hw_p);
|
|
modified = false;
|
|
|
|
while (q.ptr != NULL) {
|
|
switch (hc32_to_cpu(ehci, type)) {
|
|
case Q_TYPE_ITD:
|
|
/*
|
|
* If this ITD is still active, leave it for
|
|
* later processing ... check the next entry.
|
|
* No need to check for activity unless the
|
|
* frame is current.
|
|
*/
|
|
if (frame == now_frame && live) {
|
|
rmb();
|
|
for (uf = 0; uf < 8; uf++) {
|
|
if (q.itd->hw_transaction[uf] &
|
|
ITD_ACTIVE(ehci))
|
|
break;
|
|
}
|
|
if (uf < 8) {
|
|
q_p = &q.itd->itd_next;
|
|
hw_p = &q.itd->hw_next;
|
|
type = Q_NEXT_TYPE(ehci,
|
|
q.itd->hw_next);
|
|
q = *q_p;
|
|
break;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Take finished ITDs out of the schedule
|
|
* and process them: recycle, maybe report
|
|
* URB completion. HC won't cache the
|
|
* pointer for much longer, if at all.
|
|
*/
|
|
*q_p = q.itd->itd_next;
|
|
if (!ehci->use_dummy_qh ||
|
|
q.itd->hw_next != EHCI_LIST_END(ehci))
|
|
*hw_p = q.itd->hw_next;
|
|
else
|
|
*hw_p = cpu_to_hc32(ehci, ehci->dummy->qh_dma);
|
|
type = Q_NEXT_TYPE(ehci, q.itd->hw_next);
|
|
wmb();
|
|
modified = itd_complete(ehci, q.itd);
|
|
q = *q_p;
|
|
break;
|
|
case Q_TYPE_SITD:
|
|
/*
|
|
* If this SITD is still active, leave it for
|
|
* later processing ... check the next entry.
|
|
* No need to check for activity unless the
|
|
* frame is current.
|
|
*/
|
|
if (((frame == now_frame) ||
|
|
(((frame + 1) & fmask) == now_frame))
|
|
&& live
|
|
&& (q.sitd->hw_results & SITD_ACTIVE(ehci))) {
|
|
|
|
q_p = &q.sitd->sitd_next;
|
|
hw_p = &q.sitd->hw_next;
|
|
type = Q_NEXT_TYPE(ehci, q.sitd->hw_next);
|
|
q = *q_p;
|
|
break;
|
|
}
|
|
|
|
/*
|
|
* Take finished SITDs out of the schedule
|
|
* and process them: recycle, maybe report
|
|
* URB completion.
|
|
*/
|
|
*q_p = q.sitd->sitd_next;
|
|
if (!ehci->use_dummy_qh ||
|
|
q.sitd->hw_next != EHCI_LIST_END(ehci))
|
|
*hw_p = q.sitd->hw_next;
|
|
else
|
|
*hw_p = cpu_to_hc32(ehci, ehci->dummy->qh_dma);
|
|
type = Q_NEXT_TYPE(ehci, q.sitd->hw_next);
|
|
wmb();
|
|
modified = sitd_complete(ehci, q.sitd);
|
|
q = *q_p;
|
|
break;
|
|
default:
|
|
ehci_dbg(ehci, "corrupt type %d frame %d shadow %p\n",
|
|
type, frame, q.ptr);
|
|
/* BUG(); */
|
|
/* FALL THROUGH */
|
|
case Q_TYPE_QH:
|
|
case Q_TYPE_FSTN:
|
|
/* End of the iTDs and siTDs */
|
|
q.ptr = NULL;
|
|
break;
|
|
}
|
|
|
|
/* Assume completion callbacks modify the queue */
|
|
if (unlikely(modified && ehci->isoc_count > 0))
|
|
goto restart;
|
|
}
|
|
|
|
/* Stop when we have reached the current frame */
|
|
if (frame == now_frame)
|
|
return;
|
|
|
|
/* The last frame may still have active siTDs */
|
|
ehci->last_iso_frame = frame;
|
|
frame = (frame + 1) & fmask;
|
|
|
|
goto restart;
|
|
}
|