mirror of
https://github.com/FEX-Emu/linux.git
synced 2025-01-12 12:22:42 +00:00
19cc90f58d
The new intel_powerclamp thermal cooling device driver was merged in commit 2af78448fff6 (Pull thermal management updates from Zhang Rui) without any data conflicts. But there was a more subtle conflict I missed: the driver uses MAX_USER_RT_PRIO, but commit 8bd75c77b7c6 ("sched/rt: Move rt specific bits into new header file") had moved that define from <linux/sched.h> to <linux/sched/rt.h>. Which caused this build failure: drivers/thermal/intel_powerclamp.c: In function ‘clamp_thread’: drivers/thermal/intel_powerclamp.c:360:21: error: ‘MAX_USER_RT_PRIO’ undeclared (first use in this function) drivers/thermal/intel_powerclamp.c:360:21: note: each undeclared identifier is reported only once for each function it appears in And because I don't do a full "make allmodconfig" build after each pull, I didn't notice until too late. So now the fix is here, separately from the merge commit. Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
796 lines
20 KiB
C
796 lines
20 KiB
C
/*
|
|
* intel_powerclamp.c - package c-state idle injection
|
|
*
|
|
* Copyright (c) 2012, Intel Corporation.
|
|
*
|
|
* Authors:
|
|
* Arjan van de Ven <arjan@linux.intel.com>
|
|
* Jacob Pan <jacob.jun.pan@linux.intel.com>
|
|
*
|
|
* This program is free software; you can redistribute it and/or modify it
|
|
* under the terms and conditions of the GNU General Public License,
|
|
* version 2, as published by the Free Software Foundation.
|
|
*
|
|
* This program is distributed in the hope it will be useful, but WITHOUT
|
|
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
|
|
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
|
|
* more details.
|
|
*
|
|
* You should have received a copy of the GNU General Public License along with
|
|
* this program; if not, write to the Free Software Foundation, Inc.,
|
|
* 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
|
|
*
|
|
*
|
|
* TODO:
|
|
* 1. better handle wakeup from external interrupts, currently a fixed
|
|
* compensation is added to clamping duration when excessive amount
|
|
* of wakeups are observed during idle time. the reason is that in
|
|
* case of external interrupts without need for ack, clamping down
|
|
* cpu in non-irq context does not reduce irq. for majority of the
|
|
* cases, clamping down cpu does help reduce irq as well, we should
|
|
* be able to differenciate the two cases and give a quantitative
|
|
* solution for the irqs that we can control. perhaps based on
|
|
* get_cpu_iowait_time_us()
|
|
*
|
|
* 2. synchronization with other hw blocks
|
|
*
|
|
*
|
|
*/
|
|
|
|
#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
|
|
|
|
#include <linux/module.h>
|
|
#include <linux/kernel.h>
|
|
#include <linux/delay.h>
|
|
#include <linux/kthread.h>
|
|
#include <linux/freezer.h>
|
|
#include <linux/cpu.h>
|
|
#include <linux/thermal.h>
|
|
#include <linux/slab.h>
|
|
#include <linux/tick.h>
|
|
#include <linux/debugfs.h>
|
|
#include <linux/seq_file.h>
|
|
#include <linux/sched/rt.h>
|
|
|
|
#include <asm/nmi.h>
|
|
#include <asm/msr.h>
|
|
#include <asm/mwait.h>
|
|
#include <asm/cpu_device_id.h>
|
|
#include <asm/idle.h>
|
|
#include <asm/hardirq.h>
|
|
|
|
#define MAX_TARGET_RATIO (50U)
|
|
/* For each undisturbed clamping period (no extra wake ups during idle time),
|
|
* we increment the confidence counter for the given target ratio.
|
|
* CONFIDENCE_OK defines the level where runtime calibration results are
|
|
* valid.
|
|
*/
|
|
#define CONFIDENCE_OK (3)
|
|
/* Default idle injection duration, driver adjust sleep time to meet target
|
|
* idle ratio. Similar to frequency modulation.
|
|
*/
|
|
#define DEFAULT_DURATION_JIFFIES (6)
|
|
|
|
static unsigned int target_mwait;
|
|
static struct dentry *debug_dir;
|
|
|
|
/* user selected target */
|
|
static unsigned int set_target_ratio;
|
|
static unsigned int current_ratio;
|
|
static bool should_skip;
|
|
static bool reduce_irq;
|
|
static atomic_t idle_wakeup_counter;
|
|
static unsigned int control_cpu; /* The cpu assigned to collect stat and update
|
|
* control parameters. default to BSP but BSP
|
|
* can be offlined.
|
|
*/
|
|
static bool clamping;
|
|
|
|
|
|
static struct task_struct * __percpu *powerclamp_thread;
|
|
static struct thermal_cooling_device *cooling_dev;
|
|
static unsigned long *cpu_clamping_mask; /* bit map for tracking per cpu
|
|
* clamping thread
|
|
*/
|
|
|
|
static unsigned int duration;
|
|
static unsigned int pkg_cstate_ratio_cur;
|
|
static unsigned int window_size;
|
|
|
|
static int duration_set(const char *arg, const struct kernel_param *kp)
|
|
{
|
|
int ret = 0;
|
|
unsigned long new_duration;
|
|
|
|
ret = kstrtoul(arg, 10, &new_duration);
|
|
if (ret)
|
|
goto exit;
|
|
if (new_duration > 25 || new_duration < 6) {
|
|
pr_err("Out of recommended range %lu, between 6-25ms\n",
|
|
new_duration);
|
|
ret = -EINVAL;
|
|
}
|
|
|
|
duration = clamp(new_duration, 6ul, 25ul);
|
|
smp_mb();
|
|
|
|
exit:
|
|
|
|
return ret;
|
|
}
|
|
|
|
static struct kernel_param_ops duration_ops = {
|
|
.set = duration_set,
|
|
.get = param_get_int,
|
|
};
|
|
|
|
|
|
module_param_cb(duration, &duration_ops, &duration, 0644);
|
|
MODULE_PARM_DESC(duration, "forced idle time for each attempt in msec.");
|
|
|
|
struct powerclamp_calibration_data {
|
|
unsigned long confidence; /* used for calibration, basically a counter
|
|
* gets incremented each time a clamping
|
|
* period is completed without extra wakeups
|
|
* once that counter is reached given level,
|
|
* compensation is deemed usable.
|
|
*/
|
|
unsigned long steady_comp; /* steady state compensation used when
|
|
* no extra wakeups occurred.
|
|
*/
|
|
unsigned long dynamic_comp; /* compensate excessive wakeup from idle
|
|
* mostly from external interrupts.
|
|
*/
|
|
};
|
|
|
|
static struct powerclamp_calibration_data cal_data[MAX_TARGET_RATIO];
|
|
|
|
static int window_size_set(const char *arg, const struct kernel_param *kp)
|
|
{
|
|
int ret = 0;
|
|
unsigned long new_window_size;
|
|
|
|
ret = kstrtoul(arg, 10, &new_window_size);
|
|
if (ret)
|
|
goto exit_win;
|
|
if (new_window_size > 10 || new_window_size < 2) {
|
|
pr_err("Out of recommended window size %lu, between 2-10\n",
|
|
new_window_size);
|
|
ret = -EINVAL;
|
|
}
|
|
|
|
window_size = clamp(new_window_size, 2ul, 10ul);
|
|
smp_mb();
|
|
|
|
exit_win:
|
|
|
|
return ret;
|
|
}
|
|
|
|
static struct kernel_param_ops window_size_ops = {
|
|
.set = window_size_set,
|
|
.get = param_get_int,
|
|
};
|
|
|
|
module_param_cb(window_size, &window_size_ops, &window_size, 0644);
|
|
MODULE_PARM_DESC(window_size, "sliding window in number of clamping cycles\n"
|
|
"\tpowerclamp controls idle ratio within this window. larger\n"
|
|
"\twindow size results in slower response time but more smooth\n"
|
|
"\tclamping results. default to 2.");
|
|
|
|
static void find_target_mwait(void)
|
|
{
|
|
unsigned int eax, ebx, ecx, edx;
|
|
unsigned int highest_cstate = 0;
|
|
unsigned int highest_subcstate = 0;
|
|
int i;
|
|
|
|
if (boot_cpu_data.cpuid_level < CPUID_MWAIT_LEAF)
|
|
return;
|
|
|
|
cpuid(CPUID_MWAIT_LEAF, &eax, &ebx, &ecx, &edx);
|
|
|
|
if (!(ecx & CPUID5_ECX_EXTENSIONS_SUPPORTED) ||
|
|
!(ecx & CPUID5_ECX_INTERRUPT_BREAK))
|
|
return;
|
|
|
|
edx >>= MWAIT_SUBSTATE_SIZE;
|
|
for (i = 0; i < 7 && edx; i++, edx >>= MWAIT_SUBSTATE_SIZE) {
|
|
if (edx & MWAIT_SUBSTATE_MASK) {
|
|
highest_cstate = i;
|
|
highest_subcstate = edx & MWAIT_SUBSTATE_MASK;
|
|
}
|
|
}
|
|
target_mwait = (highest_cstate << MWAIT_SUBSTATE_SIZE) |
|
|
(highest_subcstate - 1);
|
|
|
|
}
|
|
|
|
static u64 pkg_state_counter(void)
|
|
{
|
|
u64 val;
|
|
u64 count = 0;
|
|
|
|
static bool skip_c2;
|
|
static bool skip_c3;
|
|
static bool skip_c6;
|
|
static bool skip_c7;
|
|
|
|
if (!skip_c2) {
|
|
if (!rdmsrl_safe(MSR_PKG_C2_RESIDENCY, &val))
|
|
count += val;
|
|
else
|
|
skip_c2 = true;
|
|
}
|
|
|
|
if (!skip_c3) {
|
|
if (!rdmsrl_safe(MSR_PKG_C3_RESIDENCY, &val))
|
|
count += val;
|
|
else
|
|
skip_c3 = true;
|
|
}
|
|
|
|
if (!skip_c6) {
|
|
if (!rdmsrl_safe(MSR_PKG_C6_RESIDENCY, &val))
|
|
count += val;
|
|
else
|
|
skip_c6 = true;
|
|
}
|
|
|
|
if (!skip_c7) {
|
|
if (!rdmsrl_safe(MSR_PKG_C7_RESIDENCY, &val))
|
|
count += val;
|
|
else
|
|
skip_c7 = true;
|
|
}
|
|
|
|
return count;
|
|
}
|
|
|
|
static void noop_timer(unsigned long foo)
|
|
{
|
|
/* empty... just the fact that we get the interrupt wakes us up */
|
|
}
|
|
|
|
static unsigned int get_compensation(int ratio)
|
|
{
|
|
unsigned int comp = 0;
|
|
|
|
/* we only use compensation if all adjacent ones are good */
|
|
if (ratio == 1 &&
|
|
cal_data[ratio].confidence >= CONFIDENCE_OK &&
|
|
cal_data[ratio + 1].confidence >= CONFIDENCE_OK &&
|
|
cal_data[ratio + 2].confidence >= CONFIDENCE_OK) {
|
|
comp = (cal_data[ratio].steady_comp +
|
|
cal_data[ratio + 1].steady_comp +
|
|
cal_data[ratio + 2].steady_comp) / 3;
|
|
} else if (ratio == MAX_TARGET_RATIO - 1 &&
|
|
cal_data[ratio].confidence >= CONFIDENCE_OK &&
|
|
cal_data[ratio - 1].confidence >= CONFIDENCE_OK &&
|
|
cal_data[ratio - 2].confidence >= CONFIDENCE_OK) {
|
|
comp = (cal_data[ratio].steady_comp +
|
|
cal_data[ratio - 1].steady_comp +
|
|
cal_data[ratio - 2].steady_comp) / 3;
|
|
} else if (cal_data[ratio].confidence >= CONFIDENCE_OK &&
|
|
cal_data[ratio - 1].confidence >= CONFIDENCE_OK &&
|
|
cal_data[ratio + 1].confidence >= CONFIDENCE_OK) {
|
|
comp = (cal_data[ratio].steady_comp +
|
|
cal_data[ratio - 1].steady_comp +
|
|
cal_data[ratio + 1].steady_comp) / 3;
|
|
}
|
|
|
|
/* REVISIT: simple penalty of double idle injection */
|
|
if (reduce_irq)
|
|
comp = ratio;
|
|
/* do not exceed limit */
|
|
if (comp + ratio >= MAX_TARGET_RATIO)
|
|
comp = MAX_TARGET_RATIO - ratio - 1;
|
|
|
|
return comp;
|
|
}
|
|
|
|
static void adjust_compensation(int target_ratio, unsigned int win)
|
|
{
|
|
int delta;
|
|
struct powerclamp_calibration_data *d = &cal_data[target_ratio];
|
|
|
|
/*
|
|
* adjust compensations if confidence level has not been reached or
|
|
* there are too many wakeups during the last idle injection period, we
|
|
* cannot trust the data for compensation.
|
|
*/
|
|
if (d->confidence >= CONFIDENCE_OK ||
|
|
atomic_read(&idle_wakeup_counter) >
|
|
win * num_online_cpus())
|
|
return;
|
|
|
|
delta = set_target_ratio - current_ratio;
|
|
/* filter out bad data */
|
|
if (delta >= 0 && delta <= (1+target_ratio/10)) {
|
|
if (d->steady_comp)
|
|
d->steady_comp =
|
|
roundup(delta+d->steady_comp, 2)/2;
|
|
else
|
|
d->steady_comp = delta;
|
|
d->confidence++;
|
|
}
|
|
}
|
|
|
|
static bool powerclamp_adjust_controls(unsigned int target_ratio,
|
|
unsigned int guard, unsigned int win)
|
|
{
|
|
static u64 msr_last, tsc_last;
|
|
u64 msr_now, tsc_now;
|
|
u64 val64;
|
|
|
|
/* check result for the last window */
|
|
msr_now = pkg_state_counter();
|
|
rdtscll(tsc_now);
|
|
|
|
/* calculate pkg cstate vs tsc ratio */
|
|
if (!msr_last || !tsc_last)
|
|
current_ratio = 1;
|
|
else if (tsc_now-tsc_last) {
|
|
val64 = 100*(msr_now-msr_last);
|
|
do_div(val64, (tsc_now-tsc_last));
|
|
current_ratio = val64;
|
|
}
|
|
|
|
/* update record */
|
|
msr_last = msr_now;
|
|
tsc_last = tsc_now;
|
|
|
|
adjust_compensation(target_ratio, win);
|
|
/*
|
|
* too many external interrupts, set flag such
|
|
* that we can take measure later.
|
|
*/
|
|
reduce_irq = atomic_read(&idle_wakeup_counter) >=
|
|
2 * win * num_online_cpus();
|
|
|
|
atomic_set(&idle_wakeup_counter, 0);
|
|
/* if we are above target+guard, skip */
|
|
return set_target_ratio + guard <= current_ratio;
|
|
}
|
|
|
|
static int clamp_thread(void *arg)
|
|
{
|
|
int cpunr = (unsigned long)arg;
|
|
DEFINE_TIMER(wakeup_timer, noop_timer, 0, 0);
|
|
static const struct sched_param param = {
|
|
.sched_priority = MAX_USER_RT_PRIO/2,
|
|
};
|
|
unsigned int count = 0;
|
|
unsigned int target_ratio;
|
|
|
|
set_bit(cpunr, cpu_clamping_mask);
|
|
set_freezable();
|
|
init_timer_on_stack(&wakeup_timer);
|
|
sched_setscheduler(current, SCHED_FIFO, ¶m);
|
|
|
|
while (true == clamping && !kthread_should_stop() &&
|
|
cpu_online(cpunr)) {
|
|
int sleeptime;
|
|
unsigned long target_jiffies;
|
|
unsigned int guard;
|
|
unsigned int compensation = 0;
|
|
int interval; /* jiffies to sleep for each attempt */
|
|
unsigned int duration_jiffies = msecs_to_jiffies(duration);
|
|
unsigned int window_size_now;
|
|
|
|
try_to_freeze();
|
|
/*
|
|
* make sure user selected ratio does not take effect until
|
|
* the next round. adjust target_ratio if user has changed
|
|
* target such that we can converge quickly.
|
|
*/
|
|
target_ratio = set_target_ratio;
|
|
guard = 1 + target_ratio/20;
|
|
window_size_now = window_size;
|
|
count++;
|
|
|
|
/*
|
|
* systems may have different ability to enter package level
|
|
* c-states, thus we need to compensate the injected idle ratio
|
|
* to achieve the actual target reported by the HW.
|
|
*/
|
|
compensation = get_compensation(target_ratio);
|
|
interval = duration_jiffies*100/(target_ratio+compensation);
|
|
|
|
/* align idle time */
|
|
target_jiffies = roundup(jiffies, interval);
|
|
sleeptime = target_jiffies - jiffies;
|
|
if (sleeptime <= 0)
|
|
sleeptime = 1;
|
|
schedule_timeout_interruptible(sleeptime);
|
|
/*
|
|
* only elected controlling cpu can collect stats and update
|
|
* control parameters.
|
|
*/
|
|
if (cpunr == control_cpu && !(count%window_size_now)) {
|
|
should_skip =
|
|
powerclamp_adjust_controls(target_ratio,
|
|
guard, window_size_now);
|
|
smp_mb();
|
|
}
|
|
|
|
if (should_skip)
|
|
continue;
|
|
|
|
target_jiffies = jiffies + duration_jiffies;
|
|
mod_timer(&wakeup_timer, target_jiffies);
|
|
if (unlikely(local_softirq_pending()))
|
|
continue;
|
|
/*
|
|
* stop tick sched during idle time, interrupts are still
|
|
* allowed. thus jiffies are updated properly.
|
|
*/
|
|
preempt_disable();
|
|
tick_nohz_idle_enter();
|
|
/* mwait until target jiffies is reached */
|
|
while (time_before(jiffies, target_jiffies)) {
|
|
unsigned long ecx = 1;
|
|
unsigned long eax = target_mwait;
|
|
|
|
/*
|
|
* REVISIT: may call enter_idle() to notify drivers who
|
|
* can save power during cpu idle. same for exit_idle()
|
|
*/
|
|
local_touch_nmi();
|
|
stop_critical_timings();
|
|
__monitor((void *)¤t_thread_info()->flags, 0, 0);
|
|
cpu_relax(); /* allow HT sibling to run */
|
|
__mwait(eax, ecx);
|
|
start_critical_timings();
|
|
atomic_inc(&idle_wakeup_counter);
|
|
}
|
|
tick_nohz_idle_exit();
|
|
preempt_enable_no_resched();
|
|
}
|
|
del_timer_sync(&wakeup_timer);
|
|
clear_bit(cpunr, cpu_clamping_mask);
|
|
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* 1 HZ polling while clamping is active, useful for userspace
|
|
* to monitor actual idle ratio.
|
|
*/
|
|
static void poll_pkg_cstate(struct work_struct *dummy);
|
|
static DECLARE_DELAYED_WORK(poll_pkg_cstate_work, poll_pkg_cstate);
|
|
static void poll_pkg_cstate(struct work_struct *dummy)
|
|
{
|
|
static u64 msr_last;
|
|
static u64 tsc_last;
|
|
static unsigned long jiffies_last;
|
|
|
|
u64 msr_now;
|
|
unsigned long jiffies_now;
|
|
u64 tsc_now;
|
|
u64 val64;
|
|
|
|
msr_now = pkg_state_counter();
|
|
rdtscll(tsc_now);
|
|
jiffies_now = jiffies;
|
|
|
|
/* calculate pkg cstate vs tsc ratio */
|
|
if (!msr_last || !tsc_last)
|
|
pkg_cstate_ratio_cur = 1;
|
|
else {
|
|
if (tsc_now - tsc_last) {
|
|
val64 = 100 * (msr_now - msr_last);
|
|
do_div(val64, (tsc_now - tsc_last));
|
|
pkg_cstate_ratio_cur = val64;
|
|
}
|
|
}
|
|
|
|
/* update record */
|
|
msr_last = msr_now;
|
|
jiffies_last = jiffies_now;
|
|
tsc_last = tsc_now;
|
|
|
|
if (true == clamping)
|
|
schedule_delayed_work(&poll_pkg_cstate_work, HZ);
|
|
}
|
|
|
|
static int start_power_clamp(void)
|
|
{
|
|
unsigned long cpu;
|
|
struct task_struct *thread;
|
|
|
|
/* check if pkg cstate counter is completely 0, abort in this case */
|
|
if (!pkg_state_counter()) {
|
|
pr_err("pkg cstate counter not functional, abort\n");
|
|
return -EINVAL;
|
|
}
|
|
|
|
set_target_ratio = clamp(set_target_ratio, 0U, MAX_TARGET_RATIO - 1);
|
|
/* prevent cpu hotplug */
|
|
get_online_cpus();
|
|
|
|
/* prefer BSP */
|
|
control_cpu = 0;
|
|
if (!cpu_online(control_cpu))
|
|
control_cpu = smp_processor_id();
|
|
|
|
clamping = true;
|
|
schedule_delayed_work(&poll_pkg_cstate_work, 0);
|
|
|
|
/* start one thread per online cpu */
|
|
for_each_online_cpu(cpu) {
|
|
struct task_struct **p =
|
|
per_cpu_ptr(powerclamp_thread, cpu);
|
|
|
|
thread = kthread_create_on_node(clamp_thread,
|
|
(void *) cpu,
|
|
cpu_to_node(cpu),
|
|
"kidle_inject/%ld", cpu);
|
|
/* bind to cpu here */
|
|
if (likely(!IS_ERR(thread))) {
|
|
kthread_bind(thread, cpu);
|
|
wake_up_process(thread);
|
|
*p = thread;
|
|
}
|
|
|
|
}
|
|
put_online_cpus();
|
|
|
|
return 0;
|
|
}
|
|
|
|
static void end_power_clamp(void)
|
|
{
|
|
int i;
|
|
struct task_struct *thread;
|
|
|
|
clamping = false;
|
|
/*
|
|
* make clamping visible to other cpus and give per cpu clamping threads
|
|
* sometime to exit, or gets killed later.
|
|
*/
|
|
smp_mb();
|
|
msleep(20);
|
|
if (bitmap_weight(cpu_clamping_mask, num_possible_cpus())) {
|
|
for_each_set_bit(i, cpu_clamping_mask, num_possible_cpus()) {
|
|
pr_debug("clamping thread for cpu %d alive, kill\n", i);
|
|
thread = *per_cpu_ptr(powerclamp_thread, i);
|
|
kthread_stop(thread);
|
|
}
|
|
}
|
|
}
|
|
|
|
static int powerclamp_cpu_callback(struct notifier_block *nfb,
|
|
unsigned long action, void *hcpu)
|
|
{
|
|
unsigned long cpu = (unsigned long)hcpu;
|
|
struct task_struct *thread;
|
|
struct task_struct **percpu_thread =
|
|
per_cpu_ptr(powerclamp_thread, cpu);
|
|
|
|
if (false == clamping)
|
|
goto exit_ok;
|
|
|
|
switch (action) {
|
|
case CPU_ONLINE:
|
|
thread = kthread_create_on_node(clamp_thread,
|
|
(void *) cpu,
|
|
cpu_to_node(cpu),
|
|
"kidle_inject/%lu", cpu);
|
|
if (likely(!IS_ERR(thread))) {
|
|
kthread_bind(thread, cpu);
|
|
wake_up_process(thread);
|
|
*percpu_thread = thread;
|
|
}
|
|
/* prefer BSP as controlling CPU */
|
|
if (cpu == 0) {
|
|
control_cpu = 0;
|
|
smp_mb();
|
|
}
|
|
break;
|
|
case CPU_DEAD:
|
|
if (test_bit(cpu, cpu_clamping_mask)) {
|
|
pr_err("cpu %lu dead but powerclamping thread is not\n",
|
|
cpu);
|
|
kthread_stop(*percpu_thread);
|
|
}
|
|
if (cpu == control_cpu) {
|
|
control_cpu = smp_processor_id();
|
|
smp_mb();
|
|
}
|
|
}
|
|
|
|
exit_ok:
|
|
return NOTIFY_OK;
|
|
}
|
|
|
|
static struct notifier_block powerclamp_cpu_notifier = {
|
|
.notifier_call = powerclamp_cpu_callback,
|
|
};
|
|
|
|
static int powerclamp_get_max_state(struct thermal_cooling_device *cdev,
|
|
unsigned long *state)
|
|
{
|
|
*state = MAX_TARGET_RATIO;
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int powerclamp_get_cur_state(struct thermal_cooling_device *cdev,
|
|
unsigned long *state)
|
|
{
|
|
if (true == clamping)
|
|
*state = pkg_cstate_ratio_cur;
|
|
else
|
|
/* to save power, do not poll idle ratio while not clamping */
|
|
*state = -1; /* indicates invalid state */
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int powerclamp_set_cur_state(struct thermal_cooling_device *cdev,
|
|
unsigned long new_target_ratio)
|
|
{
|
|
int ret = 0;
|
|
|
|
new_target_ratio = clamp(new_target_ratio, 0UL,
|
|
(unsigned long) (MAX_TARGET_RATIO-1));
|
|
if (set_target_ratio == 0 && new_target_ratio > 0) {
|
|
pr_info("Start idle injection to reduce power\n");
|
|
set_target_ratio = new_target_ratio;
|
|
ret = start_power_clamp();
|
|
goto exit_set;
|
|
} else if (set_target_ratio > 0 && new_target_ratio == 0) {
|
|
pr_info("Stop forced idle injection\n");
|
|
set_target_ratio = 0;
|
|
end_power_clamp();
|
|
} else /* adjust currently running */ {
|
|
set_target_ratio = new_target_ratio;
|
|
/* make new set_target_ratio visible to other cpus */
|
|
smp_mb();
|
|
}
|
|
|
|
exit_set:
|
|
return ret;
|
|
}
|
|
|
|
/* bind to generic thermal layer as cooling device*/
|
|
static struct thermal_cooling_device_ops powerclamp_cooling_ops = {
|
|
.get_max_state = powerclamp_get_max_state,
|
|
.get_cur_state = powerclamp_get_cur_state,
|
|
.set_cur_state = powerclamp_set_cur_state,
|
|
};
|
|
|
|
/* runs on Nehalem and later */
|
|
static const struct x86_cpu_id intel_powerclamp_ids[] = {
|
|
{ X86_VENDOR_INTEL, 6, 0x1a},
|
|
{ X86_VENDOR_INTEL, 6, 0x1c},
|
|
{ X86_VENDOR_INTEL, 6, 0x1e},
|
|
{ X86_VENDOR_INTEL, 6, 0x1f},
|
|
{ X86_VENDOR_INTEL, 6, 0x25},
|
|
{ X86_VENDOR_INTEL, 6, 0x26},
|
|
{ X86_VENDOR_INTEL, 6, 0x2a},
|
|
{ X86_VENDOR_INTEL, 6, 0x2c},
|
|
{ X86_VENDOR_INTEL, 6, 0x2d},
|
|
{ X86_VENDOR_INTEL, 6, 0x2e},
|
|
{ X86_VENDOR_INTEL, 6, 0x2f},
|
|
{ X86_VENDOR_INTEL, 6, 0x3a},
|
|
{}
|
|
};
|
|
MODULE_DEVICE_TABLE(x86cpu, intel_powerclamp_ids);
|
|
|
|
static int powerclamp_probe(void)
|
|
{
|
|
if (!x86_match_cpu(intel_powerclamp_ids)) {
|
|
pr_err("Intel powerclamp does not run on family %d model %d\n",
|
|
boot_cpu_data.x86, boot_cpu_data.x86_model);
|
|
return -ENODEV;
|
|
}
|
|
if (!boot_cpu_has(X86_FEATURE_NONSTOP_TSC) ||
|
|
!boot_cpu_has(X86_FEATURE_CONSTANT_TSC) ||
|
|
!boot_cpu_has(X86_FEATURE_MWAIT) ||
|
|
!boot_cpu_has(X86_FEATURE_ARAT))
|
|
return -ENODEV;
|
|
|
|
/* find the deepest mwait value */
|
|
find_target_mwait();
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int powerclamp_debug_show(struct seq_file *m, void *unused)
|
|
{
|
|
int i = 0;
|
|
|
|
seq_printf(m, "controlling cpu: %d\n", control_cpu);
|
|
seq_printf(m, "pct confidence steady dynamic (compensation)\n");
|
|
for (i = 0; i < MAX_TARGET_RATIO; i++) {
|
|
seq_printf(m, "%d\t%lu\t%lu\t%lu\n",
|
|
i,
|
|
cal_data[i].confidence,
|
|
cal_data[i].steady_comp,
|
|
cal_data[i].dynamic_comp);
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int powerclamp_debug_open(struct inode *inode,
|
|
struct file *file)
|
|
{
|
|
return single_open(file, powerclamp_debug_show, inode->i_private);
|
|
}
|
|
|
|
static const struct file_operations powerclamp_debug_fops = {
|
|
.open = powerclamp_debug_open,
|
|
.read = seq_read,
|
|
.llseek = seq_lseek,
|
|
.release = single_release,
|
|
.owner = THIS_MODULE,
|
|
};
|
|
|
|
static inline void powerclamp_create_debug_files(void)
|
|
{
|
|
debug_dir = debugfs_create_dir("intel_powerclamp", NULL);
|
|
if (!debug_dir)
|
|
return;
|
|
|
|
if (!debugfs_create_file("powerclamp_calib", S_IRUGO, debug_dir,
|
|
cal_data, &powerclamp_debug_fops))
|
|
goto file_error;
|
|
|
|
return;
|
|
|
|
file_error:
|
|
debugfs_remove_recursive(debug_dir);
|
|
}
|
|
|
|
static int powerclamp_init(void)
|
|
{
|
|
int retval;
|
|
int bitmap_size;
|
|
|
|
bitmap_size = BITS_TO_LONGS(num_possible_cpus()) * sizeof(long);
|
|
cpu_clamping_mask = kzalloc(bitmap_size, GFP_KERNEL);
|
|
if (!cpu_clamping_mask)
|
|
return -ENOMEM;
|
|
|
|
/* probe cpu features and ids here */
|
|
retval = powerclamp_probe();
|
|
if (retval)
|
|
return retval;
|
|
/* set default limit, maybe adjusted during runtime based on feedback */
|
|
window_size = 2;
|
|
register_hotcpu_notifier(&powerclamp_cpu_notifier);
|
|
powerclamp_thread = alloc_percpu(struct task_struct *);
|
|
cooling_dev = thermal_cooling_device_register("intel_powerclamp", NULL,
|
|
&powerclamp_cooling_ops);
|
|
if (IS_ERR(cooling_dev))
|
|
return -ENODEV;
|
|
|
|
if (!duration)
|
|
duration = jiffies_to_msecs(DEFAULT_DURATION_JIFFIES);
|
|
powerclamp_create_debug_files();
|
|
|
|
return 0;
|
|
}
|
|
module_init(powerclamp_init);
|
|
|
|
static void powerclamp_exit(void)
|
|
{
|
|
unregister_hotcpu_notifier(&powerclamp_cpu_notifier);
|
|
end_power_clamp();
|
|
free_percpu(powerclamp_thread);
|
|
thermal_cooling_device_unregister(cooling_dev);
|
|
kfree(cpu_clamping_mask);
|
|
|
|
cancel_delayed_work_sync(&poll_pkg_cstate_work);
|
|
debugfs_remove_recursive(debug_dir);
|
|
}
|
|
module_exit(powerclamp_exit);
|
|
|
|
MODULE_LICENSE("GPL");
|
|
MODULE_AUTHOR("Arjan van de Ven <arjan@linux.intel.com>");
|
|
MODULE_AUTHOR("Jacob Pan <jacob.jun.pan@linux.intel.com>");
|
|
MODULE_DESCRIPTION("Package Level C-state Idle Injection for Intel CPUs");
|