mirror of
https://github.com/FEX-Emu/linux.git
synced 2024-12-31 22:15:38 +00:00
bea9db3d16
The rtc chip doesn't support triggering on month and year. So just don't assign the respective fields in .read_alarm and let the rtc core interpret this accordingly. Signed-off-by: Uwe Kleine-König <uwe@kleine-koenig.org> Signed-off-by: Alexandre Belloni <alexandre.belloni@free-electrons.com>
644 lines
18 KiB
C
644 lines
18 KiB
C
/*
|
|
* rtc-isl12057 - Driver for Intersil ISL12057 I2C Real Time Clock
|
|
*
|
|
* Copyright (C) 2013, Arnaud EBALARD <arno@natisbad.org>
|
|
*
|
|
* This work is largely based on Intersil ISL1208 driver developed by
|
|
* Hebert Valerio Riedel <hvr@gnu.org>.
|
|
*
|
|
* Detailed datasheet on which this development is based is available here:
|
|
*
|
|
* http://natisbad.org/NAS2/refs/ISL12057.pdf
|
|
*
|
|
* This program is free software; you can redistribute it and/or modify
|
|
* it under the terms of the GNU General Public License as published by
|
|
* the Free Software Foundation; either version 2 of the License, or
|
|
* (at your option) any later version.
|
|
*
|
|
* This program is distributed in the hope that it will be useful,
|
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
* GNU General Public License for more details.
|
|
*/
|
|
|
|
#include <linux/module.h>
|
|
#include <linux/mutex.h>
|
|
#include <linux/rtc.h>
|
|
#include <linux/i2c.h>
|
|
#include <linux/bcd.h>
|
|
#include <linux/of.h>
|
|
#include <linux/of_device.h>
|
|
#include <linux/regmap.h>
|
|
|
|
#define DRV_NAME "rtc-isl12057"
|
|
|
|
/* RTC section */
|
|
#define ISL12057_REG_RTC_SC 0x00 /* Seconds */
|
|
#define ISL12057_REG_RTC_MN 0x01 /* Minutes */
|
|
#define ISL12057_REG_RTC_HR 0x02 /* Hours */
|
|
#define ISL12057_REG_RTC_HR_PM BIT(5) /* AM/PM bit in 12h format */
|
|
#define ISL12057_REG_RTC_HR_MIL BIT(6) /* 24h/12h format */
|
|
#define ISL12057_REG_RTC_DW 0x03 /* Day of the Week */
|
|
#define ISL12057_REG_RTC_DT 0x04 /* Date */
|
|
#define ISL12057_REG_RTC_MO 0x05 /* Month */
|
|
#define ISL12057_REG_RTC_MO_CEN BIT(7) /* Century bit */
|
|
#define ISL12057_REG_RTC_YR 0x06 /* Year */
|
|
#define ISL12057_RTC_SEC_LEN 7
|
|
|
|
/* Alarm 1 section */
|
|
#define ISL12057_REG_A1_SC 0x07 /* Alarm 1 Seconds */
|
|
#define ISL12057_REG_A1_MN 0x08 /* Alarm 1 Minutes */
|
|
#define ISL12057_REG_A1_HR 0x09 /* Alarm 1 Hours */
|
|
#define ISL12057_REG_A1_HR_PM BIT(5) /* AM/PM bit in 12h format */
|
|
#define ISL12057_REG_A1_HR_MIL BIT(6) /* 24h/12h format */
|
|
#define ISL12057_REG_A1_DWDT 0x0A /* Alarm 1 Date / Day of the week */
|
|
#define ISL12057_REG_A1_DWDT_B BIT(6) /* DW / DT selection bit */
|
|
#define ISL12057_A1_SEC_LEN 4
|
|
|
|
/* Alarm 2 section */
|
|
#define ISL12057_REG_A2_MN 0x0B /* Alarm 2 Minutes */
|
|
#define ISL12057_REG_A2_HR 0x0C /* Alarm 2 Hours */
|
|
#define ISL12057_REG_A2_DWDT 0x0D /* Alarm 2 Date / Day of the week */
|
|
#define ISL12057_A2_SEC_LEN 3
|
|
|
|
/* Control/Status registers */
|
|
#define ISL12057_REG_INT 0x0E
|
|
#define ISL12057_REG_INT_A1IE BIT(0) /* Alarm 1 interrupt enable bit */
|
|
#define ISL12057_REG_INT_A2IE BIT(1) /* Alarm 2 interrupt enable bit */
|
|
#define ISL12057_REG_INT_INTCN BIT(2) /* Interrupt control enable bit */
|
|
#define ISL12057_REG_INT_RS1 BIT(3) /* Freq out control bit 1 */
|
|
#define ISL12057_REG_INT_RS2 BIT(4) /* Freq out control bit 2 */
|
|
#define ISL12057_REG_INT_EOSC BIT(7) /* Oscillator enable bit */
|
|
|
|
#define ISL12057_REG_SR 0x0F
|
|
#define ISL12057_REG_SR_A1F BIT(0) /* Alarm 1 interrupt bit */
|
|
#define ISL12057_REG_SR_A2F BIT(1) /* Alarm 2 interrupt bit */
|
|
#define ISL12057_REG_SR_OSF BIT(7) /* Oscillator failure bit */
|
|
|
|
/* Register memory map length */
|
|
#define ISL12057_MEM_MAP_LEN 0x10
|
|
|
|
struct isl12057_rtc_data {
|
|
struct rtc_device *rtc;
|
|
struct regmap *regmap;
|
|
struct mutex lock;
|
|
int irq;
|
|
};
|
|
|
|
static void isl12057_rtc_regs_to_tm(struct rtc_time *tm, u8 *regs)
|
|
{
|
|
tm->tm_sec = bcd2bin(regs[ISL12057_REG_RTC_SC]);
|
|
tm->tm_min = bcd2bin(regs[ISL12057_REG_RTC_MN]);
|
|
|
|
if (regs[ISL12057_REG_RTC_HR] & ISL12057_REG_RTC_HR_MIL) { /* AM/PM */
|
|
tm->tm_hour = bcd2bin(regs[ISL12057_REG_RTC_HR] & 0x1f);
|
|
if (regs[ISL12057_REG_RTC_HR] & ISL12057_REG_RTC_HR_PM)
|
|
tm->tm_hour += 12;
|
|
} else { /* 24 hour mode */
|
|
tm->tm_hour = bcd2bin(regs[ISL12057_REG_RTC_HR] & 0x3f);
|
|
}
|
|
|
|
tm->tm_mday = bcd2bin(regs[ISL12057_REG_RTC_DT]);
|
|
tm->tm_wday = bcd2bin(regs[ISL12057_REG_RTC_DW]) - 1; /* starts at 1 */
|
|
tm->tm_mon = bcd2bin(regs[ISL12057_REG_RTC_MO] & 0x1f) - 1; /* ditto */
|
|
tm->tm_year = bcd2bin(regs[ISL12057_REG_RTC_YR]) + 100;
|
|
|
|
/* Check if years register has overflown from 99 to 00 */
|
|
if (regs[ISL12057_REG_RTC_MO] & ISL12057_REG_RTC_MO_CEN)
|
|
tm->tm_year += 100;
|
|
}
|
|
|
|
static int isl12057_rtc_tm_to_regs(u8 *regs, struct rtc_time *tm)
|
|
{
|
|
u8 century_bit;
|
|
|
|
/*
|
|
* The clock has an 8 bit wide bcd-coded register for the year.
|
|
* It also has a century bit encoded in MO flag which provides
|
|
* information about overflow of year register from 99 to 00.
|
|
* tm_year is an offset from 1900 and we are interested in the
|
|
* 2000-2199 range, so any value less than 100 or larger than
|
|
* 299 is invalid.
|
|
*/
|
|
if (tm->tm_year < 100 || tm->tm_year > 299)
|
|
return -EINVAL;
|
|
|
|
century_bit = (tm->tm_year > 199) ? ISL12057_REG_RTC_MO_CEN : 0;
|
|
|
|
regs[ISL12057_REG_RTC_SC] = bin2bcd(tm->tm_sec);
|
|
regs[ISL12057_REG_RTC_MN] = bin2bcd(tm->tm_min);
|
|
regs[ISL12057_REG_RTC_HR] = bin2bcd(tm->tm_hour); /* 24-hour format */
|
|
regs[ISL12057_REG_RTC_DT] = bin2bcd(tm->tm_mday);
|
|
regs[ISL12057_REG_RTC_MO] = bin2bcd(tm->tm_mon + 1) | century_bit;
|
|
regs[ISL12057_REG_RTC_YR] = bin2bcd(tm->tm_year % 100);
|
|
regs[ISL12057_REG_RTC_DW] = bin2bcd(tm->tm_wday + 1);
|
|
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* Try and match register bits w/ fixed null values to see whether we
|
|
* are dealing with an ISL12057. Note: this function is called early
|
|
* during init and hence does need mutex protection.
|
|
*/
|
|
static int isl12057_i2c_validate_chip(struct regmap *regmap)
|
|
{
|
|
u8 regs[ISL12057_MEM_MAP_LEN];
|
|
static const u8 mask[ISL12057_MEM_MAP_LEN] = { 0x80, 0x80, 0x80, 0xf8,
|
|
0xc0, 0x60, 0x00, 0x00,
|
|
0x00, 0x00, 0x00, 0x00,
|
|
0x00, 0x00, 0x60, 0x7c };
|
|
int ret, i;
|
|
|
|
ret = regmap_bulk_read(regmap, 0, regs, ISL12057_MEM_MAP_LEN);
|
|
if (ret)
|
|
return ret;
|
|
|
|
for (i = 0; i < ISL12057_MEM_MAP_LEN; ++i) {
|
|
if (regs[i] & mask[i]) /* check if bits are cleared */
|
|
return -ENODEV;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int _isl12057_rtc_clear_alarm(struct device *dev)
|
|
{
|
|
struct isl12057_rtc_data *data = dev_get_drvdata(dev);
|
|
int ret;
|
|
|
|
ret = regmap_update_bits(data->regmap, ISL12057_REG_SR,
|
|
ISL12057_REG_SR_A1F, 0);
|
|
if (ret)
|
|
dev_err(dev, "%s: clearing alarm failed (%d)\n", __func__, ret);
|
|
|
|
return ret;
|
|
}
|
|
|
|
static int _isl12057_rtc_update_alarm(struct device *dev, int enable)
|
|
{
|
|
struct isl12057_rtc_data *data = dev_get_drvdata(dev);
|
|
int ret;
|
|
|
|
ret = regmap_update_bits(data->regmap, ISL12057_REG_INT,
|
|
ISL12057_REG_INT_A1IE,
|
|
enable ? ISL12057_REG_INT_A1IE : 0);
|
|
if (ret)
|
|
dev_err(dev, "%s: changing alarm interrupt flag failed (%d)\n",
|
|
__func__, ret);
|
|
|
|
return ret;
|
|
}
|
|
|
|
/*
|
|
* Note: as we only read from device and do not perform any update, there is
|
|
* no need for an equivalent function which would try and get driver's main
|
|
* lock. Here, it is safe for everyone if we just use regmap internal lock
|
|
* on the device when reading.
|
|
*/
|
|
static int _isl12057_rtc_read_time(struct device *dev, struct rtc_time *tm)
|
|
{
|
|
struct isl12057_rtc_data *data = dev_get_drvdata(dev);
|
|
u8 regs[ISL12057_RTC_SEC_LEN];
|
|
unsigned int sr;
|
|
int ret;
|
|
|
|
ret = regmap_read(data->regmap, ISL12057_REG_SR, &sr);
|
|
if (ret) {
|
|
dev_err(dev, "%s: unable to read oscillator status flag (%d)\n",
|
|
__func__, ret);
|
|
goto out;
|
|
} else {
|
|
if (sr & ISL12057_REG_SR_OSF) {
|
|
ret = -ENODATA;
|
|
goto out;
|
|
}
|
|
}
|
|
|
|
ret = regmap_bulk_read(data->regmap, ISL12057_REG_RTC_SC, regs,
|
|
ISL12057_RTC_SEC_LEN);
|
|
if (ret)
|
|
dev_err(dev, "%s: unable to read RTC time section (%d)\n",
|
|
__func__, ret);
|
|
|
|
out:
|
|
if (ret)
|
|
return ret;
|
|
|
|
isl12057_rtc_regs_to_tm(tm, regs);
|
|
|
|
return rtc_valid_tm(tm);
|
|
}
|
|
|
|
static int isl12057_rtc_update_alarm(struct device *dev, int enable)
|
|
{
|
|
struct isl12057_rtc_data *data = dev_get_drvdata(dev);
|
|
int ret;
|
|
|
|
mutex_lock(&data->lock);
|
|
ret = _isl12057_rtc_update_alarm(dev, enable);
|
|
mutex_unlock(&data->lock);
|
|
|
|
return ret;
|
|
}
|
|
|
|
static int isl12057_rtc_read_alarm(struct device *dev, struct rtc_wkalrm *alarm)
|
|
{
|
|
struct isl12057_rtc_data *data = dev_get_drvdata(dev);
|
|
struct rtc_time *alarm_tm = &alarm->time;
|
|
u8 regs[ISL12057_A1_SEC_LEN];
|
|
unsigned int ir;
|
|
int ret;
|
|
|
|
mutex_lock(&data->lock);
|
|
ret = regmap_bulk_read(data->regmap, ISL12057_REG_A1_SC, regs,
|
|
ISL12057_A1_SEC_LEN);
|
|
if (ret) {
|
|
dev_err(dev, "%s: reading alarm section failed (%d)\n",
|
|
__func__, ret);
|
|
goto err_unlock;
|
|
}
|
|
|
|
alarm_tm->tm_sec = bcd2bin(regs[0] & 0x7f);
|
|
alarm_tm->tm_min = bcd2bin(regs[1] & 0x7f);
|
|
alarm_tm->tm_hour = bcd2bin(regs[2] & 0x3f);
|
|
alarm_tm->tm_mday = bcd2bin(regs[3] & 0x3f);
|
|
|
|
ret = regmap_read(data->regmap, ISL12057_REG_INT, &ir);
|
|
if (ret) {
|
|
dev_err(dev, "%s: reading alarm interrupt flag failed (%d)\n",
|
|
__func__, ret);
|
|
goto err_unlock;
|
|
}
|
|
|
|
alarm->enabled = !!(ir & ISL12057_REG_INT_A1IE);
|
|
|
|
err_unlock:
|
|
mutex_unlock(&data->lock);
|
|
|
|
return ret;
|
|
}
|
|
|
|
static int isl12057_rtc_set_alarm(struct device *dev, struct rtc_wkalrm *alarm)
|
|
{
|
|
struct isl12057_rtc_data *data = dev_get_drvdata(dev);
|
|
struct rtc_time *alarm_tm = &alarm->time;
|
|
unsigned long rtc_secs, alarm_secs;
|
|
u8 regs[ISL12057_A1_SEC_LEN];
|
|
struct rtc_time rtc_tm;
|
|
int ret, enable = 1;
|
|
|
|
mutex_lock(&data->lock);
|
|
ret = _isl12057_rtc_read_time(dev, &rtc_tm);
|
|
if (ret)
|
|
goto err_unlock;
|
|
|
|
ret = rtc_tm_to_time(&rtc_tm, &rtc_secs);
|
|
if (ret)
|
|
goto err_unlock;
|
|
|
|
ret = rtc_tm_to_time(alarm_tm, &alarm_secs);
|
|
if (ret)
|
|
goto err_unlock;
|
|
|
|
/* If alarm time is before current time, disable the alarm */
|
|
if (!alarm->enabled || alarm_secs <= rtc_secs) {
|
|
enable = 0;
|
|
} else {
|
|
/*
|
|
* Chip only support alarms up to one month in the future. Let's
|
|
* return an error if we get something after that limit.
|
|
* Comparison is done by incrementing rtc_tm month field by one
|
|
* and checking alarm value is still below.
|
|
*/
|
|
if (rtc_tm.tm_mon == 11) { /* handle year wrapping */
|
|
rtc_tm.tm_mon = 0;
|
|
rtc_tm.tm_year += 1;
|
|
} else {
|
|
rtc_tm.tm_mon += 1;
|
|
}
|
|
|
|
ret = rtc_tm_to_time(&rtc_tm, &rtc_secs);
|
|
if (ret)
|
|
goto err_unlock;
|
|
|
|
if (alarm_secs > rtc_secs) {
|
|
dev_err(dev, "%s: max for alarm is one month (%d)\n",
|
|
__func__, ret);
|
|
ret = -EINVAL;
|
|
goto err_unlock;
|
|
}
|
|
}
|
|
|
|
/* Disable the alarm before modifying it */
|
|
ret = _isl12057_rtc_update_alarm(dev, 0);
|
|
if (ret < 0) {
|
|
dev_err(dev, "%s: unable to disable the alarm (%d)\n",
|
|
__func__, ret);
|
|
goto err_unlock;
|
|
}
|
|
|
|
/* Program alarm registers */
|
|
regs[0] = bin2bcd(alarm_tm->tm_sec) & 0x7f;
|
|
regs[1] = bin2bcd(alarm_tm->tm_min) & 0x7f;
|
|
regs[2] = bin2bcd(alarm_tm->tm_hour) & 0x3f;
|
|
regs[3] = bin2bcd(alarm_tm->tm_mday) & 0x3f;
|
|
|
|
ret = regmap_bulk_write(data->regmap, ISL12057_REG_A1_SC, regs,
|
|
ISL12057_A1_SEC_LEN);
|
|
if (ret < 0) {
|
|
dev_err(dev, "%s: writing alarm section failed (%d)\n",
|
|
__func__, ret);
|
|
goto err_unlock;
|
|
}
|
|
|
|
/* Enable or disable alarm */
|
|
ret = _isl12057_rtc_update_alarm(dev, enable);
|
|
|
|
err_unlock:
|
|
mutex_unlock(&data->lock);
|
|
|
|
return ret;
|
|
}
|
|
|
|
static int isl12057_rtc_set_time(struct device *dev, struct rtc_time *tm)
|
|
{
|
|
struct isl12057_rtc_data *data = dev_get_drvdata(dev);
|
|
u8 regs[ISL12057_RTC_SEC_LEN];
|
|
int ret;
|
|
|
|
ret = isl12057_rtc_tm_to_regs(regs, tm);
|
|
if (ret)
|
|
return ret;
|
|
|
|
mutex_lock(&data->lock);
|
|
ret = regmap_bulk_write(data->regmap, ISL12057_REG_RTC_SC, regs,
|
|
ISL12057_RTC_SEC_LEN);
|
|
if (ret) {
|
|
dev_err(dev, "%s: unable to write RTC time section (%d)\n",
|
|
__func__, ret);
|
|
goto out;
|
|
}
|
|
|
|
/*
|
|
* Now that RTC time has been updated, let's clear oscillator
|
|
* failure flag, if needed.
|
|
*/
|
|
ret = regmap_update_bits(data->regmap, ISL12057_REG_SR,
|
|
ISL12057_REG_SR_OSF, 0);
|
|
if (ret < 0)
|
|
dev_err(dev, "%s: unable to clear osc. failure bit (%d)\n",
|
|
__func__, ret);
|
|
|
|
out:
|
|
mutex_unlock(&data->lock);
|
|
|
|
return ret;
|
|
}
|
|
|
|
/*
|
|
* Check current RTC status and enable/disable what needs to be. Return 0 if
|
|
* everything went ok and a negative value upon error. Note: this function
|
|
* is called early during init and hence does need mutex protection.
|
|
*/
|
|
static int isl12057_check_rtc_status(struct device *dev, struct regmap *regmap)
|
|
{
|
|
int ret;
|
|
|
|
/* Enable oscillator if not already running */
|
|
ret = regmap_update_bits(regmap, ISL12057_REG_INT,
|
|
ISL12057_REG_INT_EOSC, 0);
|
|
if (ret < 0) {
|
|
dev_err(dev, "%s: unable to enable oscillator (%d)\n",
|
|
__func__, ret);
|
|
return ret;
|
|
}
|
|
|
|
/* Clear alarm bit if needed */
|
|
ret = regmap_update_bits(regmap, ISL12057_REG_SR,
|
|
ISL12057_REG_SR_A1F, 0);
|
|
if (ret < 0) {
|
|
dev_err(dev, "%s: unable to clear alarm bit (%d)\n",
|
|
__func__, ret);
|
|
return ret;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
#ifdef CONFIG_OF
|
|
/*
|
|
* One would expect the device to be marked as a wakeup source only
|
|
* when an IRQ pin of the RTC is routed to an interrupt line of the
|
|
* CPU. In practice, such an IRQ pin can be connected to a PMIC and
|
|
* this allows the device to be powered up when RTC alarm rings. This
|
|
* is for instance the case on ReadyNAS 102, 104 and 2120. On those
|
|
* devices with no IRQ driectly connected to the SoC, the RTC chip
|
|
* can be forced as a wakeup source by stating that explicitly in
|
|
* the device's .dts file using the "wakeup-source" boolean property.
|
|
* This will guarantee 'wakealarm' sysfs entry is available on the device.
|
|
*
|
|
* The function below returns 1, i.e. the capability of the chip to
|
|
* wakeup the device, based on IRQ availability or if the boolean
|
|
* property has been set in the .dts file. Otherwise, it returns 0.
|
|
*/
|
|
|
|
static bool isl12057_can_wakeup_machine(struct device *dev)
|
|
{
|
|
struct isl12057_rtc_data *data = dev_get_drvdata(dev);
|
|
|
|
return data->irq || of_property_read_bool(dev->of_node, "wakeup-source")
|
|
|| of_property_read_bool(dev->of_node, /* legacy */
|
|
"isil,irq2-can-wakeup-machine");
|
|
}
|
|
#else
|
|
static bool isl12057_can_wakeup_machine(struct device *dev)
|
|
{
|
|
struct isl12057_rtc_data *data = dev_get_drvdata(dev);
|
|
|
|
return !!data->irq;
|
|
}
|
|
#endif
|
|
|
|
static int isl12057_rtc_alarm_irq_enable(struct device *dev,
|
|
unsigned int enable)
|
|
{
|
|
struct isl12057_rtc_data *rtc_data = dev_get_drvdata(dev);
|
|
int ret = -ENOTTY;
|
|
|
|
if (rtc_data->irq)
|
|
ret = isl12057_rtc_update_alarm(dev, enable);
|
|
|
|
return ret;
|
|
}
|
|
|
|
static irqreturn_t isl12057_rtc_interrupt(int irq, void *data)
|
|
{
|
|
struct i2c_client *client = data;
|
|
struct isl12057_rtc_data *rtc_data = dev_get_drvdata(&client->dev);
|
|
struct rtc_device *rtc = rtc_data->rtc;
|
|
int ret, handled = IRQ_NONE;
|
|
unsigned int sr;
|
|
|
|
ret = regmap_read(rtc_data->regmap, ISL12057_REG_SR, &sr);
|
|
if (!ret && (sr & ISL12057_REG_SR_A1F)) {
|
|
dev_dbg(&client->dev, "RTC alarm!\n");
|
|
|
|
rtc_update_irq(rtc, 1, RTC_IRQF | RTC_AF);
|
|
|
|
/* Acknowledge and disable the alarm */
|
|
_isl12057_rtc_clear_alarm(&client->dev);
|
|
_isl12057_rtc_update_alarm(&client->dev, 0);
|
|
|
|
handled = IRQ_HANDLED;
|
|
}
|
|
|
|
return handled;
|
|
}
|
|
|
|
static const struct rtc_class_ops rtc_ops = {
|
|
.read_time = _isl12057_rtc_read_time,
|
|
.set_time = isl12057_rtc_set_time,
|
|
.read_alarm = isl12057_rtc_read_alarm,
|
|
.set_alarm = isl12057_rtc_set_alarm,
|
|
.alarm_irq_enable = isl12057_rtc_alarm_irq_enable,
|
|
};
|
|
|
|
static const struct regmap_config isl12057_rtc_regmap_config = {
|
|
.reg_bits = 8,
|
|
.val_bits = 8,
|
|
};
|
|
|
|
static int isl12057_probe(struct i2c_client *client,
|
|
const struct i2c_device_id *id)
|
|
{
|
|
struct device *dev = &client->dev;
|
|
struct isl12057_rtc_data *data;
|
|
struct regmap *regmap;
|
|
int ret;
|
|
|
|
if (!i2c_check_functionality(client->adapter, I2C_FUNC_I2C |
|
|
I2C_FUNC_SMBUS_BYTE_DATA |
|
|
I2C_FUNC_SMBUS_I2C_BLOCK))
|
|
return -ENODEV;
|
|
|
|
regmap = devm_regmap_init_i2c(client, &isl12057_rtc_regmap_config);
|
|
if (IS_ERR(regmap)) {
|
|
ret = PTR_ERR(regmap);
|
|
dev_err(dev, "%s: regmap allocation failed (%d)\n",
|
|
__func__, ret);
|
|
return ret;
|
|
}
|
|
|
|
ret = isl12057_i2c_validate_chip(regmap);
|
|
if (ret)
|
|
return ret;
|
|
|
|
ret = isl12057_check_rtc_status(dev, regmap);
|
|
if (ret)
|
|
return ret;
|
|
|
|
data = devm_kzalloc(dev, sizeof(*data), GFP_KERNEL);
|
|
if (!data)
|
|
return -ENOMEM;
|
|
|
|
mutex_init(&data->lock);
|
|
data->regmap = regmap;
|
|
dev_set_drvdata(dev, data);
|
|
|
|
if (client->irq > 0) {
|
|
ret = devm_request_threaded_irq(dev, client->irq, NULL,
|
|
isl12057_rtc_interrupt,
|
|
IRQF_SHARED|IRQF_ONESHOT,
|
|
DRV_NAME, client);
|
|
if (!ret)
|
|
data->irq = client->irq;
|
|
else
|
|
dev_err(dev, "%s: irq %d unavailable (%d)\n", __func__,
|
|
client->irq, ret);
|
|
}
|
|
|
|
if (isl12057_can_wakeup_machine(dev))
|
|
device_init_wakeup(dev, true);
|
|
|
|
data->rtc = devm_rtc_device_register(dev, DRV_NAME, &rtc_ops,
|
|
THIS_MODULE);
|
|
ret = PTR_ERR_OR_ZERO(data->rtc);
|
|
if (ret) {
|
|
dev_err(dev, "%s: unable to register RTC device (%d)\n",
|
|
__func__, ret);
|
|
goto err;
|
|
}
|
|
|
|
/* We cannot support UIE mode if we do not have an IRQ line */
|
|
if (!data->irq)
|
|
data->rtc->uie_unsupported = 1;
|
|
|
|
err:
|
|
return ret;
|
|
}
|
|
|
|
static int isl12057_remove(struct i2c_client *client)
|
|
{
|
|
if (isl12057_can_wakeup_machine(&client->dev))
|
|
device_init_wakeup(&client->dev, false);
|
|
|
|
return 0;
|
|
}
|
|
|
|
#ifdef CONFIG_PM_SLEEP
|
|
static int isl12057_rtc_suspend(struct device *dev)
|
|
{
|
|
struct isl12057_rtc_data *rtc_data = dev_get_drvdata(dev);
|
|
|
|
if (rtc_data->irq && device_may_wakeup(dev))
|
|
return enable_irq_wake(rtc_data->irq);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int isl12057_rtc_resume(struct device *dev)
|
|
{
|
|
struct isl12057_rtc_data *rtc_data = dev_get_drvdata(dev);
|
|
|
|
if (rtc_data->irq && device_may_wakeup(dev))
|
|
return disable_irq_wake(rtc_data->irq);
|
|
|
|
return 0;
|
|
}
|
|
#endif
|
|
|
|
static SIMPLE_DEV_PM_OPS(isl12057_rtc_pm_ops, isl12057_rtc_suspend,
|
|
isl12057_rtc_resume);
|
|
|
|
#ifdef CONFIG_OF
|
|
static const struct of_device_id isl12057_dt_match[] = {
|
|
{ .compatible = "isl,isl12057" }, /* for backward compat., don't use */
|
|
{ .compatible = "isil,isl12057" },
|
|
{ },
|
|
};
|
|
MODULE_DEVICE_TABLE(of, isl12057_dt_match);
|
|
#endif
|
|
|
|
static const struct i2c_device_id isl12057_id[] = {
|
|
{ "isl12057", 0 },
|
|
{ }
|
|
};
|
|
MODULE_DEVICE_TABLE(i2c, isl12057_id);
|
|
|
|
static struct i2c_driver isl12057_driver = {
|
|
.driver = {
|
|
.name = DRV_NAME,
|
|
.pm = &isl12057_rtc_pm_ops,
|
|
.of_match_table = of_match_ptr(isl12057_dt_match),
|
|
},
|
|
.probe = isl12057_probe,
|
|
.remove = isl12057_remove,
|
|
.id_table = isl12057_id,
|
|
};
|
|
module_i2c_driver(isl12057_driver);
|
|
|
|
MODULE_AUTHOR("Arnaud EBALARD <arno@natisbad.org>");
|
|
MODULE_DESCRIPTION("Intersil ISL12057 RTC driver");
|
|
MODULE_LICENSE("GPL");
|