mirror of
https://github.com/FEX-Emu/linux.git
synced 2024-12-30 13:38:40 +00:00
5a0e3ad6af
percpu.h is included by sched.h and module.h and thus ends up being included when building most .c files. percpu.h includes slab.h which in turn includes gfp.h making everything defined by the two files universally available and complicating inclusion dependencies. percpu.h -> slab.h dependency is about to be removed. Prepare for this change by updating users of gfp and slab facilities include those headers directly instead of assuming availability. As this conversion needs to touch large number of source files, the following script is used as the basis of conversion. http://userweb.kernel.org/~tj/misc/slabh-sweep.py The script does the followings. * Scan files for gfp and slab usages and update includes such that only the necessary includes are there. ie. if only gfp is used, gfp.h, if slab is used, slab.h. * When the script inserts a new include, it looks at the include blocks and try to put the new include such that its order conforms to its surrounding. It's put in the include block which contains core kernel includes, in the same order that the rest are ordered - alphabetical, Christmas tree, rev-Xmas-tree or at the end if there doesn't seem to be any matching order. * If the script can't find a place to put a new include (mostly because the file doesn't have fitting include block), it prints out an error message indicating which .h file needs to be added to the file. The conversion was done in the following steps. 1. The initial automatic conversion of all .c files updated slightly over 4000 files, deleting around 700 includes and adding ~480 gfp.h and ~3000 slab.h inclusions. The script emitted errors for ~400 files. 2. Each error was manually checked. Some didn't need the inclusion, some needed manual addition while adding it to implementation .h or embedding .c file was more appropriate for others. This step added inclusions to around 150 files. 3. The script was run again and the output was compared to the edits from #2 to make sure no file was left behind. 4. Several build tests were done and a couple of problems were fixed. e.g. lib/decompress_*.c used malloc/free() wrappers around slab APIs requiring slab.h to be added manually. 5. The script was run on all .h files but without automatically editing them as sprinkling gfp.h and slab.h inclusions around .h files could easily lead to inclusion dependency hell. Most gfp.h inclusion directives were ignored as stuff from gfp.h was usually wildly available and often used in preprocessor macros. Each slab.h inclusion directive was examined and added manually as necessary. 6. percpu.h was updated not to include slab.h. 7. Build test were done on the following configurations and failures were fixed. CONFIG_GCOV_KERNEL was turned off for all tests (as my distributed build env didn't work with gcov compiles) and a few more options had to be turned off depending on archs to make things build (like ipr on powerpc/64 which failed due to missing writeq). * x86 and x86_64 UP and SMP allmodconfig and a custom test config. * powerpc and powerpc64 SMP allmodconfig * sparc and sparc64 SMP allmodconfig * ia64 SMP allmodconfig * s390 SMP allmodconfig * alpha SMP allmodconfig * um on x86_64 SMP allmodconfig 8. percpu.h modifications were reverted so that it could be applied as a separate patch and serve as bisection point. Given the fact that I had only a couple of failures from tests on step 6, I'm fairly confident about the coverage of this conversion patch. If there is a breakage, it's likely to be something in one of the arch headers which should be easily discoverable easily on most builds of the specific arch. Signed-off-by: Tejun Heo <tj@kernel.org> Guess-its-ok-by: Christoph Lameter <cl@linux-foundation.org> Cc: Ingo Molnar <mingo@redhat.com> Cc: Lee Schermerhorn <Lee.Schermerhorn@hp.com>
291 lines
8.2 KiB
C
291 lines
8.2 KiB
C
/*
|
|
* net/dccp/minisocks.c
|
|
*
|
|
* An implementation of the DCCP protocol
|
|
* Arnaldo Carvalho de Melo <acme@conectiva.com.br>
|
|
*
|
|
* This program is free software; you can redistribute it and/or
|
|
* modify it under the terms of the GNU General Public License
|
|
* as published by the Free Software Foundation; either version
|
|
* 2 of the License, or (at your option) any later version.
|
|
*/
|
|
|
|
#include <linux/dccp.h>
|
|
#include <linux/gfp.h>
|
|
#include <linux/kernel.h>
|
|
#include <linux/skbuff.h>
|
|
#include <linux/timer.h>
|
|
|
|
#include <net/sock.h>
|
|
#include <net/xfrm.h>
|
|
#include <net/inet_timewait_sock.h>
|
|
|
|
#include "ackvec.h"
|
|
#include "ccid.h"
|
|
#include "dccp.h"
|
|
#include "feat.h"
|
|
|
|
struct inet_timewait_death_row dccp_death_row = {
|
|
.sysctl_max_tw_buckets = NR_FILE * 2,
|
|
.period = DCCP_TIMEWAIT_LEN / INET_TWDR_TWKILL_SLOTS,
|
|
.death_lock = __SPIN_LOCK_UNLOCKED(dccp_death_row.death_lock),
|
|
.hashinfo = &dccp_hashinfo,
|
|
.tw_timer = TIMER_INITIALIZER(inet_twdr_hangman, 0,
|
|
(unsigned long)&dccp_death_row),
|
|
.twkill_work = __WORK_INITIALIZER(dccp_death_row.twkill_work,
|
|
inet_twdr_twkill_work),
|
|
/* Short-time timewait calendar */
|
|
|
|
.twcal_hand = -1,
|
|
.twcal_timer = TIMER_INITIALIZER(inet_twdr_twcal_tick, 0,
|
|
(unsigned long)&dccp_death_row),
|
|
};
|
|
|
|
EXPORT_SYMBOL_GPL(dccp_death_row);
|
|
|
|
void dccp_time_wait(struct sock *sk, int state, int timeo)
|
|
{
|
|
struct inet_timewait_sock *tw = NULL;
|
|
|
|
if (dccp_death_row.tw_count < dccp_death_row.sysctl_max_tw_buckets)
|
|
tw = inet_twsk_alloc(sk, state);
|
|
|
|
if (tw != NULL) {
|
|
const struct inet_connection_sock *icsk = inet_csk(sk);
|
|
const int rto = (icsk->icsk_rto << 2) - (icsk->icsk_rto >> 1);
|
|
#if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
|
|
if (tw->tw_family == PF_INET6) {
|
|
const struct ipv6_pinfo *np = inet6_sk(sk);
|
|
struct inet6_timewait_sock *tw6;
|
|
|
|
tw->tw_ipv6_offset = inet6_tw_offset(sk->sk_prot);
|
|
tw6 = inet6_twsk((struct sock *)tw);
|
|
ipv6_addr_copy(&tw6->tw_v6_daddr, &np->daddr);
|
|
ipv6_addr_copy(&tw6->tw_v6_rcv_saddr, &np->rcv_saddr);
|
|
tw->tw_ipv6only = np->ipv6only;
|
|
}
|
|
#endif
|
|
/* Linkage updates. */
|
|
__inet_twsk_hashdance(tw, sk, &dccp_hashinfo);
|
|
|
|
/* Get the TIME_WAIT timeout firing. */
|
|
if (timeo < rto)
|
|
timeo = rto;
|
|
|
|
tw->tw_timeout = DCCP_TIMEWAIT_LEN;
|
|
if (state == DCCP_TIME_WAIT)
|
|
timeo = DCCP_TIMEWAIT_LEN;
|
|
|
|
inet_twsk_schedule(tw, &dccp_death_row, timeo,
|
|
DCCP_TIMEWAIT_LEN);
|
|
inet_twsk_put(tw);
|
|
} else {
|
|
/* Sorry, if we're out of memory, just CLOSE this
|
|
* socket up. We've got bigger problems than
|
|
* non-graceful socket closings.
|
|
*/
|
|
DCCP_WARN("time wait bucket table overflow\n");
|
|
}
|
|
|
|
dccp_done(sk);
|
|
}
|
|
|
|
struct sock *dccp_create_openreq_child(struct sock *sk,
|
|
const struct request_sock *req,
|
|
const struct sk_buff *skb)
|
|
{
|
|
/*
|
|
* Step 3: Process LISTEN state
|
|
*
|
|
* (* Generate a new socket and switch to that socket *)
|
|
* Set S := new socket for this port pair
|
|
*/
|
|
struct sock *newsk = inet_csk_clone(sk, req, GFP_ATOMIC);
|
|
|
|
if (newsk != NULL) {
|
|
struct dccp_request_sock *dreq = dccp_rsk(req);
|
|
struct inet_connection_sock *newicsk = inet_csk(newsk);
|
|
struct dccp_sock *newdp = dccp_sk(newsk);
|
|
|
|
newdp->dccps_role = DCCP_ROLE_SERVER;
|
|
newdp->dccps_hc_rx_ackvec = NULL;
|
|
newdp->dccps_service_list = NULL;
|
|
newdp->dccps_service = dreq->dreq_service;
|
|
newdp->dccps_timestamp_echo = dreq->dreq_timestamp_echo;
|
|
newdp->dccps_timestamp_time = dreq->dreq_timestamp_time;
|
|
newicsk->icsk_rto = DCCP_TIMEOUT_INIT;
|
|
|
|
INIT_LIST_HEAD(&newdp->dccps_featneg);
|
|
/*
|
|
* Step 3: Process LISTEN state
|
|
*
|
|
* Choose S.ISS (initial seqno) or set from Init Cookies
|
|
* Initialize S.GAR := S.ISS
|
|
* Set S.ISR, S.GSR, S.SWL, S.SWH from packet or Init Cookies
|
|
*/
|
|
newdp->dccps_gar = newdp->dccps_iss = dreq->dreq_iss;
|
|
dccp_update_gss(newsk, dreq->dreq_iss);
|
|
|
|
newdp->dccps_isr = dreq->dreq_isr;
|
|
dccp_update_gsr(newsk, dreq->dreq_isr);
|
|
|
|
/*
|
|
* SWL and AWL are initially adjusted so that they are not less than
|
|
* the initial Sequence Numbers received and sent, respectively:
|
|
* SWL := max(GSR + 1 - floor(W/4), ISR),
|
|
* AWL := max(GSS - W' + 1, ISS).
|
|
* These adjustments MUST be applied only at the beginning of the
|
|
* connection.
|
|
*/
|
|
dccp_set_seqno(&newdp->dccps_swl,
|
|
max48(newdp->dccps_swl, newdp->dccps_isr));
|
|
dccp_set_seqno(&newdp->dccps_awl,
|
|
max48(newdp->dccps_awl, newdp->dccps_iss));
|
|
|
|
/*
|
|
* Activate features after initialising the sequence numbers,
|
|
* since CCID initialisation may depend on GSS, ISR, ISS etc.
|
|
*/
|
|
if (dccp_feat_activate_values(newsk, &dreq->dreq_featneg)) {
|
|
/* It is still raw copy of parent, so invalidate
|
|
* destructor and make plain sk_free() */
|
|
newsk->sk_destruct = NULL;
|
|
sk_free(newsk);
|
|
return NULL;
|
|
}
|
|
dccp_init_xmit_timers(newsk);
|
|
|
|
DCCP_INC_STATS_BH(DCCP_MIB_PASSIVEOPENS);
|
|
}
|
|
return newsk;
|
|
}
|
|
|
|
EXPORT_SYMBOL_GPL(dccp_create_openreq_child);
|
|
|
|
/*
|
|
* Process an incoming packet for RESPOND sockets represented
|
|
* as an request_sock.
|
|
*/
|
|
struct sock *dccp_check_req(struct sock *sk, struct sk_buff *skb,
|
|
struct request_sock *req,
|
|
struct request_sock **prev)
|
|
{
|
|
struct sock *child = NULL;
|
|
struct dccp_request_sock *dreq = dccp_rsk(req);
|
|
|
|
/* Check for retransmitted REQUEST */
|
|
if (dccp_hdr(skb)->dccph_type == DCCP_PKT_REQUEST) {
|
|
|
|
if (after48(DCCP_SKB_CB(skb)->dccpd_seq, dreq->dreq_isr)) {
|
|
dccp_pr_debug("Retransmitted REQUEST\n");
|
|
dreq->dreq_isr = DCCP_SKB_CB(skb)->dccpd_seq;
|
|
/*
|
|
* Send another RESPONSE packet
|
|
* To protect against Request floods, increment retrans
|
|
* counter (backoff, monitored by dccp_response_timer).
|
|
*/
|
|
req->retrans++;
|
|
req->rsk_ops->rtx_syn_ack(sk, req, NULL);
|
|
}
|
|
/* Network Duplicate, discard packet */
|
|
return NULL;
|
|
}
|
|
|
|
DCCP_SKB_CB(skb)->dccpd_reset_code = DCCP_RESET_CODE_PACKET_ERROR;
|
|
|
|
if (dccp_hdr(skb)->dccph_type != DCCP_PKT_ACK &&
|
|
dccp_hdr(skb)->dccph_type != DCCP_PKT_DATAACK)
|
|
goto drop;
|
|
|
|
/* Invalid ACK */
|
|
if (DCCP_SKB_CB(skb)->dccpd_ack_seq != dreq->dreq_iss) {
|
|
dccp_pr_debug("Invalid ACK number: ack_seq=%llu, "
|
|
"dreq_iss=%llu\n",
|
|
(unsigned long long)
|
|
DCCP_SKB_CB(skb)->dccpd_ack_seq,
|
|
(unsigned long long) dreq->dreq_iss);
|
|
goto drop;
|
|
}
|
|
|
|
if (dccp_parse_options(sk, dreq, skb))
|
|
goto drop;
|
|
|
|
child = inet_csk(sk)->icsk_af_ops->syn_recv_sock(sk, skb, req, NULL);
|
|
if (child == NULL)
|
|
goto listen_overflow;
|
|
|
|
inet_csk_reqsk_queue_unlink(sk, req, prev);
|
|
inet_csk_reqsk_queue_removed(sk, req);
|
|
inet_csk_reqsk_queue_add(sk, req, child);
|
|
out:
|
|
return child;
|
|
listen_overflow:
|
|
dccp_pr_debug("listen_overflow!\n");
|
|
DCCP_SKB_CB(skb)->dccpd_reset_code = DCCP_RESET_CODE_TOO_BUSY;
|
|
drop:
|
|
if (dccp_hdr(skb)->dccph_type != DCCP_PKT_RESET)
|
|
req->rsk_ops->send_reset(sk, skb);
|
|
|
|
inet_csk_reqsk_queue_drop(sk, req, prev);
|
|
goto out;
|
|
}
|
|
|
|
EXPORT_SYMBOL_GPL(dccp_check_req);
|
|
|
|
/*
|
|
* Queue segment on the new socket if the new socket is active,
|
|
* otherwise we just shortcircuit this and continue with
|
|
* the new socket.
|
|
*/
|
|
int dccp_child_process(struct sock *parent, struct sock *child,
|
|
struct sk_buff *skb)
|
|
{
|
|
int ret = 0;
|
|
const int state = child->sk_state;
|
|
|
|
if (!sock_owned_by_user(child)) {
|
|
ret = dccp_rcv_state_process(child, skb, dccp_hdr(skb),
|
|
skb->len);
|
|
|
|
/* Wakeup parent, send SIGIO */
|
|
if (state == DCCP_RESPOND && child->sk_state != state)
|
|
parent->sk_data_ready(parent, 0);
|
|
} else {
|
|
/* Alas, it is possible again, because we do lookup
|
|
* in main socket hash table and lock on listening
|
|
* socket does not protect us more.
|
|
*/
|
|
__sk_add_backlog(child, skb);
|
|
}
|
|
|
|
bh_unlock_sock(child);
|
|
sock_put(child);
|
|
return ret;
|
|
}
|
|
|
|
EXPORT_SYMBOL_GPL(dccp_child_process);
|
|
|
|
void dccp_reqsk_send_ack(struct sock *sk, struct sk_buff *skb,
|
|
struct request_sock *rsk)
|
|
{
|
|
DCCP_BUG("DCCP-ACK packets are never sent in LISTEN/RESPOND state");
|
|
}
|
|
|
|
EXPORT_SYMBOL_GPL(dccp_reqsk_send_ack);
|
|
|
|
int dccp_reqsk_init(struct request_sock *req,
|
|
struct dccp_sock const *dp, struct sk_buff const *skb)
|
|
{
|
|
struct dccp_request_sock *dreq = dccp_rsk(req);
|
|
|
|
inet_rsk(req)->rmt_port = dccp_hdr(skb)->dccph_sport;
|
|
inet_rsk(req)->loc_port = dccp_hdr(skb)->dccph_dport;
|
|
inet_rsk(req)->acked = 0;
|
|
dreq->dreq_timestamp_echo = 0;
|
|
|
|
/* inherit feature negotiation options from listening socket */
|
|
return dccp_feat_clone_list(&dp->dccps_featneg, &dreq->dreq_featneg);
|
|
}
|
|
|
|
EXPORT_SYMBOL_GPL(dccp_reqsk_init);
|